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SUMMARY

As part of a general investigation of the length—beam ratio of
flying—boat hulls, the hydrodynamic characteristics of a powered dynamic
model of a hypothetical flying boat with a hull length-beam ratio of 9.0
were investigated in Langley tank no. 1. This hull was one of a series
also investigated in the Langley 300 MPH 7— by 10—foot tunnel to
determine the aerodynamic effects of increasing the length—beam ratio.

The results indicated that increasing the hull length—beam ratio
from 6 to 9 while holding the lengthe—beam.product constant introduces
no serious adverse hydrodynamic characteristics attributable solely to
the higher length—beam ratio. The effects of gross load, depth of step,
angle of afterbody keel, and length of afterbody on the characteristics
are shown to be approximately the same for the higher length—beam ratio
as for conventional length—beam ratios. The use of a higher ratio to
reduce aerodynamic drag therefore appears practicable hydrodynamically

Relatively longer afterbodies may be desirable for higher length—
beam—ratio hulls in order to obtain more satisfactory hydrodynamic

longitudinal stability.
INTRODUCTION

In selecting the over—all proportions for a flying-boat hull, the
effect of length—beam ratio (L/b) on the aerodynamic and the hydrodynamic
characteristics is of primary importance and has been the subject of a
number of tank and wind—tunnel investigations. The length is defined
as the distance from the forward perpendicular (F.P.) to’ the stern—
post (S.P.). The more significant information on the effect of length—
beam ratio is contained in references 1 to 6.

One series of hulls tested in the Langley tanks attempted to
eliminate the effect of size by maintaining a constant length—beam
product, the height of the hull being assumed constant for all the
models. An increase in length—beam ratio by this procedure reduced
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the water resistance for a given load and improved the spray character—
istics (reference 1). No information was obtained on the hydrodynamic
stability characteristics. Appreciable differences in aerodynamic

drag with change in length—beam ratio would not be expected for this
series of hulls,

A further analysis of the resistance characteristics (reference 2)
and of spray characteristics of a numter of full-size flying boats
(reference 5) indicated that if the length—beam ratio were increased,
the length®—beam product being maintained constant, the size of the
hull and, consequently, the aerodynamic drag might be reduced with no
significant changes in hydrodynamic resistance or spray characteristics.

In order to determine the actual reduction in aerodynamic drag
with increase in length—beam ratio with a constant lengthg-beam product,
a series of hulls was designed which had the same 1ength2—beam product
as a Navy twin-engine flying boat. This seaplane, which has a length—
beam ratio of 6.3, was known to have good hydrodynamic characteristics,
and it was considered desirable to maintain these characteristics and
to realize possible advantages of the high length—beam ratio in terms
of reductions in aerodynamic drag of the hull. The aerodynamic drag
of this series was determined in the Langley 300 MPH 7— by 10—foot
tunnel. The results (reference 6), which included the interference
of a thick wing, indicate that a reduction in hull drag of approximately
30 percent is realized by an increase in length-beam ratio (constant
length®—beam product) from 6 to 15.

As a preliminary hydrodynamic investigation of this same series of
hulls, the hydrodynamic stability, resistance, and spray characteristics
were determined for the model having a basic hull length—beam ratio
of 9.0. Several modifications (change in depth of step, angle of after—
body keel, and length of afterbody) were tested to determine whether the
hydrodynamic trends with hull variations would be the same for a length—
beam ratio of 9.0 as were previously frund for lower length—beam ratios

(approx. 6). The spray characteristics for this model have been described
in refersence T.

DESCRIPTION OF MODEL

The model used for the investigation, Langley tank model 2034,
was a fa-size powered dynamic model of a hypothetical flying boat
generally similar to a Navy twin-engine seaplane, which has a length—

beam ratio of 6.3. The length and beam of the hull were derived by

increasing the length of the forebody and afterbody and decreasing the
beam in such a manner that the lengthg—beam.product was maintained the
same as for the Navy seaplane. The form, size, and relative location
of the aerodynamic surfaces of model 203A corresponded to those of the

g e o W S P s o S S e

i il T e iR i Koo i i ooy A a3 5 s M s S e i s S e sto B AR



NACA TN No. 1648 3

Navy seaplane. A more detailed discussion of the derivation of the hull
with a length—beam ratio of 9.0 is given in references 6 and 7.

Photographs of model 203A, lines of the hull, and the general
arrangement are shown in figures 1, 2, and 3, respectively. The general
arrangements of the length—beam model and the Navy seaplane model are
compared in figure 3, and a further comparison of the dimensions of
model 203A with corresponding dimensions of a model of the Navy seaplane
is given in table I. The increase in length-beam ratio from 6.3 to 9.0,
on the basis of a constant lengthe—beam product and small changes in
fairing, produced the following reductions in hull dimensions: maximum
frontal area, 23 percent; volume, 11 percent; and skin area, 4 percent.

Ten modificationg of the basic hull were tested. The formation of
typical modifications is shown in figure 4. Changes in afterbody length
necegsarily caused some variation from the basic length—beam ratio of 9.0
inasmuch as a constant forebody length and beam were maintained. The
following table lists the model designation and description of the various
configurations in the sequence in which they were tested:

Length of afterbody | Depth of step Angle of after— | Sternpost

Model Percent body keel angle
Inches Beams Inches beam (deg) (deg)

203A 37.64 3.8 0.89 9.0 5 dk 6.7
203A-1 37.64 3.8 1528 |F13.0 54 o
203B 29.16 3.0 .89 9.0 5.t .0
203B—1 29.16 2.0 1.28 | 13.0 5ol 7.9
203A—-1-a | 37.64 3.0 1.28 113D 1okt 9.3
203A—2-a | 37.64 3.5 1.65 |76 T3 9.8
203A—3 37.64 3.8 .49 5.0 5l S
203A-b 37.64 3.8 .89 9.0 25 4.9
203C 46,14 4.7 .89 9.0 Solk 6.5
2030-1 46,14 h.7 1.28 | 13.0 Sl 6.9

The model was powered by two l%-horsepower variable—frequency motors

each driving a three—blade propeller. Slats were attached to the lead—
ing edge of the wing to delay the stall to an angle more nearly equal to
that expected for the full-size airplane. The pitching moment of inertia
of the ballasted model at a gross weight of 52.0 pounds was 6.8 slug—feetg.

APPARATUS AND PROCEDURE

The towing equipment of Langley tank no. 1 is described in reference 8.
A description of some of the test procedures used for this investigation is
presented in references 7 and 9.
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The effective thrust was determined by towing the model in the air
at zero flap deflection and zero trim with the step located 8 inches above
the surface of the water. The horizontal force with the propellers removed
and with the propellers turning was measured. With a blade angle of 140
at 0.75 radius and a rotational speed of 4550 rpm, the effective thrust
(fig. 5) was approximately equal to the scale thrust of the Navy seaplane.

When the aerodynamic lift and pitching moments were determined, the
center of moments was located at 24 percent mean aerodynamic chord and
the flaps were deflected 20°. With power, aerodynamic tests were made
over a range of speed from O to LO feet per second for three deflections
of the elevator, 0°, —10°, and —20°. Without power, the aerodynamic 1ift
and pitching moments were measured at a speed of 4O feet per second for
an elevator deflection of —10°. The usual NACA aerodynamic 1ift and
pitching-moment coefficients were computed from these data for a carriage
speed of 40O feet per second. The results of the aerodynamic tests are
presented in figures 6 and 7.

The hydrodynamic investigation was made with flaps deflected 20°
and at gross loads corresponding to those of the Navy seaplane. Inasmuch
as the beam of the model was smaller than that of conventional designs,
the gross load coefficient of model 203A was substantially higher than
that associated with existing conventional flying—boat hulls. Gross
load coefficient qﬁo is defined as follows:

A
B =
AO wb3
where
B, gross load, pounds
W specific weight of water, pounds per cubic foot

(63.5 1b/cu ft for these tests)

b maximum beam, feet
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The gross loads and the corresponding gross load coefficients for hulls
having length—-beam ratios of 6.3 and 9.0 are given in the following table:

Gross load ;
(1b) Gross load coefficient, QAO
1 Model 203A, Navy seaplane,
Full size =—-gize model L T
10 1—329 -B=6.3
62,000 61.5 IRTT 0.87
65,000 64.5 1.85 .90
72,000 1AL 2505 1.00
82,000 a1ss 2.34 1.1k
92,000 91..5 2.62 1.28

The trim limits of stability were determined with full power at
constant speeds for gross loads of 61.5 and 81.5 pounds. The range of
stable position of the center of gravity was determined by making
take—offs with full power at an acceleration of 1 foot per second
per second. Take—off runs were made at various positions of the center
of gravity for three deflections of the elevator, 0°, —10°, and —20°,
and at gross loads of 61.5 and 81.5 pounds. Teke—offs of model 203A
were made at a gross load of 64.5 pounds.

The landing stability was investigated at various trims by flying
the model with one—quarter static thrust at the desired trim and then
decelerating the towing carriage at a uniform rate of 2 feet per second
per second. Landings were usually made at two positions of the center
of gravity, 28 percent and 36 percent mean aerodynamic chord, and at
two gross loads, 61.5 pounds and 81.5 pounds. Records of the change
in trim and draft were obtained to show the behavior of the models
during landings. Zero draft was taken as the vertical position at
which the main step touched the water at zero trim.

The resistance of the complete model was measured with the center
of gravity at 28 percent mean aerodynamic chord, an elevator deflection
of —10°, and zero power. The resistance was determlned at gross loads
ranging from 61.5 to 81.5 pounds.

The spray characteristics of the model were evaluated by observing
the spray and taking photographs at constant and accelerated speeds for
gross loads from 65.0 to 91.5 pounds. These tests were made with full
power, the center of gravity at 28 percent mean aerodynamic chord, and
the elevators deflected —10°.

Trim is defined as the included angle between the forebody keel
at the step and the water surface. Moments tending to raise the bow
are considered positive.
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RESULTS

Representative hydrodynamic data for each configuration are

presented in figures 8 to 17. The following data are included
wherever available:

{a) Trim limits of stability with full power

(b) Variation of trim and total resistance with speed,
power off

(c) Records showing the variation of trim and draft
during landing

(d) Variation in trim with speed during take—off for
various deflections of the elevator and positions
of the center of gravity

(e) Maximum amplitude of porpoising during take—off at
several positions of the center of gravity

On those modifications where the lower trim limit of stability was
not determined, the lower limit of model 203A is shown with a dashed
line. Test points have been omitted for all the trim tracks except
those of model 203A.

The effects of the various hull parameters on trim limits of
stability, maximum amplitude of porpoising at different positions
of the center of gravity, and total resistance are shown in figures 18,
19, and 20, respectively. Bow and stern spray photographs of
model 203C—1 are presented as figures 21 and 22. The range of speed
over which spray entered the propellers is shown in figure 23.

DISCUSSION

A study of the results presented in reference 7 and figure 9 of
the present paper shows no adverse spray, stability, or resistance
effects that would prevent operation of a full—size flying boat
having a length—-beam ratio of 9.0. At the design gross load of
61.5 pounds satisfactory take—offs (maximum amplitude of porpoising
of 2°) could be made over a range of position of the center of gravity
of approximately 10 percent mean aerodynamic chord at a fixed elevator
deflection of —10°. Model 203A-1 did not skip at any contact trim
investigated. At contact trims above 10° there was a slight tendency
towards upper—limit porpoising. The resistance of model 203A—1 compared
favorably with the resistance curves of models having conventional
length—beam ratios in the neighborhood of 5 or 6. An increase in the
length of afterbody from 3.8 to 4.7 beams (giving an over—all length—
beam ratio of 9.9), model 203C—1, effected an improvement in the
longitudinal take—off stability. The long afterbody of model 203C—1

limited upper—limit porpoising to approximately 2%9. Take—offs with
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a fixed elevator deflection of —10° could therefore be made at any practi—
cable after position of the center of gravity without exceeding 2%9 ampli—

tude of porpoising.

The effects of such hull variables as length of afterbody, depth of
main step, angle of afterbody keel, and gross load upon the trim limits
of stability, range of position of the center of gravity for stable
take—off, landing stability, and resistance of flying—boat hulls of
contemporary design are presented in references 10 to 14. In discussing
the results of the present tests, the various hull modifications are
presented in relation to their effect on the principal hydrodynamic
characteristics.

Trim Limits of Stability

The trim limits of stability were generally similar to those
obtained for models with conventional length—beam ratios. The effect
of changes in the afterbody configuration is shown in figure 18. Changes
in length of afterbody, depth of step, or angle of afterbody keel had no
effect on the lower trim limit of stability except at low speeds near the
hump. Modifications that increased the sternpost angle generally raised
the hump of the lower limit. An increase in angle of afterbody keel,
decrease in afterbody length, or increase in depth of step all raised
the upper trim limits. An increase in gross load raised all the trim
limits to higher trims. These trends are similar to those obtained
for conventional length—beam ratios (references 10 to 12).

For most modifications, the model could be made to porpoise over
a small range of intermediate planing speeds so that the upper and lqwer
trim limits were exceeded at the extreme ends of the trim cycle. If the
amplitude of porpoising was allowed to build up to exceed both the upper
and lower limits, stability could not be recovered by means of the ele—
vators alone. Although this characteristic is undesirable, the maneuver
required to obtain this porpoising between the upper and lower trim
limits was abnormal. Tests of several models of conventional length—
beam ratios have shown similar "porpoising between limits," which was
not revealed in full-size tests. In normal seaplane operations, it is
often possible to accelerate through an unstable range before the
amplitude of porpoising has a chance to build up to violent proportions;
whereas, in the tank investigation, the trim limits are determined at
constant speed, and the porpoising amplitude is allowed to build up to
a maximum., An increase in length-beam ratio on the bagis of a constant
lengthe—beam product is believed, however, to aggravate the porpoising
between limits.

Of the parameters investigated, the length of afterbody had the
most pronounced effect on the trim limits of stability (fig. 18).
Increasing the length of afterbody to 4.7 beams eliminated the porpoising
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between limits. With the long afterbody the maximum amplitude of
porpoising was apparently reduced to such an extent that the extreme
ends of the porpoising cycle could not exceed both of the trim limits.
Increasing the angle of afterbody keel or depth of step reduced the
range of speed over which this erratic porpoising occurred. This
reduction might be expected inasmuch as the upper trim limits were
raised by these modifications, and the range of speeds over which
porpoising could exceed both of the limits on the same cycle was
therefore reduced.

Center—of—Gravity Limits for Stable Take—-Off

The variation in trim with speed for take—off at various positions
of the center of gravity and with various deflections of the elevators
was obtained for four of the modifications (203A, 203A—1, 203B,
and 203C—1). The summary plots of the maximum amplitude of porpoising
were made from these trim tracks.

Changes in the depth of step and length of afterbody (fig. 19)
or gross load (figs. 9, 10, and 17) had no pronounced effect on the
range of position of the center of gravity for stable take—off. This
result is in agreement with results obtained for models having con—
ventional length—beam ratios (references 10 and 12). As the length
of afterbody was increased, however, the slope of the after—limit
curves tended to decrease; the after—limit curves became flatter and
the maximum amplitudes of porpoising at after positions of the center
of gravity were reduced (fig. 19).

Landing Stability

There was no violent skipping on any modification tested. Land—
ings at contact trims above the upper trim limit, increasing trim,
generally resulted in some upper—limit porpoising during the landing
runout. The effects of the various parameters on the landing stability
were approximately the same as for models having conventional length—
beam ratios (references 10 to 12). There were no adverse effects on
the landing stability as a result of increasing the length—beam ratio.

Increasing the depth of the main step generally improved the
landing stability, with respect to both skipping and porpoising.
(Compare landing charts for model 203A—1-a having a depth of step of
13 percent beam and model 203A—2-a having a depth of step of 17 percent
beam, figs. 12 and 13, respectively; compare landing charts for
model 203C having a depth of step of 9 percent beam and model 203C—1
having a depth of step of 13 percent beam, figs. 16 and 17, respectively.)
With a constant depth of step, landings appeared to be slightly more
unstable, especially with the heavy load, as the length of afterbody
was increased. (Compare landing charts for model 203B—1 having an
afterbody length of 3.0 beams, model 203A—1 having an afterbody length
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of 3.8 beams, and model 203C-1 having an afterbody length of 4.7 beams,
figs. 11, 9, and 17, respectively.)

An increase in the angle of afterbody keel from 5.4° to 7.4°
(models 203A—1 and 203A-1-a) gave slightly worse landing stability
(figs. 9 and 12). Model 203A-1 did not skip when landing, but
model 203A—1-a usually tended to skip at landing trims above 69,
especially at the heavy load. A decrease in the angle of afterbody
keel from 5.h° to 3.5° (models 203A, no landing charts, and 203A—b,
fig. 15) also resulted in less landing stability. These results are
consistent with those obtained for hulls of lower length—beam ratio.
At the higher landing trims, with model 203A-Db upper—limit porpoising
of fairly large amplitude was encountered on contact with the water.

Increasing the gross load from 61.5 to 81.5 pounds generally had
no appreciable effect on the landing stability of all configurations.

Resistance

The effects of depth of step, angle of afterbody keel, and gross
load on the resistance and trim were the same as for models with
conventional length~beam ratios (references 13 and 1k). Modifications
that decreased the sternpost angle generally decreased the resistance
and trim at hump speed, increased the resistance at high speeds, and
shifted the hump resistance to higher speeds (fig. 20). The data
presented in figure 20 are for a gross load of 64.5 pounds.

Increasing the gross load increased the resistance and trim over
the entire speed range of all configurations.

Spray Characteristics

In reference T, the over—all spray characteristics of model 203A
were adjudged acceptable up to an initial gross load of 81.5 pounds
(gross load coefficient of 2.3). Bow and stern spray photographs
comparable with those shown for model 203A in reference 7 were obtained
for model 203C—1 and are presented as figures 21 and 22. There was no
substantial difference in the spray characteristics of the two configu—
rations. The long afterbody of model 203C—1 produced lower trims and
increased slightly the amount of spray entering the propellers. The
range of speed over which the bow blister entered the propellers (rig. 23)
was approximately the same for model 203C—1 as for model 203A. The range
of speeds over which loose spray entered the propellers was shifted to

glightly lower speeds.

The amount of spray striking the flaps with full power was not
excessive and can be observed in figure 22. The range of speed over which
spray struck the flaps for model 203C—1 was approximately the same as for

model 203A.




10 NACA TN No. 1648

CONCLUSIONS

The hydrodynamic characteristics of a powered dynamic model of a
hypothetical ‘flying boat with a hull length—beam ratio of 9.0 were

investigated in Langley tank no. 1, and the following conclusions were
indicated:

1. On the basis of a constant lengthe—beam product and a given
gross weight, the size of a flying—boat hull and, consequently, the
aerodynamic drag can be reduced by increasing the length—beam ratio
from 6 to 9 with no serious adverse hydrodynamic stability or resist—
ance characteristics that can be attributed solely to the increased
length—beam ratio of the hull.

2. The effect of such hull parameters as gross load, depth of
step, angle of afterbody keel, and length of afterbody on the trim
limits of stability, range of position of the center of gravity for
stable take—off, landing stability, and power—off total resistance is
approximately the same for a model with a length—beam ratio of 9 as
for hulls with a length—beam ratio of 5 or 6.

3. It may be desirable at higher length—beam ratios to incorporate
longer afterbodies than are indicated by the use of the criterion of a

constant length“—beam product in order to obtain more satisfactory
longitudinal stability characteristics.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., March 17, 1948
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TABLE I

COMPARISON OF BASTIC DIMENSIONS OF MODELS

203A AND NAVY SEAPLANE

13

Navy
Model (2O seaplane model
Hull:
B beam, In. . . . ¢ s 0 o o o s o s 9.85 12.50
Length:
Forebody, bow to step, in. . . . . . 51.04 45.30
Length-beam ratio « « .« « « « . 5.2 3.6
Afterbody, step to sternpost, 1n . 37.64 33.40
Length—beam ratio . . . . . . 3.8 2.7
Tail extension, sternpost to after
perpendicular, in. . . . o 2791 39.00
Over all, bow to after perpendicular, in. 116.65 113.70
Step:
BYPe e « o o o 56 o0 O 8o oo O Transverse Transverse
Depth at keel, 1n. a o M i S 0.89 1.10
Depth at keel, percent beam - 9 9
Angle of forebody keel to base line, deg 0 0
Angle of afterbody keel to base line, deg Falt Soly
Angle of sternpost to base line, deg L 6. T2
Angle of dead rise of forebody
Excluding chine flare, deg . 20 20
Including chine flare, deg . . . 15.9 17.9
Angle of dead rise of afterbody, deg 20 20
Wing:
B o o ol s e e s : 18.26 18.26
SRR . . . o o sice s e b e 1329 1.3 O
Bogtchord, Ine « « « « « « & o 19.20 19.20
Angle of incidence, deg . . . . L L
Mean aerodynamic chord (M.A.C.)
Length, projected, in. . . . . . . 16.48 16.48
Leading edge aft of bow, in. . . 43.04 37.30
Leading edge forward of step, in. 5 8.0 8.0
Leading edge above base line, in. . 18.34 18.35
Horizontal tail surface:
Eeadligg F6 .. .0 o ¢ o ¢ 0 0 v e 0 e e 5.8 l5! SIS
Span, . . ; o 4.3 4.3
Angle of stabilizer to Wing chord deg -4 -4
Blevator root chord, in. . « « « « o 3.8k 3.8
Elevator semispan, 6 . ... g 1.67 1.67
Length from 25 percent M.A.C. of wing to
hinge line of elevators, in. I 59 .4 59.4
Height above base line, in. 22.80 22.80
Propellers:
Number of propellers . « « o« « o « o + e 2
HbeonRor b1ados . o o s o 5 e 0 o . S 3
R i s 19.8 19.8
Angle of thrust line to base line deg - 2 2
Angle of blade at 0.75 radius, deg 14 14
Clearance above keel line, 1n. 9.9 9.9
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(b) Length of afterbody.

Figure 4.- Typical modifications to model 203A.
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(¢) Elevator deflection, -20°,

Figure 6.- Concluded.
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(b) Total resistance and trim without power.

Figure 9.- Model 203A-1.
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Figure 18.- Effect of afterbody hull parameters on trim limits

(c) Angle of afterbody keel.
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Figure 19.- Effect of afterbody hull parameters on maximum

amplitude of porpoising.
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(c) Angle of afterbody keel . )

Figure 20.- Effect of afterbody hull parameters on total resistance.
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Figure 21.- Bow spray characteristics with full power of model 203C-1.
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Figure 22.- Stern spray characteristics with full power of model 203C-1.
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Figure 23.- Speed range over which spray enters the propellers of
model 203C -1.
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