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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECEANICAL NOTE NO. 1627

EFFECT OF STEADY ROLLING ON LONGITUDINAL
AND DIRECTIONAL STABILITY

By William H. Phillips
SUMMARY

The effects of steady rolling on the longitudinal and directional
stablility of alrcraft have been studied theoretically. Simplifying
assumptions have been made with regard to the longitudinal and lateral
motions of the alrplane in order to obtain a solution which shows the
principal effects of the rolling motion. Rolling has been found. to
cause instabllity if the directional and longitudinal stabilities
are different when the rolling frequency exceeds the lower of the
pitching snd yawing natural frequencies of the nonrolling airplane.

This instability lasts only during the time the alrplane is rolling and
would not, therefore, affect the normal flight of an airplane. In the
case of airplanes of short span and high density, carrying most of their
welght in thelr fuselages, and flying at high altitudes, this instability
might cause dangerous attitude changes during rapid rolls. If the
directional and longltudinal stabilitles are about equal, the instability
due to reclling will not occur.

If the rate of roll exceeds both the pitching and yawlng natural
frequencies of the nonrolling aircraft, the aircraft will be stable.
A continuously rolling alrcraft will be stable 1n this case even when
the nonrolling aircraft has a certaln amount of instability about
one axis.

Applications of these conclusions to rolling airplanes and missiles
are discusgsed.

INTRODUCTION

When an airplane rolls about an axls which is not alined with its
longitudinal axis, lnertla forces are introduced which tend to swing the
fuselage out of line with the flight path. These forces are ordinarily
neglected when the usual theory of lateral stability of aircraft is used
to calculate the motion of an airplane in a roll. This assumption is
probably Justified for the case of most conventional airplanes becausc
inertia forces involved are small compared with aerodynamic forces on
the airplane. Design trends of very high—epeed aircraft, however, which
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include short wing spans, fuselages of high density, and flight at high

altitude, all tend to lncrease

the inertia forces due to rolling in

comparison with the aerodynamic restoring forces provided by the longl-

tudinal and directional stabilities.

It is therefore desirable to

investigate the effects of rolling on the longitudinal and directional

stabllities of these aircraft.
are similar to those which are
of spinning, where they have a
rolling on stability discussed
period in which an alrcraft is
any effect on the stability of

The inertia forces due to rolling velocity
always taken into account in the study
predominant effect. The effects of
in this report occur only during the
rolling, and therefore they do not have
an aircraft in steady flight.

Some types of research missiles, which were not roll-stabilized and
therefore rolled continually in flight, have been employed to investigate
longitudinal and lateral stability of airplane configuratlons. Further—
more, certain types of guided missiles may intentionally roll continually
in flight. An analysis would therefore be desirable to determine the
effects of the rolling motion on the behavior of these missiles.

The rolling motion introduces coupling between the longitudinal and
lateral motion of the aircraft. An exact solution of thils problem is
very complicated because of the large number of degrees of freedom
involved. In the present report, simplifying assumptlons have been made
with regard to the longitudinal and lateral motions of the aircraft in
order to obtain a solution which shows the principal effects of the
rolling motion.

SYMBOLS

a, b, c, 4, e coefficlents of quartic

A constant (amplitude ratio)
b wing span
c wing chord
C viscous damping coefficient
cL 1ift coefficient L
LpVES
2
c pitching—moment coefficient [ —
m 1.2
=pV-Sc
2
D differential operator %I{>
T

e base of natural logarithms
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Ix - Iy
moment—of—1inertia parameter -
Z

shift in aerodynemic center or in stick—fixed maneuver point
moment of inertia

moment of inertia about X—axis

moment of inertia about Y-axis

moment of inertia about Z—axls

gpring constant

rolling moment; or 1lift

aileron rolling moment

pitching moment; or Mach number

yawing moment

rolling veloclty about body axis

steady rolling velocity

pitching velocity about body axis

yawing velocity about body axis

wing area

time

nondimensional time  (pgt)

nondimensional time required to damp to one-half amplitude
true airspeed

body axes of alrcraft

angle of attack

angle of sideslip

angular dlsplacement of slngle—degree—of—freedom system

fraction of critical damping of single—degree—of—freedom
systenm
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EG fraction of critical damping in pitch of nonrolling aircraft

CW fraction of critical damping in yaw of nonrolling alrcraft

2] angle of pltch relative to flight—path direction

P alr density

¢ constant (phase angle)

' angle of yaw relative to flight—path direction

w actual frequency of single—degree—of—freedom system

Wy, Wp nondimensional frequencies of motion of rolling alrcraft
with respect to body axes

wp undamped natural frequency of single—degree—of—freedom system

wg nondimensional undamped nstural frequency in pitch of nonrolling
aircraft (ratio of pitching frequency to steady rolling
frequency)

Wy nondimensional undamped natural frequency in yaw of nonrolling
aircraft

Dot over a symbol indicates derivative with respect to time.

ANALYSIS

The motion of the aircraft 1s studied by means of Euler's equations.
These equations are set up in terms of angular velocitles and acceler—
ations with respect to axes fixed in the aircraft. The period and
damping of any motions obtained as a final result will, therefore, be
those which would be measured by instruments, such as accelerometers,
mounted in the alrcraft during the maneuvers. Euler's equations are
as follows:

L = Iyp — qr(Iy - Iz) (1)
M= Iy - rp(Iz — Ix) (2)
N = Izt — pa(Ix — Iy) (3)
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It is assumed that the mass of alrcraft is distributed in a plane, so
that I, = Iy + Iy. Equation (1), relating to the rolling motion, then

becomes

=
i

BLg + rLy + PLp + Lg

Ix(p + qr)

In the type of motion under consideration, the aileron rolling
moment Lg 18 offget, on the average, mainly by the damping moment pLp

while the quantities B, g, and r in general oscillate about values
close to zero. It is assumed in the analysis which follows that the
rolling velocity is constant and that the effects of the variations in
sideslip, pitching velocity, and yawlng velocity in producing rolling
moments through aerodynamic or inertia effects msy be neglected.
Equation (l), cherefore, disappears from the analysis and the remaining
equations become linear. As a result of this assumption, it is expected
that the analysis may not apply very closely in cases where the rolling
veloclty is small and the dihedral effect is large because a large
dihedral effect would result in appreciable variation of rolling
veloclity during a yawing oscillation.

The equations involving linear accelerations along the X—, Y-,
and Z—axes are omitted from the present analysis. The equatilon involving
longitudinal accelerations is omitted because the motion is assumed to
occur at constant airspeed. The equations involving lateral and normal
accelerations are omltted because, for the purposes of the present
analysis, the longitudinal and directional motions of the aircraft
which is not rolling are each considered as single—degree—of—freedom
motions involving only angular displacements. This assumption does not,
however, exclude the possibility of applying the analysis to an aircraft
trimmed at an angle of attack different from zero. In this case, as the
aircraft rolls, it travels in a helical path. The 1ift on the aircraft
balances the centrifugal force developed by the helical motion. Both
the 1ift and centrifugal force, however, act through the center of
gravity and do not influence the moments acting on the alrcraft. The
stability of angular motlons of the aircraft is therefore determined
by the moment equations (equations (1) to (3)). The helical motion
gimply Introduces steady angles of pitch and yaw about which the
disturbed motions take place.

In the discussion which follows, the terms "oscillation frequency”
and "rolling frequency”™ are often employed. By "oscillation frequency"
1s meant the circular frequency of a sinusoidal motion, or 2x times
the frequency in cycles per second. The term "rolling frequency®™ is
used interchangeably with "rolling velocity™ and is the rate of rotation
in roll expressed in radlans per second. In cases where ratios of these
frequencies are used, the frequencies may, of course, be expressed in
cycles per second instead of radians per second.
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In accordance with the assumption that the longitudinal and
directional motions of the alrcraft which 1s not rolling are each consldered
as single—degree—of—freedom motions, the pitching and yawing equations
for the nonrolling alrcraft become

Mg + aMy = I 4 (¥)

Wy + 1Ny = I (5)

The motions obtained from the solutlons of these egquations would be damped
oscillations in pitch and yaw. The values of natural frequency and
damping of these oscillations may differ somewhat from the values of
natural frequency and damping obtained from the usual stabllity theory

in which additional degrees of freedom are taken into account. It would
be possible and probably desirable, however, to substitute equlvalent
values for the restoring and damping moment coefficients of equations (4)
and (5) such that the same frequency and damping for the single—degree—
of freedom motlions would be obtained as from the more complicated
stability theory. An alternate method which accomplishes the same result
is to set up the equations from the outset 1n terms of the undamped
natural frequency and damping ratlos of the motion of the nonrolling
ailrcraft. Thils procedure, which follows the method and notation of
reference 1, may be described briefly by considering a single—degree—of—
freedom system conslsting of a pivoted beam, such as that shown in

figure 1, moving under the Influence of a spring restoring force and
viscous demping. The equation of motion for the system is

Iy +Cy+Ky=0

If the following substitutlons are made,

o e

(7

ve
it
Q
/’5“\
}.S
S
F
|
|
~_

the equation becomes
Y + 2bwn? + @27 = 0

The quantity w, 1is known as the undamped natural frequency and is the
frequency of free oscillations of the system when the viscous damping 1s
zero. The quantity ¢ 1s known as the damplng ratio and 1s the ratio of
the existing damping of the system to that required for critical damping.
The free motlon of the system, which is a decreasing cscillation, 1s
given by the expression

y = AeS0nt gin (@t — )]
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In this formula, A and @ are constants depending on the initial
conditions. The actual frequency of a free oscillation o 1s related
to the undamped natural frequency by the formula

w=ow,V1 - §2

If 1t 1s desired to calculate from the frequency and damping the
restoring—moment and damping-moment coefficients for the single—degree—
of—freedom system which simulates the alrcraft either in pitch or yaw,
the preceding relations for this type of system may be employed.

The substitutions required to express equations (4) and (5) in
terms of the natural frequencies and damping ratios of the motions in
pitch and yaw may be made in a similar manner to those of equations (6)
and (7). In order to simplify the notation of the analysis, the
frequencles of the nonrolling aircraft will hereinafter be taken as
ratios of the oscillation frequencies to the steady rolling frequency pg.

The undamped natural frequency 1n pitch is therefore given by the-

expression
—Mg o -
B (o e )

The damping ratio in pitch is given by the expression

My < ﬂa) (9)
> ,——_MGIY or 2{guwgro Iy

Analogous expressions are used for the frequency and damping of the
yawing motions.

Co

It is now desired to express the equations for the rolling aircraft
in terms of these varilables. Inasmuch as the rolling does not influence
the aerodynamic moments acting due to changes in pitch and yaw, the
external moments are the same as those given in equations (4) and (5).
The pitching and yawing equations for the rolling aircraft (equations (2)
and (3)) then become

M= GMB + qu
= Iy(q — rp)
N = YNy + rNr

I;r — pa(Ix — Iy)
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Dividing these equations by Iy and Ig, respectively, gives the
formulas

q_rp_eM_Q_qﬁzo

Ty Iy
. IX - IY NW NI‘
T‘P‘(—Tr)‘ I

If the expressions for the undamped natural frequencies and damping ratios
in pitch and yaw (formulas (8) and (9)) are inserted in these equations,
the pitching and yawing equations become

4 — rDy + 2LgwgPod + w9 D,8 = O

. Iy =1 2_ 2
o p"q(‘—l.z—Y) + 2tyoypor + o2V = O

Here the rolling velocity, assumed constant, has been written pg. For

the small angles considered in the present analysis, the angle of

pitch @ 1is taken as the projection on the plane of symmetry of the
aircraft (the XZ-plane) of the angle between the flight path and the
longitudinal axis of the aircraft. The angle of yaw V¥ 1s taken as
the projection on the XY—plane of the angle between the flight path and
the longitudinal axis. The axes X, Y, and Z are taken as the body
axes of the aircraft.

Since the restoring forces on the alrcraft are related to 8
and vV, the angular velocities q and r rmust be expressed in terms
of these angles and their derivatives. It is therefore necessary to
resolve the angular velocities q and r, which are measured with
respect to the body axes, along the flight-path axes. This procedure
is illustrated in figure 2, from which it may be shown that for small
angles of pitch and yaw

b = q + poV

¥ =1 — p,f
Hence

qg=86—p,V
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If these substitutions are made, the equations become

2

.. . , . 2
8 ~ pol — Do — P06 + 2LgwgPol6 — Po¥) + wp Dy 0 = O

T+ pgd + (0o — DAIF + 2byypo(¥ + peB) + wyPpo2y = O

Iy - Iy

1z
to express time nondimensionally in terms of the frequency of the steady
rolling motion. Let the nondimensional time +t' equal pyt. Then define

where for simplicity has been set equal to F. It 1s convenient

d

D= —
att?

_La
T po dt

In terms of this operator, the equations become
2 24 _
D — 2Dy — 8 + 2[gugDO — 2 ywg¥ + wp“6 = O

Dew + Do + yF — DOF + 2§wm%D¢ + 2gwuwe + wWEW =0

In order to analyze the motion of the rolling aircraft, the determinant
of the coefficients of 8 and V¥ 1is set equal to zero. This determinant
is

D? — 1 + 2LgugD + wg® —2D — 2t gug
D — DF + 2fay D? 4 F + 2 D + oy° -
The determinant may be expanded to give the quartic
aD* + D3 + D2 + dD + & = O (10)
where
a =1
b =

= ngmllf + 2§9(1)9

-F + 1+ wwe + w92 + egeweegwmw

Q
I

a
|

= 2§9w9%2 + 2@9&)6 + EQW%Q)QE + cha\lx
T + wewaQ-anwz + wezF + 2t ywy2lgug

[}
1l
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From the roots of this quartic, the pericd and damping of the modes of
motion of the rolling alrcraft may be determined. Because of the method
adopted for expressing time nondimensionally, the frequencles of the
motion thus determined are obtained as ratlos to the steady rolling
frequency. Routh's discriminant for this quartic 1s glven by the
formula

bed — d° — eb®

Placing this expression equal to zero gives the condition for the boundary
between increasing and decreasing oscillations of the system. When the
coefficients are substituted in thls expression and the operations are
carried out, Routh's discriminant becomes

12t oy, 36 g0 — By, S gugF + My g — Bty Ygmg® + 1665y "t g wg”
* WECGE‘%Q - 1*“ngag‘beaF + l6§w‘*\v3§e3%3 * ugv%gewf
+ bty — 86,7, Pug®F + 160, S gn 3 — 1260y L gup’F
o Byt + 166,202 6%0, " + 80,20t — b2y (1)

A condition for the boundary between stability and divergence is
obtained by setting the coefficient e of the quartic (formula (10))
equal to zero.

In order to simplify the numerical analysis and at the same time to
show the principal effects of the rolling motion, 1t is helpful to consider
the case where the damping ratios Qa and CW of the longitudinal and
directional oscillations of the nonrolling aircraft are zero. This case
of undamped ogcillations is of much practical interest because the
oscillations of high-density aircraft flying at high altitudes are
usually poorly damped.

If the damping ratios Qe and gw equal zero, the determinantal
equation for the rolling alrcraft becomes

Y P re =0

aD
where

a =1

(@]
1t

-F + 1 + mwg + wge

- _F + weawwE _ wWE + wSEF

[}
|
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This equation may be solved explicitly as a quadratic in D° ags follows:
2 2 2 2 2
o  wy" +wg" +1—F Wy~ + wg= + 1 ~F 2. 2 2 2
D= = — 5 * > T gyt YT — g F 4 F
(12)

The frequencies of the oscillations of the rolling aircraft are obtained
from the numerical values of D, the square root of D2 (formula (12)),
when D 1s imaginary. There are two frequencies: one designated w1,

obtained with the minus sign before the radical of formula (12), and the
other designated wp, obtained with the plus sign before the radical.

DISCUSSION OF RESULTS

Case of zero damping of nonrolling alrcraft.— The first case
considered 1s that of an alrcraft with frequencies wg and wy 1n pitch

and yaw when 1t is not rolling and with zero damping of these
oscillations (ge and §y = 0). It will also be assumed that Iy = O,

IX_IY

I

Z
many practical aircraft and missiles of short span with slender fugselages
in which most of the weight 1s concentrated.

or F = —1. This case 1s a reasonable close approximation to

The characteristics of the motion of a rolling aircraft of this type
are shown in figure 3. This figure presents the stable and unstable
regions in a plot of wy against wwg and algo shows contour lines of

the frequencies of the oscillations performed by the rolling ailrcraft.
This figure brings out the symmetry 1n the effects of wg and wy which

would be expected from physical considerations for the case of Iy = 0.

When both the pitching and yawlng frequencies of the nonrolling
alrcraft are greater than the steady rolling frequency under consideration,
the motion is stable, in the sense that there is no divergence or
increasing oscillation. This condition is shown by the stable reglon
in the upper right—hand part of the diagram where wg >1 and wy > 1.

In this region, the rolling aircraft has two modes of oscillation, both
of which are undamped and have frequencies different from those of the
oscillations of the nonrolling aircraft. If the pltching frequency of

the nonrolling aircraft wg equals its yawing frequency wy, then one
mode of oscillation of the rolling aircraft has a frequency equal to this
frequency plus the rolling frequency and the other mode of oscillation

has a frequency equal to this frequency minus the rolling frequency. In
general, for wg not equal to wy, one frequency of the rolling aircraft

is greater than the hlgher frequency of the nonrolling aircraft; and the
other frequency is less than the lower frequency of the nonrolling aircraft.
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When one of the frequencles of the nonrolling aircraft equals the
frequency of the steady rolling motion (we or wy = 1), the aircraft
becomes neutrally stable in one mode, as shown by the fact that the
frequency of this mode equals zero. This phenomenon may be explained
physically on the basis that the restoring forces acting on the nonrolling
aircraft which produce a certain oscillation frequency are Just offset by
the centrifugal forces which attempt to swing the fuselage out of line
with the flight path when the aircraft rolls with this frequency. This
effect is somewhat analogous to a rotating shaft operating at its critical
speed. In fact, if the pitching and yawing frequencies of the aircraft
are both equal to the rolling frequency, the conditions are exactly
similar to those encountered when a shaft having equal stiffness 1n all
directions rotates at its critical speed. When the frequencies of the
aircraft in pitch and yaw are different, and only one of these frequencies
equals the rolling frequency, the conditions may be shown to be analogous
+0 those encountered when a shaft of flattened cross section rotates at
one of its two critical speeds. It may be of interest to note that the
theory for the behavior of such a shaft is ldentical with the theory
developed in this report for the rolling aircraft.

When one frequency of the nonrolling aircraft is less than the
steady rolling frequency and the other is greater, the rolling alrcraft
becomes statically unstable in one mode and performs a straight divergence
ag measured by instruments fixed in the aircraft. If both frequencies
of the nonrolling aircraft are less that the steady rolling frequency,
however, the rolling alrcraft is stable, as shown by the small stable
region in the lower left—hand cormer of figure 3 for ag and Wy

between O and 1. Here agein there are two modes of undamped oscillation.
In this region, when the values of g and wy are equal, the stability
is analogous to that of a shaft having equal stiffness in all directions

rotating above its critical speed. When wg and oy both approach zero,

which means that the static longitudinal and directicnal stabilities both
approach zero, the two frequencies of the rolling aircraft both approach
the rolling frequency. Physically, this condition means that the rolllng
aircraft can have its axis tilted from the flight path and, because of
its lack of static stability, will continue to roll about this tilted
axis. This rolling motion will cause periodic changes 1n the angles of
attack and yaw with a frequency equal to the rolling frequency. These
periodic changes would be measured as constant—amplitude pitching and
vawing oscillations by instruments fixed 1n the aircraft.

A small stable region exists where the frequency of one mode of
oscillation of the nonrolling alrcraft is less than the rolling frequency,
and in the other direction the alrcraft has a certain degree of static
instability. This stabilizing effect of the rolling motion may best be
vigualized by conasldering the motion of the alrcraft with respect to
fixed axes. A fin which provides stability in only one direction (say,
yaw) will make the rolling aircraft stable about both axes, provided
the rate of roll 1s fast enough, because the fin rapidly turns from one
plane to another. This effect only occurs for a relatively limited
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range of parameters, however, and 1s shown in figure 3 as the stable
; . : 2 2 i
region in the range of negative values of wg and wy“. A negative

value of weg, corresponding to an imaginary vaelue of the fresquency,
represents an exponential divergence defined by the equation

6 = Ae—imgtt

This same equation, of course, represents a sinusoidal oscillation of
frequency wg for real values of wg. Figure 3 was plotted in terms
of wge and mwg rather than wg and Wy in order to include the
imaginary values of these frequencies.

In the lower left-hand corner of figure 3 there 1s a region of
increasing oscillations as measured by instruments fixed in the body.
In this region, where the nonrolling aircraft has a large asmount of
static instability, the longltudinal axis of the rolling aircraft
performs a maneuver approximating straight divergence with respect
to fixed axes; but because of the rolling, this motion shows up as an
increasing oscillation with respect to the body axes.

The effect of distributing weight along the wings as well as along
the fuselage on the behavior of the rolling aircraft, again with zero
damping in pitch and yaw ({g = by = 0), 41s shown in figures 4 and 5.
Figure 4 presents the contour lines of the frequencies of the rolling
aircraft on a plot of wg® against wy? for F = —0.666. This value

of F corresponds to the case where the moment of inertia about the
X—axis equals 0.2 times the moment of inertia about the Y—axis. The
results indicated by this figure are similar to those for the case where
all the weight 1s located in the fuselage. A somewhat smaller value of
the directional stabllity 1s required, however, to avold divergence in
yaw of the rolling aircraft. Figure 5 is a similar plot for F = O.
This value of F corresponds to the case where the moment of inertia
about the X—axis equals the moment of 1lnertia about the Y—axis. In
this case a rolling motlon produces no inertia yawing moment on the
yawed alrcraft. With large stability in pitch, the yawing frequency of
the rolling aircraft would therefore be expected to be the same as that
of the nonrolling alrcraft. The results of figure 5 indicate that the
frequency o, which represents mainly a yawing motion with large

stabllity in pitch, approaches asymptotically the yawing frequency Wy
as wg Dbecomes large. Furthermore, the divergence boundary in yaw,

which occurs at wy = O for the nonrolling alrcraft, 1s unchanged by
the rolling motion.

The special case where ag = wy and Iy = O may be analyzed more
simply by use of the equation of motion of the body with respect to axes
fixed in space. This analysis allows a clearer physical interpretation
of the motion of the body and serves as a check on the results obtalned
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previously by means of Euler's equatlons. This gpecial case correspconds
to conditions existing along a 45° 1ine through the origin in figure 3.
The motion of the system with respect to axes fixed In space is derived
in a following section of this paper, but first the results already
obtained by means of Euler's equations are stated. It may be seen

from figure 3 or derived from formula(l2) that the frequencies of the
rolling aircraft with respect to body axes for this case are given

by the formulas

¥
&

+

[}

©1

o

&
!

Here, w; and Wy are nondimensional frequencies expressed as ratlos
to the steady rolling frequency. The pitching frequency uy of the
nonrolling aircraft is equal to the yewing frequency wy, and elther

symbol might be used. The member on the right—hand side of the equation
for wo, 1ndicates the absolute value of the quantity wg — 1, If these

formulas are put in terms of actual frequencies, rather than nondimensional
frequencies, they become

W12, = WPy + Po

WP, = |9gP; ~ Po

Hence, the frequencies of the rolling alrcraft sre given by the sum and
by the absolute value of the difference between the frequency of the
nonrolling aircraft and the rolling frequency.

The solution for the motilon based on the equations of motion with
respect to fixed axes 1s now considered. The dynamic system 1s shown
in figure 6(a). The restoring forces provided by the fins will usually
be the same with respect to fixed axes as with respect to axes rolling
with the body. The forces would be exactly the same, for example, if
the body had a fin in the form of a circular cylinder. The assumption
that the forces are the same would be a close approximation to the
conditions existing with a conventional four—fin tall. Because all the
weight is located along the X—axis, any rolling motion of the body about
the X—axis has no effect whatever on the motion of the X—axis of the body
with respect to fixed space. The motion of the X—axls of the body,
therefore, is composed of vertical and horizontal oscillations of
frequency wgPy, exactly as in the case of the nonrolling body. The

most general motion of the axis 1s a combination of these two components
with arbitrary amplitudes and phase difference. This combination in
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general causes the axis to swing so that any point on the axis traces an
elliptical path, as shown in figure 6(a). In order to see how this
result corresponds to that obtained previously for the motion with
respect to body axes, the frequencies measured with respect to fixed

axes must be converted to frequencies measured with respect to axes
rolling with the body. This conversion is a kinematic transformation,
with no dynamics involved. Ordinarily, the motion of the axis would

be resolved into vertical and horizontal components as mentioned previously.
If the body rolls when the axis i1s undergoing a vertical or horizontal
oscillation, however, the resulting oscillations with respect to body
axes will not have constant amplitude. In order to obtain results
equivalent to those previously described, it is necessary to break the
motion of the axis Into components which lead to constant—aemplitude
ogclllations with respect to body axes. Two such motions are possible:
one a clockwise and the other a counterclockwise rotation of a point on
the rear of the body. This point moves in a circular path with

frequency wgp,. These motions are shown in figure 6(b). These circular

motions of the body with frequency WgP, &are possible motions because

they may be obtained by combining vertical and horizomtal oscillations
of equal amplitude with a phase difference of 90°. Any possible motion
of the aircraft may be produced by combining these two circular motions
with the correct phase difference and amplitude. Examples of possible
combinations are given in figures 6(c) and 6(d). Figure 6(d) shows that
the elliptical path, which is the most genmeral type of motlon, may be
produced by this combination.

The frequenciles of the rolling alrcraft as seen from body axes may
be derived by considering the angle—of—attack changes as the body rolls
when its axis is performing one of the two clrcular motlons. The case
where the axils revolves 1in a counterclockwise direction with frequency wgPo
while the body rolls clockwise with a frequency P, corresponds to the

formuls

Py = WPy + Po

The case where the axis revolves in a clockwise direction with
frequency wgpo while the body rolls clockwise with a frequency pg

corresponds to the formula

@pPy = lmePo - POl

The results obtained by the analysis based on fixed axes may therefore
be converted to body axes to give the same result as that obtained
directly from the analysis based on body axes.

A case in which the two solutions might be considered to disagree
1s one in which the rolling frequency equals the pitching (and yawing)
frequencles. The results plotted in figure 3 show a condition of neutral
stabllity to exist at this point, whereas the stability of the axis of
the body in the analysis based on fixed axes was stated to be independent
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of the rate of roll. It should be noted, however, that any slight out—
of—trim pitching moment applled to the rolling aircraft at this point
would produce & vertical and horizontal moment varying sinusoidally with
time at the natural frequency of the axis. A conditlon of regonance
would therefore exist and the vertical and horilzontal amplitudes of

the undamped system would increase indefinitely. In the analysis based
on body axes, this same out—of—trim pitching moment applied to the
neutrally stable system would cause the angle of pitch to Increase
indefinitely. The two methods of analysis, therefore, lead to the

same result,

If under the conditions where the rate of roll equals the pitching
(and yawing) frequencies, the axls of the body is displaced in pitch,
then a yawing velocity will be introduced with respect to body axes.
Any damping forces proportional to yawing velocity would extract energy
from the system and prevent the amplitude from bullding up. The damping
ig therefore expected to increase the stability of the system, at least
under conditions where the pitching and yawing freguencies are close to
the rolling frequency. The effects of damping are now considered on the
basis of the theory.

Case of damped oscillations of nonrolling aircraft.— The rate of
decrease of amplitude of the oscillations of the nonrolling aircraft 1s
determined by the damping ratio . The fraction of the original
amplitude to which the oscillation decays in one cycle 1s shown as a
function of ¢ in figure 7. For € = 0.2, the oscillation damps
to 0.28 of its original emplitude in one cycle. This amount of damping
is greater than that usually found for elther the pitching or yawing
oscillation of an aircraft of high density and is uged to give an
extreme example of the effect of damping on the stability of the
rolling ailrcraft.

The divergence boundary for the rolling aircraft 1s determined by
setting the coefficient e of the quartic (equation (10)) equal to zero.
The divergence boundary for the case CB = C¢ = 0.2 and Iy =0 1is given

on a plot of w92 against wwg in figure 8. This figure also corresponds
to any values of {4y and CW satisfying the relation gty = 0.04

because these quantities enter into the coefficient e only as a product.
By comparing the boundaries of figure 8 with those of figure 3, it may be
geen that the addition of damping has broadened ihe stable region in the

neighborhood of the point wg = 1, awy = 1, that is, where the frequenciles

in pitch and yaw are close to the rolling frequency. In other parts of
the figure, the bounderies are but little changed. The boundary between
increasing and decreasing oscillations is not shown in figure 8.

In practice, when the frequency of the nonrolling aircraft is
changed, the damping ratio also changes. For example, 1f the frequency
in pitch is changed by varying the center—of—gravity locatlon, the damping
ratio increases as the aircraft approaches neutral stabllity because the
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damping moment provided by the tail remains nearly constant while the
restoring moment decreases to zero. The condition encountered in
practice 1ls more nearly represented by the condition that gewe equals
a constant. This condition, for a single—~degree—of—freedom system, 1s
fulfilled when the viscous damping device remains the same as the spring
regtoring force is varied. The divergence boundaries for the case

fowg = 0.2 and {ywy = 0.2 are plotted in figure 9. The results are
gimilar to those of figure 8 although, of course, the damping coefficient
is less at large values of the nondimensional frequencies and greater at
frequencies approaching zero. In figure 8, the actual damping moment
decreases to zero when the corresponding frequency equals zero, and for
this reason the boundariles cross the same point as those of figure 3
when wg = 0 or Wy = 0.

The boundary between decreasing and increasing oscillations for the
case of damped motion is obtalned by setting Routh's discriminant equal
to zero. This boundary is also plotted in figure 9 for the case
§9w6 = 0.2 and waw = 0.2, This boundary is almost coincident with
the boundary between constant—amplitude oscillations and increasing
oscillatlons given in figure 3. Thus, the boundary between constant—
amplitude and Increasing oscillations, which cannot be strictly termed
a stability boundary, goes over into the Routh boundary as soon as any
damping is present.

The effect of damping on the characterlstics of the motion for
representative combinations of frequency and damping has been studied
by determining the roots of the stability quartics obtalned from
formula (10). The results are presented in figure 10 which shows the
roots on enlarged plots of abg agalnst wwg similar to those previously
given in figures 3 and 9. Three conditions have been investigated,
namely, zero damping ({gug = Lywy = 0), equal damping about each
axls (fgwg = tywy = 0.2), =and zero damping about one axis combined
with damping about the other axis (fgug = O and Lyoy = 0.2 or
vice versa). The real roots represent convergences and divergences
whereas conjugate complex roots represent oscillations. Real roots or
real parts of complex roots determine the nondimsnsional time to
decrease to one-half amplitude, if they are negative, or to double
~ amplitude, 1f they are positive, 1n accordance with the formula

0.693
Real part of complex root

tp =

The imaginary parts of complex roots give the nondimensional frequencies
directly. Figure lO(a), which shows the results with zero damping, is
simply & repetition of what has previously been presented in filgure 3;
but the roots are given to facilitate comparison with the cases of damped
motion. This figure shows that constant amplitude oscillations exist
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within the stability boundary and that a divergence is present outslde
these boundaries in the region shown.

Figure 10(b) shows the results when both modez of oscillation of
the nonrolling aircraft have equal damping and corresponds to the case
for which divergence boundaries are shown in figure 9. It may be seen
that in most of the stable region two modes of oscillation occur, both
of which demp to one-half amplitude in the same time as the damped
oscillations of the nonrolling alrcraft. The periods of the oscillations
are very nearly equal to those existing with zero damping. As the
divergence boundary is approached very closely, however, one mode of
oscillation changes into a pair of convergences. One of these convergences
becomes weaker upon closer approach to the boundary until at the boundary
it 1s transformed into a divergence. For the one point investigated, the
rate of divergence is slower than that for the case with zero damping.
The damping changes the real root, which determines rate of divergence,
by about the same amount as it changes the real part of the complex root,
which determines the damping of the oscillation. It may be concluded
that, within the region of constant—emplitude oscillations of the
undamped motion, damping is very effective in providing stability and
causes the motlon to disappear in the same time as in the case of the
nonrolling aircraft. Outside the divergence boundary for the damped
motion demping reduces the rate of divergence, but for practical values
of damping this reduction would not be important.

Figure 10(c) presents the results for the case when one mode of
ogcillations of the nonrolling ailrcraft 1s well damped and the other
mode has zero deamping. Although this condition is not likely to exist
in practice, 1t represents an extreme example of this inequality. This
example is intended to bring out the differences between this case and
the case of equal damping of the two modes. The divergence boundaries
in this case are the same as those for zero damping (fig. 10(a)).
Physically, this fact means that when the aircraft has a mode of
ogsclllation of the same frequency as the rolling motion, it may be
oriented in such a way that no angular velocity occurs about the axis
around which damping forces exlst. Thus, the damping can have no effect
on this mode. In the region where oscillations exist, the damplng is
one—half as grest as in the case of equal damping. This result means
that when the airplane is rolling the damping 1s effective about half
the time. The rate of divergence in the unstable region is intermediate
between that for the case wilth zero damping and that with equal damping
about the two axes. '

APPLICATION OF RESULTS

Full-scale airplanes.— The previous analysis indicates that
instability may be caused by very rapid rates of roll in small heavily
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loaded alrplanes carrying a large proportion of their weight in their
fuselages and flying at high altitudes. This instability lasts only as
long as the airplane rolls and would not, therefore, cause difficulty

in normal flight. The 1lnstability in a roll might, however, cause an
airplane to reach dangerous attitudes if the divergence were sufficlently
rapid.

The rate of roll of an alrplane with a given aileron deflection and
true alrspeed remains aspproximately constant as the altitude is increased,
but the periods of the longitudinal and directional oscillations increase
because of the reduced indicated alrspeed. The rolling frequency may
possibly exceed one or the other oscillation frequencles, with the result
that instability of the type discussed would be encountered. For example,
the rolling frequency and the frequencies of the pitching and yawing
oscillations of an existing transonic research airplane are plotted as
a function of altltude in figure 11. This airplane has a large amount
of directional stability, so that the yawing oscillation has a higher
frequency than the pitching oscillation. With the assumed value
of pb/2V of 0.05 and Mach number of 0.8, the rolling frequency
exceeds the pitching frequency at an altitude of about 28,000 feet when

ac
the static margin (Ec_m> is 0.05, or at 46,000 feet when the static
L
M

mergin 1s 0,10. The airplane would perform a longltudinal divergence in
rolls of this rate at higher altitudes. Higher rates of roll would, of
course, cause Instability at lower altitudes.

The instability would not be present 1f the periods of the pitching
and yawing oscillations were equal. It would appear advisable to provide
approximately equal values of longitudinal and directional stability on
alrplanes that are intended to roll rapidly. Because the longitudinal .
stabillity inevitably veries with changes in center—of—ravity position,
however, this condition may not be easy to realize in practlce. It is,
therefore, desirable to provide fairly large values of both longitudinal
and directional staeblility on airplanes with high rates of roll in order
to avoid the instability due to rolling.

The rates of divergence for the unstable cases Investigated are
generally not large enough to0 cause unduly large changes in attitude of
the airplane in rolling to angles of bank up to 90°, but they may cause
serlous attitude changes In a complete 360O roll. Large yawing moments
due to rolling, and pitching moments due to sideslip, are usually present
which cause displacements in pitch and yaw during the early stages of a
roll. These displacements would increase rapidly if instability were
present. Consideration of these disturbing moments alone leads to the
conclusion that relatively large values of directlonal and longitudinal
stability are desirable on airplanes intended to roll rapldly.
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The effect of rolling on the longitudinal stability in the case when
the directional stability is very large may be considered as a forward
shift in aerodynamic center or in the stick—fixed maneuver point. This
shift 1s given as a fraction of the chord by the expression

chpsw2

On a given airplane the shift in maneuver polnt is thus proportionsasl

to (pb/EV)2 and varles inversely as the air density. This same formula
applies approximately for practical values of diresctional stability,
provided that the longitudinal stability is emall compared with the
directional stebility. For the alrplane used as an example in figure 11,
the ghift in maneuver point with a value of pb/ZV of 0.05 at gsea level
is 4.6 percent chord and at 50,000 feet altitude is 31 percent chord.

Miggileg.— Some migssiles differ from full—scale airplanes in having
much smaller wing span, higher density, and a greater proportion of
welght in the fuselage. The rolling frequency of these migsiles may

therefore be larger in comparison with the frequencies of their longitudinal
and directional oscillations.

Some reseasrch missiles, which were not roll-gtebilized, have been
uged to investigate the longitudlnal and directional stability of
airplane configurations. The preceding analysis shows that the frequenciles
of oscillations recorded by instruments In the missile cannot be used
directly to compute the longitudinal and directional stability unless
the rolling frequency 1s very small in comparison with these frequencies.
If the rate of roll were recorded and a sufficiently long record of the
motlon were obtained under steady conditions to enable determination of
the frequencies of both modes of oscillation, it would be theoretically
possible by use of charts such as figures 3 to 5 to compute the
frequencies of the nonrolling aircraft. These steady conditions are
rarely cbtained in practice, however. Devices to limit the rate of roll
or to roll-stabilize such research migsiles therefore should be used
unless their inherent rates of roll are very small.

Tne preceding analysis may be used to indlicate the design features
required for stabillity of missiles that are intended to reoll continually
in flight. If such missiles roll at a smaller frequency than the
frequencies of their longitudinal and directiocnal oscillations, then
equal stability in both planes is desirable, as it was 1in the case of the
full-scale airplane. If the rolling frequency is greater than that of
the more rapid oscillation, as is usually the case with such missiles,
then a fin providing stablility in only one plane 1s adequate to
stabilize the missile. The instability in the other direction should
not be so great as to place the system in the unstable region of figure 3,
however.

The results of figure 3 indicate that a body which is unstable in
both planes cannot be stabilized by spinning, a result which appears to
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disagree with the normal practice of stabllizing projectiles by spinning.
The stabilization of projectiles by spinning cannot be studied from the
numerical results presented in figure 3 because these results apply to
the case where the moment of inertia sbout the longitudinal axis Iy

is zero. The stability of spinning projectiles depends on the value
of Ix. The preceding analysis may readily be extended to include the

cagse of an axially symmetrical body with a finite value of Iy. In this

case, 1t may be shown that the axis of the rapidly spinning body will
perform constant—amplitude osclilllaetions in the absence of damping forces
whether or not it is stable in pitch and yaw. If the body is unstable,
however, damping forces in pitch and yaw will produce an increasing
ogcillation; whereas, if the body is stable, damping forces will produce
a decreasing oscillation. Inasmuch as most artillery projectiles are
unstable in pitch and yaw, they camnot be called truly stable in flight.
The rate of divergence of the oscillation is small enough, however, to
avold appreciable increase in amplitude during the time of flight.

CONCLUSIONS

An analysis has been made to show the effects of rolling on the
stability of aircraft. In this analysis, it was assumed that the
longitudinal and directional motions involved only pitching and yawing,
respectively, and that the rolling velocity was constant. The neglect
of the additional degrees of freedom end of the possgible effect of
sideglip on the rolling veloclty may lead to some inaccuracy, particularly
in cases where the rolling velocity is small and the dihedral effect,
large. The analysis 1is expected to apply closely, however, in the
cases of greatest interest where the alrcraft has high density and is
rolling rapidly. From the results presented, the combinations of
directional and longitudinal stability that produce stable motion with
different rates of roll may be calculated and the effect of rolling on
the characteristics of the motion in pitch and yaw may be found. The
analysis leads to the following conclusions:

1. Rolling of an airplane may introduce inertis forces that tend
to swing the fuselage out of line with the flight path. These forces
tend to produce (1) longitudinal instability if the longitudinal
stability of the nonrolling airplane is small compared with 1ts
directional stebility and (2) directional instability if the directional
stability of the nonrolling sirplane is small compared with its
longitudinal stability. This tendency toward instabllity lasts only
as long as the alrplane rolls and, therefore, would not affect normal
flying of an airplane. The destabilizing effect may be appreciable
on alrplanes of short span and high density, carrying most of their
welght in their fuselages, and flying at high altitudes. On such
alrplanes, dangerous attitudes might be reached in rapid rclls, particularly
if the rolling continued through 360°. Instabllity occurs when the rolling



2D NACA TN No. 1627

frequency exceeds the lower of the pltching and yawing natural frequencies.
This type of instability does not occur if the stabilitles about the two
axes are about equal though rolling reduces the stabllity in this case.

2. The pitching and yawing oscillation frequencles as recorded by
ingtruments in an alrcraft are changed when the alrcraft is rolling.
These frequencies measured in a rolling alrcraft cannot, therefore, be
uged directly to calculate the longitudinal and directional stability
of the nonrolling aircraft.

3. Migsiles rolling rapidly may be stabllized by a fin in only one
plane, provided that the frequency of the rolling motion 1ls greater than
the natural frequency of the oscillation of the nonrolling missile in
the plane in which the fin produces stablllzling moments and provided
that the instability in the other plane is not too great.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautlcs
Langley Field, Va., March 25, 1948
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Side view

Figure 2.- Relations between angles of pitch and yaw and angular
velocities about body axes and flight-path axes. (Views
perpendicular to flight path.)



NACA TN No. 1627 25

12 A

10 ,\Q
“

/—-HE iy
/

e

.
6 el B el N
: ANl \
. \\@\ ‘\ \ R
P \ \
. ~Jz.0 \\ J B S N VY B
2 e L NG D e s

T B 7. 1
il ® NN
1. \ |
o] x \\
wy = 0457 3 \ \\
Y Region of one
divergence

-2

Region of

increasing T

oscillations \ \ \

|
-4 | : Region of two \
—>/ M divergences \
1 1L 1 1 1
-4 -2 0 2 4 6 8 - 10 12
2 NACA -
wv e

Figure 3.- Contour lines of nondimensional oscillation frequencies

of rolling aircraft on a plot of w92 against wwz for the case

IX =0, ¢ = by = 0. Regions of diagram free from
divergence or increasing oscillations indicated by cross-hatching.



26 NACA TN No. 1627

| \
12 w = 8.07

10 AN

—— v
Region of one \4; \ ) \\
6 divergence ; \\ \ \\ \
I ——] ; }\\ I ~]
2.5 4

~

2.0 — 1§ 1o
2 [
Region of tWO\\ N tﬁ \ 0.5
0 90.999 90990 3000 S0P X

divergences &_5

07/—‘ \1,\\“/ \ \

Region of one

\ divergence

- 2 A
NEEREE 1

Ol
R

increasing N
oscillations ‘ lr \ \ \
" A0 R |
} Region of two
""I/ divergences
-4 -2 o] 2 4 6 8 10 12
o NA
u,*2 \xNCA

Figure 4.- Contour lines of nondimensional oscillation frequencies
of rolling aircraft on a plot of wez against wwd for the case

divergence or increasing oscillations indicated by cross-hatching.

= 0. Regions of diagram free from



NACA TN No. 1627 o7

A
w, =40
17\
| |
et L] e
\
T \ \ \\\
.5
10 a \%\\ \ \Z\
9
“
. / .
\\ 3 0 ; \
8 Region of one [ \\\ \ N \
divergence f \
\ 2.0
6 {2 5 ; \ x\ \Y —
T \ NN

[

_\4\

\\ \\-‘%5 1.0 4
Region of two \~K5 N \

divergences ‘ ]

.0 Jeeed VL ALLE 2 A /. DPNP7

?/// w = 0.5 \
\
\

AN NNNN
L

Region of
-2 increasing +
oscillations /

Region of one \

VD L
\ \ \
ARIA |

-y L t t
£ -~ Region of two
i divergences
{1 1)
-4 -2 0 2 H 6 8 10 12

w0l SUNACA

R—
—"1

Figure 5.- Contour lines of nondimensional oscillation frequencies
of rolling aircraft on a plot of wez

I

against w*Z for the case
X = IY’ Lo = &y = 0. Regions of diagram free from

divergence or increasing oscillations indicated by cross-hatching.



28 NACA TN No. 1627

]
[}
A Section A-A

(a) Symmetrical rolling body stabilized by fins, with weight distributed
along the longitudinal axis, Sectional view illustrates general
motion of a point on the axis.

Po P,
Tall fins on body

- Flight-path axis

(b) Sectional views through tail fins of symmetrical rolling body, showing
the two types of motion which lead to constant amplitude yawing and

pitching oscillations with respect to body axes.

Figure 6.~ Motion of a symmetrical rolling body stabilized by fins, with
weight distributed along the longitudinal axis,
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Figure 7.- Fraction of original amplitude to which oscillation decays
in one cycle as a function of the damping ratio ¢.
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