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NATIONAL ADVISORY COMMITTEE FOR AFRONAUTICS

TECHNICAL NOTE NO. 1360

THE STABILITY OF THE LAMINAR BOUNDARY LAYER
IN A COMPRESSIBLE FLUID

By Lester Lees
SUMMARY

The present 'paper is a continuation of a theorstical investi-
gation of the stability of the laminar boundary layer in a com-
pressible fluid. An approximate estimate for the minimm critical

Reynolds number Recrmi » or stability limit, is obtained in terms
n "

of the distribution of the kinematic vigcosity and the product of

e ¥ P
the mean density p* and mean vorticity g% acrosg the boundary
. j R

. layer. With the‘help of this estimate for HR@ , 1t 1s showm
, min
that withdrawing heat from the fluid through the solid surface
increases Reor and stabilizes the flow, as compared with the
. min ;
flow over an insulated surface at the same Mach mmber, Conduction
of heat to the fluid through the 80lid surface has exactly the

opposite effect, The value of R for the insulated surface
ecrmin

decreases as the Mach mumber increases for the case of a wmiform
free-stream velocity, These general conclusions are supplemented
by detailed calculations of the curves of wave number (inverse

wave length) against Reynolds number for the neutral disturbancos
for 10 representative cases of insulated and noninsulated surfaces,

So far as laminar stability is concerned, an important dif-
ference exists between the case of a subsonic and supersonic free-
stream velocity outside the boundary layer. The neutral boundary-
layer disturbances that zre significant for laminar gtability die
out exponentially with distance from the solid surface; thereforc
the phasc velocity c* of those dlsturbances is subsonic relative
to the free-stream velocity u? =~ QPR s pC 5;35, where 5;-76

~

|

18 tho local sonic velocity. When - = Mg <1 (vhore M, is

8. %

frec-stream Mach number), it follows that O L ok L c* axs and any
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laminar boundary-layer flow is ultimately unstable at sufficlently
high Reynolds numbers because of the destabilizing action of vis-
cosity near the solid surface, as explained by Prandtl for the

incompressible fluid. When M, > 1, however, :ﬁ: > 1~ Er > 0.
*

f ' (@]

If the guantity [ (;* a:—:ﬂu is large enough negatively,

S
c*

the rate at which energy passes from the digturbance to the mean

fa [f= aux
F\" el s
~ -)\ c*

always be large enough to counterbalance the rate at which energy
passes from the mean flow to the disturbance becausc of the desta-
bilizing action of viscosity near the solid surface. In thal case
only demped disturbences exist and the laminar boundary layer is
completely stable at all Reynolds numbers. This condition occurs
vhen the rate at which heat ig withdrawn from the fluid through
the 80lid surface reaches or exceeds a critical value that depends
only on the Mach number znd the properties of the gas. Calcula-
tions show that for M, > 3 (approx.) the laminar boundary-layer

flow for thermal equilibrium - wvhere the heat conduction through
the 80lid swrface balances the heat radiated from the gurface - is

flow, which is proportional to -c¥

completely stable at all Reynolds numbers under free-flight conditions

if the free-stream velocity is uniform.

The results of the analysis of the stability of the laminar
boundary layor must bc applied with care to discussions of transi-
tion; however, withdraswing heat from the fluld through the solid
surface, for example, not only increases Bg but also

Crmin
decreases the initial rate of amplification of the self-excited

disturbances, which is roughly proportional to l/¢§9cr £ oL,
min
the effect of the thermal conditions at the solid surface on the

transition Reynolds number Retr is gimilar to the effect on Ry =

of the effect of surface heating on transition at low speceds shows
that the results of the present paper give the proper direction of
this effect.

The extension of the results of the stabllity analysis to
laminar boundaery-layer ges flows with a pressure gradient in the
direction of the free stream is discussed.

m*n
A comparison between this conclusion and experimental investigations
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INTRODUCTTION

By the theoretical studies of Helgenberg, Tollmien, Schlichting,
and. Lin (references 1 to 5) and the careful experimental investi-
gations of Liepmann (reference €) and H, L. Dryden and his asso-
ciates (reference 7), it has been definitely established that the
flow in the laminar boundary layer of a viscous homogeneous incom-
pressible fluid is unstable above a certein characteristic critical
Reynolds number. When the level of the disturbances in the free
gtream 1s low, as in most cases of technical interest, this inherent
instability of the laminar motion at sufficiently high Reynolds
numbers is responsible for the ultimate transition to turbulent
flow in the boundary layer. The steady laminar boundary-layer flow
would always represent a possible solution of the steady equations
of motion, but this steady flow is in a state of unstable dynamic .
equilibriwm above the critical Reynolds number. Self-excited dis-
turbances (Tollmien waves) appear in the flow, and these disturb-
ances grow large enough eventually to destroy the laminar motion.

The question naturally arises as to how the phenomena of
laminar instebility and transition to twrbulent flow are modified

" when the fluid velocities and temperature verlations in the boundary

layer are large enough so that the compressibility and conductivity
of the fluid can no longer be neglected. The present paper repre-
gents the sccond phasc of a theoretical investigation of tho sta-
bility of the laminar boundary-layer flow of a gas, in which the
coupressibility and heat conductivity of the gas as well as its
viscosity, are taken into account. The first part of this work
was pregented in reference 8, The objects of this investigation
are (1) to dotermine how the stability of the laminar boundary
layer is affected by the free-stream Mach number and the theormal
conditions at the solid boundary and (2) to obbain a better under-
gtanding of the physical basis for tho instability of laminar ges
flows. In this sense, the present study is an extencion of the
Tollmien-Schlichting analysis of the stability of the laminar flow
of an incompressible fluld, but the investigation is also concorned
with the general question of boundary-layer disturbances in a
comprossible fluid and thelr possible inteoractions with the main
external flow.

SYMBOLS

With minor cxceptions the symbols used in this paper are tho
seme as those introduced in rofercnce 8. Physical gquantities are
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denoted by an asterisk, or star, whereas the corresponding non-
dimensional quantities are unstarred. A bar over a quantity denotes
mean value; a prime denotes a fluctuation; the subscrint o  denotes
free-stream values at the "edge" of the boundary layer; the sub-
script 1 denotes values at the solid svxrface; and the sub-
script ¢ denotes values at the inner "critical layer", where

the phase velocity of the disturbance equals the mean flow velocity,
The free-stream values are the characteristic measures for all non-
dimensional quantities. The characteristic length measure 1s. the
boundary-layer thickness 8, except where otherwvise indicated.

Note thet in order to conform with standard notation, the symbol o
for boundary-layer thickness iz unstarred, vhereas the symbols &%
and 0 are ueged for boundary-layer displacement thickuness and
boundary-layer momentum thickness, respectively,

x* distance along surface
y* ~ distance normal to surface
¥ time
u¥ component of felocity in x¥*-direction
W = E
uo*
v* component of velocity in y*-direction
v*!
Ve
b 3
o
¥ stream function for mean flow
p* density of gas
P* 'pressufe of gas
ABES temperature of gas
i laminar shear sgtress
ul* ordinary coefficient of viscosity of gas

¥ kinematic viscosity of gas (pl*/p%)
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thermal conductivity of gas

specific heat at constant volume
specific heat at constant pressure

gas constant per gram

ratio of specific heats (cp/cv); 1,405 for air
complex phase velocity of boundary-layer disturbance
wave length of boundary-layer disturbance

boundary-layer thickness

{ov]
boundary~layer displacement thickness (1 - pw)dy*
i Jo

o
boundary-layer momsntum thickness pw(l - w)dy*
O

wave numpber of boundary-layer disturbance (En/h*)

2n
A% /8
2n
A% fo
o i ¢
Reynolds number ~*::::“~')
“10 /
po* uo-)é a
*
Ulo
u_*

O

Mach number
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Bl,*
c Prandtl number Cp

K
1. PRELIMINARY CONCSIDERATION

Tn the first phase of this investigztion (reference &) the
gtability of the laminar boundary-layer flow of a gas is analyzed
by the methed of small perturbestions, which was already so suc-
cegsfully utilized for the gtudy of the stability of the laminar
flow of an incompressible fluid, (See reference 5.) By this
method a nonsteady gas flow is investigated in which all physical
quantities differ from their values in a given steady gas flow
by small perturbations that are functions of the time and the space
coordinates, This nonsteady flow must satisfy the complete gas-
dynamic equations of motion and the same boundary conditions as
the given steady flow. The question 1s whether the nonsteady flow
demps to the steady flow, oscillates about it, or diverges from it
with time - that is, whether the small perturbations are damped,
neutral, or self-excited disturbances in time, and thus whether
the given steady gas flow is stable or unstable. The analysis is
particularly concerned with the conditions for the existence of
neutral disturbances, which mark the transition from stable to
unstable flow and define the minimum critical Reynolds number,

In order to bring out some of the principal features of the
stability problem without becoming involved in hopeless mathe-
matical complications, the solid boundary is taken as two dimen-
glonal and of negligible curvature and the boundary-layer flow is
regarded as plane and essentially parallel; that is, the velocity
| component in the direction normal to the surface is negligible and
| the velocity component parallel to the surface is a function mainly
| of the distance normal to the surface. The small disturbances,
| which are also two dimensional, are analyzed into Fourier com-
| ponents, or normal modes, periodic in the direction of the free
; gtream; and the amplitude of each one of these partial oscillations
| 1s a function of the distance normal to the solid surface, that
|
|
|
|
!

— 3
is, uwt' = u* £(y) ololx ct)'

In the study of the stability of the laminar boundary layer,

‘ it will be seen that only the local properties of the "parallel®
flow are significant. To include the variation of the mean velocity
in the direction of the free stream or the velocity component normal



NACA TN No. 1360

to the solid boundary in the problem would lead only to higher order
terms in the differential equations governing the disturbances,
since both of these ractors are inversely proportional to the local
Reynolds number based on the boundary-layer thickness. (See,. for
example, reference 2.) DBy a careful analysis, Pretsch has shown
that even with a pressure gradient in the direction of the free
gtream the local mean-velocity distribution alone determines the
stability characteristics of the local boundary-layer flow at

large Reynolds numbers (reference Q). Such a statement applies
only to .the stability of the flow within the boundary layer. ZFor
the interaction between the boundary layer and a main “external
gupersonic flow, for cxample, it is obviously the variation in
boundary-layer thickness and mean velocity along the surface that
is significant. (Sec reference 10.)

The aforementioned considerations also lead quite naturally
to the study of individual partial oscillations of the

form £(y) ei“(X'Ct), for vhich the differential ecquations of

disturbance 4o not contain x and t oxplicitly., These partial
oscillations are ideally suited for the study of instability, for
in order to show that a flow is unstable it is unnecessary to
congider the most general possible disturbance; in fact, the
simplest will suffice. It is only necessary to show that a
particular disturbance satisfying the equations of motion and the
boundary conditions is self-excited or, in this case, that the
imaginary part of tle complex phase velocity c¢ is positive.

In reference 8 the differential equstions governing one
normal mode of the disturbances in the laminar boundary layer of
a gas were derived and studied very thoroughly. The complete set
of solutions of the disturbance equations was obtained and the
physical boundary conditions that thesé solutions satisfy were
investigated. It was found that the final relation between the
values of ¢, a, and R +that determines the possible neutral
disturbances (limits of stability) 1s of the same form in the
compresgible fluid as in the incomprebsible fluild, to a first
approximation., The basis for this result is the fact that for
Roynolds mubors of’ the order of those encountered in most acro-
dynamic problems, the temperature disturbances have only a negligible
offect on thoge particular velocity solutiong of the disturbance
equations that depend.primarily on the viscosity (viscous solu-
tions). To a first approximation, those viscous solutions there-
fore do not depend directly on the heat conductivity end are of
the same form as in the incomprossible fluid, except that they
involve the Roynolds number based on the kincmatic viscosity necar
the solid boundary (where the viscous forces arc important) rather
than in the free stream. In this first approximation, the second
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viscosity coefficient, which is a measure of the dependence of the

pressure on the rate of change of density, does not affect the sta- i,
bility of the laminar boundary layer. From these resvlis it was

inferred that at large Roynolds numbers the influence of the viscous

forces on the stablility is esgentially the same as in an incom-

presaible fluid, Thie inference is borne out by the results of the

present paper. :

" The influence of the inecritial forcee on the stability of. the
laminar boundary layer is reflected in the behavior of the asymp~
totic inviscid solutions of the disturbance equations, which are
independent of Reynolds number in first approximation. The results
obteined in reference 8 show that the bohavior of the inertial
forccs 18 dominated by the distribution of the product of the mean

density and mean vorticity p‘?—f acrogs the boundery layer. (The

v

dw bae
gradient of thlg quantity, or pa-y~> , vwhich plays the same role

a4~

as the gradient of the vorticity in the case of an incompressible
fluid, is = measure of the rate at which the x-momentum of the
thin layer of fluid near the critical layer (vhere w = c¢)
increases, or decrcases, because of the transport of momentum by
the disturbance.) In order to clarify the bohavior of the incrtial
forces, the limiting case of an inviscid fluid (R->®) is studied
in dotail in roference 8. The following general criterions are
obtained: (1) If the quantity i(pi—;) venishes for some value

2 1 i L ;
OF. WA - I—;~ then neutral and self-excited subsonic disturb-
'l e 3
. o) »
ances oxist and the inviscid compressible flow lg unstable.
_ L e s L : 2 s :
(2) If tho quantity —{p=—~) doecs not vanish for some value
dy \ dr
= 4 4 : z e
oft el IT/I..’ then all gubsonic disturbances of finite wave
o) ’ : o
- lengbh are damped and the invigcid compressible flow is stable.
(Outsido the boundary layer, the rolative velocity between the mean
flow end tho x-component of the phasec velocity of a subsonic dis-
turbance is less than the mean sonic velocity. Tho magnitude of
auch a diztwrbance dics ovt exponentially with distance from the i
solid surfaco.) (3) In gcneral, a disturbance gaine cnergy from

- v
2 o [.dw < T ¥
the mean flow if a—-(p(-j—;—) is positive at the critical layer .
g Y :

: VR
G f 0w
(whore w = c) and loses energy to thec moan flow if [.1:;( «-)] <O
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The general stability criterions for inviscid compressible
flow give some insight intc the effoct of the inertial forces on
the stability, but they cannot be taken over bodily to the real
carpressible fluid. Of course, if a flow is umstable in the
liniting case of an infinite Reynolds number, the flow is unstable
for a certdin finite range of Reynolds number. A compressible flow

het is stable when R-—®, however, is not necessarily stable
2t all finite Reynolds numbers vhen the effect of viscosity is
taken into account., One of the obJocts of the present paper is
to settle this ¢uestion.

On the basis of the stability criterions obtained in refer-
cnce &, some gencral statements were made concerning the effect of
thormal conditions at the solid boundary on the stability of laminar
boundery-layer flow. It is concluded from physical reasoning and

d [/ dw
a study of the equations of mcan motion that the quantity a_y ( 5:)

vanishes for some value of w >0 if [ = £ 0, that is, if

heat is added to the fluid through the solid surface or if the
T £ >y
surface 1s insulated, If (\§2> > 0 and is sufficiently large,
Yy
d

<

that ig, if heet is withdrawn from the fluld throuéh the solvd

Faw,
{p—— \ never vanishes.
A r
&y \ a4y /

Thus, when <§?) - 0, the laminar boundary-layer flow is desta-
<y
71

surface at a sufficient ratc, the gquantity

HA

bilized by the action of the inertial forces but stabilized
through the increase of kinematic viscoslity near the solid surface..

N : :
VWhen (é- > 0, ths reverse is true. The question of which of
X
3
these effeocte is predominant can be answered only by further study
of the stability pro“Jom in-a real compresgible fluid,

In the puesent pupor thls invest:gat‘on ls continued along the
following lines: :

(l A study is m‘de )f ‘how the ceneraT crvterlﬁns for insta-
bility in an inviscid compressible fluld re modified by. the
nt“oducbvon of a smull v130031ty (SUa011;n* at very large
Reynolds ﬁumbers) :
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(2) The conditions for the existence of neutral disturb-
ances at large Reynolds number are examined (study of asymp-
totic form of relation between eigen-values of ¢, a«, and R).

(3) A relatively simple expression for the approximate
value of the minimum critical Reynolds number is derived,
this expression Involves the local dlstribution of mean
velocity and mean temperature across the boundary layer. This
approximation will serve as a criterion from which the effect
of the free-stream Mach number and thermal conditions at the
80lid surface on the stability of laminar boundary-layer flow
is readily evaluated. The quostion of the relative influence

of the kinematic viscosity and the distribution of p%% on
stability would then be settled.

(4) The energy balance for small disturbances in the roal
compressible fluld 1s considered in an attempt to clarify the
physical basgls for the instability of laminar gas flows.

(5) In order to supplement the investigations outlined
in the four preceding paragraphs, dctalled calculations are
made of the limits of stability, or the curve of a against R
for the neutral disturbances for several representative cases
of insulated and noninsulated surfaces. The results of the
calculations are presented in figures 1 to 8 and tables I
to TV. The method of computation of the stability limits 1s
briefly outlined in reference 8, although the calculations
were not carried out in that paper.

In the present investigation the work of Heisenberg (refer-
ence 1) and Lin (reference 5) on the stability of a real incom-
preseible fluid is naturally an indispensable guide. In fact, the
methods utilized in the present study are analogous to those
developed for an incompressible fluid.

The present paper is concerned only with the subsonic disturb-
ances. The amplitude of the subsonic disturbance dies out rapidly
with distance from the solid boundary. In other words, the neutral
gubsonic disturbance is an "eigen-oscillation" confined mainly to
the boundary layer and exists only for discrete eigen-values of c,
o, and R that determine the limits of stability of laminar
boundary-layer flow. Disturbances classified in reference 8 as
neutral "supersonic," that is, disturbances such that the relative
velocity between the x-component of the phase velocity of such a
disturbance and the free-stream velocity is greater than the local
mean sound speed in the free stream, are actually progressive sound

10
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waves that impinge obliquely on the boundary layer and are reflected
with change of amplitude, For disturbances of this type the wave
length and phase velocity are obviously completely arbitrary (eigen-
values are continuous), and these disturbances have no significance
for boundary-layer stability.

When the free-stream velocity is supersonic (Mo 2 l) 4 JH0e
subsonic boundary-layer dlgturbances must satisfy the requirement

e — i
G K c® Sg* or ol - ol {fom, My < 1, c> Q). Now,
- 0
by analogy with the case of an incompressible fluld it is to be
expected that for values of ¢ greater than some critical value of ¢ )

gay, all subeonic disturbances are damped. Thus, when My, > 1,

there is the possibility that for certain mean velocity-temperature
distributions across the boundary layer, neutral or self-excited
disturbances satlefying the differential equations of motion, the
i1

boundary conditions,and,also, the physical requirement that ¢ > 1- ==
0
cannot be found. In that event, the laminar boundary flow is stable
at all Reynolds numbers. This interesting possibility is investi-
gated in the present paper.

2. CALCULATTON OF THE LIMITS OF STABILITY OF THE LAMINAR

BOUNDARY LAYER IN A VISCOUS COIDUCTIVE GAS

In order that the complete system of solubions of the differ-
ential equations for the propagation of smell disturbances in the
laminer boundary layer shall satisfy the physical boundary condi-
vions, the phase velocity must depond on the wave length, the
Reynolds mumber, and the Mach number in a manner that is determipod
entirely by the local distribution of mean velocity and mean tempera-
ture across the boundary layer. In other words, the only possible
gubsonic disturbances in the laminar boundary layer are those for
which there existg a definite relation of the form (referonce 8)

gla c(c., R, 'MO?,) 12.1)

Since @, R, and Moe are real quantities, the relation (2.1) is
equivalent to the two relations

1k
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2
Cp = cr(u,, R, M, ) (2.1a)

c

;= o B, ME) " (2.1b)

The curve ci(c,, : 5 Moe) =0 jor o= a,(R, MOED for the neutral

disturbances gives the limits of stability of the laminar boundary
layer at a given value of the Mach number. TFrom this cwurve can be
determined the value of the Reynolds number below which disturbances
of all wave lengths are damped and above which self-excited disturb-
ances of ceirtain wave lengths appear in a given laminar boundary-
layer flow.

In reference 2, it is shown that the relation (2,1) between
the phase velocity and the wave length takes the followimg form:

‘_E(a,, c, IVOE) = F(z) (2.2)

In equation (2.2), ¥(z) 15 the Tietjens function (reference 11)
defined by the relation

-z PP
L[; §3/2H1/3(l){-§-(1§)3/2}d§ |

N2

zj /5, ), {%(1 /2l at

J

F(Z) = 1 +

(2.3)

where

cRv,,' 1/3 ;

¢ A

and the quantity Hl /3(1) is the Hankel function of the first kind
of order 1/3. The prime denotes differentiation with respect
to y. The function E (cr,, g, MOQ), vhich depends only on the
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asymptotic inviscid solutions ¢; and @5 (section b of refer-
ence 8) and not on the Reynolds number, is defined as follows:

Py Pt + BPyp

Pop  Pop' + BPoo

(yl - yc) E(&, e, Mog): . L)
Tl¢ll' + M, wl'c@ll
Dot + BPyp
Ty - M2 |
TyPpy! + M2y ey i
Pap™ + FPoo
Tl - 10202
where
‘:m—‘mm -
B = @vl - Moe(l - 0)2
Pyq = cpi(yJ) (\ (2.6)
O PV - -

and. yl and ¥, are the coordinates of the solid surface and the
"edge" of the boundary layer, respectively.

The TietJjens function was carefully recalculated in reference 8,

and the real and imaginary parts of the function &(2) = ~————x
z

are plotted in figure 9. (The function &(z) is found to be more
suitabl? than F(z) for the actual calculation of the stability
limits.

The inviscid solutions Py and @y - vere obtained as power

series in o as follows (section 6 of refersnce 8):

23
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0
va(y; cc2, C, MOQ) = {w - ¢) Z_ agnhgn(y; c, MO")) our)

n=0

voo
~<92(.:)'.= &, g, Moe) = (w - ¢) Z a,enken+l e.c, MOE) (2.8)
=0

where for n 21

2
i\ (w - o)
ny (73 ¢, M2)= —Moe} ay hono(vs o M2)dy
‘y (W- ‘)2 xr z
3, 1 J1
(2.9)
and
R = 1.0
o
and for n _Z_ 1
py : [ o
i 2 Ve )=
k2n+1(Y3 c,M02)= — .M Ty kgn_l(y; c, Moa)dy (2.10)
gy ('W o C)2 . g V-, L )

and

w - c)? e

W
2 T 21 a-
kl(y; e, Mo = [ - M ]dj
vy

The lower limit in the integrels 1s taken at the surface merely
for convenience. When y >y, the path of integration must be

taken below the point y = Ve in the complex y-plane. The power

series in o° are then uniformly convergent for any finite value
of @,
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At the swurface, the inviscid solutions are readily evaluated

s ke

¥l = 1

P S,
Ppy = O

A 2 o
l____ - &= Al
Vo1 = C(?l e )

J

At the "edge" of the boundary layer, the inviscid solutions are

most conveniently eixpressed as follows:

Oi .
- c) }__ agnﬁené, MOQ)

iy = (1
D=0
3
L o 2
Voo = (1 - @) /. © T)Kaml c, Mo)
n=0
(e]
1-M21 . o)2
q)"‘?::(l-C)[ - T
Ji2 (l o 0)2 7 Susd

7
L

: ) [i - M2(1 - )2
Ppnt’ = (1 - .
22 5 . 0)2

: r\«’]s

o]
(@]

on o
o ﬂgn_l(}, M, )

2 2
<Ky (65 M )

5
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|

where "

2 ; = B

o ©r 157 = PenFs © 1) : |

i

|

B = 1.0 |

\

[

" o T 2 |

a1\ Mo ) 5 1%%1("2’ B o ) |

|

|

|

e~ -—\_l |

a fleME( - o) o St s) |

H c M): h '(yo; c,M) |
Zn=iing’ — 9 2N 2 o)

- (l o 0)2 o {‘

|

!

|

o ‘

o B M.2(1 - ¢)?] e 2) |

’ B Xy e |

Ken(cf *’Io) A Eon1 "W & Mo |

A ) LR |

‘ |

|

B il ¥ |

|
{
|
With the aid of equations (2.11), the expression for E(CL_., Sy Moe> }
can be rewritten as follows: 1
|
|
!

Wy '(Ppp" + BPop |
E(oc, c, MOE) = : ( ) (2.14) ’
-1+ (c) i |

'”’1'@’22' + Bogp) + ; (‘912' + B91p)

|

|

|

|

where ‘J
|

; wl’ Fa =y ‘ b |
kel = M.L.Z._-——z ] (2.15) |

The relation (2.2) between the phase velocity and the wave length «
is brought into a form more suitable for the calculation of the
stability limits by making use of the fact that for real values

!
\
of ¢ the imaginary part of E@,; c, Moe) is contributed largely /‘
|

16 - |
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by the integral Ki(;} MOQ). (The procedure “o be Tollowed is

identical with that used by Lin in the limiting case of
the incompressible fluid (reference 5, part ITI).) Define the
function ®(z) by the relation

alz) = - 2,056
3(z) TR .’ ( )
Then,
% (u + iv)
5(2) = e = {1+ 2) 2.17)
3(=) s Sl PR ME - 17) (
wierse
wy'e Mg + Fop
n+ iv = 1 + - (2.18)
L Nz * By
Equation (2.17) is equivalent to the two real relations
£l 4 A)w
\1\.(2) =
1 (1 + aw)@ 4+ A%E (2.19)
i % BT
Sl Pkl e (2.20)
DL N ol o)
(1 +2)2 4+ 2592

—~

The real and imaginary parts of ¢(z) are plotted azainst z in
figure 9.

The dominant term in the imaginary part of the right-hand side
of equation (2.18), which involves Ky (c‘, Mog), ig extracted by means
of straightforwerd algebreic transformetions. Reletion (2.18) becomes

7



é e e 0
\[1-Mo(1-c) é—za Zor?m'll\l

2n+]
-5 ) -3 )
n=2 (1 =e)2

| .

|

|

\

| w tc Ty 1 - o°H 2 Yon

‘ g 2 E 1

] u+ iv= G'.'lJr ,D ( > ( (2.21)
: Tl 'Wl (¢ 7 oo y Vl = M 2(1 2 C m
|

! v '

\

| 5

|

|

where
=
1\T2 = H2 3
arad Fors neLs 3 =
= i 0
@ ; HS 228) :
Ny, =KH 4 - K, (2.222 o
N
S
and
M o= HH o - Hy (2.22b)

When c¢ 18 real,

v &

I.P. K
Ty

for those values of a and c +that occur in the stability calculations,. (This approximation is

It is found that

Justified later in appendix A.) The imaginary part of the integral X; (c, My ) is readily computed.
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Rl
e y ;‘\\
LE. X (o, M2) = - x —— F’ (l‘ ‘] |
(v l); drr V_I' e

A ','-W b T '\
3 C c
=-n..-..._2(~..-_?..) (2.23)
A »
' (WC ) \wc TC

Now A(c) is generally quite emall, tharefore &;(z) can be
taken equal to v(c) ang ®..(z) can be takom equal to u as a
zeroth approximation, From equations (2.19) &nd (2.20), when

& C
is real
(0) ¢ (0) we e ', /wc" Bt
R L N T
Tl \wc) \':":, TC/
ol 5’1.(0)(2(0}) (2.25)

By equation (2.24). z(O) is related to c¢ with the eid of figure 9;

and by equation (2.25), u(o) is alsc related to c.

The cuantity eR
is connected with o by weans of the identity

' Uy zvwy ¥ 3 :
R = = (2.,26)
v '(1 + M3\ e /

and. the corresponding values of a

ére obtalned from equation (2.21)
(slightly trensformed) by a method o

T succeasive approximations,

19
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Thus,
- YA P :
H2> (l P l-g_;"j % JI\‘En i mlﬁr onl
o= : (221}
1-M2(1-0¢)2 v
(u-3) 2- g A V. T C)QC <aHl 4__1@2” ‘MgM)
where

t
"Wl C

%y 4 A G TR
L oz oo R.P.Q{ ---~-)
T 4

(The gymbols Mk ang. 1\‘1\: now designate tho real perts of tne
integrals M, =nd Nk-)= The iteration process is begun by taking
a suitable initiel value of .o on the ri;hu-hAaé gide of equa-
tion (2.27). The methods adopted. for compubting these integrsls

when the mean velocity-tempersture profile is lmown are described
in appendixes A to C.

For greater accuracy, the values of z eand u for a given

real value of ¢ are computed by successzive approximations. From
equations (2.,19) and (2.20),

o, (PG | G n i 4
(l + Ku(n))a £ 2B
u(n+l) i @r(nH') (Z(n-.Ll)) (l + )»u(n)) + A2 § e s

(1 +2) i’:l- + M‘.(n)) 3o Kt

The value of v 1is always approximated. by relation (2.24%),

Curves of wave mmber against Reynolds mumber for the noutral
disturbance have been calculated for 10 reoresentative cases
(fig. 4), that is, insulated swrface at Mach mumbers of 0, 050,
0.70, 0.90, 1,10, &nd 1.30 and heat transfor across the solid. surface

20
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at a Mach number of 0.70 with values of the ratio of surface tempera-
ture to free-stream temperature T; of 0.70, 0.80, 0.90, and 1.25.
(It 1s found more desirable %o base the nondimensional wave number and
the Reynolds number on the momentum thickness 0, vhich is a direct
measure of the skin friction, rather than on the boundary-layer thick-
ness &, which is somewhat indefinite.) '

In figure 5 the minimum critical Reymolds number Recr o' lhor the

min
stability limit, is plotted against Mach number for the insulated
surface; and in figure 6(a) B, ¥, 1s plotted against T, for

Cmin

the cooled or heated surface at a Mach number of 0.70. The marked
gtabilizing influence of & withdrawal of heat from the fluid is
clearly evident, Discussion of the physical significance of these
numerical results is reserved until after general criterions for
the stability of the laminar boundary layer have been obtained,

3. DESTABILIZING INFLUENCE OF VISCOSTTY AT' VERY LARCGE REYNOLDS
NUMBERS; EXTENSION OF HETSENBERG'S CRITTRION

TO THR COMPRESSIBLE FLUID

The numerical calculation of the limits of stability for several
particular cascs gives some indication of the effects of froe-stream
Mach number and thermsl conditions «t the solid surface on the sta-
bility of the laminar bound=ry layer. It would be very desirable,
however, to establish general criterions for laminar ingtability.

For the incompressible fluid, Heisenberg has shown thet the influonce
of viscosity is generally destabilizing at vory large Reynolds
numbers (reference 1), His oriterion can _be stated as follows: If

& neutral disturbance of nonvanishing phase vslocity and finite wave
length exists in an inviscid fluid (R—>w) for a given mean velocity
distribution, a disturbance of thc same wave length is mstable, or
self-cxcited, in the roasl fluid at very large (but finite) Reynolds
numbers.,

The same conclusion can be drawn from Prandtl’s discussion of
the encrgy belance for small disturbences in the laminar boundary
layer (reforence 12). '

Helsenberg's criterion is established for subsonic Jisturbances
in the laminar boundary layer of a compressible fluid by an argument
quite similar to thdt which he gave origzinally for the incompressible
fluid and which was later supplemented by Lin (reforence 5, part IIT)

21
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At very large Reynolds numbers, the relation (2.1) between the phase

vplocity and the wave length can be considerably simplified, When M

ig finite and c¢ does not vanish, |z|>> 1 at large Reynolds
numbers. The asymptotic behavior of the Tietjens function F(z)
as |z|—~w is given by (reference 5, part I)

. [
(1 - 9c) ¥(z) = (3.1)
R
Qe C
P,
and the relation (2.1) beccmss
LN T 2 W 2
""c) T‘@, &y MO)_El(a,, c, M ) » (8.2)
R
Vo& — G
Ve
where E(cr,, & Moe) is given by equation (2.14).
Suppose that a neutral disturbance of nonvanishing wave
2 il
number o = Xf. and phase velocity Baw > hiom o exigts in the
s 54 -

| 0 3
inviscid fluid (limiting cess of an infinite Reynolds number). The
phase velocity c¢  is a continuous function of - R, and for a dis-

turbance of given wave number ay the value of c at very large

Reynolds numbers will differ from Cy by a small increment Ac.

Both sides of equation (3.2) can be developsd in a T:.Jylor's series
in AOc. and an expression for Ac can be obtained as follows:

JE
Ela,cM> hl(sy ME> < Ae + .
OC

= —— E. + O(Ac)] 5.3
R .



NACA TN No. 1360

The boundary condition

@22'(%, Cq» Moe) + Bg®op @s, Cqo Ivfoz) =0 (3.1)

must be satisfied for the inviscid neutral disturbance, and the
function El(ocs, Cq: M02> vanishes (equation 2,1%)., Recognizing
that

reduces equation (3.3) for Ac to the form

i /b
e

(3.5)

P

R OB )
- — C o rr—
V.. 8\oc
a8 c

Ne =
Vd’s
From equation (2.14),

d
c @ :S.(; EPQQ'(“sf Ly M02)+ﬁq>22 (a,s, i MOQ)]}0=CB

aE) .
l S (
- = - —— 3.6)
dc iy

CgrQyg

g’ %

"1 cP;L’a'(c"s’ L Mog)“L BgP12 (“’s’ g M02>

23



By equations (2.12) and the boundary conchtion (3.4), the quant1ty< > is evaluated as follows:

6E1>
3 o0

8’ g

= 2-M *(1-
CSE (l-cs)?mzlasan-ﬁ%_l,(’c 2) (*I 2(1 Cs} L:L ‘Enx(,cs’lMoQ)' VLM 2(1 ; )2 (l‘ g "{‘Zn\s’M )

TI e —

Ty \m
2 on+l, B 2 )
(-s0fD_o0™ paloati?) + Y1k, <lc>§ T Hon (ot
==
/
(347}
where the primes now denote differentiation with respect to c¢. TFor small values of c¢g and a, the
OB
quantity - ( ;> is given approximately by the relation
c
“Cqs 0
g’

RN &5t B8 Bo1 2 6y)° 1
<.§;.> 2, Ts . L) + K (o M,2) (3.8)
Cgs gy 1 cx.s(l - 05)3 f - Moe(l & cs)2

09T *ON NI YOVN
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and the expression for Ac is

ag \1 - Moe(l - cs)e eﬂi/a
2

s ek Mo‘(l - cg) g Jl . Mog(l § Cs)ﬁ Kl'(;s’ Mbe)

G-y

Evalvation of the integral K; (c ;s M 02) vields the following result:

(3.9)

T 2.2 [a /v\
3k : ,
K, (c, M 2) A P T ety a0 {350 & i) OLEL. (5 0)
i W' (e P LR /L
( c i g
. a w'\1 .
Since the quantity 55' 5-?J vanishes (reference 8), differ-

|
W=C \
\

8
entiation of equation (3.10) gives

: 4 2 1
Al d 15 d . /wt
Kl‘(cs, M(f): - > f e . 3 L(—)] L (.'Ln B izt)+ 0(1)
| § < S
w, 'og o v, ) Ldy \T 'Vbcg/ﬁ.c

(3.11)

Thus, I‘Il’(cs, MO?‘) is approzimately real and positive for small

1
values of c . With ¢, > 1 - 7 I.P. Ac mwet also be positive

(equation (3.9)); therefore, a subsonic disturbance of wave
length hs % 0, which is neutral in the inviscid compressible

fluid, is self-excited in the real compressible Lfluid at very large
(but finite) Reynolds numbers.

25
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Tn referonce 8, it was proved that a noutral subsonic boundary-
layer disturbance of nonvanishing phase voélocity and finite wave
lc,ngth exists in en inviscid compressible fluid only i{ the quan-

tity —-(—-— vanishes for some value of w> 1 - i]-'-— T th:w
(o]

condition is satisfied, then self-excited subsonic disturhances
also exist in the flujd and the laminar boundary leyer is unstable
in the limiting cass of an infinite Reynolds number. By the exten~
gion of Huisenberg 8 criterion to the canrorewlble fluid, it cen be
gseen that, far from stabilizing the flow, the small viscosity in
the real “Juld has, on the contrary, a deatabilizing influence at
very large Roynolds numbers. Thus, any laminar boundary-layoer flow

d /dw
in a viscous conductive gas for which the quantity g..y <pd~; vanishes

1l
for some value of w> 1 - ﬁ— ig unstedlo at sufficiently high (vut
.";)

finite) Reynolds numbers.

1
Unless the condition i—«édy} = 0 for some value of w> 1 - —

My
is satisfied. all subsonic disturbances of Tinite weve length are
damped in the 1imi ting case of infinite Reynolds mumber, and the
inviscid flow is stable. Since the effoect of ,15cos*ty is des-
tabilizing at very large Reynolds numbers, however, a laminar
boundary flow that is steble in the limit of ini‘initc Reynolds
number is not necessarlly stable at large Reynolds numbers when the
viscosity of the fluid is considered (orC’ g, M1).) In fact,
for the incompressible fluid, Lin has sho‘m. that every laminar
boundary-layor flow is un"tdbln, at sufficiontly high Reynolds

N

numbers, vhothor or not the vorticity gradient — vanishes (refer-
clyz
ence 5, part ITI). In order to settle thia guestion for the com-

progeible fluld in goneral terms, the relation (2.1) between the
complex phase velocity and the wave length at large Reynolds numbers

a h?
muet now be studied for flows in vhich the quantity ds(%f) docs

. 3
not vanish for any value of w > 1 - —,

MO

26
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L, STABILITY OF LAMIV/AR BOUNDARY LAYFR AT LARGE REYNOLDS INNUMBERS

The neutral subsonic disturbance marks & possible "boundary"
between the damped and the self-excited disturbance, that is,
between stable and unstable flow, Thus, the general conditions
under which self-excited disturbances exist in the laminar bowndary
layer at large Reynolds numbers can be detexrmined from a study of
the behavior of the curve of « against R for the neutral

disturbances. VWhen the mean free-stream velocity 1s subsonic (MO< l),

the physical situation for the subsonic disturbances at large
Reynolds numbers is quite similar to the analogous situation for
the incompressible fluid, The curve of a against R for the
neutral disturbznces can be expected to have two distinct asymptotic
branches that enclose a region of instability in the o,R-plane,
regardless of the local distribution of mean velocity and mean
temperature across the boundary layor. When the mean free-stream
velocity is supersonic (Mo > l) the situation is somewhat d4if-

ferent; under certain conditions (soon to be d.cfinc-\oi) a neutral

: S
or a self-cxclted subsonic disturbance c >l - = cannot exlst
o,
at any value of the Reynolds numbsr. For this reason, it is more
convenlent to study the case of subsonic and supersonic free-stream
velocity seperately.

a. Subsonic Free-Stream Velocity (MO < l)

'The asymptotic behavior at largs Reynolds numbers of the curve
of -0 against R for the neuwtral Aisturbances is determined by

~the relations (2.19) to (2.22) between «, R, and ¢ for real

values of c. For emall values of o and c, ‘these relations
are glven approximately by

i - e T 2 a fu?t | g
v(c) = 6,(z) = - — 5 [—-—/-*} (%.2)
) Tl (WC')B GN\T 7 e
u =9 (z) (4.2)
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1.76
7 3
=cb z o
R = i R f L.
4y (c) (Wl, (k.3)
Wl'C 1 5
& = ~{1 s M%1 - c) (&.%)
Thiig ¢

As R—3w, either z -—» oo or 2z rcmains finite whlle
both o and c¢ approach O. These two possibilities correspond
to two asympbotic branches of the curve of & against 12

Loysr branch.- If z remaing finite as R-~» oo, then c-0;
and by equation (k4.1), @i(z)»—)-o. Therefore, 2-—>»2.29 while

n—>32,29 (fig. 9). From equations (4.3) end (L.4), along the
lower branch of the curve of o« against R for neutral stability

. 1.2} T (11-.5)
; ,2u AR
Tl o
. Tl
c = 2.29 o (k.5)
2
Wl' l - MO

end a—y 0 at large Reynolds mumbers (fig. &(1)).

Upper branch.- Along the upper branch of the curve of «
against R for neutral stability, 2z —>oe and

6 2T e a ! '
®4(2z) = - Tl : 3 [—‘— G—)] e o iz v H3 (%.7)
B PR -
' % (wC ) o W=C Vsz \’2& g—-— c3
(¢}
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d 14
while u-=31.0 (fig., 9 and cquation (4.2)). If the quantity a-—(%—)
J

7

does not vanish for any value of w > 0, then by eguation (4.7)
¢ must approach zero ag z —>®, Along this branch,

i) N 5/2
R (') (1 - n2) A (4.8)
QnQTls el d /w ]?2 u,6
?y f’ i '
T \ X % & A
CHs 1 G.- : 4 (4.9)

v 2
wl' s Mo

and a—>»0 at large Reynolds numbers (fig. 4(1)).

& B
On the other hand, if e g— vanishgs for some value
J
of w= Cq >0, then by equation LSt ke —>Ccgy and o ==y ag

as both z and R approach . Now,

[d. w'\] d2 .wy\'i o cs é_?’Cl\ d.2 Cp) Wl" & ,02 . 082
o 3 33;5(;3_ R ¥ - Wpnd' | R e (ool 2 g T el
b /“’l e ; ay> / 1 ay” W, ! 2(w1 ') i

i i
2 o ‘
If |~ »—-—) does not vanish (see appendix D), then by equa-
dy_c

tions (L4.4) and (%.7), along the upper branch of the curve of a
against R for the neutral disturbances,

29

7

(4.10)



WACA TN No. 1360

(wl')B 1 1 1
. \ = (4.11)
0glp. 0.2% [Ta2 S " (C e )2
g X I
!
Wl'c
ol ---\[1 Bl o (4.12)
3 o

and c-—>c £0, a-—ra 4 0 at large Reynolds numbers.(figs. 4(k)
2 N\

and 4(2)). If W vanishes, the relation (4.11) is replaced
dy® \T
J -y

by

2(sn 1Y 1 3 !
k ﬂleo.ehr ] Ei C—V-)] 2 4D (Ce ¢ CSQ)E
ar>\r /],

which reduces to the relation obtalned by Lin in the limiting case
of an incompressible fluid when M —>0, the solid boundary is

insulated, and ' = O for some value of w= ¢, >0. (See equa-
tion (12.22) of reference 5, part III.)

(4.13)

1

a
If the quantity d?(%) venishes at the solid boundary (that

is, for w=0), it can be shown from the equations of motion

2
a o

(appendix D) that ——é<l> is always positive - except in the
dy- \T /4y

limiting case of an incompressible fluid. For small values of y,

d 1 \,.'
the quantities 21; (;—) and -%—- are both positive and increasing.
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i $
For large values of y, howsver, %’---ao, vhysically; there-

w! 4 a [/t
fore -4 must have a maximum, or —{ — )} =.0 for some value

of w >0, and this case is no different from the general case

treated in the preceding paragraph. In the limiting case of an incom-
: n

o

By c
pressible fluid, when W' vanishes at the surface, wc"= W, 7 Bl
Q(W_! 1)2

gince wl'" always vanishes in this case. From equation (k.8)

the relation between o and R along the upper branch of the
neutral stablility curve is therefore

15 ‘
: zQ(wl') 7 i il )

- (wliv)é 0

J

which is identical with equation (12,19) in reference 5, part IIIL.

& !
Thus, regardless of the behavior of the quantity a—;( g—) -

regarclesgs of the local distribution of mean velocity and mean
temperature across the boundary layer - when M, <« 1, the curve
of a against R for the neutral disturbances has two distinct
branches at large Reynolds numbers. From physical considerations,
all subsonic disturbances must be damped when the wave length is
sufficiently small (@ large) or the Reyuolds nwmber is sufficiently
low. Consequently, the two branches of the curve of « against R
for the neutral disturbances must Jjoin eventuazlly, and the region
botween them in the -«,R-plane is a region of instability; that is,
at & given value of the Reynolds number, subsonic disturbances with
wave lengths lying between two critical valuss )\.3 and >»2 (or,L
and “2) are self-excited. Thus, when M, < 1, any laminar
boundary-layer flow in a viscous conductive gas is unstable at
sufficiently high (but finite) Reynolds numbors.

The lower branch of the curve of a agzinst R for the neutral
L=

T t
disturbances is virtually wnaffected by tho dlstribution of —d- b
dy \T

across the boundary layer, but for the upper branch the behavior of
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[ a [w' X a v
the quantity -—(-—) 1s decisive., When —|-——) =0 for some
dy \T dy \T
value of = % = o 0, the neutral subsonlic disturbance passes
continuously into the characteristic inviscid disturbance c=cg
and @ = 0y a8 R—3cw, Thie result is in accordance with the
results obtained in reference 9 for the inviscid compressible fluid

and is in agreement with Heisenberg's criterion. In addition,

2x
all subsonic disturbances of finite wave length A > Ay = —— (and

a,

s
nonvanishing phase velocity 0 < c. < cg) are gself-excited in the
limiting case of infinite Reynolds number. On the other hand,

Wl
when a—y— 'J.T) does not vanish for any value of w> O, then

except for the "singular" neutral disturbance of zero phase velocity
and infinite wave length (c = 0 and a = O) , all disturbances

are damped in the inviscid compressible fluid. This singular
neutral disturbance can be regarded as the limiting case of the

neutral subsonic disturbance in a real compressible fluid as Re—y .,

\
b. Supersonic Free-Stream Velocity <Mo > l)
When the velocity of the free streean ig supsrsonic, the sub-
sonic boundary-layer disturbances must satisfy not only the differ-
ential equations and the boundary conditions of the problem butb

3
also the physical requirement that Cy > 1 - —., The asymptotic
_ 5 ;
behavior at large Reynolds numbers of the curve of @ against R
for the neutral subsonic disburbances is determincd by the approxi-
mate relations (4.1) to (4.4), with the additional rostriction
that ¢ S 1 --;'T. As Cc—31 - ‘Iﬁ—’ a—=30 by equation (L4.4);
g - 0
therefore R—>® by cquation (4.3). The corresponding value (or
values) of z is determined by equation (4.1) es follows:

r—-l
U

:]-, .
~1TW’ e
(i)
Q.(z):v(c):vé-l\ an EZ. g
E N Tl

)
=)= - (4.3
M =3 dr \7T )
O/ £ i el : w=Cc=1l~- -]2-
MO
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Wow from physical consideraticns, <T> < 0 for large

values of ¥y, Therefore, if —a;(«) 0 (changes sign) for some

value of w = e —]-'—, then, in general, r—— lq—--: > 10,
Mo Ly B
wl--—~
M
2N : o}
and ¢4(z) 1 €0 (squation (4.15)). From figure 9, it can be
“Cczl-—
M,
seen that in this case there is only one value of suy
corresponding to the value of ®; (z) given by equa ulo.ﬂ. %1; ¢5)

From equations (4.2) 4o (k.4), along the lower branch of the curve
of o ageinst R for the neutral distwbances,

Rz it (4.16)
h o
| )3
G‘ M
0/
1] 1 k i
iy M, / Vs, / i
o - e - “ i (b.17)
Tlul v o

3 ,
and c—»1 - = at large Reynolds numbers (fig. L4(k)). The upper

Mo ) .
branch of the curve in this case is given by eqv.atlons {4 ll)

E'L_<

and (4.12), or by equations (%.13) and (4.12) if

. e 3.1 l
vanishes, with c—-—c, > 1 - —

Cqy and >0, # 0.
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' I
ik o b vanishes for w =1 - —, then z-—»c ag R—3®
dy \T M,
along the upper branch of the curve of « against R for the
wy! '
neutral disturbances, and @i(z)_—;) —-——i—-—-— Now a-——=>0
)
VE(:,-—-—C3
1 Ve
as c—>1 - T in this case also (equation (4.17) with W, = 1.0)
o
go that
12 2
Q(Wl') M, 1
R = : (L.18)

ils
o ! a2 Lot 2 P;
n"‘Tlu'gL e r-..a'_._ (L‘.l) ] g
M 2\
0 1’ dy lf

Aiong the lower branch of the curve of « against R at large
Reynolds numbers, @, R, and ¢ are connected by equations (i&.16)
and (4.17), with z, = 2,29 and u, = 2.29. In spite of the fact

d v il
that —=={—}=0 for w= 1l - =, a neutral sonic disturbance
4 dy \T M,

1
(c = L = ﬁ-‘> of finite wave length does not exist in the inviscid
o]

(o2}

fluid unless Kl(c) = i Mog dy 1s positive. (See
o L{w - c)® '

gsection 10 of reference 8.) Calculation shows that Kl(c) is almost

always negative (equation (3.11)); therefore, in general, the sonic
disturbance of infinite wave length (a = 0) with constant phase

across the boundary layer exists only in the inviscid fluid (R—> ).

d fu!
It -é; (-T—-\ does not vanish for any value of w> 1 - -l—, it

/ _ M,
'
is certain that [—d:— (—Y—)] < 0 and by equation (4.1%)
dy \E 1
g w=C=ls —
o)

3L
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®i<z) 1 >0. When v ; <0.580 (approx.), there are two
“C=laie- -
o] : Mo v '
values of z (z2 and  zy, say, with zy > Zp corresponding to

the value of &;(z) glven by eguation (4.15). (See fig. 9.) Along

the two asymptotic branches of the curve of a against R for* the
neutral disturbances, o, R, and c¢ are connected by relations

of the form of equations (4.16) and (L4.17), with 2z and u vreplaced
by z, eand wu,, respectively, along the lower branch and by z3

and u3, respectively, along the upper branch, At a given v&lue of
the Mach number, the value of v 1 is controlled by the thermsl condi-
e
M0
tions at the solid surface. (See szection 6.) Wheon these conditions are
such that v | = 0.580, then 2. = s and the two ssymptotic branches
1=
MO
of the curve of o against R for the neutral disturbances coin-
cide. When v 2.0.580 (approx.), it is impossible for a
1t
M,

neutral or a self-excited subsonic disburbance to exist in the
lamingr boundary layer of a viscous conductive gas at any value of
the Reynolde number. In other words, if v 2.0.580 (approx.),

L=

M,

the laminar boundary layer is gtable at all values of the Reynolds
number. (Of course, in any given cage, the critical conditions
beyond which only damped subsonic disturbances exist can be cal-
culated more accurately from the relations (2.28) and (2.29).
See section 5 on minimm critical Reynolds number.)

The preceding conclusion can also be deduced, at leest qualita-
tively, from the results of & study of the enérgy balance for a
neutrel subsonic disturbance in the laminar boundary layer. A
neutral subsonic disturbance can exist only when the destabilizing
effect of viscosity near the solld surface, the damping offect of
viscosity in the fluid, and *the encrgy transfer between mean flow
and disturbance in the vicinity of the inner "critical layer" all
balance out to give a zero (average) net ratc of change of the
energy of the disturbance. (See Schlichting's discussion for
incompressible fluid in referecnce %.) In reference 8 it is shown
that the sign and magnitude of the phase shift in u*' through
the inner "critical layer" at w= ¢ is determinod by the sign
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. 5 ! e
and magnitude of the quantity %5(395] . ~The corresponding .
W=C 3

apparent shear stress e -p* uktyxt  yhich is zero for w ¢ ¢ in the

inviscid 'compressible fluid, is given by the following expresslon

for w>c (reference 3).

' : ' T 2 ., 'r;’ . -
rp = RGP e T [ ...] - (4.29)
' 2 (W ’)3 {ay \T /j
. w=C
1
If the quantity {%—- (-;—J-)] is negative, the mean flow absorbs
: oy = :
[ fw"\ :
energy from the disturbance; if EY- (F)] is positive, energy
We=C

passes from the mean flow to the disburbance, In the real com-
preossible fluid, the thickness of the inner critical layer in which

1L
the viscous forces are important is of the order of -——————-—-, 2nd
B3
57 :
. vc)
the phase shift in u*' is acbually brought aboubt by the effects

div

of viscous diffusion (of the guantity p— ) through this layer.
: ay

As showvn by Prandtl (reference 12), the destabilizing effect
of viscosity near the solid swrface is to shift the phase of the
"frictional™ component up ¥!  of the disturbance velocity against

the phase of the "frictionless" or "inviscid" component 1, *'

v
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reference 8, that for large values of oR the "frictional™

components ofazhe disturbance also satisfy the cont«nulty rela-
\: R 1

tion ~e—— e
dy*

sponding apparent shear gtress’ T1* = -pl* uxfy*' ig given by the

='0 in the compressible fluid.) The corre-

expression

b (557)° 2 CEY*' e (1.20)

n_* R
A Ll —
b
But from equations (2.11)
*0 T T
v a4
inv , s . A LW (4.21)
u - M c
o 1 o)
and.
. 2 .
S O
T * 27 Gl O P
B neve (uo ) 3 (™R (k.22)
(¢ C
L

Since the shear stress associated with the destabilizing effect
of viscoslty near the solid surface and the shear stress near the

critical layer act roughly throughout the same region of the fluid, thse

el auk

ratio of the rates of energy transferred [approximately { T o iy

’ 1] 0 o

by the two physical processeg is

31
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E * T, randtc 4 a /W 0
aﬁ» ~ _..(.;.. " '_-32‘—.- S —— (—-—- ZB/L- (h.23)
El i "Tl’)< 5 Tl (wC ')J . dy & =G

1 3/2
i .
T - Z
5 lV(C)l
“sere
i 3

.wl
If the quantity g-:; ('tf") ig negative and sufficlently large
when W = cqs €AY, then the rate at which onez"g;\,f‘is abgorbed by

the mean flow near the inner "critical layer" plus the rate at which
the energzy of the disturbence is dissipated by viscous action more
than counterbalances the rate at which enecrgy passes from the mean
flow to the disturbance because of the destabilizing effect of
viscosity near the solid surface. Consequently, a neutral subsonic
disturbance with the phase velocity ¢ z, cy does not exist; in

‘fact, all subsonic disturbances for which ¢ > cq are dampsd.

When MO <1, there is zlways a range of values of phase velocity
B %

e

: , 18], :
is small enough for neutral (and self-excited) subsonic disturbances
to exist for Reynolds numbers greater than a certain critical value,
When M, > 1, however, because of the physical requirement

0 é c é ¢, Tor which the ratio , given by equation (4.22),

thet c.>'1 - % S5 ) ) the pogsibility exists that for certain

0
: s 2\
thermal conditions at the solid surface the quantity [%y— %—\]
W=C
'7’(‘*
is glweys sufficiently large negatively (and therefore ‘_E—_;* is
=7
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sufficiently large) so that only damped subsonic disturbances exist

-] \T'
at all Reynolds numbers. Of course, if &;(g;— vanishes for some
value of w21 - -;I;-, 1t is certain that v{c) ¢« 0.580 for some
o)

range of values of the phase velocity 1 - %T‘ﬁ_c S-Co‘ In that
o}

case, neutral and self-excited subsonic disturbances always exist

for Re> Rcr { and the flow is always unstable at sufficiently
min

high Reynolds numbers, in accordance with Helsenberg's criterion
as extended to the compressible flwid (section 2).

A discussion of the significance of these results is reserved
for a later section (section 6) in which the behavior of the quan-

1
tity % G"..) will be related directly to the thermal conditions
at the solid surface and the free-stream Mach number.

2. CRITERION TFCR THE MINIMUM CRTITICAL REYNOLDS NUMBER

The object of the stability analysis is not only to determine
the general conditions under vhich the laminar boundary layer is
unstable at sufficiently high Reynolds numbers bub algo, if possible,
to obtain some simple criterion for the limit of gtability of the
Tlow (minimum eritical Reynolds mumber) dn terms of the local
distribution of mean velocity and mean temperature across the
boundary layer. For plane Couette motion (linear velocity profile)
and plane Poiseuille motion (pavabolic velocity profile) in an
incompressible fluid, Synge (reference 13) wes able to prove
rigorously that a minimum critical Reynolds number actually exists below
which the flow is stabls. His proof applies also to the laminar boundary
layer in an incompressible fluid, with only a slight modification (refer-
ence 5, part III). Such a proof is more difficult to give for the laminar
boundary layer in a viscous conductive gas; however, the existonce,
in gensral, of a minimum critical Reynolds mumber can be inferred
from purely physical considerations. A gtudy of the energy balance
for small disturbances in the laminar boundary layer shows thet the
ratio of the rate of viscous dissipation to the rate of encrgy
transfer near the critical layer is 1/R for a disturbance of
glven wave length while the energy transfer. assoclated with the
destabilizing action of viscosity near the solid surface bears the

ratio l/fﬁ’ to the energy transfer near the critical layer. Thus,

39
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the effects of viscouvs dissipation will predominate at eufficiently’
low Reynolds numbers and all subsonic disturbances will be damped,
The two distinct asymptotic branches of the curve of « against R
for the neutral disturbances at large Reynolds numbers muet join
eventually (section 4) and the flow is stable for all Reynolds
numbers less than a certain critical value.

An estimate of the value of R g vhich will serve as a
Lmin’

stability criterion,is obtained by haking the phase velocity ¢

to have the maximum possible value c, Tor & neutral subsonic

disturbance, that is, for ¢ > ¢, all subsonic disturbances are

damped. This condition is very nearly equivalent to the condition

that oR be a mlnimm, which was employed by Lin fox the case of

the incompressible fluid (». =85 of reference 5, part III). The condi-

tion ¢=c_ ocours when i%(z) is a maximum$ that is, when & (z) =0.580,
i

Z5 =.3.22 and @r(zo> = 1.48 (fig. 9). Tho corresponding value
of ¢ = c, can be calculated from the relations (2.19) %6 {2.29).

Neglecting terms in A2 (» is usually very small) end Baking =L, 50
- glves

2,(2) = [1 - 2(e)] v(e) (5.1)
where
wi'e {12 @ /v 1
v(e) = - W o o | — ' )
Ty w3 ay \1 /]
TW=C
end
wl' Y. =i
e ( : ) A (5.3)

It is only necessary to plot the quantity (1L - 2A)v. against ¢
for a given laminar boundery-laver flow and find the value of ¢
for which (1 - 2\)v = 0,580. The corresponding value of R - is
determined from the relation ' :

L0
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@ - Gl () () =

and this value of oR 1is very close to the minimum value of cR.
A rough estimate of the value of a for c¢ = ¢y 1is given by the

following relation (equation (2.27)):

2 2 '
a = wl'coﬁ - M, (l - co> $5:5)
This estimated value of o is‘, in general, too small., The
following estimate of Rane : is obtained by meking an approximate
min

allowance for this discrepancy and by taking round numbers:

B,
. i 25 [T(co)]l 7 Wy e
Crmin . hvl o 2(1 o )2 :
O (0] QO
(8 o
| N
17 [T(Co)]l'% \g‘nﬁ )1
Rg & - £5.7)

CH
nin b 2 2
c, Vl - Mo (l - co)

For zero pressure gradient, the elope of the velocity profile at

3
the surface <§i> ig given very closely by (appendix B)
<N
i

)
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Therefore

. % .76
[r( O)] (5.8)
L coth 2 Moz(l - c:O)2

The expression (5.8) is useful as a rough criterion for the dependence

~
~

FH’O\

#10
Crpin

of Re on the local distribution of mean velocity and mean
CI'min
' temperature across the boundary layer, It is imnediately evident
that Rg —>w vhen c,—>1 - L .. When [(l £ c\.)v} > 0.5¢0,
Crmin M C‘l-'-'
M
0

the laminer boundary layer ig steble at all values of the Reynolds
number. (This condition is an improvement on the stability condi-

tion v 4 2 0.58 (approx.) stated in section 4.)
e

M
o

Tn the following tables and in figures 5 and 6(a) the estimated
values of Rg given by equation (> 8) can be compared with the
2
values of Rg taken from the calculated curves of og against Ry
Tmin
for ths noutral disturbances, For the insulated surface, the values
are

L2
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R R
M e, T(co) ﬂcrmin ‘ecrmin
. ! (est.) (fig. &)
0 0.4186 1.0000 195 {50
.50 . 100 1.0L08 170 136
70 . 4600 1.0782 150 126
.90 . 1850 I 125k 129 115
1,10 .5139 1.1803 109 104
1.30 , 5450 1.2L06 92 92

For the noninsulated surface when M, = 0.70, the values are

g R R
Tl Co { L (CO> e Cl‘min 0 Cl‘min
i (est,) (fig. k)
0.70 0.1872 O. e S 51456
.80 .2619 .8716 1463 1440
.90 339k L9562 52k 523
105 .5194 1.2449 89 63

The expression (5.8) for Ry gives the correct order of
magnitude and the proper variation of the stability limit with Maqh

nuwber and with surface tempsrature at a siven Mach mumber,
X & !

The form of the criterion for the minimm critical Reynolds
number (equation (5.8)) and the resulis of the detailed stability
calculations for several representative cases (figs. 3 and 4} show
that the distribution of the product of the density and the

vorticity pgg acrogs the bbundary layer largely determines the

limits of stability of laminar boundary-layer flow, The fact that
the "proper™ Reynolds number that appears in the boundary-layer
stability calculations is based on the kinem:tic viscosity at the
inmner critical layer (where the viscous forces are important)
rather than in the free stream also enters the Problem, but it
amounts only to a numerical and not a qualitative change when the
usual Reynolds number based on free-stresm kinematic viscoslity is
Tinally computed. Whether the value of Rocr . for a given

min

43
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laminar boundary-layer flow is larger or smaller than the value
of Recr for the Blasius flow, for example, is determined
min 5

d
entirely by the distribution of pag across the boundery layer.

dy
surface 80 that the quantity (1 - 2\)v(c) reaches the value 0.580
when the value of ¢ = ¢ is less than O.hl86, the flow is rela-

If the quantity <p§—§) 18 negative and large near the solid

o]

d aw
tively more stable than the Blasius flow. If the quantity 55 (pa§)

is positive near the solid surface, so that (L - 20)v(c) = 0.580
when w(or c¢) > 0,4186, the flow is relatively less stable than
the Blasius flow. Thus, the question of the relative influence

on Recr of the kinematic viecosity at the inner critical layer
min

W
and the distribution of p&; across the boundary layer, which

remained open in the concluding discussions of reference 8, is now
settled.

The physical basis for the predominant influence on Recr A
min

d: ,
of the distribution of pég- across the boundary layer is to be

found in a study of the ehefgy balance for a subscnic boundary-layer

disturbance (sbction 4)., The distribution of p(}E determines the

dy
maximum pogsible value of the phase velocity €y Or the maximum
possible distance of the inmer critical layer from the solid surface
for a neutral subsonic disturbance. The preater the distance of
the inner critical layer from the solid surfacé, the greater
(relatively) the rate of energy absorbed by the mean flow from the
disturbance in the vicinity of the critical layor (ecquations(l,21)
and (4.22)). When c_ is large, therefore, tho cnergy balence
for a neutral subsonic disturbance is achieved only when the
destabilizing action of viscosity near the solid surface is rola-

tively large or, in other words, when

= X'C is large

o
0 B

and the Reynolds number R, which is very nearly oqual to R

is correspondingly emall, On the other hand, when C, is emall
and the imner critical layer is close to the solid swrface, the rate

L
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at which energy is absorbed from the disturbance near the critical
layer is relatively small and the rate et which energy passes to
the disturbance near the solid surface, which is of the order

Of et

1, R
€ =
Ve

quently R

, is also relatively small for energy balance; conse-

Crmin is large.

6. PHYSICAL SIGNIFICANCE OF RESULTS OF STABILITY ANALYSIS

a, General

From the results obtained in the pregent paper and in refer-
ence 8, it is clear that the stability of the laminar boundary
layer in e compressible fluid is governed by the action of both
viscous and inertia forces. dJust as in the case of an incompressible
fluid, the stability problem cammot be understood unless the viscosgity

-of the fluid is taken into account., Thus, vhether or not a laminar

boundary-layer flow is mmstable in the inviscid compressible
fluid (R~>»»), that is, whether or not the product of the density

d : 1
and the vorticity p&¥ has an extremum for some value of w> 1 -——,
>

O
there is always some value of the Reynolds mmber R,,. .  below
3 “*min

which the effect of viscous dissipation predominates and the flow
is stable. On the other hand, at very large Reynolds numbers the
influence of viscosity is destabilizing. If the free-stream
velocity is subsonic, any laminar boundary-leyer flow is wunstable
at sufficiently high (but finite) Reynolds numbers, whether or not
the flow is stable in the inviscid fluid vhen only the inertia
forces are considered.

The action of the inertia forces is more decisive for the
stability of the laminar boundary layer if tho froe-stream velocity
1s supersonic. Beczuse of the physical requircment that the vela-
tlve phase velocity (c - 1) of the boundary-layer disturbances

must be subsonic, it follows that ¢ > 1 -i;—> 0 and the quen-

£

0o

d / aw)
tity [é; (pa;)} can be large cnough negatively under certain
j " W=C

conditions so that the stabllizing action of the inertia forces
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near the inner critical layer (where w = ¢> 0) i not overcoue
by the destabilizing action of viscosity near the solid surface,
In that case, undamped disturbances cannot exist in the fluid, .and
the flow is stable at all values of the Reynolds number.

Regardless of the free-stream velocity, the distribution of
a
the product of the density and the vorticity pd-g- across the

boundary layer determines the actuwal limit of stability, or the
minimunm critical Reynolds number, for laminar boundary-layer flow
in a viscoue conductive gms {eaquation (5.8)). Oince the distri-

dw a
bution of p«- across the boundary layer in turn is determined by

the free-stream Mach nmmber and the thermal conditions at the solid
surface, the effect of these physical parameters on the stability
of laminar bouvndary-leyer ilow is readily evaluatad.

b, Effect of Free-Stream Mach Number and Therms) Conditions at
Solid Surface on Stability of Laminar Boundary Layer

The distribution of mean velocity and mean temperature (and

dw .
therefore of pé-._)- across the laminar boundary layer in a viscous
J

conductive gas le strongly influenced by the fact that the viscosity
of a gas increases with the temperature. (For most gases, H ¢ T
(m = 0,76 for air) over a fairly wide touperature rangs.) When
heat is transferred to the fluid through the solid gswrface, the - .
temporature and viscosity near the surface both decrease along the
outwerd normal, and the fluid near the surface is more retarded by
the viscous shear than the fluid farthor out from the surface - as
compared with the isothermal Blasius flow. The velocity profile
thorefore always posseceses a point of inflection (where w" = 0)
when heat is added to the fluid through the solid surface, provided
there is no pressure gradient in tho direction of the main flow.

; d. d.w 3 t g q \ j 5
Since == (p-—-> = Y'- et he quantity g0k (p@iz vanishes

dy \dy/ T 2’ ay ‘)
and p(—% hae an oxtremim at some point in the fluid. -On the other
hand, ilf “hcat is_ withdrawn from the fluld through the solid sur-
face, -iy— and. g—i- arc both positive near the surface and the

fluid near the surface is less retarded than the fluid farther

L6
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out - as compared with the Blasius flow. The velocity profile is
therefore more convex near the surface than the Blasiug profils.

As pointed out in section 11 of refsrehce 8, the influence
of the variable viscosity on the behavior of the product of the
density and the vorticity pgf- can be seen directly from the equa-
: J
tions of motion for the mean flow, When there is no pressure

gradient in the direction of the main flow, the fluid acceleration
vanishes at the solid surface, or

ST 3 [ o

(_ ) ol ;s UK 5._ = 0 : 16.1)
¥ i Yy ¥ :,r*
vig 4 3. o i

and

= -

5?11\ i 23;.; m /of* (u*
— )= PR, i (6.2)
Ry py* ay 03”‘ s, AQy*

Thus, when heat is added to the fluid through the solid surfac

Beu\
& < o) 18 positive, and the velocity profile is concave
aﬁ '

near the surface and bossesses a point of inflection for some value

r).....
‘- 3w
of w> 0; when heat is withdrawn from the fluid (Tl' b o), i_..._.\

- (]
oy¥<

is negative, and the velocity profile is more convex nes 2 the suwrface

than the Blasius profile.

The behavior of the quantity

o‘/z o/

e

s 2

parallel to .that of ' ——, From equation (0.2)J in nondimensiocnal
] 53}'*5‘2
form,

b7
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[ay( >] dy(")] r? ey (6.3)

Differentiating the dynamic equations once and making use of the

: d w'!
enerzy equation gives the followlng expression for [""‘,’, <——>}

(appendix D):

2 ol 2
d w'
— _*> = olm + 3)(7 k J)M a (—)» + 2(m + 1)% w ! (-3-)- (6.1)
dy= \T 1 . Tl Ty
2 wt\\
Thus, for zero pressure gradient, R is 2lways positive.
R e

a [\

Now, if the suxrface 1s insulated,the quantity [——- --> j vanishes,
&

dy \ %

2 1 1 ! %
but {é—@— ] >0 and (¥} ana ¥ voth increase with
dy \T /1, dy \T T : :

- T 3
distance from the solid svrface. Oince -—- —3>0 far from the solid
ik
x w' v\ .
surface, —ri-— has a maximm and e ( — / vanishes for some value
of w >0, If heat is added to the fluid throuzh the golid sur-

o
face (Tl' < 0), S Ay e already positive at the surface, and
dy \T

& fu a fv
since i-:-- — >0, the quantity gy‘\—'l‘“ vanishes at a point

in the fluid which is farther from the surface than for an insulated
boundary at the same Mach number (figs. 3{a) and (b)). Conse-
quently. the value of ¢ = s for which the function

48
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w'c 2 '
(L~ 8 lc) = « {1 - 2K) i : S -E:j] reaches the
Ty w')3 dy \T ,
value 0.580 is larger than the value for the insulated esurface.

By equatiorn (5.8), the effect of adding heat to the fluid through
the solid surface is to reduce Recr and tc destabllize the
min

flow, as compared with the flow over an Insulated surface at the
seme Mach number (fig. 6).

If heat is withdrawn from the fluld through the solid surface,

1 P
Tlf > 0 eand [9— /w-)] is negative, In fact, if the rate of heat
d.

dy E_
" a fv'
transfer is sufficiently large, the quantity E;; T does not

vanish within the bowndary layer (fig. 3(b)). The value of ¢ = ¢

for which the function (1 - 2A)v(c) reaches the value 0.580 is
smaller then for an insulated surface at the same Mach number, and
by equation (5.8}, the effect of withdrawing heat from the fluld

through the solid surface is to increase RQC?mﬁn and to stabilize

the flow, as compared with the flow over an insulated surface at
the same Mach number (fig, 6)., Vhen the velocity of the free stream
at the "edge" of the boundary layer is supersonic, the laminar
boundary layer is complebely stabilized if the rate at which heat
is withdrawn through the solid surface reaches or exceeds a critical
value that depends only on the Mach number, the Rermolds number,
and. the properties of the gas. The critical rate of heat transfer

!

is that for which the quantity E%—(é?) is sufficiently large
W

negatively near the surface (sce cquation (6.3)) so that

(1 - 22)v(e) = 0.580 whon ¢ = T é?— (sections 4 and 5).

i o)
Although detailed stability calculations for supersonic flow over
a noninsulated surface have not been carried out, the function
i 2A)v(c) has been compubed for noninsulated swrfaces at
Mci‘ 1.3, 1.50, 2.00, 3,00, and 5.00 by a rapid approximate method
(appendix C). The corresponding estimated values of Rg were

Clmin
calculated from eguation (5.8),.and in figure 7 these values are

plotted against Tl’ the ratio of surface temperature (deog abs.)

o}

to free-stream temperature (deg 2bs.). At any given Mach number

kg
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greater than uwnity the value of Rg Tyin increases rapidly

: v %

asg co-f—-)l - ‘:'-;—; when c, differs only slightly from 1 - TR
0 .O

the stability of the laminar boundary layer is eoxtremely sensitive

to thermal conditione at the solid surface. At each value of M, ool

there is a critical value of the temperature ratio Tlcr for

which Rp oo, -If /By £ Ty , the lominar boundary layer is
Crmin e, oy cxr

stable at all Reynolds numbers., The difference beotween the
gtagnation-temperature ratio and the critical-swrface-temperature
ratio, which is related to the heat-transfer coefficlent, is plotted
against Mach number in figure 8. Under frec-flight condltlons, for
Mach numbers groator than some critical Mach number that dopends
largely on the altitude, the value of Tg - Tlcr 1s within the

order of magnituvde of the diffsrence between stagnation temperature
and swface temperature that actually exists becausc of heat radia-
tion from the surface (references 14 and 15), In other words, the
critical rate of heet withdrawal from the fluid for laminar sta- .
bility 18 within the order of magnitude of the calculated rate of
heat conduction thrcush the solid surface which balances the heat
radiated from the surface under equilibrium conditions. The calcula-
tions in appendix E show that this critical Mach number is approxi- -
mately 3 at 50,000 feet altitude and approximately 2 at

100,000 feet altitude. Thus, for M, > 3 (approx } at 50,000 feet

altitude and M, > 2 (approx.) ‘at lO0,000 feet alti tude, the

laminer boundary-layer flow for thermaol equilibrium is completely

stable in the abseenco of an adverse prfsourc gredient in the freo
gtrcam, :

When there is actually no heat conduchion through the solid
surface, the limit .of stability of the laminer boundary layer
d.upends only on the frec-stream Mach number; that is, on the exte

of the "acrodynemic heating" ( of tho order of u;* ))
\
the solid surface. A good indication of the ini‘].uence of the free-

1 dw
8tream Mach number on the distribution of pa— acrogs the boundary
layer for an insulatced surface is obtained from o rough estimate

3 . d. d“r
of the location of the point at which — {p—) roaches a positive

W

maximum (or m( ) vanishes), Differentiating the dynamic
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equations of mean motion twice and making use of the energy and
continuity equations yields the following result for an insulated

surfaces
2t =
Fibs (1_)- | (6.5)
2 Tl@+2

where b = & Trom equations (6.4) and (6.5) the valus

E
of . ¢ at vhich == (;—:) vanishes, or ——-(L—N reaches a maximum,

is given roughly fov air by

(o]
b (ﬁ’\
3 ~§ ] 2 2
Larm\e /)y, M M
. : (6.6)
w'\N! g (1 + 0.2025M )l o |
pe=
i b(0.3320) TR :
in vhich w' = ~———- (eppendix B). In other words, ths point

it

q
—

f ‘ d //w'

in the fluid at which 57-‘§m> attains & maximum moves farther out
N o N '

from the durfa e as the Mach number is increased - at least in the

range 0 < M, < %.5 (approx.); therefore the value Ui S ficTs

which »»-( ) vanishes and the value of ¢ = ¢ for which

dy v
5 Lx\v(c) reaches the value 0.580 both increase with the Mach
number (fig. 3( )). By equation (5.8), the value of Rgpe . for
Tmin

the laminar bourdary-lqver flow over an insulated surface decreases
as the Mach number iIncreases and the flow io desgtebilized, as com-
pared with the Blasius flow (flg o 18
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¢. Results of Detailed Stability Calculations for
Insulated and Noninsulated Surfaces

From the results of the detailed stability calculations for
several representative cases (figs. 4 to 6), a cuantitative
estimate can be made of the effect of free-stream Mach number
and thermal conditions at the solid surface on the stability of
laminar boundary-layer flow. For the insulated swrface, the value
of Rec is 92 when Mo = 1.30 as compared with a value

Tmin l
of 150 for the Blasius flow. For the noninsulated surface
at M, = 0.70, the value of R@ =i is 63 when Ty = 1.25 (heat
n

added to fluid), RO,y . = 126 vhen Ty = 1.10 (insulated sur-
mn

5150 when T; = 0.70 (heat withdrawn from

H

face), and Recrmi
n

, which

n

fluid). Since Ry = 2.25Rg?,  (the value of 6

o
Vo

is proportional to the skin-friction coefficient, differs only
glightly from the Blasius value of 0.6667) the effect of the thermal
conditions at the solid surface on Rx* is even more pronounced.
The value of Ryx is 60 X lO6 when Ty = 0.70 and M, = 0.70,

a8 compared with a value of 5l X 103 for tne Blasius flow

(T =1 and M, = 0). For the insulated surface the value

of Rx* declines from the Blasius value for MO =0 %o a
min

value of 19 X x 103 at M = 1.30. The e:d‘,remc gengitivity of the

llmlt cf stability of the lam_ndr bound.ary layer to thermal condi-
tions at the solid surface when T; <1 is accounted for by the

fact that ¢, is small whon Ty <1 and M, <1 (or M, is not
20
much greator than unity) and Re # e (equation (5.8)).
mln o
(0]
Small changes in c¢,, therefore, produce large changes in Ry .
CI'min

In addition, when Ty <1, small changes in the thermal conditions
1
at the solid surface produce appreciable changes in % <¥——> (equa-

tion (6.3)) and, therefore, in the value of Cqe
Not only is thc value of Ry Ty affected by the thermal

conditions at the solid surface and by the free-stream Mach number
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but the entire curve of @ against Ry for the neutral dis-

turbances 1s also affected. (See fige. 4(k) and 4(1).) When the
surface is insulated (and MO # 0), or heat is added to the fluid

(Tl = 1.25}, Qg ~—> Cig £0 as Rg—> o along the upper branch of

the curve of neutral stability. In other words, there is a finite
renge of wnstable wave lengths even in the limiting case of an
infinite Reynolds number (inviscid fluid). However, & -——>0

as Rgp—> @ for the Blasius flow, or when heat is withdrawn from

the fluid., This behavior is in complete agreement with the results
obtained in section 4 and in reference 8.

A comparison between the curves of oy against Ry for
Ty = 12.25 and Ty = 0.70 &t My = 0.70 shows that withdrawing
heat from the fluid not only stabilizes the flow by increasing Rgc

g
: min
but also greatly reduces the range of unstable wave numbers (?9)'

On the other hand, the a2ddition of heat to the fluid through the
solid surface greatly increases the range of wnstable vave numbers.

Tt should also bc noted that for given values of U9y ©,*
and Ry  the time frequencies of the boundary-layer disturbances

in the high-speed flow of a gas are considerably greater than the
frequencies of the familiar Tollmien waves observed in low-speed
flow. The actual time frequency n* expressed nondimensionally
is as follows: LS

n* UO‘X‘ cae
(7R 2wy

For given values of c, %y; and Ry the frequency increasecs as
the square of the froe-gtream velociby.

d. Instability of Laminar Boundary Layer and
Transition to Turbulent Flow
The value of Rg obtained from the stebility analysis
Crmin i
for a given laminsr boundary-layer flow is the valuc of the Reynolds
nmber at vhich self-cxcited disturbances first eppear in the
boundary layer. As Prandtl (reforence 12) carefully pointed. out,
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:these initial disturbancee are not turbulence, in any sense, but

slowly growing oscillations. The value of the Reynolds number at
vhich boundary-layer disturbances propagated along the surface will

be emplified to a sufficient extent Lo cause turbulence must be

larger than Rp in any case; for the insulated flat-plate

Crmin :
flow at low speeds and with no pressure gradient, the transition
Reynolds number Retr ig found to be three to seven tlmes a8

large as the value of Recrmi (references 6 and 7). The value
n

of RGtr depends not only on Recrmin but also on the initial

magnitude of the disturbances with the most "jangerous” frequencies
(those with greatest amplification), on the rate of amplification
of those disturbances, and on the physical procsss (as yet unlmown)
by which the quasi-stetionary laminar flow is finally destroyed

by tho emplified oscillations. (See, for oxample, references 16
and 17.) The rosults of the stability analysis novertheless permit
certaln gencral statements to be made concerning tho cffect of
froc-stresm Mach number and thermal conditions at the solid surface
on transition. The basig for these statements is swmmarlzed as
follows: : , i

: "(l) Tn many problems of technical interest in aeronautics the
lével of frec-stresm turbulence (magnitude of initilal disturbances)

- '1g sufficiently low so that the origin of transition 1s always to

be found in the instability of the laminar boundary layer, In
other words, the value of Recrmi ig an absolute lower limit for
n

trensition.

(2) The effect of the free-stream Mach munbor and the thermal
conditionsg st the solid surface on the stability limit (Recrmi )
n

ig overwhelming. For example. for M, = 0.70, the value of Recr .
: min
vhen T4 = 0.70 (heat withdrawn from fluid) is more then 80 times

as great as the value of Rg . vhen T, = 1.25 (heat added to
_ 1
fluid).

(3) The maximum rate of emplification of the golf-excited
boundary-layer disturbances propagated along the surface varies

roughly as 1;\~ (This approximation agreces closely with

Yormin :
the numerical resulte obtained by Pretsch (refércnce 18) for tho
cage of an incompressible fluid.) The effect of withdrawing heat

from the fluid, for cxample, ig nob only to incrcaso Recr and
‘ min

5k
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stabilize the flow in that manner but also to decrease the initial
rate of amplification of tlie unstable disturbances. In other words,
for a given level of free-stresm turbulence, the interval
between the first appearance of self-excited disturbances
and the onget of trarsitlon is expected to be much longer for a
relatively stable flow, for which Recrmi is large, than for a

n
relatively unstable flow, for which Recrmin is small and the

initial rate of amplification is large.

On the basis of these observaticns, transition is delayed (Retr

increased) by withdrawing heat from the fluid through the solid
surface and is advanced by adding heat to the fluid through the
solid surface, as compzred with the insulated swrface at the same
Mach number. For the insulated surface, transition occurs earlier
ag the Mach number is increased, as compared with the flat-plate
flow at very low Mach numbers. When the froe-stream velocity at
the edge of the boundary layer is supersonic, transition never
occurs 1f the rate of heat withdrawal from the fluid through the
golid surface reaches or cxceeds & criticzl value that depends
only on the Mach number (section 6b and figs. 7 and 8).

A comparison betwoon the rosults of the present analysis and
moasuremonts of transition is possible only when the frec-stroam
bressure gradicnt is zero or is held fixed while the froc-stream
Mach numbor or the thermal conditions at the solid surface are
verled. Liepmann and File (refcrence 19) have measured the move-
ment of the transition point on a flat platc at a very low free-
stream velocity when heat 1s applied to the surface. They found
by means of the hobt-wire ancmometer that Rz#tr declined

from 9 % lO5 Tor the insulated surfuce to a valuc of approxi-
WSO 230307 For Ty = 1,36 vhen'the lovel of Presisiresty

turbulence 3 X 105

iy O ! | ) .

when ~l£%§;23 = 0.05 percent and Ty = 1,40, Tho value of Retr
V&) |

declines from 470 (approx.) to 300 (approx.) in the first case and

to 365 in the second,

Frick and McCullough (reference 20) observed the veriation in
the transition Reynolds number when heat ig applied to the upper

e by o AR o e = i e i e et SRS Y
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surface of an NACA 65,2-016 airfoll at the nose section alone, at

the section Just ahead of the minimum presSsure station, and for

the entire laminar run. When hegt is applied only to the nose

gection, the transition Reynolds number (determined by total-pressure-

tube measurements) was practically vnchanged. Near the nose,

Rg <<ZR90r and the strong favorable pressure gradient in the
min

region of the stagnation point stebilizes the laminar boundary layer

to such an extent that the addition of heab to tho fluid has only

& negligible effect. When heat 1s applied;however, to the section

Just shead of the minimum pressuwre point, where the pressure

gradlients are moderate, the transition Reynolds number Ratr

declined to a value of 1190 for T7 ~ 1.1k, compared with a value

of 1600 for the insulated surface. When heat is applied to the
entire laminar run, Rg, declined to a value of 1070 for Ty = 1.1k

Tt would be interesting to investigate experimentally the
stabilizing effect of a withdrawal of heat from the fluld at super-
sonic velocities. At any rate, on the basis ol the results obtained
in the experimental investigations of tho effect of heating on
transition at low specds, the results of the stability analysis
give the proper direction of this effect.

7. Stability of the Taminar Boundary-Layer Flow of a Gas with a
Presgure Gradisnt in the Direction of the ¥ree Stream

For the case of an incomprossible fluid, Pretsch (reference 9)
has shown that even with a pressurc gradient in tho direction of
the free stroem, the local mean-velocity distribution across the
boundary layer completely dotormines thHe stability characteristics
of the local laminar boundary-layer flow at large Reynolds numbers.
From physical considerations this atatement should apply also to
the compressible fluid, provided only the gtebility of the Tlow
in the bowndery layer is considered and nob the possible inter-
action of the boundary layer snd the main ™external" flow. Further
gtudy is required to settle this guestion.

If only the local mean volocity-temperature distribution across
the boundary layer is found to be significant for laminar stability
in & compressible fluid, the critorions obtained in the present
paper and in reference 8 are then immediately applicsble to laminar
boundary-layer gas flows in which there ig a free-gtrecam pressure
gradient. The quantitative effect of a pressurc gradient on lamlnar
gtability could be readily determined by means of the approximato
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2 Gk
o) 0
In a region of small or moderate pressure gradients| f—— £2,
vo* Ydx
)

aw
say) the,distribution of pa§ 18 gensitlve to the thermal conditions

at the solid surface. For example, the chordwise position of the
point of instability of the laminar bouhdary layer on an airfoll
with a flat pressure distribution is expected to be strongly influ-
onced by hoat conduction through the surface. (See reference 20.)
For the insulated surface, the equations of mean motion yield the
following relation (appendix D), which does not involve the pressure

gradient explicitly:

~ - 1 3

= e . 0 (Wl )
e el ol & Bh - SN Tieeasd- 20 £7.8)
CVAERNEY) : 7,°

i

The effect of "aerodynamic heating" at the swurface opposes the

_effect of a favorable pressure gradient so far as the distributlon

-,

of p%f acrogs the boundary layer 1s concerned (equations (7.2)

ay
and (7.3)). The relative quantitative influence of these two effects
on laminar stability can only be settled by actual calculations of
the laminar boundary-layer flow in a compressible fluid with a free-
gtream pressure gradient. A method for the calculation of such
flows over an insulated surface is given in reforence 22.

When the local free-stream velocity at the edge of the boundary
layer is supersonic, a negative pressure gradient can have a decisive
effect on laminar stability., The local laminar boundary-layer flow
over an insuloted surface, for cxample, 18 expected to be completely
stable wvhen the megnitude of the local negative pressure gradient
reaches or exceeds a critical value that deponds only on the local
Mzch number and the properties of the gas. The critical magnitude

of the pressure gradient is that which makes the quantity g;- p%z
J

sufficiently large negatively near the surface so that

w'e T2 a /!

- [1 - ’2?»(0):] e T g = 0,580
1 f(w')3 ay \*

W=0C
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‘estimaté of ;Récrﬁi (equation (5.7)), in terms of the distribution
: 5 2

of the quaﬁtity‘ p§§ across the boundary layer. Such calculations

(unpublished) have already been carried oub Dy B - CL G o didn of

Brown University for the incompressible fluid by means of the

approximate estimate of Rex given in reference 5, part III.
o ' o CPmin - |

In any event, the qualitative effect of a Free-stream pressure

gradient on the local distribution of pgg across the bowmdary
layer is evidently the same in a compressible fluid as in an incom-
pressible fluid. If the effect of the local pressure gradient alone
is considered, the velocity distribution across the boundary layer
1s "fuller" or more convex for accelerated than for uniform flow,
and conversely, less convex for decelerated flow., Thus, from the
results of the present paper the effect of a negative pressure
gradient on the laminar boundary-layer flow of gas is stabilizing,

go far as the local mean velocity-temperature distribution is con-

corned, while a positivo pressure gradient is destabilizing.  For
the incompressible fluid, this fact i1s well cstablished by the
Rayleigh-Tollmien criterion (reference 3), the work of Heisenberg

(reference 1) and Lin (reference 5), and & mass of detailed cal-

culations.of stability limits from the curves of « against R
for the neutral disturbances. These calculations wore recently
carricd out by several German investigators for a comprehensive
geries of pressure gradient profiles, (See, for example, rofer-
onces 9 and 21.) "

Some idea of the relative influence on laminar stability of
the thermal conditions at the solid swrfaco and tho frec-strean

pressuro gradient is obtained from the equaticns of moan motion.
At the surface,

o7 ) s Ju¥ (35:)“' S e d'ﬁ;;:
B LA A = 2ol o sl A ) %
: (:5;:>1 [BY* <;1 5;;)]1 g Pl Yo' I g

¥

or

AT e Y e TR T .
s \ p ?i:,y.” 1 = - "“‘_"2— Tl Wl - m_!‘l - ( 7'2)
\, o
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It hag already been shown in the present paper that when MO > e

(approx.) the laminar boundery-layer flow with a wniform free-stream
velocity is completely stable under free-flight conditions when the
golid surface is in thermal equilibrium, that is, when the heat
conducted from the filuid to the surface balances the heat radiated
from the surface (section 6b). The laminar boundary-layer flow

for thermal equilibriiwm should be campletely stable for MO > M,

say, vhere Mgy < 3 if there is a negative pressure gradient in

the directlion of the free stream. Favorable pressure gradients
exiagt over the forward part of sharp-nosed eirfoils and bodies of
revolution moving at supersonic velocities, and the limits of sta-
bility (Relrr ) of the laminar boundary layer should be cal-

g ililan

culated in such cases.

CONCLUSIONS

From a study of the stability of the laminar boundary 'layer
in a compressible fluid, the following conclusions were reached:

1. In the compreasible fluid as in the incompressible fluid,
the influence of viscosity on the laminar boundary-layer flow of
a gas is destabilizing at very large Reynolds numbers. If the
free-stream velocity is subsonic, any laminar boundary-layer flow
of gos is unstable at sufficiently high Reynolds nubers.

2, Regardless of the frec-sbtream Mach mumber, if the prody.ct of

d
the mean density and the mean vorticity has an oxtremum . P
¥\

vanishes | for some value of w> 1 = T (vhere w is the ratio of

o}
mean velocity component parallel to the surface to the free-stream
velocity, end vhere M, i1s the free-stream Mach number) the flow

is wnsteble at sufficiently high Reynolds numberxs.

3. The actual limit of stability of laminar boundary-layer f£low,
or the minimum critical Reynolds nmumber Ry ; 1s determined
C.'L"m_n
largely by the distribution of the product of the mean density and
the mean vorticity across the boundary layer. An approximate
egtimate of Racr is obtained that serves as a criterion for
min
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the influence of free-stream Mach number and thermal conditions at
the solid surface on laminer stability. IFor zero pressure gradient,
this estimate reads as follows:

ARl L)

T
: col'" ql - Moe(l - 00)2

RQ e
Crmin

vhers T is the ratio of temperature at a point within the boundary
layer to free-stream temperatwre, Ty 18 tho ratio of temperature

at the solid suvrface to the free-stream velocity, and R is the

value of ¢ (the ratio of phase velocity of disturbance to the free-
stream velocity) for which (1.~ 2A)v = 0,580. The functions v(c)
and Mc) are defined as follows:

/5
TS S bl O 5
: ol 18 )
v(c) = - o f o e
Tl o ) on \T 9/
. o
W=C
oW
”‘(:>
\‘; 2k
}\.(C) = e L
e
where
1 nondimensional -distance from surface

4, On the basis of the stability criterion in conclusion 3 and
a study of the equations of mean motion, the effect of adding heatb
to the fluid through the solid surface is to reduce Recr and to
min
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destabilize the flOW).aS compared with the flow over an insulated
surface at the same MacL number., Withdrawing heat through the
solid surface has exactly the opposite effect. The value of Rgcrmin

for the laminar boundary-layer flow over an insulated surface decreases
ag the Mach number increases, and the flow is desbabilized, as com-
pared with the Blasius flow at low speeds.

3. ¥hen the frec-stream velocity is supersonic, the laminar
boundary layer is completely stabilized if the rate at which heat
is withdrawn from the fluid through the solid swrface reaches or
exceeds a certain critical value. The critlcal rate of heat tragsfer,

Tmin dy

d dw
for which Rgc ~—>o, 18 that which makes the quantity -55 (f—{)
sufficiently large negatively near the surface so that

[} . QX(C)E v(c) = 0.580 when ¢ = 6, =1 -§%~. Calculations for

o
several supersonic Mach numbers between 1.30and 5.00 show that
Por "M > 3 (approx.) <the critical rate of heat withdrawal for

laminar stebility is within the order of magnitude of the calculated
rate of heat conduction through the solid surface that balances the
heat radiated from the surface under free-flight conditions.

Thus, for M, >3 (approx,) the laminar boundary-laver flow

for thermal equilibrium is completely stable at all Reynolds mumbers
in the absence of a positive (adverse) pressure gradient in the
direction of tho free gtream,

6. Detailed calculations of the curves of wave number (inverse
wave length) against Reynolds nmumber for the neubral boundary~layer
disturbances for 10 repressntative cases of insulated and. non-~
insvlated surfaces show that also at subsonic speeds the guantitative
effect on staebility of the thermal conditions at the solid surface
is very large. For example, at a Mach number of 0,70, ths value

of Rg . 1863 whon T = 1,25 (heat added o Fluid), Bg cuig = 126
min Tmin
vhen Ty = 1,10 (insulated surface), and Rg = 5150 when T, =0.70
Cmin o
(hoat withdrawn from fluid), Since Ry* = 2.25Ry2, the effect
on R is even greater.
T Crpin

7. The results of the analysis of tho'stability of laminar
boundary-layer flow by the lincarized method of small perturbations
must be applied with care to predictions of transition, which is a
nonlinear phenomenon of a different order, Withdrawing heat from the
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fluid through the solid surface, however, not only increases Rg

Crnmin
but decreases the initial rate of amplification of the self-excited
s ;
disturbances, which is roughly proportional to IJ\Recrmi s addition
i n

of heat to the fluid through the solid surface has- the opposite

effect. Thug, it can be concluded that (a) transition is delayed

CRBt increased) by withdrawing heat from the fluid and advanced by
r

.adding heat to the fluid through the solid surface, as compared with

the insulated surface at the same Mach number, (b) for the insulated
surface, transition occurs earlisr as the Mach number is increased,
(c) when the free stream velocity is supersonic, transition never
occurs if the rate of heat withdrzwal from the fluid through the
solid suwrface reaches or exceeds the critical value for which
Ry P (See conclusion 5.)

min

Unlike laminar instability, transition to turbulent flow in
the boundary layer is not a purely local phencmenon but depends on
the previous history of the flow. The quantitative effect of thermal
conditions at the solid surface on transition depends on the existing
pressure gradient in the direction of the frse stream, on the part
of the solid surface to which heat is applied, and so forth, as
well as on the initial magnitude of the disturbances (level of free-
stream turbulence).

A comparison between conclusion T(a), based on the results of
the stability analysis, and experimental investigations of the
effect of surface heating on transition at low speeds shows that
the results of the present paper give the proper direction of this
enfeeh.

8. The results of thc present study of laminar stability can

"be extended to include laminar boundary-layer flows of a gas in

wvhich there is a pressure gradient in the direction of the freo
gtream, Although further study is required, it is preswmed that
only the local mean velocity-temperature distribution determines
the stabllity of the local boundary-layer flow, If that should

be the case, the effect of a pressure gradient on laminar stability
could be easily calculated through its effect on the local distri-
bution of the product of mean density and mean vorbticity across

the boundary layer. '

When the frec-stream velocity at the "edge" of tho boundary

layer is supersonic, by analogy with the stabilizing effect of a
withdrawal of heat from the fluid, it is expected that the leminar
boundary-layer flow is completely stable at all Reynolds numbers
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a certain critical value thet depends only on the Mach number and
the properties of the gas. The laminar boundary-layer flow over a
suwrface in thermal equilibrium should be completely stable for

M, > M, say, where Mg < 3 if there is a negative pressure
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APPENDIX A
CAICULATION OF INTECRALS APPEARING IV THE INVISCID SOLUTIONS

In order to calculate the limits of stability of the laminar
boundary layer from relations (2.21) to (2.29) between the values
of phase velocity, wave number, and Reynolds number, it is first
necessary to calculate the values of the integrals Kl’ Hl’ Hp,
P M3 5 NS" and so Torth, which appear in tho expressions for
the inviscid solutions ¢, (y) and Po(y) and thelr derivatives

at the edge of the boundary layer. These integrals are as follows
(equations (2.13), (2.9), and (2.10)):

Ip

(v - ¢)°

dy

|
|
\
|
| ) -
| Kl(C) s
N (W o C)L‘
} 1
|
|
| N,
‘ ,‘ i e M’Qg(w - a)f C (v - 0)2
} NE(C) = Eyfly = By = | ( ¥ dy ! = d:f.—EHE(G)
i W - e i
| U')']_ Uy.l
|
|
|
ny ny.
| e e 5 o T
i By oM Aw- i 2
| M (C)=H°H1~H3=‘ (.-Ti_..:_)_.__ 1y 0 ( ) oy ‘ (TV-C) dy
2 5 T y 2 ! P
253 v (v-c) Uyl
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T3(e) = KjHp - X

/‘y
2, Mog(w- c)@
= dy dy
B
1 (w - )=

and so forth.

Terms of higher order than o in the sories expressions
for 'cpl and P> are neglected. When @< 1, the error involvsd
n
1s small because the terms in the series decline like

for « > 1, however, this approximetion is Jjustified, at 2
the values of ¢ that appear in the stability calcwlations
the 10 representative cases selected in tho preseont paper.
example, the leading term in R.P. Npp,;(c), shere k=2
: Jk-1 y
| S N Sl
18 approxXimately —— | |
k2 13(1 - e}l

in R.P. N3(c). The quentity in the brackets is at most 0.12 in

multiplled by the leading torm

the present calculations; for example, R.P, N.{2} ~ 0,06 R.P, I’TS(-:;).

Moreover, R.P. N"k(c) # (1 - ¢) R,P. N?kpl(c)-' Similar aspproximate
) e
relations exist between R.D. MEk(C) end R.P. MS(C),' .and, in
3
addition, R.DP. M3(c) 2 41 =) — R.P, II3(c) £ 0,005 81 N3(c),
0 .
at most,

The only integral for which the imeginary part is calculated

is Kl(c). At the end of this appendix, it is shown that the con-

tributions of the ima zinary parts of HQ, M,, and 33'3 are
5 -2

negligible in compariscn with the contribubtion of  I.Py Kl(c).

General vPlan of Calcwulation

The method of calculation adopted must teke inbc account the

7/ dvr\ !
fact that the value of 9-— p(-1-L at the point y =y, vhere w - e
ay \ &y : c :

65
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strongly influvences the stability of the laminar boundary layer.
Accordingly, the integrals are broken into twc parts; for example,

.VJ 1Yo
Kl'(c) B dy + S &y - M02

| W R
¥y {w ~ c) f}yj (w - ¢c)

]

1

Kll(c) + Kyo(c) - MO‘2

[a /&
vhere Y5 > 7,- The integral Kj;y(c), which involves E;Q)%)
6 “W=C
is calculated very accurately, whereas Kie(c) is calculated by a

more approximate method as follows:

Ip
T

Klg(c): - RY: ol 2 (1)

' W ~ C
J

This integral 1s evalueted as a power sories in c. The
velocity profile w(y) dis approximated by & parabolic arc plus a
straight-line segment for purposes of intesration. In the more
complex integrals Hp, M3 y and N3, the indefinite inte-

T A
grals mhabery 4y ' il ————— 4y &are evaluated by 21
R e {w +-a)c

73

or 41 point mmericel integration by means of Simpson's rule. The
values of w(y) are read from the velocity profiles of figures 1
and 2. The value.of V53~ =2 is 0.40 in the present seriss of

calculations; this velue is chosen so that the point ¥

=R
v v .-j
never too close to the singularity et y = s Take
'\yj
= iy
b ll(c) 3 = dy (2)

Uy (w - e}
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Ny
It
The integral Kj;(c), or the indefinite interral S - Ay
v (w ~ e)”
(vl
that appears in HQ, M3, and 1\73,, is evaluated by expanding the
integrand in a Taylor's series in y - ¥y, and then integrating the

series term by term. The path of integration must be taken bslow
the point y = y_ in the complex y-plene.

Cc

Instead of caleulating the valuea of the velocity and tempera-
ture derivatives wc(n) and Tc(n) directly, it is simpler to relate

these derivetives to their values ot the surfaco by Taylor's: series
of the form

( o .. (n+2)
e fn) o (o) x| E el e S Rl

\ -
The derivatives at the surface wl(n) and Tl(*“) are calcvlated
from the squations of mean motion (appendix B).

The integral Kll (c), for exsmple, is finally obtained as a
power series in Jo =Ty =0 and in *J ¥ -0 = G plus terms
involving log 0. The phuse velocity c is related to o Uiy

i \
i Ay A3 3
Sl . O dyas 0 g +Mu o
1 2 3!

I

waere

Terms up to the order of = arc retained in order to include all
terms involving lei ¥,

67
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Detailed Celculations

In order to illustrate the method, the ovaluation of K‘l(c)

is given in some detail,as follows:

(1) Evaluation of K (c):

o2
& (c) = et Ay 3 M F
71 (% - ¢)?
(a) Define
i’\:h
Kll(c) = ’ - --2 ay
Jr; (v - ¢)
Now
7 T
3" L NG N
(W - C) (ffc') (L/ - J(\ \]r’2
where
i wc" e ) i
AT = A el -y At (. T )T ¥ w
2*.»10 ( C) 33wc'k C)

4
The function -y is developed in a Taylor's sories arownd the

point ‘w = c as followss

@) 0, oy et
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where
Then
and

1

(

]

QL.

[_(yJ - ‘JC>2 - (yl ~'¥,

s

T
\4

ek
Lo
$iB
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where
-is
Ty == |- TP
yj—yc-:(yj-yl)—(yc-yl =i -
(k)
The coefficlents (—— are expressed in terms of derivatives
\p‘?
of T and w at 3= yl ag follows:
Define
¥ /. il
1 i il S
£45) = (f-\ k>0
(k - 1) k! (w')@\¥=/
iy
) (y) = -
¥ (w1)?
oy 1- (‘I‘ \v g8 g ,.-"-vr'>
y = sl T e e —— ] e
8 (w')< \\Ue/ (w')° ay KT
Then S i’ e
e
ol 5
(wc')g(k - 1)k! I\ o
C
P ML\
Xk (yl} . 2
i I L = - - AL . - e T
K fk(-yl/ " "Jl) (yc | ot o yl)
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(The method adopted for the caleulation of | fk‘n)(yl> from the

velocity and temperature derivatives

at the end of this appendix.):

From the expression for Kj,(c),

I.P. Kll(c) = I.P. Kl(q)
Vo
= {T)
= g afsin Kol ’(y \ + o
17 * 9% (7
and.
| 13
R.E. Kil(c) % ;ZTE-= C, * €0 * 0
T e D
P
’l(" i
+ Ufo XJ )
6. viz
720
where
Ll Y
k+1
o ) i
T A IR, e A | £ (v
A el B PR w1 o(71)

2]
I

wl(J) and Tl(J) is given

= () 75 )
o’kF'O (k)(yl) "
e

0L k€ 5 (s5=0‘)
== )

g = afz(&l) " a2f3<yl) + a3f4<51> + auf5<yl) + a5f6{&l> S
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o = ol () + 8%y () + 20, (1) ¢ 2ty )+
“ [Eaf3(yl) + 3a2:f‘hﬂ(yl)‘ + ha3f5<yl) + Eahfs(yl') i i }
; ' 1.
“é[ 2"(r) + B < ) ]

ey n) - ) ) ]
+ [3af)+(yl) + 6aaf5<yl) + lOa3f6(yl) 2, ]

.

af nt(y )_* an llt\y ) “':! _% i:QafS (yl>4- 3a2f)+"(yi)+ ...}

I 3afh (yl) 6e° f5 (yﬂ+ 4'. :(f1)+ 102°F ,(41) J

§), = = [afaiv<yl) S J - -i; [231’.'3" '(3’1) + ae ]4—23—“- Eafh"(yl)-l' .o ]
o [haf,j'(yl) + .. ] + [531’6(.’)'1) = ‘5

k

A:c_‘+l
B = y Gex i Sl e o
. " t T
— fod 1)
Ak o g & = O.LI-O



NACA TN Nc. 1360

(b) Define

Jo i
KlZ(c) = ay
(o]
Ay {w -~ ¢)%
g
Al o
= Yy - 7y)

where

Ik 1{, .
a = J e c\_y - yl)

040 W2

The velocity profile w(y) ie approximated by a parsbolic arc
in the interval O.M0OL ¥y -y, ¥, -7, 2nd by a gtraight line

e

(w = Congtant = w(,m)) in the interval ys ~T S X =55 2.0,

The value of ¥, is determined by imposing the condition that the

area wnder the parsbolic-arc straigit-line seyment egquals the area
under the actual velocity profile w(y) in the interval

0.40 f___ ¥ =Ty S_—. 1.0. The parasbolic are W= 1 + m(y - yl) = n(.'f i yl>2

ig determined by the following conditions:

when y:yu(. 1,

w! = O
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vhen Y = yd and Ty n ¥y " 0.40,

- %)

where w(yj) is read off the velocity profile of figures 1 and 2,
N

The value of y, is chosen so that the parabolic arc fits the
velocity curve w(y) closely over the widest possible range,

Hepaas =il

¥ (|20 Lo om AR
T = Tl - RT:L - l) - °-—‘-§--- I.‘O ['W e 5 = vl v

-

Therefore

Y.
i

2= T2 (Ty2* i) - KT]_ b S - Moeka-c.l ) - L (T + )

where

and

h
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I}c is evaluated by approximating w(y} by a parabolic arc as

followss:
W i) e
1 \A -m - QD(Y o :Jrl\’ 3 .
Il = —— I ¢
\ff \’K+m4 ;n(y~31)_i
- 0K, l'O
I 1 m+ 2n(y - 73 13)-3-;‘-1 2k - 3 k(-n)
k™7 (k-1)A [ il 5 SYk-1| o e
L +m(y yl) Tl - \)J JO'LJO
where A = = Win.,

As a control in the calculation of The series expression
(oo

Z ak(1c+l) & for K 2( c), use is made of the fact that, from

k=0
the definition of Ik and | J,

1
Lim (I, + J Y ==
b R tOHY e
6 =y | O]
':. (\J 55 b el
and therefore
a1:+l\ ik k

1im | —— ) = o —
IO v.r(yj) o+ 1

The remainder after N~ terms in the series for Klﬁ(c) is given

approximately by

5
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RN + 1) tex;m}

"(y J) J

The real part of I&(c) is obtained by combining the results
of (a) and (b); that is,

._-...]

T

wll:c] +_- K’.LQ(C) i Mo2

R.P. K;(c) = R.P. [K;4(c) :

(2) Evaluation of Hy(c):

The integrand of this integral is free of singuwlarities in the
region of the complex y-~plane bounded by y=¥ and ¥y = Vo3

therefore H,( is evaluated by purely *mmemcs:l integration. The
actual proce&ure employed for the calculation of integrals of this
type is as follows: (The integral :Il(o) gsexrves as an illustra-

tion,)

(a) Define

b b | -,
il 2 o 2
El( c) = = pv” dn - 2c | pwdn+ ¢ p dn
0 e} e J

where
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and

C—

uo‘:\'

v s
v ¥ x®
(o]

(b) With the approximation that the viscosity varies linearly with

- the absolute temperature, the velocity w is the same function of
the nondimensional stream function § ag in the Blaslus flow; that
is,

w = v (t) - ()

vhere { 1s defined by the relation df = pw dn (appendix B).

From these relations

o an = E»r(f,)ﬁjn“l af = ’F"B(“B)-i # dng

since df = wy dng. Moreover,

\

\

\

\

\

\

|

|

|

‘ d

‘ -

) d_ = e - T s 33

| f wi ) ( (TIB
\\ 4

\

} where

\

\

|

\ ri o B 2‘] Z =4 2
| (v) [(T 1) =By Wit e M 2 vy
\

|

| For, @ = L

\

|

|

| Vi
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(c) Finally, from the relstions given in (o),

Yoo
2

(’Yo \

1 St

H,(c) = 7 vy dng - 2c Wy dng + c/
\do Jo

for the Blasius flow. For

vhere b, is the value of O|j—=
X ¥
G 2k

the insulated surfaces, b,, which is somevhat arbitrary, was

chosen as 5.60; whereas for the noninsulated surfaces, bo = 6,00.

(The value of wy at ny = 5.0 is 0.9950; vhen =y = 6.00,
Vg = 0.9975. The value of b for the insulated surfaces is the

value of 71 at wvhich w = 0.9950; whereas

for the noninsulated
surfaces is the value of n for which w 7

5.) The advantage

b
of this procedure is that the integrals ,(‘ W nd'.‘xB are calculated
Ho

once and for all.and the value of Hl(c) depends only upon the

values of b and e. In|(fact,

vl 1 s e
ol L \\
WC -9[,0 y ~b-’-‘"3967
B 5'_-; i o e
NESE
gince
i""‘_.‘_:""\
* A
S s =l 7 30)
o B }C/B
and
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Also,

and

b rbo
b= an = T dny

/0 JO

= b+ L.73(F; - 1) + 0.6667 2 : tu?
= b 0 2‘1-0 067 Loty 2
= o + 1.73 (Tl - l) - ‘—--é'-—-- MO J -+ t_.3(:’0( """"é"“" I\j.o

See appendix B, (Incidentally, the lsst relation shows the effect
of free-stream Mach number and thermal conditions at the solid
surface on the "thiclmess" of the boundary layer.)

(3) Eveluation of He(c):

y 2 y
o2 g Mo=(w - ¢)2 1Y (v ~ ¢)2
H2(0)= &y —— dy
y (W = 0)2 t . T
i) ']
2 Ny Yo BT
2. p , (w-c)? T
= o 2 d.y i 3 d -'MO o e d.y Q.y
J1 (w-c) ljyl T Wy, U9y T
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Define

2
L &

Te T ; (w-c
Bl = | —Ee o
Jyy (w-2¢) % T

g
2 (w ~ 0)2

dy dy

(a) The integral ng( ¢) 1is evaluated by methods similar to those
already outlined for the evaluation of H,(c). Thus

i ‘Py (w - c)2

Vi1 Jyl |
Yo 0k g I"\yg "'}Y' €154 7o ' py
e dy v dy - 2¢ i dy | ewdy+ &% ay l p dy
gy, T Jrn . @n W N
P B [P [B y 'oq
= Tdng | W dng- 20’ T dng | g dngac Try dng
‘ ' |
T No. - Jo gatl o JO o) /
where
s ;—- . r(T it il % 2~i. Wy - i M 2y 5
e ¢ L & ) i i 13 o (-

The nine integrals in the expression for Hgg(c) are svaluated by
numerical integration using Simpson's rule,
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(b) Define
J2 ¥ 5
B ()= _._T.___.é i Rl
J1 (w - c) U1 T i
I ¥y J. 3
J q e 2 r Laide
= = d.y[ — dy-F'P Lo MR
2
yp (002l Ty, -0y @
Define
ny ¥,
['7J i)
Hell(C) = i --2- dy (\ EK C) dy
{."yl ('W - C) ".;gyl &4
Hgm(c) - e A5l Al ay

Ji

L v o
2 W-cC
= [eee,
{ly‘j (W - C) :‘!yl e
; -rC 1y ) fy.e 2 o)
W = b
=J i & f (v-c)* | _J 2 (v-c)
N
Y3 (w-c)? !3’1 B Jys (w-c)= ¥ it

81
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But
Iz
f - e 00 = K12 )
75 (w -c

and
Pya 2
| 9’5—-?1- ay = &, (c)
INEY

go that

Vo Jo 2
¥y T g (w - ¢)
EQlQ(C) = K 5(c) Byc) - J —~———~§é dy j; — dy

w - C
B

Define

P(c)

i}

Wo | o
e G(y3 ©) Ay
lv (W R 0)2

D
g o T

it VL. PR TSR
b2 ;o yp (v - ©)®
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whero
b o
G ) (w; c) i
‘JlT's
[ ib I(\’o
' ; | dn
= —-an - 2¢ — dn + ¢ {7 e
1k it b
U gn ["s”:
and.

; S [(T -1\~-MME}W-7'%MEV2

~
[

The integral P(c) is evzluated by nmumericel integration using
Simpson's rule; the required values of w are vread directly off

- the velocity profiles of figures 1 and 2, Finally,

Hp, ,(¢) = Kyole) Hy (e} - B(c)

The integral Hg]l( ¢) is evaluated in exactly the same way

as Kjy(c) where

(W - C)e o) ) /\L,f;\'
Fe s oy )
T \C " & \T /
and
o 1

b

TRPTLARNER s < Lt e

a
(WS
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4
R.P. [Hgll(c)] = (boag + coa3 +d.a + noa5>

3 2 3 L \ g 3 i
: o(bla + Ccqa” + dla, - Eabo - 3a Qs ha do - 5Ha no>

2f @ 3 362 S & %,
+ 0°(bya® + coa’ - 2aby - 3a‘c, - ha d, -§.+ 3ac, + 6a d +10a no>

: 3( 2 . 2 LS L giam
+ 0 \b3a - 2aby ~ 3a%c, + 3ac; + Ga dy + B,

.+.

4 ' g
i G 2u.b3 e B R 3‘1,!.>

+
Q
\n
Mg
n
*_
N
L
'
wb"
]
(o)
Oii
K
n
8]
] -
Qa
e ey
R
1
q -
w o=
Ra) ]
o ,o
N -
SN
P
s !L/
i
= |
N
1
- -3
[
e
[t




| Ay - Aghy o Tl
b3:<§é ke 35(7)
1
\ o)
y 3t6(77)
| 1 fz(yl)fo'<yl" 7 f2<yl) 4 Tl') 1 2 :(y.])
i g g ol it Tl :
’ i 3 [f /Yl)_jfe b fo(’-vl) TJ 5 "o(yl)
| |
| s b)) 1
L i e %2 Akl

| o j f1'(n) 1 LEY%'() 1 { A ,/T1'>2_% }

| Al a 5 ’:’ i o

+ S EoR Ry R |

{ -'-1(3’1) rf (y:l) 3_‘ 4 ("l) :f;o' (:ﬁ_) 3 13 fl"(y’:‘)
T 39 e <"r ]) !_ 0(3 15 9 Iﬁo/yl) fo(yl) 18 fo(*’r l)

L f(n) 1 B) [ BN [ 25 _....__./__ﬂ

\ - A Sy —— 7 e, o B

8" 2 yy) 16 fo(yl) 1/ yolz 3 3 e LR \Tl
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ie]

o

i
=i
Lo,
S

1
131,13
S B
I

o ot ot om /’j_"?}-
se il M S e
Ee e A

86

P 3 Ee'im) . 2 £o(7) To'(vy) 1 [B'
2 e o et e e
1w ). 2 L) () WG
2 "
Ty \Tl/ Ty T, Ty
..i-.... fﬁl) r '.._T_].._'i.)_ ..—-« - }”
16 fo(yl\) ’I.‘.1

Tl'\ '
el (Jj
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e

1

Tll
-?.A—-—--}-—+2<
3 T

i L\ :
- ol R LEIRRL . () 2l
Qy = = o em— — - — -‘-—'°+
MR - 3 S g g =y g L

2 f3(n) 1 T(n)
w O fo(yl) 20 f (3'1)

3 fl(yl) B o Tyt "
" 50 P Tl
2 fo(y]_) = it
h e Ay,
e (B~ el B, 4 24 apngel .
i 3, 2 1 3

5

3o (Ve )2 A

36

T

i Tl"\ /Tl N
+ 6

< Tl'>
A2 -
Y
1L

)6

)(2 o) 123 2(;1_5-’

T ) P

X>4(f1



=
il

L
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g c- t 1
o T s

5

1360

e B AN i S WMt - i g 2L kL &t
N - gyl - B - AT S ke
Ak-+1”' = i Ak”'-}% 'AI" 3A It,\_L a nl Ve 2) 3

iv A A s 0 ; 6A ¢ LT A v A in k=2
Ak—‘-l - ‘1,2.5..}1_ - .2 A.k - 3.2 411: o 2 .L\.k - 11.2 :.k L=

gl B
) (m) o T (w-l) . - —
Tkl k ey
e
A AT
33
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2
Blo = A3A5
Finally,

RE. By(c) = R.E. By (o) + I (c) - M 2, (c)

(1) Tvaluation of M3‘(c)

vy &
» f2 bie o 8)* e \ (w - c)®
My(c) = i A e = W.E 8y o i
T ¥ - 2
M3(C) = M3l(c) - M Mﬁ (c)
vhere
o Ay
© (w - c)? T2 P o (v - 0)2,
M. (c) = h Aol sip—— - &y
7 ™ 2 .
Jy;; Y (w - ) Uy
and
¥, g
2 2 2
(w = c) (w - ¢)
c o S dy dy
2( ) ; o T ]
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(a) The integral M32(c) 1g evaluated in much the same way
as H22(c); that is,

3M abo E 'lbo B L
b 32(c) = v dng Twy  dng dnB
o Ung VO
b0 ! Do (i1g Py i
- 2c i dng ’I‘wB d'qB dnB+ Wy ding Twy~ dng dnB
‘ 0 My U0 : 0 T AY
2 ﬂbo Ybo ,'\“QB 2 bo bo
+ C dnB J TWBC d:qB dnB+ WBQ dng TnB dng
iJo 1 Yo Jo B
\
b, (o fing % /o, bo
+ & Wy dnp ' T dng d:qBE" Ec3 \L LA dnp | Tag dng
0 0 /
tnB o B
‘bO Qbo QB : ’bO '\bo
+ dnB Ty dnp dnB j+ ¢ dng 'l‘n_B dnB
{110) N 0 / Vo YN

where bo has the same meaning as in the evaluation of HQQ(C)
and where

T =T(w)=T) - [(Tl -1) - Z"“;""l' 02] Vg - Z‘—;"E Mog‘“fBQ
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The integrals in M32(c) are evaluated by numsrical integration
uging Simpson's rule., Values of Wy o are taken from the table in

appendix B.

(b) For convenience, the integral M31(c) is transformed. as
follows: '

1\'131(0) = M3ll(c) + M312(c) -‘M313(c)

where
’ 'y Ny
J 2 A 2
w - C) "
M3ll(c) g ( ay T édy (w - c) i
T {w - ¢) T
Uyl y ]
1Yo 5 Jo i 5
W~C T i
I"I\ lr)(C) = .(.__.'].:‘__..)_.. a_y ......._.'..—..---.é dy (J c._)_... -
i3 v J1 U7 (v - ) Uy T
1P
2 o) Vg ,y o)
W~ C P -
My, (o) - LR g ag b el
. 3 ir g (W y C)?‘ T
.UyJ YJ ! y1
It is recognized that
J
2
= 0)2 i
( oy = Hl(C)
i
$25]
W W ~
2 T (W - C)C
- dy e Ay = H, (C)
Uy (W - C)‘" m 12
J /71
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Therefore

Mz, be)) = Ball) 3912(0,)

By additional transformations, the following equations are obtained:

Mjl?(c) iy Hl(cj P(c) ~ Q(c)

where
Wl T W ete)
Q(c) = ( ) dy dy ( dy
T (~r )2 T
UyJ ")"J W C y -~
or
E )2 n e )2
1 - iy 5
Qc) = — .(..L_S..._.d_n r an (-..w il dn
m
»d oy T domlv <o g T

The integral Q(c) is evaluated by nmumerical integration
uging Simpson's rule; P(c) is evaluated in the calculation
of Hag(c).

The integral M311(C) is obtained in exactly the same way
as Kyq(c) and H, (c); that is

Ak B ;
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n a L

R.P. Mz (c) . ( a” a* : ‘
. . hJ (o) = - — —— 2 k= —-— F
311 Tfo y]_) 55 + O 5 | (o] 5 + O )
0'3 a3 2 4 fl(yl)
% £9a® Vs ; In (a - o)

Wolin) \3 / {(a - o) B £(71)

wim

Finally,
B.P. My(o) = R.2. 2y (o) + (o) [B, (o) - P(c)] - Qo) - 1A ,(0)

(5) Evaluation of N(c):

1 _
\y =
D l)y VY.

SR @ 2 Sl el o
Ny(e) = [( = =g ] ay | = dy - M %lay

dyy W - c) | L’T)’l i Jy W - c)?

{?.VQ py

2 2 I2

N3( gy = s dy | S dy Bl 44 dy

Jry (v - c)e U{VJ T g (w-c)®

rV2 Ny 7
M 2 G ] Lrs o4l IR Ay
¥ 0 o - . Y l s ~;
0
Jyl Uy y o kw.oie)*
Ny Ny
e L e . G 0)2
! © o "% i (.V?_ & y) dy
J1 1 -
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It can be shown that the second and third integrals are identical;

therefore
No(e) = Naa(o) - 2M 20, (o) + M M0, (o)
3 i e S B
where
1 Yn o o
b 2 ™ (w o (;)2 i 2 T
I\T3l(c) = - | 8 dy dy
, U ot
i AR | T dy (v - o)
5""\ y‘ r
i .10
N_(c) =1, .(c) = - a e .
30 33(¢) AR R ¥ (72 a) dy
{/yl \ « C I'Y'l T
v y
M. (o) = pady (v - o) -
: I 71

(a) The integral N3lp(c) is evaluated by numerical integration

in a mamner similar to H,(c), Hon(c), and Mro{c); that is,

N7 T )2 Wy
‘ N Wow ol ] '
NSA(C) = dy e, &Y dy

Uy, Uvy ¥

1 {1 O N ab b f’r" ) b 7

2
Fiot dnl ow dn| dn-2c| an!l pwdy f an+ 02 dn | pdn
4
b0 Yo JTI o) i o o
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k b "B by b 3 b
N, (e) S Tdng| vy dng] T dng-2c| Tdng{ vy dn_B. T dng

. \do 0 B 0 0 Ung

5 b, "B b
+ C T cqu dn T d.nB
to Uo tnp
where.
¥ 2 b i R
[(T - l) - —— M ;Im% e mb Vg
The integrals in N3h(c) are evaluated by numerical integration
" in a mammer similar to that used in the evaluation of M32(c) , and

so forth,
in the calculation of Hy(c),

Most of the integrals will already have been evaluated
Hop(c), and Mge(c).

(b) TFor convenience, 1\I32(c) is broken down as follows:

s y -
s v G-
Uy e =) ¥y
g n y(w- )= ia Py(w- 0)2
22 (y . y)d_y+ od d;V" 6."? "Y) dy
(w s (s c)? s i
' L"' 7w C dyl



Let

where

N

1l

321(0)

i

N3?2(0)

i

N323(c)

Now,

2
N. (C) @« .
323 :
J
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(U8

Noo(c) = N321(c) + N32?(c) - HSEB(C)

T b e (v - ¢)?
e e
' Uy

Since Yo = Iy = 4.0, 8 ang
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it is found that

323
where
W, } Vi
2 2 2
I w~-C
P,(c) = : dy b - ) (y - yl) dy
. 2 il
b
l m
= = Gy(ns c)an
b g (w - o)
and.

; o] o b . b
W W 2 n dn
Gyln; ¢) = , Ty dn - 2¢ =q 8y + ¢ A
Tl i iy

Pl( c) is evaluated by numerical integration using Simpson's rule,
Defline

Io

i 72 (% -~ 0)2 i
I‘1322(0) 3 : (-W ! c)é &y e [_(3'2 - :fl) - (y - 5’1)]6&
U7y

155}

Since
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and

T2 2
(v - c)
T ay = Hl(c)
241
it 1s recognized that
J
L e 1 o) ‘l
W =C
Hep (o) = Byolol Hife) = (3 - 7)) &
71
b N
2Z(W- 0)? et D ¢
(y Jl)d.y- ofw- c)gdn an :-.——5 p(w"‘ - 2cw+ ¢ )d'q dn
Ty, (o 0] b {yo 0
(w c)2 + k 2 '™ B 5
—-—;——-(y = .,Vl)dyz--P- Wy dng J T dnB - 2c iy d-qB T dﬁB
1 b \do 0 0 0
- B 3
¢ Lot any, T dng
{
0 dJo

The integral I\ (_".“'._é...cl.. (y - yl> is evaluated by numerical

un
integration in exactly the same way as 1\131;(0)'
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The integral N3? (¢) is transformed as follows:

vyJ
(v - C)
¥3p, §0) = o )2 f {(ye Wt (L F )] o
! Jyy W-cC J7y
But
,YJ ¥ )
r T - dy EW - C)- sl = HQ (C)
¥ 2 T Sk
Jyl (w - c) 1251
and
f (yr\"ul yc":i’l)=l'°'
so0 that
ligo l(c s {1~ 1 Heu(c) ll(c)
where

J T ry ( )2

"

Jo. {c) = dy 5 -7 ) &

i w2 6)2 ] % 5
2R} 1RE]

The integral uf) ( c) 1is evaluated in the scme vay as X (c). Thus
& o 113

O
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L
3 o L
R.?.J C = o 0'5 - -
e 5%)]

4 1n< \ 1 f1(Y1) v 5k fl(yy g 1'(3’1);f1(§’1)/fo"(13’1) ) |
) o) ° FEo) | [S(IF [/

‘ 2
s Nl B
o SN RO 3 R S
. 8’ +a'C_ a.DO+U[-h—&aCoxa.(5Do+Cl)

il

3 02 ~a—+ 6550 < 1070 o isAa3Cl 4+ g3 L haC  + lOazD + 6&20
I 0 0 I o 0 1

L f (vl
+C -—5-po+lf—(——%-haCl—BaDo +05-<-—2—q0>

where

=

Po 1 fl@l)

gy —

PS8 fo(yl)

Byl Ifl (YU £y (7 ), '(71)

Cqy 28 ‘t (yl) Efo‘\ Jl)]z

b fl(yl) 1 f?(yl)

DO:E—NFEEf(m o b ?Of(yl)
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‘ Finally
| R.P. Nyp(c) = R.F. NBQl(c) + N322(c) - N323(c)

(¢) Defins

‘ J2 J o ]yQ
. D ) i 7 i
| N,y (e) = r - ( )—-da' el G
3 “ Gt % 0)2 T (v - 0)2
U 1 g

After several transformations, the integral qu( ¢) 1is brought

into & more convenient form

M3y (c) - z\,r3ll(c) + Kpplc) MEHQll(C) - Hem(c)] - I\Isls(c)

where
VY ¥ ny
Nan (C) = J I oo p (.W 2 C)—ev d‘y g J -—-“'D dy-
| ! T TR e I (w - )2
N1 Al Gy IJY L i
o 3 o ny
T A ) T
\ 1'1313(0) = - dx ( _)___ ay l o dzr
| By T Eit gy B g5y (v - c)®

7 The integral Ny (c) is evaluated by nwmerical integration
3

usging Simpson's rule, Some of the Integrations have already been
\ performed. The integral is given as

| b . "

1 3l r L " TF e 2 ; m

\‘ R L Ll -
y > Jo.up (v - ©) ok o4 (w - ¢)°
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The integral Ng3; 1( ¢) is evaluated in exectly the same vay

as K:.l(c)5 that is,

I:Bll( C) =

)& () +o* l_ipofo(yl) = i‘o’(}'lﬂ -0 (B, - 90)%o((2)

.
(2 -0)° L 3

2.1 - o] - Bte o 220

a

]
S

- 5 . 3
1 a
JLE_.@ r[,ﬂ ...-- ( )+a pofo(yl>+—§11(yl)]-§—E-a%

2

+ 0" i]' i‘ £o (1) * ": To"(7) - 3!:1" '(72) * Bo%o(T2) * —'fl\yl)

s

i <) S
B 23 s e
+ 10 {a~-0) 1'3 1nc+é’~-fl(y.]>-}--Jp f."y>+:~f"\-’"—- +-—C
P i 5 e
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G

1 L 1(3’ 1)1

2 " Sy
+ 0 t\-\g- fl(yl) = £y ( 1) -= 1y (yl) + et g T fl(yl) U’l, j
i ‘
S [ L kel O e
+ 2 a 9“5 ‘jJij(yl} - —3— £, ( l) ¥ = (Jl) el LT --f (yl) a(D+C)

’ k[ £y’ (yl) Poly {‘ o P1>f1 Jl/:”

a

EOPRPT VRO E RSt S

Fa)l”

-‘hfo(yl)p] SN OB O

- g2 -3
i 12 O(Yl)q JL te -G = [_ fl’(yl> i hplfo(yl) By hpoi‘o'(yl,}g
= |

2
: % (a - 0)2,(5,) - -j;_ o oy ey

i £ 3 | 3 f E’lid’l)‘!g

i (a -0) Uf]_'(yl) In {a- o)+ (a-0)’ 1n {a ~a) 2~ .v::.,...._m

#o(1)

._l

2
0

dt : il /02 (31 A ‘l
-3 12(0)% +;;':;(’5“f ik {_ -3 (e, +5 )]
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- LL{T AANENCHE [ V() )] F afo2) 4§ 2eln)

T2z }) 1n (a - o) f =1(7) - o {*J (y’) 1 [flgyl\]e

5 9 Ok'fl)

-t

where

3

o LEE - o
e D ) mi )]

e {.é. e o e ) B O . - ) (3’1);
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o . (5 Y2 "gfgﬁfvyl 13’1

U {UJ B ) 6

SR )T e

() P

o) ) [

‘f yl) 3 fo(yl)

fl\ﬁ)*l (-)1} i Ll( 1)} ( )

D= p,fy (Jﬂﬂﬂl lkd.L, R (31) ( )
E=Pofo'(yl> fo( l> f (:71)

Fop () + ¢5,() - T ()

Evaluation of i‘k(m)

The functiong fk(m)(yl), vhich appear repeatedly in the
evaluation of the integrals Kj(c), H,(c), and so forth, are

evaluated in terms of wl(k) and Tl(k) as follows:

103

() } 2 o] @ Bufy)]
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‘1 £y £ Yo +fk" e o2+ \‘
T Vo = = £y.(y1)+ Ty (71
k“ec / 1\2(1,-_])1{1 1/2 / ) 2 [
|
}
(m) [ () (n-1) m(m-1) o (m-2) | |
AR (Tbo)3 i S R R S e e O |
|
- LA 1(,n-r) ke ol ¥ ’;‘1§hi 0 <mgb |
C =) Il * ol < & |
|
vhere : . ' |
|
. |
Gy =
(wlr>2
|
g = -2;;01{2 ‘
|
g, = -2 {gOAg' e .glAg\) r
|
|
|
F (1) (m-2) | < |
£ - -2 E”OAE (m = 1l)e 1A2 ‘
}
. | |
+ + -v———n—l:—-«——- z (m-z-1) $ g i & A] |
(m - r) S I ) m—15 2 ’ }
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m)(:3'1>: é’goJ' :';" ng>y i (7'e;) ;ﬁ(m) J% (ng>y e
. : 1

i

fg(m) (‘Vl) = -]é_- (T'g )y (m+1) + -]2-" (Tgose)y (m) 0 :_<—_ m g;'. 4
1l
where
L ipe s (m) ()
Tg . So 10
: as), ™ - L,
and

- 12 Gl TR 5
\ ¥y 205
% s
S (m)
19E\'7l/83 0Lms3
Iy
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IR IR R T Sl L el s (i)

" (yl) Keo N T° & 7y p ug\T b r-) il (T & é
_]_... tie (m) 1 ' (m) 0< & 7
- G VRS A G Lngd

y, B 1 vi AE I 1 iv = - 1 " A
T5(¥1)- “‘*36@@1 B s S e T S T

N\,

1

et 666 Tl SS - 5—66-5 le6/)
where
S3(k) ) 3.33(k) ’ 302(10 |1 An(k) 0<x<3
sh(k) s A5'(k) + 38 (B) _qpp (¥) ;2 Dz(k) . 2}37(1“) 0Lkge®

(k) (x) (x) (ks 1 k)

85 = - TAg s Rkl o ST |

20c (K) _ sop (X)) _ 45 5 () 0<x<

3 2 2 =
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2|
\J

5 ;

ct e ' | 5
u6 = - :-?-»f-l,( -+ 3B6 L 6310 - 1805 + ) B9 ® OOCS o 75Dj+

ho y 5 e NEES
-§~C,I.+l5\.. D5 -22)333 +~1:-F2

Ak(m) and Bk(m) are defined a8 previously.

67 B § (1z+1)
G =g Zp

&
2

() 2 L %) ) . (el
o - L0 @ o)

Cu(k) g % @z(vz) : 138(1\:) 3, (1:+1)>
05(k) {: (36(1:) Bj_an(k) g Br)(l" ~))

z 1
C,_(, = B’T
Og = Aofsfy
1)2(1\:) ’ C3(k) " _13_._02(19»1)
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/ Y
p.(E) L o (), Ch(k) . C?(l.+l)‘
2% 3 o 33
4 ¥ .
Dh(]‘ i&ch(‘") t c:).(k) .|C (*‘“))
3 il 7
F- ik
(5 a0 L))
o (¥) (¥) 1. (&)
By | =03 « 2D,

Order of Magnitude of Imaglinary Parbs of Intersrals H MB; and N

0y

In the detailed stability calculatlions the contributions of
the imaginary parts of the Integrsls HQ; M., Hq, and so Tarth,

to the function v(c) are considered %o be nezliglible in corparison

(&5

with the conbtribubtlion of the imaginary part of Kw(c). A calculation

of the orders of mamitude of I.,P. Hy(c), I.P. N%(c)g and I,P. EB(c)

from the general expressions given in the preceding pages ghows that

this step is Justified, at least for the values of phase velocity
that appear in the stability calcuvlations,

For example,

IP. Bye) = L. Hy (o) = m(n,')r,(7,)

c
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where

| -
A"-"é""'":‘"‘cm"O(c‘x)J-lno
e ()
Therefore
2
; s,
I.P.BE(c)=-2r {y~> I i
& 3 e T_}.(Wl 1)

The contribution of I.P. Hg(c) to v(c) is approximately equal

r"a 03 1 w'e
to v |~ e ‘, vhere v = —=—— I,P, f.l( . The guantity in
ol ( :.J 0
L G G 1

the brac kets 1s of the order of 0.03, at most, in the calculations
of the present paper. (In the approximate caloulations of Rg
(el
min
for Mach nmumbers very much greater than unity, ¢ becomes larsge

because ¢ > 1 - —; however, o is small when ¢ 1g not much

M,
1
@eﬂte" than 1 - — and the results of the calculations of Ry )
M1 Cmin
(o}
wl'c
based on the approximation v(c) = I.P. Kl(c) are qualitatively
o1
i
&

carpect (f1g. 7).)

2
From the expression for N.(c), I.P. H,,(C) % -~—c--—2-1‘ P, K”(c),
Fil ]
2(w ")
po that the contribution of I.P, N3(c) to v(c) is approximately

o C . alb i :
equal to v | —~————1|. The auantity in brackets is of the order

2%

of 0.06 at the most.

3G
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The imaginary part of M3(c) ig considerably smaller. In
fact,

[O)

I.P. M(c) = — I.P. K,(c)

9T12(*1,)2

and the contribution of I.P. M, (c) to v(c) is approximately
6 2

gy
91112 (W

!
|
‘ The quantity in brackets is of the
order of 0.00l at maflmum (e 3

egual to Yo

112
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APPENDIX T

CAICULATION OF MEAN-VELOCITY AND MEAN-TEMPTRATURE DISTRIBUTION
ACROSS BOUNDARY TAYER AND THL VELOCITY AND TEMPERATURE

DERIVATIVES AT THE SOLID SURFACE

The mean-velocity and mean-temperature profiles for the several
representative cases of insulated and noninsulated surfaces are
calculated by a rapid epproximate method that gives the slope of
the velocity profiles at the surface with a maximum error of about
L percent in the extreme case, for which Ty = 0.70 end M, = 0.70.

The surface values of the higher velocity derivatives and the
temperature derivatives required in the stability calculatione are
obtained directly from the equations of mean motion in terms of the
calculated value of the slope of the velocity profile. The Prandtl
nunber is taken as unity.

Mean Velocity-Temperature Distribution across Boundary Layer

In a seminar held at the California Institute of Technology
in 1942, the prosent author has shown that a good first approxi-
mation to the mean veloclty distribution across tho boundary layer
1s obbained by assuming that the viscosity varies linearly with
the abgolute temperaturs. With this assumption, the velocity w({) is
b
the same function of the nondimensional stream funchion ¢ = “.\f.,._:
VU JL
as in the Blasius case, and the corresponding distance from the

is obtaincd by a simple quadraturs when o= 1,

Actually, the approximation w({) = wp({) 1s thoe first stage of en
teration process applied to the differential cquations of mean

ptE (¢ ie a small

motion in the laminar boundary laycr, in which p T
paramcter equal to 0.24 for air), and w(f) = w(g) + €Wy (@) + e‘?we(ﬁ
Calculation of x-.-'l(g) for Ty = 1.50 and T, = ‘..OO ‘[‘or M e

showed that the iteration process 1s rapidly com: }'uI'f"ent the con-
'b"'ibut" on of the second teorm to the slope of the vcloc.Lty profile
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at the surface is 5 percent for T;=1.20 and 8 percent for T, =2.00.

In the present calculations the maximm error in the slope introduced
by taking w({) = WB( {) is about k percent in the extreme case.

(See reference 15, in wvhich the authors make use of a linear
viscosity-temperature relation. See also reference 23.)

hat w({) = wp({) for a linear variation of viscosity with

absolute temperature ig seen directly from the equations of mean
motion in the laminar boundary layer. The squation of continuity
ig sutomatically satisfled by taking :

A
s iR = THT
* oy
o
and
gL 1l
L
o]

The stream function U* and the distance along the surface xX* are

solected as independent variables following the procedure of von Mises,

and the dynamic oquation of mean motion becomes for zero pressure
gradient

P (/,. WERTE, o
po':.- Sl 1 ,_...r. w p%‘ b SENOICENER
o Al \ ol
Define the nondimensional stream function § Dby the relstlon

r*

—. The dynamic equation tekos the following form:

P * 1y * x¥
o

O
tdw 4 £ awr\
el o g T Ar s
2 at dﬁ&p' " at )
: 1t
Since p = — in the boundary layer, if u =T, the dynamic equation in

thig form ie identical with the equation for the isothermal Blasius

11k



NACA TN No. 1366

| flow, that is, w({) = w({), or the value of the velocity ratio w

is egqual to the Blasius value at the same value of {. The corre-
e

sponding value of 7 = y¥ Yo' ., the nondimensional "distance”

UO* XK
from the surface, 18 obtzined as follows:

W = -
dn
s “g -
. R
W W
do W o
If ¢ =1, the energy and dynamic equations have = unigue integral and
1 2
. 2

4 ¢
5 ; 1 '. A
N =T S-Q--FT.‘-1)-3~"'“-:'121,§~~'—.—-3‘.M2 r w at
s L- b —{ o q
¢o ‘ | 4 o He

But W(f,)EWB(f,), and,

oy

B B
7 =1 e f Y =3 & 2
= Pony < (T - - : bl
Bran [(1 1) - -Mo‘} A Vo Sllg,t T 3 "B

o



. ‘"’?B_
The integrals Vi

following table, and the mean-velocity and mean-temperature pro-
Ffiles can be calculated rapidly by this method.

of <-:—E>
/3

B
e
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{0

pes

B LAD):)
dnp and { WBE dny &are glven in the

(The values

are used in the approrimate calculation of Ry

crmin
(appendix C).)
Mg "3 aw>>
B i) { = l v, dng WB“ dn dn 4
A B
(0 (O

0.00 0.0000 0.0000 0.0000 0.3320
.20 L0664 .0066 .0003 <3319
Lo .1328 .0265 0024 .3314
.60 .1989 L0596 .0081 . 3300
.80 .26LT .1065 .0189 3274
1.00 .3208 .1660 ,0367 .3230
1.20 .3938 .2385 L0630 .3165
1.40 14563 .3236 .0993 .3079
1.60 .5168 L4210 . 1468 L2967
1.8 L5748 .5302 2064 .2825
2,00 .6298 .6508 L2792 2663
2,20 L6813 .7821 .365h 2433
2.40 L7290 L0231 L1648 .2280
2.60 7725 1.0733 5776 L2064
2.80 8115 1.2319 L7034k .1835
3.00 .8460 1.3¢73 L3h11 .1618
3.20 8761 1.5702 .9697 . 1408
3.40 .9018 1.7580 1. 1478 . 1380
3.60 .9233 1.9306 1,345 .0986
3.80 .oh11 2137 1.488% .0805
k.00 . 9555 2.3067 1,6682 L0640

4, Lo 9759 2.6933 2.0419

4,80 .9878 3.0863 2.4280

5.20 .99k 3.4828 2,8211

S0 9975 3.8812 3.2180

6.00 .9990 L, 2805 3.6167
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With the approximation that u varies linearly with the
absolute temperature, the slope of:the velocity profile at the
s0lid surface is simply related to the c!lope of ‘the Blasius pro-
file. - Thus :

Since w(l) = WB(§)';.

* 3
and
v 0.332
K?sz =
1 iy
oxr

vhere b 1is the value of 7 at the "edge™ of the boundary layer
(vhen w reaches an arbitrarily prescribed valie close to umity).

It is geen that the shear stress at the swurface (or the skin friction)
hasg the same value ag in the Blasiug case

;‘7_:—;(81;;) TR --——;féw\ Bn ¥ A5 " Ll
i ik ay*l . \07)/ Sy e o By < )B
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The reliability of this approximation can be judged from the calcuia-
tions of the gkin-friction coefficient in reference 2k, in which

M cC TO'76. From figure 2 of reference 24, the value of the skin-
friction coefficient for an insulated surface at a Mach number

of 3.0 (‘l’l = 2.823) ig only 12 percent lower than the Blasius
value and only 2 percent lower at a Mach mumber of 2.0 (Tl = 1.81).
For the noninsulated surface, with ’1‘l = 0,25, the valve of the
skin-frichtion cosfficiernt at M_= G is only 7 percent greater than

(o
the Blasiug value and 12 percent greater at a Mach number of 3.00.

Since the shear stress at the surface is unchanged in first
approximation, the boundary-layer momentim thickness has the same
velue ag for the Blasius flow

P
6 I_ff = 0. 6667
V'U*x*
o)

The expression for the displacement thickness &% gives a measure
of the effect of the thermal conditions at the solid surface and
the free-stream Mach number on the thickness of the boundary layer.
By definition,

Yol

]
o

Yy G o
73 T 1)1.73 + Mo (0.6667)

- 1737, + 222 u B(0.6667)
2



For the Blasiue flow

The "thickness" of the boundary layer b is given by
i _ 7 -1 P
b = 5.60 + (Tl - 1)1.73 + L2 M_Z(0.6667)

and the form parameter H = is

Q)QO';
*

-
B 2,50 7w Loibup 2
3 (@)

gv
For the insulsted surface,

¥ = 2,50 + 3.50 (Lf—i M 2\,
[o} O/

\C.

Calculation of Mean-Velocity and Mean-Temperature Derivatives

Because of the sensitivity of the stabilitv characteristics of

‘ ) a f dwr
the laminar boundary layer to the behavior of the guantity -g» (p it A
y \ 4y

the values of the required velocity anéd temperature derivatives ab

‘the surface are calculated directly from the equations of mean

yiil

motion, with u =T {(m= 0.76 for air). Now

2
¢
2

that the dynmamic equation is8 -b

119

w'o= (me'>:. Since {(0)= {'(0) =0,
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where Tl' = wl' .7 - l (T - J.\ZI if @-= 1, In other
words, the value of wl is readily computed from the value
of wl' . In general, w, () is determined from the relation
b k-2 k-1
2 (¢w) = (me')
or

() ‘— s SO 0% 5 (Tm>l" L (e2) |

Wl = l—(k l) ~—~—:'— '\,1_‘ ot o Y 7 t e e »
1 (k- 3):i2! 7"
(s) (%-1)
v . (i
+ bl ( )-L W (k-8) e Lt (Tn)l w_ !
(k-1-n)a! Tlm ¢ Tlm l_

b 2
& el El(k g)wl' +{k-2) g']_(k~3)wl“ o g

erlm
E (k-2)! g(k-Q-r)w (r+].)+' ; ‘T(_I_c 30k - -2) g ", (k-3)]
(k-2-r)!ir! 1 2
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—
5
[eh
-~ 1!‘
W 4
(=)
Q
v_l
+ +
St o
= ~
ke ..W,L = o
- - = ~
] —~ l
. e Et & = mla_
= o _ o e
a : Et &=
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Bach velocity derivative is determined from the knowledge of all the
preceding derivatives.
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APPENDIX C

RAPTD APPROXIMATION TO THE FUNCTION (1 - 2v)v(c) AND THE
MINIMUM CRITICAL REYNOLDS NUMBER

In section 5, a criterion was derived for the dependence of

the minimum critical Reynolds number Rg,., on the local distri-
~min

bution of mean velocity and mean temperature across the boundary
layer. It was found that

¢ [‘I‘ \'ll 76

min T _ L4 2 2
. o l—MO (l-co>

vhere c, is the value of c¢ for vhich (1 - 2)v(c) = 0.580 and

v(c) = - = -}-f- W .._< )
4 (v )) dy

ﬁ<‘fﬁ>° .
T \&A [ 1P i \\-]

<W>J Bq T aq/j

W=C
W '( =y
J v
o ST
C
aW
al =—
/1
= AL |
(o]
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A rapid method for the calculation of the function (1 - 2)v(c)
and the minimum critical Reynolds number ls developed by making
use of the approximation that the viscosity varies linearly with
the absclute temperature (appendix B). (Since the effect of
variable viscosity on the mean-velocity profile is overestimated
in this approximation, the values of Pecr : (fig. 6(a)) calcu-
min
lated by this method are lower than the values calculated for p:TO‘ 76
when heat is added to the fluid through the sclid surface and higher
vhen heat is vithdrawn from the fluid.)

For p =T, +he dynamic equation (appendix B) is

and therefors

) 1 v o2 2 LT }
v o <)n Sw T on
o on
¢ ar\
= e - 2 -
2 E\m

But

go that
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where

=
i!

e

;j—\\

l—(T -1 -T2 (1-"’%3)]

b:!

P
| &
=)
i

2
we) = + = 33 s

g ™ [ BT
:>2 2 q

The required values of 1wy, (E??), and ¢ are obtained from the
\n'B

WB:: c

table in appendix B

The small correction to the slope A(c) is easily calculated
once the mean velocity profile has been obtained (appendix B).
Thus

T L R AlC) =
T s '

The quantity (1 - 2.)v(c) has been caleulated as a function

of ¢ for various values of T, at MO = 0, Q.00 1,80, B350, 2. 00,

3.00, and 5,00, and the results of these calculations are given in
the following table, The decisive stabilizing influence of with-
drawing heat from the fluid at supersonic velocities is illustrated
in figure 7.
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R
Tl cO Re Crmin Tl ¢ (o) 0 crmin
M, =0 I, = 0.70
0.70 0.1945 3650 0.70 0.1670 8140
.80 2695 1080 .80 .2390 2110
.90 3485 Lo2 .90 .3265 613
1.25 .5435 &7 1.25 525 e
1.50 L6240 36 1.50 .6265 38
M =1.30; ¢ > 0.231 M, =1.50; c>0.333
0.90 0.2455 9230 1.30 0.3450 2770
1.05 L4075 392 1.35 4585 275
1.20 5170 121 1.40 5505 99
1.34%22 .5450 92 1.4556 6276 L9
1.50 .6355 42 1.60 7732 16
M, = 2.00; c >0.500 M, = 3.00; ¢ > 0.667
1.63 0.5074 671 2.48 0.6730 186
1.65 5438 207 2.52 L7058 59
100 6155 75 2,62 165 2k
1:75 6749 Lo P2 3105 ik
3.81 Lk 25 2.77 .8295 10
1.85 .T7612 19 2.8225 .8500 9
M, = 5.00; ¢ > 0.800
5.19 0.8008 174
5.20 .8036 80
5.30 .8e62 23
5.75 .9008 6
6.0625 L9350 3
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APPENDIX D

TEFAVIOR OF %— (; &?l FROM EQUATIONS OF MEAN MOTION
T

In order to determine the effect of free-stream Mach numbsr,
thermal conditions at the solid surface, or free-stream pressure
gradient on laminar stebility, it is necessary to know the relation
between these physical perameters and the distribution of the

d \
quantity p i acroge the bowndary layer. The value of E; o} QH\
dy dy \ dy

at the solid surface is obtained directly from the dynamic equation

e
(equations (6.3) and (7.2)). The value of E;: (: §f€> at the
ayioN o

surface, which is also useful in the discugsion of laminar sta-
bility, is obtained from the dynamic and energy squations as

follows:
[de <§ dwjﬂ ; >d2 (fw'
& \ &/ e\l

W 2w1"Tl' wi’Tl" 2w1'crl' 2

S L, "

Z 2 2 3
l Tl TJ. Tl"

Differentiating the dymemic equation once vields the result

2ty vy " (7, "y* g

JEs il 2

A i ———E - w. ' jm{m - 1) §"~02“ ) B
it Dl Ty
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At the solid surface the rate of change of temperature

df';

Bp*

and the rate at wvhich the work is done by pressure gradient o L

x)é

both vanish, and the rate at which a fluid element loses heat by
conduction equals the rate at which mechanical energy is transformed
into heat by viscous disgipation. The energy equation becomes

a Lsnie
4 ¥l | e ZEA %
[EY* < oy* ] S <5Y‘>

or
m'2
2 - -L'\-
" = - a(y - )M 2 -m Mt
1 (7 ) # (ﬁi ) n - <0
Utilizing the expression for w;''' and Tl" gives

2 " ; 3
7 W
i‘_§<‘..> S 1) —— —< )] o(1 + m)(r - 1M 2 (o)

where

—d

{?. (fwi)] i sl 1 8° dug*
el e = - i trnid - =
d'y ;3 3 3 T 12 = ¥ T ll+m Uo)'" Ay

130
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2 '
From this expression for (—1-—— ( Y—-) the followlng con-
dy2 T 1

clusione, which are utilized in the stability analysis, are reached:

v' A L A=yt L
When vanishes, the quantity | —{[— is

8till positive,

Vhen the free-stream velocity is uniform,

2 . ; 5, o
d w! Wl’ ) b
—-E -—-—):’ = d(l 1 m)(7 e l)M02 (___% - Q(l 2 ( )__ 'V '
bt b 4

& [yt
that is, [— —-) is always positive.

e
8
. il

When the swrface is insulated,

2 1 ! (.— J 3
L<Y—> = o1 + m)(y - )M ? "jl)

dy2 i y J.lg
2
a /
and —~—-—( is alweys positive, recardless of the pressure
ay= \T
i
gradient.
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APPENDIX E

CALCULATION OF CRITICAL MACH NUMBER FOR STABILIZATION

OF LAMINAR BOUNDARY LAYIR

For thermal eguilibrium the rate of heat conduction from the
gas to the solid surface balances the rate at which heat is radiated
from the surface. If the rate at which heat is withdrawn from the
fluid reaches or exceeds a certain critical value at a given local
supersonic Mach number, the laminar boundary-layer flow is stable
at all Reynolds numbers. (See section 6b.) The purpose of the
following brief calculation ig to determine the equilibriuwm surface
temperatures at several Mach numbers and compare these temperatures
with the critical temperatures for laminar stability. (See fig. 8.)

When the solid surface is in thermal equilibrium

?\?glu:, ecR )1* (T )Lf:ldx (1)

vhere € is the emissivity, o0 is the Boltzmenn constant, and the
other symbole have already been dofined, (See references 1L and 15.)
Consider the case in which the free stream is uniform and the
temperature is constant along the surface., For ¢ = 1,

/3T To* oW\
Kar> B (s ) 'é;r/l

2 ikl al
vhere stagnation temperature Ty equals 1+ MO v
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Also ( ) \} & §.-.32 if the aporoximation p =T
X :,'-\'

is employed. (See appendix B.) Since kl* = cpﬁ;¥p1 = C M WTl:

— S ol
N T - o Yoo | a B3 f1 AL P L
I, v 0.332 cp\,p. o D ) \[M

When the integrations in equation (1) are carried out, the fol-
lowing relation is obtained for the determination of the equilibrium
surface temperature:

V& @" -9 - (g, - 1) \¥,

vhere

(E;;)é <2521,

o2

2 S LR |
Secr Rl \[(7 l)uplo

The equilibrium surface temperature under free-fli gt condi-
tiong is affected principally by the variation in density pO* with

eltitude h. The results of calculations carried out for albi-
tudes of 50,000 and 100,000 fest .are given in the following tables

g Ty =Ty

h M 2 Tlequil g Yor
(£t) 0 (£ig,. 8}
50 % 103 3.0 0.370 0.355
100 x ‘103 2.0 .220 ; ,185
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In these calculations the following data are used:

¢ = 0,50
T, =2 8%
";¥ = 400° F abs.
T = 4.80 x 107*3 Btu/sec/ft?/(des T abs.)4
e 7.73 Btu/slng/deg F abs.
TF = 3.02 % 1077 slugs/ft-sec

a * = 980 ft/sec

p * = 3,61 X 107" slugs/ft5 at 50,000 £t

o]
- 3.31 X 1072 slugs/£t3 at 100,000 £%
K = 3.35 % 10~* at 50,000 ft
= 3.66 x 1073 at 100,000 £%
Sinesl M As=eh) ssetiie s for M. =3 at 50,000 fest
= le guill P ler =

altitude and for M, =2 at 100,000 feet altitude, the laminer
boundary layer is completely stable under these conditions,
It should be noted that under wind-tunnel-test conditions in
which the model is stationary, these radiation-conduvction effects
are absept not only because of reradiation from the walls of the

wind tunnel but also becauss the surface temperatures are low -
generally of the order of room temperature,

13k
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TABLE I
AUXILIARY FUNCTIONS FOR CALCULATING THE STABILITY OF THE LAMINAR

BOUNDARY LAYER FOR INSULATED SURFACE

138

c X v L Hl H2 M3 N3
My, =0

0.0372 0.0000 0.000k 0.0102 0.5220 0.2889 0.0689 0.2999
.OTh4Y .0001 .0029 .0285 L4748 L2740 .0604 . 306k
Sl .0003 .0099 L0561 .4303 .2590 .0530 .3124
.1486 .0006 .0235 .09%0 .3887 .2433 .0460 .3161
.1857 .0012 .0L62 .1430 .3499 .2278 .0k03 13011
2226 .0021 .0802 .20k0 .3139 .2120 .0350 .3230
2594 .0033 1284 .2782 .2808 .1958 .0301 1301
.2960 .0050 .1937 .3670 .2505 L1797 .0256 L3174
.3323 L0071 .279h .h721 .2232 .1639 .0217 .3084
.3682 .0098 .3896 .5960 .1987 .1487 .0180 .2935
L4037 .0131 .5286 L7418 L1770 .1350 .0139 .2708
k3 .01k2 5767 . 7904 slgalal .1312 .0125 .2618

Mg = 0.50

0.0362 -0.0000 -0.000% -0.0148 0.5122 0.2223 0.0443 0.1927
.0723 -.0000 -.0001 -.0234 W67 2127 .0ko1 .2086
.1085 .0001 .0029 -.0244 .4ohé .2019 .0356 .2193
1446 .0003 .0107 -.0169 .3847 1904 .0316 .2280
.1806 0007 .0254 -.0003 . 34T7h .1789 .0282 .2366
.2166 .001k .0kg2 .0260 .3127 .1662 .0249 2420
.2525 ,0023 0846 0627 .2807 .1530 L0217 .2425
,2882 .0036 L1342 .1103 .2513 .1390 .0188 .2k0o6
53237 L0054 .2010 .1695 .2246 .12k47 .0158 .2333
.3588 .0076 .2882 .2k12 .2005 .1104 .0128 .2179
.3936 .0103 1000 .3261 .1790 .0963 .009k L1911k
L4280 .0137 .5k07 L2kt .1602 .0828 .0055 L1hhh
L4306 .01ko .5526 , 4327 .1589 .0816 .0051 .1397
L4362 .01L46 L5794 L4501 .1560 .0792 .0038 L1262

M, = 0.70

0.0353 -0.0000 -0.0009 -0.0321 0.5031 0.1839 0.0321 0.1484
.0705 -.0000 -.002k4 -.0590 4599 .1786 .0300 .1652
.1058 -.0000 -.0025 -.0791 91 21721 .0279 .1819
.1410 ,0001 .0006 -.091L .3808 1652 L0257 .1981
1762 000k .0090 -.0951 3448 .1569 .0233 .2128
.211k .0008 .0248 -.0896 .3113 L1478 .0209 .2259
,oL6L .0015 .0501 -.0741 .2802 .1379 .0187 .2358
.2813 .0026 .0872 -.0478 .2516 .1272 .0165 L2436
.3161 .0039 .1389 -,0098 <2255 21157 L0142 .2k66
.3505 .0058 .2082 .0k12 .2018 1042 .0118 .ou1T
.3847 .0081 .2985 L1067 .1806 .0925 0085 2272
L1185 .0109 Al .1886 .1619 .0813 .0052 .1987
4352 .0126 L4821 .2363 .1534 0760 .0030 .1787
R} .0137 .5270 267k .1486 .0733 .0016 .1618
4559 ,01k9 .5790 .3027 L1436 .0709 -.0002 .1575

NATIONAL ADVISORY
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TABLE I - Concluded
AUXTLIARY FUNCTIONS FOR CALCULATING THE STABILITY OF THE LAMINAR

BOUNDARY LAYER FOR INSULATED SURFACE - Concluded

‘ c A v i Hy H, My Ny

M 0.90

‘ 0.033k 0.0000 -0.0015 -0.0503 0.4816 0.1303 0.0180 0.0908

L0667 -.0001 -.00L7 -.0972 QTP .1298 .0185 .1133

‘ ,1001 -.0002 -.0082 -.1389 .kokg .1281 .0185 .1366

<1335 -.0002 -.0102 -.1746 .3696 .1253 .0182 L1594

.1669 -.0001 -.0090 -.203k4 .3365 1213 L0175 .1825

‘ .2002 0001 -.0029 -.2250 .3054 1163 .0166 .2055

.2335 .0006 .0098 —.2387 .2765 .1103 .0157 2252

2666 .0012 .0312 -.244] .24k97 .1030 L0143 .2439

’ .2997 .0022 .0634 -.2407 .2251 L0947 .0128 .2597

.3326 L0034 .1086 =.2581 .2026 .0855 .0110 .2703

.3652 .0051 .1697 -.2063 .1823 .0759 .0090 L2674

‘ .3976 .0072 2496 =, 15730 .1641 .0656 .0060 2515

| 4296 .0098 .3518 -.1302 .1480 .0560 .0021 .2185

612 .0130 4805 -.078k .13%0 .04k -.0036 L1431

’ 4636 .0132 L1913 -.07hh .1330 .0463 -.0040 L1373

1812 .0153 .5788 -.0421 .1261 .0418 -.0076 .100k
’ M 1.10

3.0990 -0.0003 -0.01%0 -0.2037 0.%026 0.0673 0.0012 0.0806

.1320 -.000k4 -.0206 -.2630 .3682 .0686 .0038 .1068

.1650 -.0005 50255 20166 .3358 .0683 .0051 .1319

.1980 -.000% —. 0272 -.36k0 .305h .0667 .0058 .1598

’ .2309 -.0002 —.0230 -.kokg 2770 .0632 L0064 1864

.2638 .0002 -.0125 -.4396 .2506 .0581 .0062 .2101

| .2965 .0009 .0072 -.4680 .2263 .0516 .0058 .2293

.3292 .0018 .0382 -.4906 .20k0 L0431 ,0047 .2h16

.3616 .0031 .0829 -.5086 .1837 .0333 .0031 245k

| .3938 .00k9 L1k -.5239 .1655 .0218 .0005 .2310

RIS .0097 o247 -.5516 .1498 .0081 -.0032 .1834

L572 .0098 . 3300 -.56T5 1350 -.0060 -.0087 o076k

4836 .0126 L4hoT -.6112 .1245 -.0203 = 05T, (o) e

’ .5104 .0160 .5789 -.6875 bl -.0360 -.0230 -.2366
M 1.30

0.2541 -0.0008 -0.0561 -0.5982 0.2487 0.0244 0.0003 0.2200

.2858 -.0005 -.0505 -.6508 .2255 .0233 .0016 .244o

:3173 .0001 -.036k -.6987 2041 .0183 .001% . 26L)

‘ .3488 .0009 =R OLLT ) .1845 .0109 .0003 .27h2

.3800 .0021 .0258 -.7856 L1667 .0019 -.0016 .2700

JEhEE .0037 .0790 -.8300 #1507 -.0099 -.0048 .2285

L4418 .0057 .1508 -.8834 .1366 -.0236 -.0090 .1184

4721 .0083 .2khg -.9608 .1242 -.0kok -.0169 -.0818

.5020 .011k . 3652 21 DO .1136 -.0628 -.0294 -.lhgh3

’ .5072 .0120 .3893 | -1.133L .1119 -.0671 -.032k -.5971

.5416 L0167 ST -1.307h4 .1020 -.0834 -:0549 -1.5080
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TABLE II

AUXILIARY FUNCTIONS FOR CALCULATING THE STABILITY OF THE

LAMINAR BOUNDARY IAYER FOR NONINSULATED SURFACE

140

c 2% v % Hy H, ¥, L
M, = 0.70; T, = 0.70
0.0262 0.0056 0.0825 0.0635 0.6102 0.3272 0.052h 0.2748
.0521 .0112 L1645 .0949 5725 .3157 .0502 .2920
OTTT .0166 .2h66 .118% .5367 .3045 .0k81 .3081
.1030 .0220 .3297 .1400 .5026 .2936 .0k58 -3233
.1281 L0274 L4146 L1632 .4703 .2828 .0433 .3380
.1529 ,0327 .5023 .1904 4396 .2724 .0k12 .3519
17 (ol .0365 .5661 .2130 L1191 L2651 .0395 .3610
L1726 L0370 5754 .2163 1162 L2642 .039% .3623
M, = 0.70; Ty = 0.80
0.0237 0.0033 0.0486 0.0279 0.5954 0.2811 0.0493 0.1369
0472 .0066 .0965 L0374 .5620 .2737 0475 1504
.0705 .0099 L1443 .0k30 .5300 .2663 057 L1635
.0937 .0132 .1925 .0L82 ool .2590 .0k37 .1763
L1168 016k .2k17 .0550 L4701 .251k .0h17 .1882
.1397 0197 .2926 L0649 .4l20 2439 .0397 .2001
.1625 .0230 L3457 .0789 4152 .2363 .0378 .2110
.1851 0263 L4017 .0982 .3897 .2287 .0359 .2213
.2075 0297 h61h .1236 .3654 .2210 .0339 .2311
.2298 0331 .5253 L1562 .3k2k .2133 .032) 2400
.2409 0349 .5592 L1754 .3313 2094 .0310 .2kh3
.2475 0359 .5801 L1877 .3248 .2071 .0303 L2465
M, = 0.70; Ty = 0.90
0.0433 0.0036 0.0517 0.0051 0.5506 0.2410 0.0435 0,1426
.0863 .0072 .1028 -.0047 .4939 .230h .0koL .1638
.1291 .0108 .1568 -.011% RREN .2191 .0370 L1846
L1714 0145 .2173 -.0079 .3930 .207Th .0337 .2032
.2135 .0185 .2885 .0096 .3485 L1951 .030kL .2203
.2551 .0227 L3746 .0L62 .3080 .1825 .0272 .2339
.2963 027k 1805 L1073 2715 .1698 .0240 2462
.3166 .0299 5426 .1489 2547 .1637 .0224 L2517
.3268 0312 5762 1776 266 .1606 .0217 .2541
M, = 0.70; Ty = 1.25
0.0346 -0,0016 -0.0237 -0,0476 0.5100 0.1750 0.032h 0.1462
.0692 -.0032 -.0476 -.0797 L6678 .1710 .0310 1634
1040 -.0048 -.0698 -.1013 4276 .1661 .0292 L1794
.1389 -.0062 -.0886 -.1132 .3896 .1600 .0272 1956
.1738 -.0076 -.1021 -.1155 .3538 .1529 .0251 .2108
.2088 -.0087 -.1085 -.1081 .3202 L1448 .0228 .2238
2439 -.0095 -.1057 -.0912 .2888 L1354 .0208 2342
.2789 -.0101 -.0917 -.0645 .2597 .12hk9 .0185 .2402
.3138 -.0103 -.0641 -.0281 .2330 +1133 .0161 2409
.3485 -.0100 -.0203 .0179 .2086 .1008 .0139 .2297
.3831 -.0092 .0k27 L0734 .1865 .0870 .0113 .2069
L417h -.0079 .1286 .1373 .1668 L0728 .0083 .1616
4512 -.0059 .2h1k L2071 .1h95 .0582 .00k2 .0816
4846 -.0031 .3859 .2770 .1345 .0427 -.0012 -.0601
.5092 -.0006 .5184 .3212 .1248 L0314 «.0067 -.2262
.5190 .0006 5779 .33k9 .1212 .0269 -.0091 -.3028
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TABLE III

NACA TN No.

PHASE VELOCITY, WAVE NUMBER AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC

DISTURBANCE (STABILITY LIMITS) FOR INSULATED SURFACE

¢ o —[ 5 T ag ] Rg
MO =0
0.0372 0.0321 25,500,000 0.0038 3,030,000
.OThh L0685 1,500,000 .0082 178,000
L1115 .1103 278,000 .0131 33,100
.1486 .1585 83,000 .0189 9,880
.1857 2146 32,600 .0255 3,880
2226 .2808 1h 800 L0334 1,760
2594 .3590 7 700 .ok27 917
.2960 1535 420 .0540 526
.3323 .5707 2,760 L0679 329
.36%2 .Tel3 1,850 .0862 220
L1037 .9589 1,360 .1142 162
Lb1h3 1.0770 1, ’ 280 .1282 153
RIS 1.2730 1,530 .1515 182
.ho37 1.2940 1,880 .1540 223
.3682 1.1960 3,530 .1k2h Lol
.3323 1.0400 6,710 .1238 799
.2960 .8728 13,300 .1039 1,580
.259% TATT 27,500 .085k 3,270
MO = 0.50
0.0362 0.0251 36,600,000 0.0029 4,270,000
.0723 .0538 2,130,000 .0063 248,000
.1085 .0868 392,000 .0101 145,700
1446 .1250 116,000 0146 13,500
.1806 .1695 Lk 500 .0198 5,190
.2166 .2216 20,200 .0258 2,360
.2525 .2829 10,400 .0330 1 210
.2882 .3556 5,850 .ok 682
«3237 Ll 3,570 .0518 16
.3588 .5549 2,330 .06kT 272
.3936 .6993 1, ’620 .0815 189
1280 .9301 i ,230 .108L 1Lk
4306 .9558 1, 220 L1131k 142
.u362 1.01%0 1,190 .1182 139
.62 1.18%0 1,410 .1384 164
. 4306 1.2150 1 580 .16 184
4280 1.2150 660 L1416 194
3936 1.1240 3,080 .1310 359
.3588 .9788 5,670 .11k 661
.3237 .8at2 10, 800 0964 1,260
.2882 .6869 21,100 .0800 2,460
rf
M, = 0.70
0.0353 0.0191 53,400,000 0.0022 6,100,000
.0705 .0415 3,060,000 0047 3b9 000
.1058 L0677 555,000 .007T 63,400
.1410 .098k 161,000 .0112 18 400
1762 .13kh 61,100 0154 5
L2114 .1766 27,300 .0202 3,120
.2L6h L2268 3,800 .0259 1,580
.2813 .2857 7,630 .0326 872
.3161 .3570 4,550 .0k08 520
.3505 1433 2,900 .0506 331
. 3847 5515 1,960 .0630 o224
1185 .6951 1,k20 .oT9 162
k352 7917 1,230 .090k 141
52 18655 1,160 .0939 132
4559 .970k 1,110 1108 127
.4559 1.1230 1,330 ,1283 152
452 1.1420 1,650 1304 189
4352 1.1230 1,980 .1283 227
1185 1.0720 2,670 1225 305
3847 .9381 4,810 .1072 550
.3505 . 7965 8,880 .0910 1,010
.3161 L6659 16,700 .0761 1,910
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TABLE III - Concluded
PHASE VELOCITY,WAVE NUMBER, AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC DISTURBANCE

(STABILITY LIMITS) FOR INSULATED SURFACE - Concluded

c [ a R J ag Re
M, = 0.90
0.033k 0.0107 111,000,000 0.0012 12,600,000
L0667 .0248 5,960,000 .0028 679,000
.1001 .8221 1,030,000 .o0u8 117,000
- 1385 .0632 290,000 .0072 33,000
11669 .0885 106,000 .0101 12,100
.2002 .1186 46,000 .0135 5,240
2335 .1540 22,600 .0175 2,570
. 2666 .1961 12,100 .0223 1,380
.2997 .2459 7,020 .0280
.3226 .3053 ;,ggg .85153 ;gi
.3652 3777 :
.3976 1638 1:950 .0529 222
.4296 25133 1,410 .0653 161
612 .T7260 1,090 .0827 125
.1636 .T396 1,080 .o843 123
1812 .8810 1,010 .1004 115
.u812 1.0130 1,230 115k 140
1636 1.0120 1,740 1153 199
4612 1.0070 1,8§8 .1148 22;
b2 .9027 3,1 .1029
. 3922 7823 5,590 .0892 637
. 3652 6642 9,940 L0757 1,130
% 26 5523 18,500 0629 2,100
.33 . B, : <
M, = 1.10
0.0990 0.0086 5,730,000 0.0009 618,000
11320 .0268 769,000 -0029 82,900
.1650 .0k68 221,000 .0050 24,100
.1980 0707 85,000 .0076 9,160
.2309 .0991 38, 300 .0107 4,130
.2638 .1329 19,300 0143 2,080
.2965 AT 10,600 .0186 1,1k0
.3292 . 2200 6,260 .0237 675
,3616 2755 3,920 .0297 423
.3938 .37 2,610 .0368 281
.h2L6 L4159 1,850 .okk8 122
4572 .5193 1,350 .0560 0.
4836 6268 1,100 L0676 119
510k .8010 991 .0864 107
.5104 © L9165 1,220 .0988 131
4836 .3927 2,060 .0962 22%
572 .8023 3,320 .0865 25
Jhok6 .6785 5,930 .0732 39
.3938 5766 10,400 .0622 1,120
MO = 1.30
0.2541 0.0451 63,800 0.0047 6,630
.2258 .0818 2&1800 .0085 2,5;8
L3173 .1202 12,300 .0125 10 d
.3488 1636 6,990 .0170 13
.3800 .2132 1,280 .0222 . i
h111 .2707 2,800 .0281 ggl
4418 BT 1,930 .0351 >
4721 4166 1,420 .0k33 147
.5020 .5123 1,110 .0532 ii?
.5072 .5316 1,070 .0552
5416 .7582 886 .0788 92
5416 .8931 1,080 ~0928 112
.5072 R 2,310 .0809 211
15020 .7592 2,550 .0789 265
‘hr21 -6458 4,500 L0671 168
RihE .5ho1 7,980 .0561 829
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TABLE IV

NACA TN No. 1360

PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR NEUTRAL

SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR NONINSULATED SURFACES

c A a R g R6
MO = 0.70; Tl = 0.70
0.0262 0.0339 82,400,000 0.0041 9,900,000
05581 0734 5,360,000 .0088 64k, 000
L0777 1188 1,110,000 .0143 133,000
.1030 .1708 371,000 .0205 LL 600
.1281 .2308 161,000 0277 19,300
.1529 .3030 83,400 .036k 10,000
Ly 05 8 .3670 57,200 .okl 6,870
1726 3TTT 54,400 .0L5L 6,540
X726 .4986 69,000 .0599 8,280
.1701 LLoT77 73,900 .0598 8,870
.1529 4732 121,000 .0568 1h4,500
.1281 1175 270,000 .0502 32,400
.1030 . 3460 711,000 .0416 85,400
OTTT .2620 2,500,000 .0315 300,000
.0521 gk 14,600,000 .0206 1,750,000
MO = O.TO; Tl = 080
0.0237 0.0237 157,000,000 0.0028 18, 300,000
.0kT2 L0504 9,910,000 .0059 1,150,000
.0705 .080k4 1,970,000 .009k 230,000
.0937 .1138 633,000 .0133 73,700
.1168 .1509 263,000 .0176 30,600
3857 .1923 129,000 .0224 15,000
.1625 .2382 70,900 .0278 8,260
.1851 .2908 42,600 .0339 4,960
.2075 .3520 27,500 .0L09 3,200
.2298 L4237 18,800 .oLolL 2,190
.2409 4668 15,900 .054h 1,860
2475 .Lg62 14,500 .0578 1,690
.2k75 .6308 18,500 O35 2,160
.2k09 .6233 21,400 .0726 2,500
.2298 .6056 27,200 .0706 3,170
.2075 .5609 Ll 900 0654 5,230
.1851 .5062 77,400 .0590 9,010
.1625 165 141,000 .0520 16,1400
.1397 .3827 280,000 .0kL6 32,600
.1168 .316L 630,000 .0369 73,400
.0937 .2489 1,690,000 .0290 197,000
.0705 .1822 5,890,000 .0212 686,000
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TABLE IV - Concluded
PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR
NEUTRAL SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR

NONINSULATED SURFACES - Concluded

144

e a R Ay Re

MO = 0.70; Tl - 0.90

0.0433 0.0368 17,100,000 0.00Lk2 1,930,000
.0863 .0815 1,040,000 .0092 118,000
.1291 .1353 200,000 0153 22,700
171k .1996 62,500 .0226 7.070
.2135 2775 25,500 .031k 2,880
2551 .3728 12,400 .0422 1,410
.2963 .4980 6,970 .0563 789
.3166 .5814 5,520 .0658 62k
.3268 L6347 4,990 .0718 565
.3268 .7817 6,500 .088k 735
.3166 7701 7,920 .0871 895
.2963 L1307 11,600 .0827 1,310
2551 .6275 25,200 .0710 2,850
2335 22333 60,300 .0581 6,820
L1714 .3972 170,000 .0kkg 19,200
.1291 .2858 617,000 .0323 69,800
.0863 .1793 3,740,000 .0203 423,000

My, = 0.70; T, = 1.25

0.0346 0.0160 78,800,000 0.0016 8,090,000
= 0692 .0346 4,380,000 .0036 450,000
.10k0 .0564 770,000 .0058 79,000
.1389 .0819 217,000 .008M 22,200
.1738 1120 78,900 .0115 8,100
.2088 L1477 34,000 .0152 3,490
.2439 .1899 16,500 .0195 1,700
.2789 .2403 8,830 L0247 907
.3138 .3002 5,070 .0308 520
. 3485 .3722 3,110 .0382 319
.3831 59k 2,020 .ok71 207
Tk .5668 1,380 .0582 142
Moo .T061 1,000 40725 103
RISHTS .9067 760 .0931 78
.5092 1.1800 643 il 66
.5190 1.4480 615 1486 63
.5190 1.5880 ‘ 640 .1630 66
.5092 1.7250 806 SITO 83
.18L6 1.5370 1,390 +A57T 1k2
4512 1.2580 2,7h0 1291 281
LTk 1.0330 5,360 .106C 550
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Figure l.- Boundary-layer velocity profiles for insuleted surface.
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Figure 2.- Boundary-layer velocity profiles for noninsulated
surface. Mo = 0.70. Ty 1s the ratio of surface temperature
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Fig. 6b NACA TN No. 1360
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Fig. 8 ' NACA TN No. 1360
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Figure 8.- Critical temperature ratio T for

ecr
stability of laminar boundary layer against

Mach number l(o. 'rs is the ratio of stagnation
temperature (deg abs.) to free-stream terperature

(deg abs.) = 1 + K__;_l_ Hoa for ¢ = 1.
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