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By Neal Tetervin
SUMMARY

The laminar flow of a slightly viscous incompressible fluid that
issues from a slit and passes over a flat plate 1s investigated in a
reglon far enough from the slit for the boundsry—-layer equations to be
valid. By assuming similar velocity distributions along the plate, the
partial differential equation for the boundary layer is reduced to a
third—order nonlinear ordinary differential equation. This equation is
integrated by numerical means for the required boundary conditions. The
solution gives the velocities at points in the fluid and the surface
friction at points on the plate. . :

Some of the specific results obtained are that the velocities paral—
lel to the plate vary inversely as the 1/2 power of the distance from
the slit, that the velocities perpendicular to the plate vary inverssly
ag the 3/h power of the distance from the slit, that the width of the
disturbed region increases as the 3/h power of the dlistance from the
glit, that the surface friction is independent of the viscosity of the
fluid and varies inversely as the 5/4 power of the distance from the
slit, that the rate at which momentum parallel to. the plate passes
through a_plane normal to the plate varieg inversely as the 1/4 power
of the distance from the slit to the normal plane, and that the quantity
of fluid passing through a plane normal to the plate per unit time varies
directly as the 1/4 power of the distance from the slit to the normal plane.

INTRODUCTION

The laminar flow of an infinite uniform stream of incompressible
fluid of small viscosity over a flat plate at zero angle of attack was
first investigated analytically by Prandtl (reference 1). By a proper
choice of variables the partial differential equation of the Prandtl
boundary layer was reduced to a nonlinear ordinary differential equation
of the third order. An accurate solution of the equation that gave the
skin—friction coefficient for the plate and the velocities in the field
of flow was first obtained by Blasius (reference 2) and later by others.
(For example, see references 3 to 6.) The numerical -'values obtained by
. the different investigators, all of whom used either series or numerical
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methods to integrate the nonlinear differential equation, were about the
same.

The two—dlmensionad laminar flow of a slightly viscous incompressible
fluid from a sllt into an infinite region of still fluid was investigated
analytically by Schlichting (reference 7) and by Bickley {(reference 8).
By introducing new variables into the Prandtl boundary-layer equation
and by using the fact that the rate of flow of momentum through a cross
sectlon of the Jet 1s independent of the distance from the slit, the
partial differential equation of the boundary layer was reduced to a
third—order nonlinear ordinary differential equation. Schlichting inte—
grated the equation by the method of series and Bickley later integrated
the equation in a closed form., The solutions gave the velocities at
voints in the field of flow. TIn addition to the solutions for the flow
over a flat plate and for the flow from a slit, reference 9 also gives
the few other known golutions of the boundary—layer equations. The solu—
tilons are given for the flows near the stagnation points of plane bodies
and of bodies of revolution, for the flow along a wall in a converging
channel, and for the flow in & round Jet from which the fluid issues
from a small hole in a wall, Any additional solution of the boundary—
layer equations 1s then, aside from any practical application, of some
importance in boundary-layer theory.

The purpose of the present work is to investigate by means of the
Prandtl boundary-layer equations the laminar flow of a slightly viscous
incompressible fluid that 1ssues from a slit :and passes over a flat
plate. The arrangement (fig. 1) may also be interpretedas the laminar
flow into a very large container of still fluid from a slit at the
intersection of two of the walls. By use of the Prandtl boundary-layer
equations together with the momentum theorem, a substitution involving
other variables was found for the variables that appear in the Prandtl
boundary-layer equation. The substitutions reduced the boundary-layer
equation from a partial differential equation to a nonlinear ordinary
differential equation of the third order. The equation was integrated
numerically for the required boundary conditions with the aild of the
general purpose computing system of the Bell Telephone Leboratories in
the Langley Bell computing section.

The reduction of the boundary-layer partial differential equation
to an ordinary differential equation in the cases of the flat plate, the
Jet, and the combined flat plate and Jet flow is made by finding suitable
substitutions for the variables that appear in the Prandtl boundary—layer
equations. By making these substitutions the velocity distributions in
planes normal to the direction of the main flow are assumed to be similar.
The success of the substitutions in reducing the partial differential
equation of the boundary layer to an ordinary differential equation in
these special cases means that the assumption of similar profiles is
compatible with the equations describing the motion and that the similar
proflles exist wherever the assumptions made in deriving the equations
that describe the motion are valid.
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The fact that the profiles are the similar profiles predicted by
the laminar-boundary—layer theory has been verified experimentally both
for the flow of a uniform infinite stream over a flat plate (reference 10)
and for the flow in a round jet (reference 11). The experimental investi—
gation of the flow from the Jet verified the analysis (reference 9) for
all regions except in the immediate neighborhood of the orifice. The
application of the Prandtl boundary-layer equations to the present case,
an application that implies assumptions similar to those made in analyzing
thé flow of a uniform stream over a flat plate and in analyzing the flow
from a round orifice, is therefore expected to lead to results that are
valid for regions not too close to the slit.

SYMBOLS
x nondimensional distance parallel to surface of plate (X/a)
X distance parallel to surface of plate
y nondimensional distance normal to surface of plate (/)
y distance normal to surface of plate
u nondimensional velocity component in x-direction (E/ﬁé)'
u velocity component in x-~direction
v nondimeésional velocity component in y—direction (V/ﬁé)
v velocity component in y—direction. N
o density
V! coefficient of Qiscosity
v kinematic viscosity (p/p)
[ reference velocity
a reference length
Ry ‘reference Reynolds number - (ﬁ;;]v)
f function of 1

B function of x
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1) function of x
(&)
g oL ko _<d2G>
"R, [ 1.2
a d
f fzd'q : 0
O -
P ' static pressure
c constant
Ci, 02 constants of integration
M - momentum in x—direction
Mé reference momentum in x-direction, one side of plate (pﬁ;2§>
n
F = fd.'r]
0
a
£ =3
" 746\
EL lower 1imit of ¢ in <EE> dg
gL
¢c=EF
l4
Cx,=9l/3Ra2/3
Y7 = 91/3
1/3
Ry
To surface friction <F<§§> >
Y
Qoo

quantity of flow, one side of plate
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Wnax maximum velocity at a section

distance from surface of plate to point of maximum velocity Unax

Ymax

Subscripts:

0 ‘ conditions at surface of plate
o0 conditions at infinity

ANALYSIS

After assuming that the flow -is incompressible, that no static—
pressure gradient exists in the direction of x—exis (fig. 1), and that
the usual assumptions of the boundary—layer theory (reference 9) apply,
the equations describing the motion are: The boundary-layer equation of

motion with = =0

— . o
% - 0w, %W (1)

I, X oo | (2)
x Jdy

| and the momentum theorem applied to the x-component of the flow

(3).

d f pucdy

_do _“<§>

d_‘)—c- —
oy A

\

In order to make the equations nondimensional, the velocities are divided
by a reference velocity and the lengths by a reference length. The
nondimensional velocitles and lengths are
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<
I
d“ﬁl

KIRL

]
N
A Rl

and-

«
1]
pli<|

Now equation (3) becomes

SRS
2 dx a \9y/,
or
a I wdy . |
Jo __ L(@ (%)
ax Ry \ Oy 0 ‘
where

™
)

The velocity distributions in planes perpendicular to the x—axis
are now assumed,to be similar to one another., Velocity distributions
are said to be similar if all the velocity distributions are given by
one curve when u/u .. is plotted against y/ymax. In order to make

the assumption of similar profiles, the independent variables y and x
are replaced by new independent variables 7 and x by means of the
following substitutions (reference 12):
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S+

where f = f(y) and § - #(x), and

7
"=

where B = B(x). The expressions for u/u and for y/y  for a

fixed value of x then are

u_o_ by
Umay  (£),o
and -
y .o ___
Imax (n)ﬁ=umak

All the velocity distributions in planes perpendicular to the x-axis are
therefore given by one curve of u/up... plotted against I /Ymax @and

congequently the foregoing substitutions for y and x mean that similar
profiles have been assumed. Whether the assumption of similar profiles
is compatible with equations (1) to (3) which describe the motion is

decided by whether these equations reduce to ordinary differential
equations.

Determination of Relations for ¢, B, and u

The functions ¢ and B are to be determined by using equations (1)
to (3). If the values

and
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are substituted in equation (4), the result is

dEE f2dn
§~ Jo - - L L ()
dx Ry @B \dq 0
o« .
or, since fedn is independent of x
0
(&)
1eg_24f 1 M g
Bdx ¢ dx R, [ , g2
f~dn
0
Now let
(&)
a
l__;I‘O_=K
R
f 2ar
0
then

W |

a8 _
ax

164k

(5)

Equation (5) can be solved by using equation (1) to provide a relation,
which does not involve x, between @ and B. After equation (1) is

made nondimensional, the result is

u 1 Pu
U—t ¥V — = —
ox 9 Ry

(6)
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Equation (6) is to be rewritten in terms of f, #, B, and n. From
the relation

AN

it follows that

32 g8 a4l
and
af ap
n__(laax r oap
ox BP ¢2 dx
From equation (2)
y y | |
ov ou ou
v = — dy = - —dy = - j\ —f dny
j; o 0 o 0 ox
where
dy = B dn
or
g &
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By partial integration

then, the result for v is

<
Il
gl&

n
g d 1l 4B
(i)

If values for u, v, §E, §E, and EEE are substituted in equa-—
x’ dy a2
tion (6), the result is

e M
"anas ¢ g}, miﬁ.,,f fd,,(ﬁ_gsé_;%l_g_l__l_def .
ax ;
(0]

The left—hand and right-hand sides of equation (7) are multiplied
by ¢2, and the factor ¢/B2 which then appears on the right—hand side

of the equation is replaced by the value of ¢/b2. from equation (5).
After further simplification, equation (7) can be written as

1 2
1 EQ af f dg - _i_ a°f
3 o an | ReK g2
_ : 8
— - - (8)
pax 243 | pg-2 &L

' The variables x and n are independent. Consequently, a change in x
does not change the right-hand side of equation (8) and therefore does
not change the left-hand side either. A changs in 15 likewise does not
change the left-hand side of equation (8) and thus does not change the
right—hand side either. Both the left-hand and right—hand sides of equa—
tion (8) are therefore equal to a constant C. Then
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=)
RN

|+
=

]
Q

w|
=4 B3

or

or, by integrating
# = cqp° | -~ (9)

When equation (9) is substituted in equation (5), the result is

glc s _ _ %
: dx 1-2C

or, after integrating (éor C #

ol

and c;ée>

) \ =<
BA= [(250_1_ T* + 02> (2 —C)]

and
L
= x + C 2 ~C
=0 =3 2
Then
u = = lf y
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The expression for u ‘contains two arbitrary constants C, and 02.
The constant C; 1s a scale factor; the constant Co 1is a translation

factor that determines the location of the slit along the x—axis. There~
fore, the constant C; can be made unity and the constant Co can be

made zero without affecting the generality of the solution in any way
other than fixing the origin of the slit at x = 0. The expressions
for B, @, and u therefore become

L
2-C
B=[§C—Kx:—l (2-0)].
and
u = = ~—f J
C 1

- % | 25
[20—1'(24)} [20—1(2—(3)]

The constént C can be evaluated by use of the expression for the
momsntum in the x—direction:

or
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or

1-2C

M. [é X _ (2 - c{]e_c 1 £2dn (10)

The arbitrary'length a 1is interpreted as the distance along the
x—axis from the origin to the point where the similar profile has been
established. At this distance a from the origin the rate of momentum

flow is equated to 06;25; thus, the reference velocity 6; is defined.
When X =& or x =1, M=M, and, consequently, equation (10) at

-—

X = a becomes

1-2C
K = [* >
1= 2 -C f=d 11
[éc — ﬂ jj J (11)
0 v
]
The expression fgdq is a constant.
: “Jo
Let
00
£2an = 1
O .

‘The function f to be found must satisfy this condition. Then equa—
tion (11) becomes

Therefore
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Then
K+2
B=x3 (12)
2Kel
p=x3 (13)
and
_ 1 y
et e (1k)
£3 \43

where now

(15)

and

It can now be shown that the requirement that C # 2 and that C # 1

s

which was stipulated in determining B as a function of x by using
equations (5) and (9), is satisfied. The expression that was previously
obtained for C 1is

2K + 1
K+ 2

From physical considerations 0.< (—d—f-> <w and 0< R, < ». There—
b -

dn
fore, 0 <K <®, Thus, because K > O, the expression for C gives

c >

ol Fog
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Because X < o,

C<2
Therefore;
C#2
and
1
c £=
2 2

In order to show that the flow appears to come from a slit, the
edge of the region in which the velocity wu is other than zero can be
arbitrarily defined by choosing a fixed value of n that corresponds to
a small fixed value of wu. Thus, let the edge of the Jet region be
given by

n = nedge = Constant

Then
Jed
) = ———§E = Constant
edge K+2
- 3
or
K+2

yedge =X 3 X Constant

The flow therefore does appear to come from a slit located at
(x =0, y = 0). The slit c¢an be placed at a position of x that is
not zero by choosing a value for C, that is not zero. When the flat

plate is removed, (%£> =0 or K=0; and then from.equation (1k)
"o v .
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YA 2 |
" 25(3R) ne

which is similar to the relation for U in reference 8.

Derivation of the Differential Equation for G

The first step in determining the differentisl equation for G is
to substitute equations (12) and (13) in equation (7). The equation of
motion, therefore, becomes

=== (17)

The assumption of similar profiles has reduced the partial differential
equation of the boundary layer to an ordinary differential equation;
thus, an indication is given that the assumption of similar profiles is
consistent with equations (1) to (3) which describe the motion. Now,
let _

TI.
fdn="F
0
where F = F(n). Then, because
£ =
dn
ar _ d°F
a 3.2
n | dn
and
2 3
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equation (17) becomes

3 i _ 2
%_dF_i_J. KFdZ+2K+l
8, dn3 3 dn 3_
Now, let
=aﬂ
£ 73
y = =
Ra
and
F=7G-
where G = G(t). Thus,
&F _ay 4o
dn 3 dg
a%F _ o?y a%
a2 9 a2
and
Br _ o3y ade
dﬂ3 27 ae3

Equation (18) then becomes

o
dt at

‘d2G
+ (1 -X)G — (1 + 2K)

(

aG
ag

7

17

(18)

(19)
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where

(&)
oo\ By fafe\ _ o3 [d%
Now, let

a = 91/3Ra_2/3

Then, equation (19) becomes

2.\ 2 2
+ 1—<9—%> Gd—g+ 1+2<d—2(§}> (g—G>=o (20)
at®)y|  ae® ag® )y | \4¢

The conditions to be satisfied by G are, at & = O,

3

o
(]

[PV

dg

G=0

d_(}) .
(%),

and, at £ = o,

G = Constant

Integration of the Differential Equation for G

The differential equation for G, equation (20), is integrated
numerically by use of the method of reference 13. The numerical inte—

G % a3
=, —, ed =—
) dg”  ge? ae3
for the first five intervals of ¢ by means of a Taylor's series. The
Taylor's series that is valid for small values of £ is

gration was started by computing the values of G,
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From the nature of the problem each term of the equation is continuous
in the interval from O to »; the equation may therefore be integrated
directly term by term. Then

00 (] 2
| o () | [ e o) G ERES
o ag d¢" /o | o dg

© .
3 R
Integrating jﬁ G Q—S d¢ by parts gives

”Gidg_g__] [’ % 46 =_f°°d_29§dg
o a3 Jo a2 de o ae2 at

® 426 a¢

Integrating —— — d& by parts gives .
ag2 4t

,L 0% a6, _ (dcﬂ r dee(o}dg—_rwd_?gggdg

ag® 4 \E/ Jo  Jo 98 qE® Jo ag2 dt
Therefore
2
"o,
dge at
and thus
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A

) [o o]
Now, integrating - g2 EEE d¢ by parts gives
0 at?
o0 o0 o0 00
. 2
G2d—2—gd§=G2%g-] -f %%2(;‘%’@:- 2G<:—§> a
0 dg ‘ o O 0 ‘

Then equation (21) becomes

0 o © 2
N . <%E§> Jj G <§g> a + |1 + 2 <EE§> jﬁ G <%§> ¢ =0
/0 Jo %%/q

0

or

oo o ‘
u(i—eg) -1 f G(%)' at = 0 (22)
0

0]

The quantity G 1s always positive, except on the plate where it

is zero; therefore, equation (22) cannot be true unless éfg =5
dg 0
Consequently, <g§g> = % is taken as the starting value of 239 in
d&=/q ' :

the numerical integration of equation (20).

The equation was integrated by use of the "fourth approximation" of
reference 13 for an increment in &, At = 0.10; the numerical integration
began at ¢ = 0.50. In order to determine whether the incresment in
£, At =.0.10, was sufficiently small, the equation was also integrated
for an increment in ¢, At = 0.05; the numerical integration began
at ¢ = 0.50. Some of the results from the integration with At = 0.05,
the more accurate Integration, are given in table I. A comparison of
some of the values of G and its derivatives obtained by integrating
with At = 0.05 and with At = 0.10 1is given in table II; the values
at & = 0.60 computed by the Taylor's series are also included for
comparison with those computed by Felkner's method (reference 13).
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The results of the two integrations agree to five significant
figures up to ¢t = 8.50 at which valus %% is less then 1 percent of

its maximum value. From ¢ = 8.50 to ¢ = 13.10, at which value the
computation for At = 0.10 was stopped, the agreement between the
computations for the two different increments in ¢ becomes poorer.

The values of G, however, are the same to five significant figures for
both computations. At ¢ = 13.00, G has already attained its asymptotic
value, a value that is necessary for the computation of v at ¢ =

(See table I.)

As a further check on the accuracy of the numerical integration,
the following condition was used:

£94n = 1

which is the same as

- e\, 1
(%)a -2 (23)
ag
‘L 3
/
The values of de> d¢ obtained by using Weddle's rule (reference 1k)

with At = 0. 05 are given in table III. It is seen that the foregoing
condition (equation (23)) is confirmed to five significant figures. In

order to determine whether the integral J1 (%%> it 1s approximated

12.30
2
with sufficient accuracy by the integral <g§> d¢, the assumption
o 4 4 |
was made that for large values of & the curve of %% plotted against ¢

could be approximated by the function

G pe7BE
ag
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The constants A and B were evaluated in the range of & from ¢ = 9.45
to & =14k.95, The constant B was observed to increase slowly. For

B¢

E—Ae

aE

the integral from & to o« is

(0.00009145710)2

2(0.9452)
= 0.4h25 x 1075

where

gr, = 12.30

aG

== = 0.00009145710

m 0091457
and

B = 0.9452

aG
Because — decreases as €r, 1ncreases and because B increases

«©
2
as gL increases, the integral f (g) d¢ 1s given accurately to
0

12.30

2
- five significant figures by the integral <-§—(Z> de.



NACA TN No. 164k ' 25

. ) : Cheo : _ :
In order to determine whether the integral ‘[] <%%> dé¢ 1is approxi-
) 0

14,95

mated with sufficient accuracy.by the integral ' <29> dt, the same

0 a

\

function for %% for large values of ¢ was assumed; that is, for

&G =‘Ae_Bg
ag

the integral from & to 18

0.000007433791 .
0.950682

0.00000782

where

g = 14.95
@G 0.000007433791
ag
and
B = 0.950682
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Because a6 decreases as &7, increases and because B increases

ag
o .
as & increases, adding G d¢ to the value of G at ¢t = 1k4.95
‘ 1L4.95 A |
does not change its value to five significant figures. -
o0
dG\?: L
The last value in table TIT for <&_g> d¢ and the asymptotic
0

value of G are therefore both unchanged by extension of the curves
to € = o, The results of the computation for At = 0.05 are conse—
quently teken as correct to five significant figures for 0 < t < 8,50

and the asymptotic va.lue' of G '1s teken as 1.2599, The curve of g(;f
plotted against £ 1s shown in figure 2.
Determination of Final Expressions
' 3
Now that the values of G, iq, @, and G have been tabulated,
dg 6-52 d§3

the completion of the solution of the problem requires that expressions
for u, u, v, VvV, Qu, Tos M, and ¢ be determined.

In order to obtain the expressions for u and U, use

| & aydc - G -
w=2-0__3 df_97%1/3 d (24)
P /2 3 xt/2
< 3

The expression for Ry, 1is

R - Ja® _
a Y

<|of

J& B
QE . pV2

u = 92/3 Mga L/6 (é_cé;-
E 2 ) g/

oV

therefore, u may now be written as

(25)
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The expression for u is

-1/6 31/2 G

1
I
=
&
\O
w n
S~
(W)
/\
&
| o
N— %
-
il

ov 1/2

]|

or

1/3 1/6
T = 92/3 M2 / E/ 4G (26
' 3 pav ' 31/2 de

’

The U component of the velocity therefore varies inversely as the
1/2 power of the distance from the slit.

The expression for v is

where
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. | .
ffdn=ﬁ
0 ,

Y
£ 73

and

Then

v o2 <K+2§g§+K—1G>

K+2\ 3 " at -3
x 3

and, after the appropriate substitutions for y and K- have been made,

or

_93 1 ~§_»
v - (35 G) (27)

The expression for Vv 1is

- = 93 1. BN/ g \/@
v =vl0, = 38 — =G \|—
=k (—Ma—-gj/6 E3/4 ( de ) p&
2
[oRY
or
1/3 _1/12 |
__91/3 Ma.v 1/38. dG
V= (p) _ymég£—§ : (28)
. = _
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The magnitude of the vertical velocity ¥V thus varies inversely as the
3 /b, power of the distance from the slit. Whether the vertical velocity

is away from or toward the plate depends on the sign of the term 3¢ 2_(5} -G
in equation (28).

When ¢-—o, it can be shown that ¢ %-g—»'o because G — Constant

as §—» o, Therefore,

G,

R e

) L 0

or

= _ _ (1.2599)91/3 (Mgv /3 F/1e (29)
*® 4 . p E3/’+

The flow from the slit thus 1ndu¢es a veloclity towards the plate at
sufficiently large distances above or below the plate,

The quantity of fluid passiljg ‘through ,ah imaginary plane normal to
the plate and extending to.infinity in one direction is given as

o e
Qm=j7- ﬁ,df:ﬁagf u dy
0 | 0

and, after the appropriate substitutions for. I_Ia,'

U, and” y have been
made,

- 1/3 (]
Qp = 91/351/ M <-Mia—> , vl/3 4 ag
SN R o). de
0
or, finally,

q, = 91/35‘51/ ¥ <E>l/3a'l/ 12% (30)

[o]



30 - NACA TN No. 164k

where

G, = 1.2599

The quantity of fluild passing through a plane normel to the plate per
unit time thus varies directly as the l/h power of the distance from
the slit to the normal plane.

is

The expression for the surface friction To

|

ol| &

o
|
¥

=

o[
TN
n
(3\/

g 5/ /.2
v
a
X d€ /o
' = a3G\
and, after the appropriate substitutions for Ug s Ry, and <——§)
d€™ /o
have been made,
/4 ——
MaE/ Ma2a 1

o=u —— m— | | — —
pa.;‘j/’-l- pV2’+
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or
-1/ 1/h
T =u§§il=§§i (31)
° Ty E5/“ L J_c5/l*

The surface friction is thus independent of the viscosity of the fluid
- and varles inversely as the 5/4 power of the distance from the slit.

The shearing stress is independent of the viscosity of the fluid
not only at the surface but also between any two adJacent layers in the
flow. For the flow from a slit without the presence of the plate (refer—
ence 8), the shearing stress between any two adjacent layers of fluid is
also noted to be independent of the viscosity of the fluid. The shearing
stresses between adjacent layers are independent of the viscosity in both
the problem presented herein and in the flow from the slit without the

plate, because in both cases the velocity derivative S: is inversely

y
proportional to the viscosity u of the fluid.

The ratio of the rate of flow of momentum parallel to the plate at
distance X from the slit to the rate of momentum flow at the reference
distance a from the slit can be obtained from equation (10) as

M - M _ & /h (32)
M, = 2_ 1/4
= Uy a 3?/

The rate at which momentum parallel to the piate prasses through a plane
normal to the plate therefore varies inversely as the 1/4 power of the
distance from the glit to the normal plane.

The expression for ¢ can be obtained as follows:

oo SPRES 5 qys/an\ts
3 38N 32, 3/

X

or

2
3 ve

- (NS 5 1 3 N e g
T/ & , v o 5
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The width of the disturbed reglon, given by § for ¢ = ¢ thus

increases as the 3/4 power of the distance from the slit.

edge’

Validity of Solution

A restriction on the region in which the-solution is valid can be
obtalned by noting that for the boundary-layer equations to be valid the

valué of — must be small., By use of equations (26) and (28) the ratio
T
becomes
g1/3 (VMg 1/3 £ w N
Z- (= — (36 = -¢
- & P - 3/4 dg
¥_ X
u 1/3 :
2
/3 "\ " 5/°
3 \py) MR
or

1
v 3 pv2 / 1 G
== 38 - —
u 1/3\ \ M, 1/4 1/12 dG
L\9 T & T

a’ dg

Large values of gEE give small values of %, and so the region in
' _ PV u
which the solution is valld is enlarged when EEE is increased.

v

By use of the complete equations of motion Instead of the boundary—
layer equations the difference between the static pressure on the plate
and the static pressure very far above the plate is given approximately
at a glven value of X by

y
m N\ |20 2 {ov® /3
- /6 _1/2\M, |

i a X

PYmax

1<l
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and the pressure gradient in the direction of x 1s given approximately
by

(1 Qp_@_><:5 1 (p§2)2/3
.—pamx' 2&-5 E1/6 i3/2 My :

When 1t is noted that v 1s & small quantity, the approximation
that the static pressure 1s constant throughout the entire field which
was made in equations (1) and (3) is Justified by the solution. All the
terms neglected in the boundary—layer approximations can likewise be
shown to be truly negligable on the basis of the obtained solution. All

My

the approximations become more accurate as X increases and as —
oV
increases.

The constant & gseems to appear in a rgther‘arbitrary manner but,

= \1/k

a

because -——u=<:%> where &; 1is an arbitrary value of & and May
a1 \B .

is the momentum corresponding to the distance Ei from the slit, it can

be shown that a change in & does not change U, Vv, &, or To DPro—

. vided that X and ¥ are kept fixed.

When the plate is removed, the flow becomes the same as the flow
in a two—dimensional laminar .jet. This problem has been treated in
references 7 and 8. The removal of the plate in the present problem

makes <égg> =K = 0. Equation (20) then becomes
aE% o | |

— e —=+ (=
2 \de

a3 4G (dG)e_
ae3 de

When the conditions that

d°G
oY
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at ¢ = O and that

are used, the solution, which in this case is obtalined in closed form,
is

G

“tanh — (34)

Because the momentum M, is the momentum for one side of the plaﬁe in
- contrast to the momentum used by Bickley Mg (reference 8) which was

the total momentum flow from the slit and therefore equal to twice Mg,
the result ¢ = 2§B 1s obtained. When this relation between the value

of ¢ of the present analysis and the value of ¢ 1n reference 8 1is

used together with equation (34), exactly the same relations are obtained
for all the. quantitles of interest as were obtalned by Bickley
(reference 8).

CONCLUSIONS

The laminar flow of a slightly viscous incompressible fluld that
issues from a slit and passes over a flat plate is investigated in a
region far enough from the slit for the boundary-layer equations to be
valid. The results obtained are that the velocities parallel to the
plate vary inversely as the 1/2 power of the distance from the slit,
that the velocitlies perpendicular to the plate vary inversely as the
3/h power of the distance from the slit, that the width of the disturbed
reglon Increases as the 3/& power of the distance from the slit, that
. the surface frictlion is independent of the viscosity of the fluid and
varles inversely as the 5/h power of the distance from the slit, that
the rate at which momentum parallel to the plate passes through a plane
normal to the plate varies Inversely as the l/h power of the distance
from the slit to the normal plane, and that the quantity of fluid
passing through a plane normal to the plate per unit time varies directly
as the l/h power of the distance from the slit to the normal plane.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., March 9, 1948
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TABLE IIT

2
VALUES OF INTEGRAL 11 (%%) d¢ OBTATNED BY USE
0

OF WEDDLE'S RULE FOR At = 0.05

: 2 : 2
aG ac
g (dg) o : (BTE) it
0 0

0 6.30 0.3329781
.30 .0005619072 6.60 .3331301
.60 .00L462288 6.90 .3332176
.90 .01476L75 7.20 .3332678
1.20 .03369614 7.50 .3332965
1.50 .06194261 7.80 .3333129
1.80 .09818613 8.10 .3333222
2.10 .1392639 8.40 .3333275
2.40 .18103k9 8.70 3333305
2.70 .2195948 9.00 .3333322
3.00 .2522585 9.30 3333332
3.30 2779223 9.60 .3333338
3.60 .2968261 9.90 3333341
3.90 .3100159 10.20 3333343
4.20 .3188173 10.50 333334k
4.50 .324L8p2 10.80° .3333345
4,80 .3280249 11.10 .3333345
5.10 .3301909 11.%0 3333345
5.40 .3314920 11.70 .3333345
5.70 .3322630 12.00 .3333345
6.00 .3327151 12.30 .3333345

“Iﬂ!ﬁ,”
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Figure 1.- Flow from a slit at O into the XY-plane with a plate along OX.
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