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SUMMARY 

The laminar flow of a slightly viscous incompressible fluid that 
issues from a slit and passes over a flat plate is investigated in a 
region far enough from the slit for the boundary—layer equations to be 
valid. By assuming similar velocity distributions along the plate, the 
partial differential equation for the boundary layer is reduced to a 
third—order nonlinear ordinary differential equation. This equation is 
integrated by numerical means for the required boundary conditions. The 
solution gives the velocities at points in the fluid and the surface 
friction at points on the plate. 

Some of the specific results obtained are that the vOlocities paral-
lel to the plate vary Inversely as the 1/2 power of the distance from 
the slit, that the velocities perpendicular to the plate vary Inversely 
as the 3/14. power of the distance from the slit, that the width of the 
disturbed region Increases as the 3/14. power of the distance from the 
slit, that the surface friction is independent of the viscosity of the 
fluid and varies inversely as the 7/14. power of the distance from the 
slit, that the rate at which momentum parallel ta the plate passes 
through a_plane normal to the plate varIes inversely as the 1/14. power 
of the distance from the slit to the normal plane, and that the quantity 
of fluid passing through a plane normal to the plate per unit time varies 
directly as the 1/li. power of the distance from the slit to the normal plane. 

INTRODUCTION 

The laminar flow of an infinite uniform stream of incompressible 
fluid of small viscosity over a flat plate at zero angle of attack was 
first investigated analytically by Prandtl (reference 1). By a proper 
choice of variables the partial differential equation of the Prandtl 
boundary layer was reduced to a nonlinear ordinary differential equation 
of the third order. An accurate solution of the equation that gave the 
skin—friction coefficient for the plate and the velocities in the field 
of flow was first obtained by Blasius (reference 2) and later by others. 
(For example, see references 3 to 6.) The numerical values obtained by 
the different Investigators, all of whom used either series or numerical
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methods to integrate the nonlinear differential equation, were about the 
same.

The two-dimensional laminar flow of 'a slightly viscous incompressible 
fluid from a' slit into an infinite region of still fluid was investigated 
ana].ytically by :Schlichting (reference 7) and by Bickley (reference 8). 
By introducing new variables into the Prandtl boundary-layer equation 
'and by using the fact that the rate of flow of momentum through a cross 
section of the jet is independent of t'he distance from the slit, the 
partial differential equation of the boundary layer 'was reduced to a 
third-order nonlinear ordinary differential equation. Sc'hlichting inte-
grated the equation by the method of series and Bic'kley later integrated 
the equation in a closed form. The solutions 'gave the velocities at 
points 'in the field of flow.. In addition t'o t'he solutions for the flow 
over 'a flat "plate and for the flow 'from a elit, reference 9 ;also gives 
the few other Imown 'solutions .of the boundary-layer equations. The solu-
tions 'are given for t'he flows near the staation points 'of 'plane hodie,s 
and. of bodies 'of revolution,, for the, flow along 'a wall in 'a converging 
channel, and for the flow in 'a round jet from 'which the fluid issues 
from a small hole in a wail. Any additional solution of the 'boundary-
layer equations is then, 'aside from any practical 'application, of some 
importance in boundary-layer theory. 

The purpose of the present work is to investigate by means of the 
Prandtl boundary-layer equations t'he laminar flow of a slightly viscous 
incompressible fluid that issues 'from 'a slit and passes over a flat 
plate. The arrangement (fig. I) may also be Interpretedas t'he laminar 
flow into a 'very large 'cont'ainer of still fluid from a slit 'at the 
Intersection 'of two of the walls,. By use 'of t'he Prandtl 'boundary-layer 
equations together with the momentum theorem, a 'substitution involving 
'other variables was found for the variables that appear in the Prandtl 
boundary-layer equation. 'The substitutions reduced the boundary-layer 
equation from a partial differential equation to a nonlinear ordinary 
differential equation 'of the third order,. The equation was integrated 
numerically for 'the required boundary conditions with the aid of the 
general purpose computing system of the Bell Telephone Laboratories in 
the Langley Bell computing section. 

The reduction of the boundary-layer partial differential equation 
to an ordinary differential equation in the cases of the flat plate, the 
jet, and the combined flat plate and jet flow is made by finding suitable 
substitutions for the variables that appear in the Prandtl boundary-layer 
equations. By making these substitutions t'he 'velocity distributions in 
planes normal to the direction of the main flow are assumed to be similar. 
The success of the substitutions in reducing the partial differential 
equation of the boundary layer to an ordinary differential equation in 
these special cases means that the assumption of similar profiles is 
compatible with the equations describing the motion and t'hat the similar 
profiles exist 'wherever the assumptions 'made in deriving the equations 
that describe the motion are "valid.
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The fact that the profiles are the similar profiles predicted by 
the laminar-boundary-layer theory has been verified experimentally both 
for the flow of a uniform infinite stream over a flat plate (reference 10) 
and for the flow in a round jet (reference ii). The experimental investi-
gation of the flow from the jet verified the analysis (reference 9) for 
all regions except in the iimnediate neighborhood of the orifice. The 
application of the Prandtl boundary-layer equations to the present case, 
an application that implies assumptions similar to those made in analyzing 
the flow of a uniform stream over a lat plate and in analyzing the flow 
from a round orifice, is therefo±e expected to lead to results that are 
valid for regions not too close to the slit. 

SYMBOLS 

x	 nondimensional distance parallel to surface of plate (/) 

distance parallel to surface of plate 

y	 nondimensional distance normal to surface of plate (/) 

distance normal to surface of plate 

u	 nondimensional velocity component In x-direction (/Ua) 

u	 velocity component in x-direction 

v	 nondimensional velocity component In y-direction (/a) 

V	 velocity component In y-direction 

p	 density 

coefficient of viscosity 

v	 kinematic viscosity (P/P) 

Ua	 reference velocity 

reference lengbh 

reference Reynolds number (a/'') 

f	 function of i 

y 

13	 function of x
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0 function of	 x 

=(\\ 
K=- 

:Ra k2) 
f2dy 

p static pressure 

C constant 

C 1 , C 2 constants of integration 

M momentum in x—direct Ion

Ma	 reference momentum in x—direction, one side of plate (pUa2) 

F= 
f	

fdr1
Jo

lower linilt of	 in 

J 
()2d 

7 

= 91/3Ra2/3 

91/3 
7 =

surface friction
\ yo 

quantity of flow, one side of plate 
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u	 maximum velocity at a section 

distance from surface of plate to point of maximum velocity Umax 

Subscripts: 

0	 conditions at surface of plate 

conditions at Infinity

ANALYSIS 

After assuming that the flow Is incompressible, that no static-
pressure gradient exists in the direction of x-e.xis (fig. 1), and that 
the usual assumptions of the boundary-layer theory (reference 9) apply, 
the equations describing the motion are: The boundary-layer equation of 

motion with	 = 0

(i) 

the equation of continuity for incompressible flow 

—+—=0
	

(2) 

and the momentum theorem applied to the x-component of the flow 

d	 p2d

= _t()	 (3), 

In order to make the equations nondiniensional, the velocities are divided 
by a reference velocity and the lengths by a reference length. The 
nondimensional velocities and lengths are
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U 
U =

Ua 

V 
V =

Ua 

I 
1=-

a 

y 

a 

Now equation (3) becomes

= 

or

I	 2d1 udy 

.Jo

dx	 - Ray)0 

where

p =_: 
a 

The velocity distributions in planes perpendicular to the x—axis 
are now assumed, to be similar to one another. Velocity distributions 
are said to be similar if all the velocity distributions are given by 
one curve when u/umax is plotted. against y/y. In order to make 

the assumption of similar profiles, the independent variables y and x 
are replaced. by new independent variables r and x by means of the 
following substitutions (reference 12): 

and.

d.y 

a dx

(14)
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U = 

where f = f(r1) and 0 =0(x), and

y 

where 13 = 13(x). The expressions f or U/Umax and. for y/y	 for a

fixed value of x then are

U -	 f 
Umax - 

and.-

y= 

rnax	 (n1)ii=uma 

All the velocity distributions in planes perpendicular to the x—axis are 
therefore given by one curve of u/u 	 plotted. against y/y	 and.

consequently the foregoing substitutions for y and. x mean that similar 
profiles have been assumed. Whether the assumption of similar profiles 
is compatible with equations (1) to (3) which describe the motion is 
decided by whether these equations reduce to ordinary differential 
equations	 - 

Determination of Relations for 0, , and. u 

The functions 0 and (3 are to be determined. by using equations (1) 
to (3). If the values

f 
u= 

and.

ul df 

yØ(3d
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are substituted. in equation (1i), the result is 

d.- 
100 

f2dr 
2

- 1 1 (d.f\ 

-	 'a ø	 11) 

or, since j	 independ.ent of x
fdf\ 

___L 
dx Ø&x	 Ra

Jo 

Now let

(d.f\ 

fdr 

Jo 

then

I3dx	 Ødx
	 (.5) 

Equation (5) can be solved. by using equation (1) to provid.e a relation, 
which does not involve x, between 0 and. 13 . After equation (i) is 
made nond.imenslonal, the result is 

u—^v—=-----	 (6) 
Ha y2
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Equation (.6) is to be rewritten in terms of f, 	 , 3, and.	 . From 
the relation

f 
u=-

0 
it follows that

u_l d.f 

y Øi 

1 df 
2	 2 2 

y	 013 d1 

and

/ df d13

	

(TdTldx	 f dØ 

130 

From equation (2)

	

,ru	 . v= i —dy=— i —dy=— i —13di J0	 J0x	 J0x 

where

dy=13d1 

or

dxl 

0
flT 

I 
J0

df 

dr 
i1—di1+

__ '1 

j 
2



	

dr 
d0 --
	 flaK d2 

_ 2 +	
j1T

th 
J0

Ødx 

1 d -
dx

(8) 
2 d.2f 

f dr1 - - - 
RaK Ui2 

10
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By partial Integration

(11) 

Iods
fU 

then, the result for v is 

fr df3	 r di1	 - 1 dJ3\ 
V =--+ 

Ød j 
uO.	 ) 

u 
If values for u, v, -, -, and - are substituted in equa-

x y 
tion (6), the result is 

/ df	

uØ iali df 1 1 cl2f 
dx Ø2dX/ [0	 2dxØdx)j	 ('? 

The left—haid and right—hand sides of equation (7) are multiplied 
by 2, and the factor	 which then appears on the right—hand side 
of the equation is replaced by the value of Ø/32. from equation (5). 
After further simplification, equation (7) can be wrItten as 

The variables x and	 are independent. Consequently, a change in x 
does not change the right-hand side of equation (8) and therefore does 
not change the left—hand side either. A change in r likewise does not 
change the left-hand side of equation (8) and thus does not change the 
right-hand side either. Both the left—hand and. right—hand sides of equa-
tion (8) are therefore equal to a constant C. Then
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U 

Ødx
=c 

1 d'3 

'3dx 

or

öØ	
c d13 0	 '3 

or, by integrating

ø=c113c	 (9) 

When equation (9) is substituted in equation (5), the result is 

31—c	 - - KC 

dx	 1-2C 

or, after 1ntegratin (for C	 and C 2)

1 
'3 

=	
- 1x + C2 ) (2 - c)j 

and

C 

1 
0 

c1[(Kc1	
2)(2_j =	 x+C 

2C-1 

Then	 - 

1	
fI	 y	

1 
u=

c1[(__KC

	
2) (2 _C)] 2	 [(_x+ c2 ) (2 _c)IH x+C 

2C - 1 [[2c - 1
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The expression for u contains two arbitrary constants C 1 and. C2. 

The constant C 1 is a scale factor; the constant C 2 is a translation 

factor that deternilnes the location of the slit along the x—axis. There-
fore, the constant C 1 can be made unity and. the constant C 2 can be 

made zero without affecting the generality of the solution in any way 
other than fixing the origin of the slit at x = 0. The expressions 
for J3, 0, and u therefore become

1 

=	
(2 - C)] •-C 

0 
= [2C	

(2 - c)] 

and

1	 y 
u= CI. r	 12—C	 Ii-

I	 (2—c)I	 II	 (2—C)I 
[2C-1	 J	 LL2C_l	 j 

The constant C can be evaluated by use of the expression for the 
monintuin in the x—d.irectlon:

floo 

1-2-Mp	 udy 

JO 

or

M =

	

u2dy = r f2d1 

pUa a	 0	 0 o
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or

	

M	 [ Kx 

	

PUa	 [2c - 1 (2 - 
c)J	

J 
fd1	 (10) 

The arbitrary length 	 Is interpreted as the distance along the 
x—axis from the origin to the point where the similar profile ha3 been 
established. At this distance 	 from the origin the rate of momentum 

flow is equated to. pUa2; thus, the reference velocity Ua is defined. 
When	 =	 or x = 1, M = Ma ant, consequently, equation (10) at 

= a becomes

1-2C 
2—C	 flcK) 

	

1	
[2_1 (2 - 

cJ	 f2d	 (ii) 

The expression	 f2d1 is a constant. 

Let

f2d = 1 

The function f to be found must satisfy this condition; Then equa-
tion (ii) becomes

1-2C 

rK

	

	 12—C 
(2—c) 

[2C—1 

Therefore

= 2K + 1

K+ 2
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K-i-2

(12) 

2K+l 

	

Ø=x 3 	 (13) 

1	 /y_\	 (l1I.) f 
2K+1 ( K+2\ 

3 T) 
where now

(df\ 

K =

	

Ha
	 (15) 

and.

xl 

It can now be shown that the requirement that C p 2 and that C 

which was stipulated in determining J3 as a function of x by using 
equations (5) and. (9), is satisfied. The expression that was previously 
obtained for C is

= 2K + 1 

K+ 2 

From physical considerations o,< (	 <co and. 0 < Ra <	 There-\dTJ0 

f ore, 0 <K < . Thus, because K> 0, the expression for C gives 

lii. 

Then 

and

2
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Because K < ,

C.<2 

Therefore,

C 2 

and

C 

In order to show that the flow appears to come from a slit, the 
edge of the region in which the velocity u is other than zero can be 
arbitrarily defined by' choosln€ a fixed value of 	 that corresponds to 
a small fixed value of u. Thus, let the edge of the Jet region be 
given by

= edge = Constant 

Then

Yedge 
%dge =	

= Constant 

x3 

or

K+2 

sedge = 3 x Constant 

The flow therefore does appear to come from a slit located at 
(x = 0, y = 0). The slit ôan be placed at a position of x that is 
not zero by choosing a value for C 2 that is not zero. When the flat 

plate is removed,

	

	 = 0 or K = 0; and then from .equation (1Ii) 
\dt/0
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1 f•(_Y 
11/3	 2/3 

which is similar to the relation for i in reference 8. 

Derivation of the Differential Equation for G 

The first step in determining the differential equation for G is 
to substitute equations (12) and (13) in equation (7). The equation of 
motion, therefore, becomes

(16) 

2K+12 df 
f +-

3	 d1
K—i 1 d2f fdi1	

=;;.	
(17) 

The assumption of similar profiles has reduced the partial differential 
equation of the boundary layer to an ordinary differential equation; 
thus, an indication is given that the assumption of similar profiles is 
consistent with equations (1) to (3) which describe the motion. Now, 
let 

PTI
fd=F 

Jo

whore F = F(). Then, because

df - d2F 

- th2 

and

d2fd3F 

dT12	 di3 
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equation (17) becomes 

1 d3F 1 - K d2F	 c + 1
=0	 (18) 

Now, let

53 

7 =-

and 

where G = G(). Thus,

	

dr1	 3d 

	

d 2	 9 d 

and

d13	 27 d3 

Equation (18) then becomes 

d3G	
)G	 + (1 + c) 

(\2 = 0
	 (19) —+(l K

\d) -	 d2.
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where

___	 = cL 

Ra	 9Ra \d2)	 9Ra2 \d2) 

Now, let

a. = 91:/3Ra2/3 

Then, equation (19) becomes 

d3G [	 7d2Gl d2G [1 + 2	 1 (dG.\2 = 0	 (20) 

The conditions to be satisfied by G are, at	 = 0, 

G= 0 

=0 
\d 'o 

and, at	 =

G = Constant 

Integration of the Differential Equation for G 

The differential equation for 0, equatIon (20), is integrated 
numerically by use of the method of reference 13. The numerical inte-

	

dO d2G	 d3Ggratlon was started by computing the values of 0, -, -, and - 

	

d	 d2	 d3 
for the fIrst five intervals of 	 by means of a Taylor's series.. The 
Taylor's series that is valid for small values of 	 Is
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H I uJ1 'd	 'd N-1r-1 HI 'dl 'd
0 

N-IH N- HIN--. - H 
uJlH H i\O lH 4- + HIU 

f\I-. 0 
0 ____ 

IH
+ N-IH HIu.fl 

'd HIun 
I	 'd H

IH .zi	 I -. 
-zt- 
HIzt 

• H 'd 4-fl 'd HIM-
Hlc' IH + + + HIC'J 0 

r-IIH 
'd HIui 'd HIH HI

+ oL HI4M 
'dl 'd 

r-IIH HI-• 01. 'd HI.LA 'd r-Ir--i .lr-1 HtO IH + + G.i ___ 

cbko 0 HIH 
'dl 'd 'di "-' 'd rIIcO

'dI'd 

oY 1aDI.	 'd	 'd ccl-. tX) N-	 I -. .	 i co 

1- + 'DI-. 
0 

I +
0 

______ • UJ1
0 'dl	 'd 

iC i . 'd 'd Lr\	 I. 
LLfl I ir zJ	 I -. •'J' I	 tr-

+
+

(nI_. 
Icn + 

+
0 (!,ltf\ 

'd 'd OJ
oJ 

'd 'd (Jl. I	 ('J '.— I	 c'J 

II II II II 
cIrn 'dI'd (\J I 'dI'd

a) 

a)

+ 

oJ 

(\J

T 

_\	 4J1

(\J 'd 'd 

+

01 

c\J

+

0 
cc 
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From the xature of the problem each term of the equation is continuous 
in the interval from 0 to ; the equation may therefore be integrated 
directly term by term. Then

floO
2 Gd^[l_'l r G2 d+[l+2hil I G() d=0 (21) 

Jo	 d	
[ 

d2)] J0	 d2	
[ 

'\d2)] J 

flco	 o 

Integrating	 G - d. by parts gives 

rG2G1 
d.3	 o d 2 d	 J0 d 2 d 

000 

Integrating	 d by parts gives 
d 

floo	 510	 (00	 no0 

I	 I	 d=— ' 
Jo a2 d	 \d/j0 -	 Jo d2 d 

Therefore

(100 2	
d = 

J0 d d 

and thus

00 

I G—d=O 

Jo	 d3
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Now, integrating	 d by parts gives

	

Co	
2 

2G( 

d2	 dd	 I d	 d	 j Jo 
Then equation (21) becomes

dG2 
2 

dG	
G(__) d = 0 —2 [i ()]

	

G (2

+ ['^ ()1 110 0 00 

or

1 

14. d2G	 'dG\2 
— 1	 G (— d = 0	 (22) 

[()o ho	 \dJ 

The quantity G Is always positive, except on the plate where it

	

is zero; therefore, equation (22) cannot be true unless 	 = 

Consequently,	 =	 is taken as the starting value of 	 in 
\d2J0	 d 

the numerical integration of equation (20). 

The equation was integrated by use of the "fourth approximation" of 
reference 13 for an increment in , 	 = 0.10; the numerical integration 
began at	 = 050. In order to determine whether the increment in 

A =0.10, was sufficiently smalJ., the equation was also integrated 
for an increment in , t = 0.05; the numerical integration began 
at	 = 0.50. Some of the results from the Integration with A = 0.05, 
the more accurate integration, are given in table I. A comparison of 
some of the values of G and its derivatives obtained by Integrating 
with A = 0.05 and with	 = 0.10 is given in table II; the values 
at	 = 0.60 computed by the Taylor's series are also included for 
comparison with those computed by Falkner's method (reference 13)..



f2d = 1 

r ( 2d = 

(Jo	
-'	 3

which is the same as

(23) 
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The results of the two integrations agree to five significant 

figures up to	 = 8.50 at which value	 is less than 1 percent of 

its maximum value. From	 = 8.50 to	 = 13.10, at which value the 
computation for	 = 0.10 was stopped, the agreement between the 
computations for the two different Increments in 	 becomes poorer. 
The values of G, however, are the seine to five significant figures for 
both computations. At 	 = 13.00, G has already attained its asymptotic 
value, a value that is necessary for the computation of v at 	 =
(See table I.) 

As a further check on the accuracy of the numerical integration, 
the following condition was used: 

2 
The values o	 () d obtained by using Wedfle' s rule (reference i) 

with A = 0.05 are given in table III. It is seen ,that the foregoing 
condition (equation ( 23)) is confirmed to five significant figures. In 

2 
order to determine whether the integral 	 () d is approximated 

1)0 
fll2.30 

with sufficient accuracy by the integral

	

	 d, the assumption 

Jo 

was made' that for large values of 	 the curve of	 plotted against 

could be approximated by the function 

= Ae
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The constants A arid B were evaluated in the range of 	 from	 = 9.li.5 
to	 = 11I..95. The constant B was observed to increase slowly. For 

= Ae 

the integral from	 to ° is

dG 2 

2 C*)-	 L 
JL

= (0.00009114.5710)2 

2(0.914.52) 

= 0.1425 x 108 
where

= 12.30 

= 0.00009111.5710 

and

B = 0.911.52 

Because	 decreases as	 increases end because B increases 

as L increases, the integral 

f 
(dG)2	

is given accurately to 

12.30	
2 

five siificent f1res by the integral 

f	 () 
d.
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In order to determine whether the integral 
f () d is approxi-
11L95 

mated wIth sufficient accuracy by the Integral 	 () d, the 

function for	 for large values of 	 was assumed; that is, for 

the integral from 	 to	 Is

(dG. 
flci 

I	 d=	 L 
B 

- 0.000007)4.33791 
0.950682 

= 0.00000782 

where

= 11I..95 

= o.0000073379l 

and

B = 0.950682
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Because	 decreases as L increases and because B increases 
d 

as	 increases, addln€	 d to the value of G at	 = 1.95 L	 i 
ti11i..95 

does not change its value to five significant figures. 

dG 2 The last value in table III for	 () d and the asymptotic 

Jo 
value of C are therefore both unchanged by extension of the curves 
to	 = . The results of the conl:putation for	 = 0.07 are conse-
quently taken as correct to five significant figures for 0 	 8.70 
and the asymptotic value of C is taken as 1.2599. The curve of 
plotted against	 is shown in figure 2. 

Determination of Final Expressions 

dG d2G	 d.3G Now that the values of C, -, 	 , and - have been tabulated, d	 d2	 d3 
the completion of the solution of the problem requires that expressions 
for u, u, v, v, Qc, T0, M, and	 be determined. 

In order to obtain the expressions for u and , use 

dF	 dG 
f	 di1	 3 d - 92/3 1/3 d	 (24) u = - =	 =	 -	 ___ 0	 2K^l	 l/2	

a	 1/2 

x3 

The expression for a

a	 \[\J 
therefore, u may now be written as 

/ —1/6 ;Q. 2/3fMaa'\	 d U= 93	
/2	 (25)



NACA TN No. i614i. 

The expression for u Is

1/2 dG 
a - 92/3 Ma 

i/6 

U=UUa=	

()	
_l/2 pV 

or

- 92/3 /2\'/3 ..1/6 

3 x 

The ii component of the velocity therefore varies Inversely as the 
1/2 power of the distance from the slit. 

The expression for v Is 

7 !!i.^ fd__! Ødx 2dx Ødx

where

3 d 

y 
K^2 

K+2 

13 =x 3 

2K+l 

Ø=x3

27 

(26) 
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ph 

I fdi1

=.n.
3 

Then

v=	 ___	 ___ 
3	 d	 3	 J 

and, after the appropriate substitutions for 	 and K have been made, 

91/3 1 /3 dO. G

c 

or

91/3	 1	 1 
(\l/6	 (3	 _G)	 (27) 

2 
\pvJ 

The expression for 	 is 

-	 -	 91/3	 1.	 3/14. / dO. v=vUa =	 3-.---G -= Is. ( )/6 3/li.	 d	 pa 

or

= 91/3 (Mv)'/3 
_1/12 

___	 a	
(	 (28) 

p	 _3rn 
x 

28 

and
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The magnitude of the vertical velocity i thus varies inversely as the 
3/14. power of the distance from the slit. Whether the vertical velocity 

is away from or toward the plate depends on the sign of the term 3	 - G 
in equation (28).

dG 

	

When —oo, It can be shown that	 because G—Constant 

as -*• Therefore,

____	 a = - 9j/3 
( l/3 ..1/12 

	

\pJ	 /14 
I 

or

= - l,2599)91/3 /MaV 1/3 _1/12 

14

	

	 (29) 
-x 

The flow from the slit thus induces a velocity towards the plate at 
sufficiently large distances above or below the plate. 

The quantity of fluid passing through an Imaginary plane normal to 
the plate and extending to.Infinity in one direction is given as 

0 00	 -	 p00 

Q = j U d = Uaa	 u dy 
Lb	 i)0 

and, after the appropriate substitutions for Ua, u, and y have been 
made,

= 91/311/14 ()l/3, 

f	 d 
or, finally,

= 9l/3/' /Mv\'/3 1/l2 - 

	

( -J a	 (30) 
\pJ
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where

C.00 = 1.2599 

The quantity of fluid passing through a plane normal to the plate per 
unit time thus varies directly as the i/1. power of the distance froni 
the slit to the normal plane. 

The expression for the surface friction T 0 is 

T0 = (
\ciY 0 

a (u'\ 

y)0 

- .tUR i (af\ -	
Øf3 d1) 

al 

xK 9 

- —/"• iUaa	 d 

a	
() 

and, after the appropriate substitutions for Ua, Ra, and ()

0 
have been made,

l/1i. 

To\I	
/\!\J pa 5

pV
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or

1/li.	 i/li. 
Ma	 1 M 

T =	
5/1. i = r	 (31) 

The surface friction is thus independent of the viscosity of the fluid 
and varies inversely as the 5/li. power of the distance from the slit. 

The shearing stress is independent of the viscosity of the fluid 
not only at the surface but also between any two adjacent layers in the 
flow. For the flow from a slit without the presence of the plate (refer-
ence 8),the shearing stress between any two adjacent layers of fluid is 
also noted to be independent of the viscosity of the fluid. The shearing 
stresses between adjacent layers are independent of the viscosity in both 
the problem presented herein and in the flow from the slit without the 

plate, because in both cases the velocity derivative 	 is inversely 

proportional to the viscosity .t of the fluid. 

The ratio of the rate of flow of momentum parallel to the plate at 
distance	 from the slit to the rate of momentum flow at the reference 
distance	 from the slit can be obtained from equation (10) as 

M	 M	
.1/li. 

=	
2— = ./ li.	 (32) 

Pa	 x 

The rate at which momentum parallel to the plate passes through a plane 
normal to the plate therefore varies inversely as the l/1. power of the 
distance from the slit to the normal plane. 

The expression for	 can be obtained as follows: 

=	
= 9l/3R2/3 _
	

- 91/3/\h/3 y 

3	 3	 3/3(2	 3/li. 
\vpJ	 x 

or

	

91/3 74a /3 Y	 1 - 91/3 (\l/3 .J./l2 

= 3	 3/	 -	 2 (33) 
VP	 a	 \v)
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The width of the disturbed region, given by 	 for	
= d' thus 

increases as the 3/ li. power of the distance from the slit. 

Validity of Solution 

A restriction on the region in which the solution is valid can be 
obtained by noting that for the boundary—layer equations to be valid the 

value of	 must be small. By use of equations (26) and (28) the ratio 
u 

becomes

91/3 (\l/3 ....1/l2	
- 

—	 ii.	 \pJ	 _3/ii. \	 d.	 J 

=	 92/3 (\1/3 /6 

	

3	 2 ) _l/2d p v	 x 

or

.-	 3	
(2)1/3	

1 

	

- (i/) 
Ma	 i/ 1/12 (

i1 

Ma 
Large. values of - give small values of -, and. so  the region in 

pv2	 u 

which the solution is valid is enlarged when 	 is increased. 
pv2 

By use of the complete equations of motion instead of the boundary—
layer equations the difference between the static pressure on the plate 
and the • static pressure very far above the plate is given approximately 
at a given value of 	 by 

I	 / 2\2/3 
/ixp '\	 10	 1 (pv 
- 2) < _i/6 _1/2 kMa 
PUniax J_	 a	 x x
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and the pressure gradient in the direction Of x is given approximately 
by

( 1	
•\\ 

<	 5	 1 (.Ey\\2/3: 

j2 )
	

_i/6 _3/2 \Ma ) 
--	 a	 x I 

When it is noted that V is a small quantity, the approximation 
that the static pressure is constant throughout the entire field which 
was made in equations (1) and (3) is justified. by the solution., All the 
terms neglected In the boundary-layer approximations can likewise be 
shown to be truly negligable on the basis of the obtained solution. All 

the aproxiinations become more accurate as 	 increases and as

pv 
increases.. 

The constant	 seems to appear in a rather arbitrary manner but, 

because -= ( -)	 where	 is an arbitrary value of	 and al \a/ 

is the momentum corresponding to the distance l from the slit, it can 

be shown that a change In	 does not change i, v, , or T 0 pro-
vided. that	 and 5 are kept fixed. 

When the plate is removed, the flow becomes the same as the flow 
in a two-dimensional laminar jet. This problem has been treated in 
references 7 and 8. The removal of the plate in the present problem 

makes	 = K = 0. Equation (20) then becomes 
\d2J0

	

d3G	 d.2G	 dG 2
=0 

When the conditions that

G=0 

d
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at	 =O andthat

(2 = 

(JO	 3 

are used, the solution, which in this case is obtained in closed form, 
is

G =tanh - 
2 

Because the momentum Ma is the momentum for one side of the plate in 

contrast to the momentum used by Bickley MB (reference 8) which was 

the total m.oxnentum flow from the slit and therefore equal to twice Ma, 
the result	 = 2B is obtained. When this relation between the value 

of	 of the present analysis and the value of B In reference 8 is 

used together with equation (314.), exactly the same relations are obtained 
for all the. quantities of interest as were obtained by Bickley 
(reference 8).

CONCLUSIONS 

The laminar flow of a slightly viscous incompressible fluid that 
issues from a slit and passes over a flat plate is investigated in a 
region far enough from the slit for the bound.ary—layer equations to be 
valid. The results obtained are that the velocities parallel to the 
plate vary inversely as the 1/2 power of the distance from the slit, 
that the velocities perpendicular to the plate vary Inversely as the 
3/14. power of the distance from the slit, that the width of the disturbed 
region Increases as the 3/ li. power of the distance from the slit, that 
the surface friction is Independent of the viscosity of the fluid and 
varies inversely as the 5/li. power of the distance from the slit, that 
the rate at which momentum parallel to the plate passes through a plane 
normal to the plate varies Inversely as the 1/ li. power of the distance 
from the slit to the normal plane, and that the quantity of fluid 
passing through a plane normal to the plate per unit time varies directly 
as the 1/14 power of the distance from the slit to the normal plane. 

Langley Memorial Aeronautical Laboratory 
National Advisory Coxmn.Ittee for Aeronautics 

Langley Field, Va., March 9, 1914.8

(314.)



NACA TN No. i6l
	

35 

Jj1 

1. Pra.nd.tl, L..: Motion of Fluids with Very Little Viscosity. NACA TM 
No. li.52, 1928. 

2. Blasius, H.: Grenzschichten in Flüssigkelten mit klelner Relbung. 
Z.f. Math. u. Phys., Bd. 56, Heft 1, 1908, pp. 1-37. 

3. Toepfer, Karl: Beinerkung zu dem Aufsatz von H. Blasius "Grenzschichten 
in Flüssigkeiten mit kleiner Reibung." Z.f. Math. u. Phys., Bd.. 60, 
Heft II. , 1912, pp. 397-398. 

ii. . Bairstow, L: Skin Friction. Jour. R.A.S., vol. XXIX, no. 169, 
Jan. 1925, pp. 3-23. 

5. Goldstein, S.: Concerning Some Solutions of the Boundary Layer Equa-
tions in HydrodynarLics. Proc. Cambridge Phil. Soc., vol. XXVI, 
pt. I, Jan. 1930, pp. 1-30. 

6. Howarth, L.: On the Solution of the Laminar Boundary Layer Equations. 
Proc. Roy. Soc. (London), ser. A, vol. l6 li., no. 919, Feb. 18, 1938, 
pp. 5147_579. 

.7. Schlichting, H.: Laininare Strahlausbreitung. Z.f.a.M.M., Bd. 13, 
Heft 4, Aug. 1933, pp. 260-263. 

8. Bickley, W. G.: The Plane Jet. Phil. Mag., ser. 7, vol. 23, no. 156, 
supp. April 1937, pp . 727-731. 

9. Fluid Motion Panel of the Aeronautical Research Committee and Others: 
Modern Developments in Fluid Dynamics. Vol. I, ch. IV, S. Goldstein, 
ed., The Clarendon Press (Oxford), 1938. - 

10. Hansen, M.: Velocity Distribution in the Boundary Layer of a Submerged 
Plate. NACA TM No. 585, 1930. 

11. Andrade, E. N. d.a C., and Tsien, L. C.: The Velocity—Distribution in 
a Liquid—into—Liquid Jet. Proc. Physical Soc. (London), vol. 9, 
pt. , no. 273, July 1, 1937, pp. 381-391. 

12. Goldstein, S.: On the Velocity and Temperature Distributions in the 
Turbulent Wake behind a Heated Body of Revolution. Proc. Cambridge 
Phil. Soc., vol. 31i., pt. I, Jan. 1938, pp. 1.8_61. 

13. Fallmer, V. M.: A Method of Numerical Solution of Differential Equa-
tions. Phil. Mag., ser. 7, vol. 21, no. 111.1, March 1936, pp. 62Li._61.O. 

lii.. Scarborough, James B.: Numerical Mathematical Analysis. The Johns 
Hopkins Press (Baltimore), 1930.



en H If\ 0	 Lt\CO - \O H\0 If\\D Ir"O 0 cflCU\0 (y. 
H O N- Ir\ en - 0"0 CU 0 en O en IC\ CU 0 N- N- en ()\ H 0\ a 

en 
en	 .

'-0	 '.0 '.0	 '.0 (y H -	 ('4 0 -	 0 OJ'-D '.0 OV'O U) 	 N--	 ('4 N- CU en H U\'.O U)	 H CU en CU CUN-CUCOCOO'.0\0C,\U)N-'.0N-N-LI\enCOU)enCOHN-CU'.0'.0O\O 
CU N- H tf\ en	 H CX) 0 tf\U) '0 U CU .	 0' tf\ 0 CU -	 H -	 N- N- 0 U) '.0 -	 CU H H 0 

d	 d HHU'CU-OH C0H'.00UCOHN--CUHHOOOO000 
0 tf-.O¼0 CU 0'.0 enH cY\N-'-O If\- 	 enenC'J C'.JH H 0000000 0000 0 enenCU CU H H H H 00000000000000000000000 0000 0000000000000 0 000000000 0000 0 
0

en 
.- U\N-u\H enCO 

N- N- H (0 f\	 H O\ H H - ('4 
Q\'.0 0'OCO'0 enN-CU tr'.'.O 0¼O CU en'.0 .-1 - enN-tf\0' 

CO H -* ir en 0 - CU '.0 CO 0 en CU en H '.0 ir-. en 0'- - C,'. C'. U\ N-CO LI'. N- CU (J	 .-1 '.0 
0'. LI'. N- en H i(\CO . - H 0-.CO - N-'0 0 - 0'U) C)'. en H H 0 N-	 LP.'.0 U) enCO 0 

c) CU 
('.1 -d

H '.H H OCO N-.	 -I 0 (\N-CO ('4 N-LI\H'.04-CO enu'\.J-\L) H . N-N-0 
en 0 . N- H '.0 LX'. 0'. 0 H LI'. 0'. N-'.0 H H cn- * -4 LI'. N- O-.U) H U) N-. CU H H 0 
CU N- H	 '.0	 0'. 0'. If'. . '0 H 0'. 0'. H	 CO en 0-. CU N- . CU H H 0000000 
tr'.	 en en CU CU H H -I H 0000 0000000000000 00000 0000 0000 0 0 00000000 000000000 00000 

I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I 

0000.tH0\ N-C)'. 0 CX) '.0 -I H LX'. 0'.U) CU N-
N-	 N- U) 

uN-	 - CUU) CU	 O\CU'0 N-tr\O H'O (flCUU) N-U) LCenN-H\OCO 0\H N-

'.0	 CO If'. If'. en N- ('400 Ui H 0 U) CU	 H 0	 0	 en 
N-CU - LI'. LX'.CUCO CUCO o-.o enO 0'IruX'.Q N-.U) LI\eneno\4- LI\0W O'.H o'.en N-U-.enCUCOCUen'0CUCULX-%HCUHU)en0dN-4-*N-Henenen. -

c! I N- 0 H - CO CU 0'. ('.10 1'. en CU CU) N- H 0 N- H en N- en H 0J. H H If'. N- o'.CO H N-
CX)	 '.Q N-N-C'. N-CO (0 en 0 0\'0 CO 0 0 H 0'. CU C,'. --* CU H H 0 0 en"O H H CU	 0 -dl -d LI'.CU enN-H.4	 CU-H c'i'.0 enCU en'.00-t 0 CUU) If\enH ,-400 00000 N-CO Q enCO enc,'.'0 enH O\N-'.0 Ir'.--enenCU C'.JHOO 0000000000 ir'.	 - en ('4 CU H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000000000000000000000000000 

0

N -

o-.CO r-- 0 O'.CO '.0 U'. CU H en N- H	 rnt enCO 0 en en H u'.*'.0 CU en en en en'.0 
N-CU '.1) U'. CU LI'. en 0'. LI'. H LI'. - - H N- N- ena) en'.0 N- C'. C'. H 0'. CU	 N-C'. 0 H H 

N-	 N- CU N- LI'. 0 en LI'. N- N-a) U) CO U) 0'. 0-. 0'. '0 CU 0 - '0 N- 0 LI'. LI'. 00	 H en CU 0 '.0 N-'0 en0\. 0'.CU tr\C1J OH en-- lf'.'.O'.O N-N-CO 0' a'.0'.O'. 
O'.0 H CU CU enen.1-.	 U'.tf".IX'.LI'. 
H CUCU CU CUCUCUCUCUCU CUCUCU CU CUCUCU CU CU CUC'J CUCU CUCUCUCU CUCUCUCUCU 

H .-1 HHHH H HH HH H .-4HH HH HHH Hr-IHHH HHHHH 

00000000000000001-'. -* '.U) U) 0 CU - '.0 U) 0 CU	 '.OU) 0 CU - '.0 CX) 0 LI'. 011-'. 0 LI'. 0 en 1- 0 LI'. 0 If'. C'. 
N-N-N-t-N-COCOCOCOC000HHCUCUOJenen-HHHHHHHHHHHH 

CU0'.	 - '.C'0enenU)0\N-0'-	 N-H-O-l-'0CUenCOU)COU'. N-U) en H en- CU LI'. 0 C'. CU H - H en IC\-1-'L) IC'. 0. 0'. LI'.CO CU '.0 LI'. en H '.0 CU 
H en C'. -	 - - N-'-0 - C'.	 * CU U) 0-. 0'. -	 H CX) 0'. 0 LI'. N- H H '.0 LI'.\0 N- 0 

C en 
en 
d	 d

N-CO H en	 H	 t-'.U) 0'.'.0 - en NO '-.0 N- N- LI\H en\0 N-H N-H '.0 H en CU'.0 
H0'enu'.en.enCO'.0'CUenU'.000'.HO'.0O.HHC.JCU0H H - 0 CO CO H It'. H CO '.0 CU '.0 CU N-CC) '.0 H N-C'. 0 en en H U) 0'.'.0 CO N-.4- 0 Ic'. 
00 H H CU	 U". N-CO 0 .d N- 0 H H 0 U) . 0 N- en 0 CU	 IX'. IX'. If'. U'. L('..rl-000 000000 HHH CUCUCUUJHHH0000000 00000 

01111!	 11111111111	 I	 III	 I

CO.U)U'. 
O 0'. N N-U) N- ena) N- N- N- 0 C'.\0 CO '.0 N-	 N- H CO en'.0 Ir-.CO 0'.-I- If'. 0'. 0'. 0 '.0 00 N-\0 N-\0 OH N-1-'.0 0 CU'0 CU N-.l- 0'COCO HCO.\0 CU'.0 0'.0-.N- N-H N-C)'.	 CO '.0 

C CU C'J
0 '-rCa) -	 0 -	 LI'. 01(0 0 '.0 en H .I- H CU H ir'.'.X) N- Ir-.CO CO CX) 0 If'.'.O	 CU 00'0H\0U)LI\N-COCON-W'.'0H0ON-'.00'tX'.'0'.0'.0(Y'..U)N-CUN-
0 C'. 0'CO N- U'. H '.00 CU CU N- U'. N- If'. H -40 enCO '-.0'.rCO CO CU en CU H o'.CO CO CO 

.d	 -d ...U-enenCUHCOW\HN-enHLr'.U)OCUen.enenCUHOCON-'0Ir\ CUCUCUCUCUCUCUCUCUCUCUHHH00000HHHHHHHHH0000 
0	 1111111111111111 

CO CU	 N-'0 0'. 

C,l
o-.CO CU U'. O'.	 N- (1-'. CU C	 tX's 0 N-C'. 0 0 N-'.O 0'. 0 	 en U'.U) 0 LX'. H '.0 N-C)'. 
C'. C'. O'.N- en N-\0 0 N-1-'0 H'.0 C'.'0 N- U'. 0 N-0¼0 N-t-1r'.U) CU N-\0 N-0 en 

I d . 0'. C'. . CO CU '.0 CX) 0 0 LI'. CU H CU $ CO IX'. U'. CU If'. N-C)'. CU\0 en H CU LI'. H CO 
CU	 N- 0'. CU - N-C)'. H	 U) H .U-¼0 N- N-'.0 1'. en H U) LI'. CU 0 N- LI'. en H 0'.U)'.O 0000HHHHCUCUCUenenenenenenenenenCUCUCUCUHHHH000 

0

H If'. 
CO N-'.O CU 0 C)'.CO en 0'. en CU 0 -4 '.0'.O'.0 H H H U'. H '.0 H -	 0 H H en ..*\0 CO 

'.0	 CO N- N- N-U)'0	 00 If'. 0'. 0 H 0'. If'. If-. U'. 0 H j- 0't U) U) - CU	 H U)	 H U) U'. 
CU 0'. CU C'. H CX) 0'. en H 0 CU C'.CO -* 0 0'.- U) 0 0'. N- 0 N- 0 0\U) en N-tX'. CU H 
H -	 HO'. H rl- 0 0'. 0 en r'..	 0 H If'. 0'.- \0'.0 0 0 LX'. en N-- N-\0 0 H 0'.-1-00 H H en.\0 N-0 CU N-enO	 H O'.\0 enO¼O H\0 0- N-0 enLI'.'.OU) 000 00 00 0-1 HH CU enen- tf-tC\'0 N-COCO O'.O'.000H HH H.-1 

0-. 0'. (1-'. 0 C)'.U) en If-. H 0 H H -	 NJ '.0CC) C)'. N- N- CU'0 en LI'. 11-'. 0'. en H 0 CU H N-

0	 HHHHHHHH 

0000 0000000000000 000000000 00000 -4 CUen.l- LX'.'.O N-CO C)'.O CU.\OU) 0 CUi-\000 0 CU'0U) 0 CU.'.000 0 CU 

Od dd

L(\ 
0 

0 

0 
CU 

H 

Il 0 

36
	

NACA TN No. i6l 

H

V 

ID 
ID 
-4 

ID 
ID 

ID 

ID 



NPCA TN No. i61
	

37 

0 
"A 

0 

0 CU 
N-CU If\CU 

O\	 \O -	 -	 \D H	 f\ (fl Lf\\O 
G\rCUO\Cfl 

-*OHW\flcO -COHIf\CCO - H 0 N- tf\ H cn H 0 N- ir H cY i-I 
Cr cfl 0'. 0' CU 0'. 0 0'. 0'. CU 0'. 0 cn 'd	 'd H CO O\'D CU 0 -I CO 0\\O CU 0 H - H- CU 00 - H-t CU 00 - OCU0000 

••
OCU0000 0 

S I.. c? 

H H 
N- 0'. -tH (OH -	 W\H0 CO	 rnCUO 

cfl"O0\nN-\O CU-z-N--C--O - 
(	 CU If'. 0 N- CU H 0'. 0 0 0 N- CU H 0'. 0 0 
CU 0 If'. CU If'. N- 0 -zf H IC'. CU	 N- 0 - if'. -d	 -d • '.0 '.0 '.0 -	 H 0 • '.0 '.0 '-0 -	 H 0 '.0 0 HHcflOcnO 0 HHcnOcnO H -	 cn CU v- 00 - cn CU rn 00 II CUOH000 * H CUOH000 CU 

i	 •	 i d	 i	 i
11) 

o

..s 

0
r•4 

r1 r1 0) 
• 43 43 

a5 cY ai cl) 
( -4 '.0 - 

(1) OCU 
LC\LC\CU /D HCU 

0\0\-z1 0 4-) 0'. .zf I!'. CU '.0 0'. + 0'. 0 '.0 CU if'. CO H 0'. H -4 N- -* -	 CU H - N-	 4 CU fr-i. H -4 0\CO H 0 - .-i -	 0\CO H 0 -zt ai -4 'd -d C-'.0 CO N- rn 0 N- '.0 CO N- c 0 E-i N-H CO CU '.0	 cfl 0 H CO CU '-0 cY r 0 CO ai 4 N- N- r- 0 0 N- N-	 00 o HH000 0 HH000 H .-1
4 0 0 0 

a'. 0 CO N-a'. '.0 
CO '.00'. -	 0'. N- CO V'.CO 0 N- N- CO - CO H If'. H N- - CO H If'. H N- 4 
CO 00'. - - CO CQ 00'. 4 - CO 

- -	 If'. -	 c	 '.0 0'. -	 tv'.	 (Y	 0'. 
44-CUIc\Lf\ 4 O4OCUCUCU 0-300JCUCU 0 

0	 HHHH 0	 HHHH 0 

000000 000000 0 '.0000W'.H \0000IC\H '.0 
0 CU -* '.0 CO cfl 0 CU 4- '.0 CO c 0 H H

C/] Iz.1 
0 H 
H 
0	 C/) 

C!) 
•Lfl 

a 
0 

H 
H 0

S 

0 

C!)

IL-". 

V 



38 NACA TN No. i61111. 

TABLE III 

VAL1S OF	
(2	

0BTA	 BY USE

J \dJ 

OF W.Efl)DLE 'S RULE FOR z = 0.05 

ti': 

(jQ)2 J0 ()2 

________ 

o 6.30 0.3329781 
.30 .0005619072 6.60 .3331301 
.60 .00141162288 6.90 .3332176 
.90 .0111.7611.75 7.20 .3332678 

1.20 .033696111. 7.50 .3332965 
1.50 .061911.261 7.80 .3333129 
1.80 .09818613 8.10 .3333222 
2.10 .1392639 8.11.0 .3333275 
2.1.1.0 .1810311.9 8.70 .3333305 
2.70 .2195911.8 9.00 .3333322 
3.00 .2522585 9.30 .3333332 
3.30 .2779223 9.60 .3333338 
3.60 .2968261 9.90 .3333311.1 

3.90 .3100159 10.20 .33333143 

14.20 .3188173 10.52 .33333141. 
14.50 .32141.822 io.8o .3333311.5 
14.80 .32802149 11.10 .33333145 
5.10 .3301909 11.140 .33333145 
5.140 .33114920 11.70 .33333145 
5.70 .3322630 12.00 .33333145 
6.00 .3327151 12.30 .3333311.5
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Figure 1.- Flow from a slit at 0 into the XY-plane with a plate along OX.



NkCA TN No. i614 

0 

0 

Cd 

a) 

o 

-
'-4 

icd 

o 

4) C) 

(Ui

U) 
i: 'd 

0 

O pcd	 I 
I') dd 

Q.. ,-.---..' 

U) iN

a 

a) II 

bD 
.r-4 
114

'9	 -


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42



