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WITH A HULL LENGTH-BEAM RATIO OF 9 . 0 

By Marvin 1. Haar 

SUMMARY 

As part of a general inves t igation of the length~beam ratio of 
flying-boat hulls, the hydrodynamic characteristics of a powered dynamic 
model of a hypothetical flying boat with a hull length- beam ratio of 9.0 
were investigated in Langley tank no . 1. This hull was one of a series 
also investigated in the Langl ey 300 MPH 7- by 10-foot tunnel to 
determine t he aer odynami c effects of increas ing the length-beam ratio . 

The results indicated t hat increasing the hull length-beam ratio 
from 6 to 9 while holding the length2-beam product constant int roduces 
no serious adverse hydrodynamic characteristics attributable solely to 
the higher length- beam ratio . The effects of gross load, depth of step, 
angle of afterbody keel, and lengt h of afterbody on the characteristics 
are shown to be approximately t he same for the higher length- beam ratio 
as for conventional length- beam ratios . The use of a higher ratio to 
reduce aerodynamic dr ag therefore appears practicable hydrodynamically 

Relatively longer afterbodies may be desir abl e for higher length
beam-ratio hulls in order to obtain mor e satisfactory hydrodynamic 
longitudinal stability . 

INTRODUCTION 

In selecting the over-all pr oportions for a flying- boat hull, the 
effect of length- beam ratio (L ib ) on the aerodynamic and the hydrodynamic 
characteristics is of primary importance and has been the subject of a 
number of tank and wind- tunnel investi gations. The length is defined 
as the distance from t he forward perpendicular (F .P.) to the s t ern-
post (S.P.) . The more s ignificant information on the effect of length
beam ratio is contained in references 1 to 6 . 

One series of hull s tested in the Langley tanks attempted to 
eliminate the effect of size by mai ntaining a constant length- beam 
product, the height of the hull being assumed constant for all the 
models . An increase in length-beam ratio by this procedure reduced 
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the water resistance for a given load and improved the spray character
istics (reference 1). No information was obtained on the hydrodynamic 
stability characterist ics. Appreciable differences in aerodynamic 
drag with change in length- beam ratio would not be expected for this 
series of hulls. 

A further analysis of the resistance characteristics (reference 2) 
and of spray characteristics of a numtel' of full-size flying boats 
(reference 5) indicated that if the length- beam ratio were increased~ 
the length2-beam product being maintained constant~ the size of the 
hull and ~ consequently ~ the aerodynamic drag might be reduced with no 
significant changes in hydrodynamic resistance or spray characteristics . 

In order to determine the actual reduction in aerodynamic drag 
with increase in length- beam ratio with a constant length2- beam product~ 
a series of hulls was designed which had the same length2- beam product 
as a Navy twin-engine flying boat. This seaplane~ which has a length
beam ratio of 6 . 3 ~ was known to have good hydrodynamic characteristics~ 
and it was considered desirable to maintain these characteristics and 
to realize possible advantages of the high length- beam ratio in terms 
of reductions in aerodynamic drag of the hull. The aerodynamic drag 
of this series was determined in the Langley 300 MPH 7- by 10- foot 
tunnel . The results (reference 6)~ which included the interference 
of a thick wing~ indicate that a reduction in hull drag of approximately 
30 percent is realized by an increase in length- beam ratio (constant 
length2-beam product) from 6 to 15. 

As a preliminary hydrodynamic investigation of this same series of 
hulls~ the hydrodynamic stability~ resistance~ and spray characteristics 
were determined for the model having a basic hull length-beam ratio 
of 9 .0. Several modifications ( change in depth of s~ep~ angle of after
body keel ~ and length of afterbody) were"tested to determine whether the 
hydrodynamic trends with hull variations would be the same for a length
beam ratio of 9 .0 as were previously Lrpnd for lower length-beam ratios 
(approx. 6) . The spray characteristics for this model have been described 
in reference 7. 

DESCRIPTION OF MODEL 

The model used for the investigation~ Langley tank model 203A~ 

was a {o-SiZe powered dynamic model of a hypothetical flying boat 

generally similar to a Navy twin-engine seaplane~ which has a length
beam ratio of 6 . 3 . The length and beam of the hull were derived by 
increasing the length of the forebody and afterbody and decreasing the 
beam in such a manner that the length2-beam product was maintained the 
same as for the Navy seaplane . The form~ size~ and relative location 
of the aerodynamic surfaces of model 203A corresponded to those of the 
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Navy seaplane . A more detailed discussion of the derivation of the hull 
with a length-beam ratio of 9.0 is given in references 6 and 7. 

Photographs of model 203A, lines of the hull, and the general 
arrangement are shown in figures 1, 2, and 3, respectively. The general 
arrangements of the length-beam model and the Navy seaplane model are 
compared in figure 3, and a further comparison of the dimensions of 
model 203A with corresponding dimensions of a model of the Navy seaplane 
is given in table I. The increase in length-beam ratio from 6.3 to 9.0, 
on the basis of a constant length2-beam product and small changes in 
fairing, produced the following reductions in hull dimensions: maximum 
frontal area, 23 percent; volume, 11 percent; and skin area, 4 percent. 

Ten modifications of the basic hull were tested. The formation of 
typical modifications is shown in figure 4. Changes in afterbody length 
necessarily caused some variation from the basic length-beam ratio of 9.0 
inasmuch as a constant forebody length and beam were maintained. The 
following table lists the model designation and description of the v~rious 
configurations in the sequence in which they were tested: 

Length of afterbody Depth of step Angle of after- Sternpost 
Model Percent body keel angle 

Inches Beams Inches beam (deg) (deg) 

203A 37.64 3.8 0.89 9.0 5.4 6.7 
20]A-l 37. 64 3.8 1.28 13·0 5.4 7.3 
203B 29 .16 3.0 .89 9.0 5.4 7·1 
203B-l 29.16 3.0 1.28 13.0 5.4 7·9 
20]A-l-a 37 . 64 3.8 1.28 13.0 7.4 9.3 
20]A-2-a 37.64 3.8 1.65 17·0 7.4 9.8 
203A-3 37 . 64 3.8 .49 5.0 5.4 6.1 
20]A-b 37.64 3.8 .89 9.0 3.5 4.9 
203C 46.14 4.7 .89 9.0 5.4 6.5 
203C-l 46.14 4.7 1.28 13.0 5.4 6.9 

1 The model was powered by two l~-horsepower variable-frequency motors 

each driving a three-blade propeller. Sla~s were attached to the lead
ing edge of the wing to delay the stall to an angle more nearly equal to 
that expected for the full-size airplane. The pitching moment of inertia 
of the ballasted model at a gross weight of 52.0 pounds was 6.8 slug-feet2 . 

APPARATUS AND PROCEDURE 

The towing equipment of Langley tank no. 1 is described in reference 8. 
A description of some of the test procedures used for this investigation is 
presented in references 7 and 9 . 
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The effective thrust was determined by towing the model in the air 
at zero flap deflection and zero trim with the step located 8 inches above 
the surface of the water . The hor izontal force with the propellers removed 
and with the propellers turning was measured . With a blade angle of 140 

at 0 .75 radius and a rotational speed of 4550 rpm~ the effective thrust 
(fig . 5) was appr oximately equal to the scale t hrust of the Navy seapl ane . 

When the aerodynamic lift and pitching moments were determined~ the 
center of moments was located at 24 percent mean aerodynamic chord and 
the flaps were deflected 200 • With power ~ aerodynamic tests were made 
over a range of speed from 0 to 40 feet per second for three deflections 
of the elevator~ Oo~ -100 ~ and - 20 0 . Without power ~ the aerodynamic lift 
and pitching moments were measured at a speed of 40 feet per second for 
an elevator deflection of -10° . The usual NACA aerodynamic lift and 
pitching-moment coefficients were computed from these data for a carriage 
speed of 40 feet per second . The results of the aerodynamic tests are 
presented in figures 6 and 7 . 

The hydrodynamic investigation was made with flaps deflected 20 ° 
and at gross loads corresponding to those of the Navy seaplane . Inasmuch 
as the beam of the model was smaller than that of conventional designs~ 
the gross load coefficient of model 203A was substant ially higher than 
that associated with existing conventional flying- boat hulls . Gross 
load coeffi0ient C6 is defined as follows : 

o 

where 

w 

b 

gross load~ pounds 

specific weight of water ~ pounds per cubic foot 
(63 .5 Ib/cu ft for these tests ) 

maximum beam~ feet 

---~ ---
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The gross loads and the corresponding gross load coefficients for hulls 

having length- beam r at ios of 6 .3 and 9 .0 are given in the following table : 

Gross load Gross load coefficient, C60 
(lb) 

...L-size 
Model 203A, Navy seaplane, 

Full size model 1 - 9 ~ = 6.3 10 b -

62,000 61. 5 1.77 0 .87 
65,000 64 .5 1.85 .90 
72,000 71.5 2.05 1.00 
82,000 81.5 2.34 1.14 
92,000 91.5 2 .62 1.28 

The trim limits of stabil ity were determined with full power at 
constant speeds for gross loads of 61 .5 and 81 .5 pounds . The range of 
stable position of the center of gravity was determined by making 
take-offs with full power at an acce l er ation of 1 foot per second 
per second. Take-off runs were made at various positions of the center 
of gravity for three defl ections of the elevator , 00

, -100 , and -200 , 

and at gross loads of 61 .5 and 81 .5 pounds . Take-offs of model 203A 
were made at a gross load of 64 .5 pounds . 

The landing stability was invest i gated at various trims by flying 
the model with one-quarter static thrust at the desired trim and then 
decelerating the towing carriage at a uniform rate of 2 feet per second 
per second. Landings were usually made at two positions of the center 
of gravity, 28 percent and 36 percent mean aerodynamic chord, and at 
two gross loads , 61 .5 pounds and 81 .5 pounds . Records of the change 
in trim and draft were obtained to show the behavior of the models 
during landings. Zero draf t was taken as the vertical position at 
which the main step 'touched the water at zero trim . 

The resistance of the complete model was measured with the center 
of gravity at 28 percent mean aerodynamic chord, an elevator deflection 
of -100 , and zero power . The resistance was determined at gross loads 
ranging from 61 .5 to 81 .5 pounds . 

The spray characteristics of the model were evaluated by observing 
the spray and taking photographs at constant and accelerated speeds for 
gross loads from 65 .0 to 91 .5 pounds . These tests were made with full 
power, the center of gravity at 28 percent mean aerodynamic chord, and 
the elevators deflected - 100 . 

Trim is defined as the included angle between the forebody keel 
at the step and the water surface . Moments tending to raise the bow 
are considered positive . 
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RESULTS 

Representative hydrodynamic data for each configuration are 
presented in figures 8 to 17 . The following data are included 
wherever available : 

(a) Trim l i mits of stability with full power 
(b) Variation of trim and total resistance with speed, 

power off 
(c) Records showing the variation of trim and draft 

during landing 
(d) Variation in trim with speed during take-off for 

various deflections of the elevator and positions 
of the center of gravity 

(e) Maximum amplitude of porpoising during take-off at 
several positions of the center of gravity 

On those modifications where the lower trim limit of stability was 
not determined, the lower limit of model 203A is shown with a dashed 
line . Test points have been omitted for all the trim tracks except 
those of model 203A. 

The effects of the various hull parameters on trim limits of 
stability, maximum amplitude of porpoising at different positions 
of the center of gravity, and total resistance are shown in figures 18, 
19, and 20, respectively. Bow and stern spray photographs of 
model 203C-l are presented as figures 21 and 22 . The range of speed 
over which spray entered the propellers is shown in figure 23 . 

DISCUSSION 

A study of the results presented in reference 7 and figure 9 of 
the present paper shows no adverse spray, stability , or resistance 
effects that would prevent operation of a full-size flying boat 
having a length- beam ratio of 9 . 0 . At the design gross load of 
61 . 5 pounds satisfactory take-offs (maximum amplitude of porpoising 
of 20) could be made over a range of position Of the center of gravity 
of approximately 10 percent mean aerodynamic chord at a fixed elevator 
deflection of - 100 . Model 203A- l did not skip at any contact trim 
investigated. At contact trims above 100 there was a slight tendency 
towards upper- limit porpoising . The resistance of model 203A- l compared 
favorably with the resistance curves of models having conventional 
length-beam ratios in the neighborhood of 5 or 6 . An increase in the 
length of afterbody from 3 .8 to 4 . 7 beams (giving an over-all length
beam ratio of 9 .9), model 203C-l, effected an improvement in the 
longitudinal take-off stability . The long afterbody of model 203C- l 
limited upper- limit porpoising to approximately 2~0 . Take-offs with 

J 
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a fixed elevator ieflecti6n of -100 could therefore be made at any practi
cable after position of the center of gravity without exceeding 210 ampli-

2 
tude of porpoising. 

The effects of such hull variables as length of afterbody, depth of 
main step, angle of afterbody keel , and gross load upon the trim limits 
of stability, range of position of the center of gravity for stable 
take-off, landing stability , and resistance of flying-boat hulls of 
contemporary design are presented in references 10 to 14. In discussing 
the results of the present tests, the various hull modifications are 
presented in relation to their effect on the principal hydrodynamic 
characteristics . 

Trim Limits of Stability 

The trim limits of stability were generally similar to those 
obtained for models with conventional length- beam ratios . The effect 
of changes in the afterbody configuration is shown in figure 18. Changes 
in length of afterbody , depth of step, or angle of afterbody keel had no 
effect on the lower trim limit of stability except at low speeds near the 
hump. Modifications that increased the sternpost angle generally raised 
the hump of the lower limit. An increase in angle of afterbody keel, 
decrease in afterbody length, or increase in depth of step all raised 
the upper trim limits. An increase in gross load raised all the trim 
limits to higher trims . These trends are similar to those obtained 
for conventional length- beam ratios (references 10 to 12) . 

For most modifications , the model could be made to porpoise over 
a small range of intermediate planing speeds so that the upper and lQwer 
trim limits were exceeded at the extreme ends of the trim cycle. If the 
amplitude of porpoising was allowed to build up to exceed both the upper 
and lower limits , stability could not be recovered by means of the ele
vators alone. Although this characteristic is undeSirable, the maneuver 
required to obtain this porpoising between the upper and lower trim 
limits was abnormal . Tests of several models of conventional length
beam ratios have shown similar "porpoising between limits," which was 
not revealed in full-eize tests. In normal seaplane operations , it is 
often possible to accelerate through an unstable range before the 
amplitude of porpoising has a chance to build up to violent proportions; 
whereas, in the tank investigation, the trim limits are determined at 
constant speed, and the porpoising amplitude is allowed to build up to 
a maximum. An increase in length- beam ratio on the basis of a constant 
length2-beam product is believed, however, to aggravate the porpoising 
between limits. 

Of the parameters investigated, the length of afterbody had the 
most pronounced effect on the trim limits of stability (fig. 18). 
Increasing the length of afterbody to 4.7 beams eliminated the porpoising 
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between limits . With the long afterbody the maximum amplitude of 
porpoising was apparently reduced to such an extent that the extreme 
ends of the porpoising cycle could not exceed both of the trim limits . 
Increasing the angle of afterbody keel or depth of step reduced the 
range of speed over which this erratic porpoising occurred. This 
reduction might be expected inasmuch as the upper trim limits were 
raised by these modifications , and the range of speeds over which 
porpoising could exceed both of the limits on the same cycle was 
therefore reduced . 

Center-of-Gravity Limits for Stable Take-Off 

The variation in trim with speed for take-off at various positions 
of the center of gravity and with various deflections of the elevators 
was obtained for four of the modifications (20}A, 20}A-l , 203B, 
and 203C- l) . The summary plots of the maximum amplitude of porpoising 
were made from these trim tracks. 

Changes in the depth of step and length of afterbody (fig. 19) 
or gross load (figs. 9, 10, and 17) had no pronounced effect on the 
range of position of the center of gravity for stable take-off . This 
result is in agreement with results obtained for models having con
ventional length-beam ratios (references 10 and 12). As the length 
of afterbody was increased, however, the slope of the after- limit 
curves tended to decreasej the after-limit curves became flatter and 
the maximum amplitudes of porpoising at after positions of the center 
of gravity were reduced (fig. 19). 

Landing Stability 

There was no violent skipping on any modification tested. Land
ings at contact trims above the upper trim limit, increasing trim, 
generally resulted in some upper-limit porpoising during the landing 
runout. The effects of the various parameters on the landing stability 
were approximately the same as for models having conventional length
beam ratios (references 10 to 12). There were no adverse effects on 
the landing stability as a result of increasing the length- beam ratio. 

Increasing the depth of the main step generally improved the 
landing stability, with respect to both skipping and porpoising. 
(Compare landing charts for model 20}A- l-a having a depth of step of 
13 percent beam and model 20}A- 2-a having a depth of step of 17 percent 
beam, figs. 12 and 13 , respectivelYj compare landing charts for 
model 203C having a depth of step of 9 percent beam and model 203C-l 
having a depth of step of 13 percent beam, figs . 16 and 17, respectively.) 
With a constant depth of step, landings appeared to be slightly more 
unstable, especially with the heavy load, as the length of afterbody 
was increased . (Compare landing charts for model 2038- 1 having an 
afterbody length of 3 . 0 beams, model 203A- l having an afterbody length 
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of 3.8 beams, and model 203C- l having an afterbody length of 4.7 beams, 
figs. 11, 9, and 17, respectively . ) 

An increase in the angle of afterbody keel from 5.40 to 7.40 

(models 20}A-l and 20}A- l-a) gave slightly worse landing stability 
(figs. 9 and 12) . Model 20}A- l did not skip when landing, but 
model 203A-l-a usually tended to skip at lanQing trims above 60~ 
especially at the heavy load. A decrease in the angle of afterbody 
keel from 5.40 to 3 . 50 (models 203A, no landing charts, and 203A-b, 
fig. 15) also resulted in less landing stability. These results are 
consistent with those obtained for hulls of lower length-beam ratio. 
At the higher landing trims, with model 203A-b upper-limit porpoising 
of fairly large amplitude was encountered on contact with the water. 

Increasing the gross load from 61 . 5 to 81 . 5 pounds generally had 
no appreCiable effect on the landing stability of all configurations. 

Resistance 

The effects of depth of step, angle of afterbody keel, and gross 
load on the resistance and trim were the same as for models with 
conventional length- beam ratios (references 13 and 14). Modifications 
that decreased the sternpost angle generally decreased the resistance 
and trim at hump speed, increased the resistance at high speeds, and 
shifted the hump resistance to higher speeds (fig . 20). The data 
presented in figure 20 are for' a gross load of 64.5 pounds. 

Increasing the gross load increased the resistance and trim over 
the entire speed range of all configurations. 

Spray Characteristics 

In reference 7, the over-all spray characteristics of model 203A 
were adjudged acceptable up to an initial gross load of 81.5 pounds 
(gross load coefficient of 2 . 3). Bow and stern spray photographs 
comparable with those shown for model 203A in reference 7 were obtained 
for model 203C-l and are presented as figures 21 and 22. There was no 
substantial difference in the spray characteristics of the two configu
rations. The long afterbody of model 203C-l produced lower trims and 
increased slightly the amount of spray entering the propellers. The 
range of speed over which the bow blister entered the propellers (fig. 23) 
was approximately the same for model 203C-l as for model 203A. The range 
of speeds over which loose spray entered the propellers was shifted to 
slightly lower speeds. 

The amount of spray striking the flaps 
excessive and can be observed in figure 22. 
spray struck the flaps for model 203C-l was 
model 203A. 

with full power was not 
The range of speed over which 

approximately the same as for 

-- ---- --~ - ------~.~~~~--' 
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CONCLUSIONS 

The hydrodynamic characteri stics of a powered dynamic model of a 
hypothetical ·flying boat with a hull length- beam ratio of 9 . 0 were 
investigated in Langley tank no . l ~ and the following conclusions were 
indicated: 

1. On the basis of a constant length2- beam product and a given 
gross weight~ the size of a flying~boat hull and~ consequently , the 
aerodynamic drag can be reduced by increasing the length- beam ratio 
from 6 to 9 with no serious adverse hydrodynamic stability or resist
ance characteristics that can be attributed solely to the increased 
length-beam ratio of the hull . 

2. The effect of such hull parameters as gross load, depth of 
step, angle of afterbody keel , and length of afterbody on the trim 
limits of stability, r ange of position of the center of gravity for 
stable take-off, landing stability, and power-off total resistance is 
approximately the same for a model with a length- beam ratio of 9 as 
for hulls with a length- beam ratio of 5 or 6. 

3. It may be desirable at higher length- beam ratios to incorporate 
longer afterbodies than are indicated by the use of the criterion of a 
constant length2- beam product in order to obtain more satisfactory 
longitudinal stability characteristics . 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va ., March 17, 1948 

--~ --- --- -----

• 
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TABLE I 

COMPARISON OF BASIC DIMENSIONS OF MODELS 203A AND NAVY SEAPLANE 

• 

Hull: 
Maximum beam, in. . • • . • • • . • • • • . 
Length: 

Forebody, bow to step, in •....•.. 
Length-beam ratio • . • • • • • • • • 

Afterbody , step to sternpost, in . . •. 
Length-beam ratio . . . . . . . . . . 

Tail extension, sternpost to after 
perpendicular, in. ..•••••.. 

Over all, bow to after perpendicular, in. 
Step: 

'I'y"pe • • • • • • • • • • • • • • • • • • 
De:pth at keel, in. • • • • . • . . . . • 
Depth at keel, :percent beam • . . . . . 

Angle of forebody keel to base line, deg . 
Angle of afterbody keel to base line, deg • 
Angle of sternpost to base line , deg ... 
Angle of dead rise of forebody 

Excluding chine flare, deg ...... . 
Including chine flare, deg ......• 

Angle of dead rise of afterbody, deg ... 

Wing: 
Area, sq ft . • • . • • • • . • . • . . . . 
Span., ft . . . . . . . . . . . . . . . . . 
Root chord, in. . . • . . . . . . . . . • . 
Angle of incidence , deg •...•....• 
Mean aerodynamic chord (M.A.C,') 

Length, projected, in. • . • . • • . • . 
Leading edge aft of bow, in. .•..• 
Leading edge forward of step, in. ... 
Leading edge above base line, in. . .. 

Horizontal tail surface : 
Area, sq ft . . • . . • . . . . • • • . . . 
Span, ft •• . . . . . . . . . • . . . . . 
Angle of stabilizer to wing chord, deg . . 
Elevator root chord, in . ••.•...•. 
Elevator semispan, ft . • • • . . • • . . • 
Length from 25 percent M.A.C. of wing to 

hinge line of elevators , in. . . . . . . 
Height above base line, in. . . . . . . . . 

Propellers: 
Number of propellers .• 
Number of blades .••. . . 
Diameter, in . • • . . . • . . . . . . . . . 
Angle of thrust line to base line, deg 
Angle of blade at 0.75 radiUS , deg .... 
Clearance above keel line, in . . .. 

Model 203A 

9.85 

51.04 
5.2 

37.64 
3.8 

27.97 
116.65 

Transverse 
0.89 

9 
o 

5.4 
6.7 

20 
15.9 

20 

18.26 
13· 97 
19 .20 

4 

16.48 
43.04 

8.0 
18.34 

3 . 33 
4.3 
-4 

3.84 
1.67 

59 .4 
22.80 

~ 
3 

19.8 
2 

14 
9.9 

Navy 
seaplane model 

12.50 

45.30 
3.6 

33.40 
2.7 

35·00 
113.70 

Transverse 
1.10 

9 
o 

5.4 
7·2 

20 
17.9 

20 
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Figure 1. - Model 203A. 
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