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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1566

DAMPING IN PITCH AND ROLL OF TRIANGULAR
WINGS AT SUPERSONIC SPEEDS

By Clinton E. Brown and Mac C. Adams
SUMMARY

A method is derived for calculating the demping coefficients in
pitch and roll for a series of triangular wings and a restricted series
of sweptback wings at supersonic speeds. The elementary "supersonic
gsourcs" solution of the linearized equation of motion is used to find
the potential function of a line of doublets, and the flows are obtained
by surface distributions of these doublet lines. The damping derivatives
for triangular wings are found to be a function of the ratio of the
tangent of the apex angle to the tangent of the Mach angle. As this
ratio becomss equal to and greater than 1.0 for triangular wings, the
damping derivatives, in pitch and in roll, become constant. The damping
derivative in roll becomes equal to one-half the valus calculated for
an infinite rectangular wing, and the damping derivative in pitch for
pitching about the apex becomes equal to 3.375 times that of an
infinite rectangular wing.

INTRODUCTION

In reference 1, a straightforward method was found for calculating
the 1ift and the drag due to 1lift of triangular wings. The present
paper extends the method to the calculation of rolling and pitching
motions of the wings. The damping coefficients in roll and pitch for
the limiting case of very slender wings have been calculated (reference 24
The present theory is not limited by the size of the apex angle, and
triangular wings with leading edges ahead of and behind the Mach cone
originating at the apex of the wing are treated. .

In the present theory, based on the linearized equations of motion,
the wing is represented by a doublet distribution which can be shown to
be equivalent to a vortex distribution. An integral equation is found
which can be easily solved by analogy with known relations for two—
dimensional incompressible flow. The pressure distributions pressnted
may be used to calculate the damping coefficients of a limited ssries of
wings for which the trailing edges are cut off so that they lie ahead of
the Mach cone springing from their foremost point.
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SYMBOLS

coordinates of field point (see fig. 1)

coordinates of a source or doublet

disturbance—potential function

potential of supersonic source

potential of supersonic source distribution
potentlal of supersonic doublet distribution
potential of a line of doublets

gource or doublet strength

tangent of half-epex angle

1t force)

1ift coefficient T
EQVQS

Pitching moment
pitching-moment coefficient ( kel = v en>

%QVQSG'

rolling-moment cosfficient (Rolling moment>

Lovlsp
2
half of apsx angle of wing

doublet—line—distribution function

root chord

b/2
mean aerodynamic chord {¢& = gh/ﬂ (Local chord)® dy = 2

5J4 3

point about which the wing pitches
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Mach number
density of fluid

free—stream velocity

Incremental velocity component in x—direction

ifting pressur

L
1lifting—pressure coefficient (

Maoh angle (sin.—l %1)

X — B2y0

/1 — B2 Vx2 — p2(5° + 22)

M

v
oC

CL = L

9 Jdqg/2v
oC

C, = L

P opb/ev
aCp

Cmq= £
dqg /av

vx

12

V]

S

q

Y

b

K

w

n

E*(BC)

wing area

angular velocity of pitch
angular velocity of roll
maximum span of wing
constant

z—component of velocity

small quantity

/2
complete elliptic integral k/p /FV— (1 - B202) gin®n dn
0

e>
1 2
EdV
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F*(BC) complete elliptic integral J/‘ﬂ/e dn
0 J/1-(1-p8202) ain®n
Subscripts:
q piltching condition
P rolling condition
o | incompressible

ANATYSTIS

Solutions must be found that satisfy the linearized differential
equation of a nonviscous compressible fluid written

g23°8 3% 3% _
IXT ¥R 3,2

where x, y, z &are Carteslan coordinates (see fig. 1), and @ is the
disturbance-potential function created by the wing. An elementary
solution of this equation known as the potential of a supersonic source
may be written

(1)

¢o (2)

_ -—A
Vx - x)2 - 2@ - 72 - 2@z - 21)?

The quantity A 1s the strength coefficient of the source. New
golutions may be obtained by superposition of such potentials as shown
in reference 3. For example, a distribution of sources over a portion
of the xy—plane would give the potential

a)y e 'ACFl’yl) dxldyl

g = : = (3)
N =

whers the limits chosen must be such that all sources will be located
within the forward Mach cone from the field puint (x,y,z). Another
gsolution may now be obtained by differentiation with respect to any of
the coordinate directions, that is,
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. P
D" 3z
g_fah a2 —Axy,y,) dx) dyy )
T oz
M Ylx - x)? - By - 3y )2 - P22

This solution, however, may be considered the vertical or z—component
velocity of the source—distribution potential ¢S’ and as shown in
reference 3

¢D = ﬂA(x:Y)
+7z —>0

(5)

The step taken in equation (4) also corresponds to the formation of a
doublet potential, that is, ¢D represents a distribution of doublets

over the xy-plane with strengths proportional to A(xj,y;). For any

known doublet distribution, the velocity component parallel to the surface
In any direction s may immediately be obtained from equation (5)

Boas Y (6)

The foregoing results are analogous to Iincompressible—flow relations and
it may be stated in general that for every doublet distribution there is

a vortex distribution which will produce a similar flow. The vortex
distribution and doublet distribution are directly related by equations (5)
and (6). These simple concepts, given first by Prandtl (reference 4), may
be used directly to obtain the solution of problems in which the pressure
distributions are glven, such as airfolls of uniform loading. If the
equation of the surface 1s given and the pressure distribution is required,
Integral equations must be solved. In certain cases, the problem may be
simplified if the form of the final potential is known. In reference 2
the disturbance potential for wings of very low aspect ratio was found to
be 1n the form

g « 2o(L.5) (7)
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This form of the potential appears quite logical from the standpoint of
satisfying the boundary conditions for steady rolling or pitching. In
the following analysis, the assumption of a potential in the form of
equation (7) is shown to be correct; however, it should be pointed out
that the potential of this type must be restricted to the linearized
thesory and is not of the same general nature as that of a conical field
which exlsts even in the nonlinear problems.

From equation (7) the doublet distribution over the surface will
be in the form

B Z%) (8)

and undsr the assumptions of the linearized theory the lifting—pressurs
coefficient i1s now:

hvx

)4.
ﬂxl 2f<yl>— Y1 f'C) (9)

The formation of the integral equation follows the method of
reference 1. A potential that represents a line of doublets in the
xy—-plane at an angle tan—lo to the x—exis is derived in the form of
equation (7). Use is made of the boundary conditions to set up an
integral equation that introduces the unknown distribution function f(o).
The potential of the doublet line may be obtained by following a procedurs
similar to that used in obtaining equations (3) and (4), and by substituting
the expression for A given in equation (8) into equation (k). The
expression obtained in the following equation may be seen to reprssent a
line of doublets along which the doublet strength increases as x3:

X'
g = 9 —x3 dx)
92J0  Yx — x1)2 - B2(y — oxy )2 — P22

2 _ @2
_ B z(x — B°oy) 3 coth—ig _____E*_
(1 — p202)5/2 te -2

, 2p%z Jx2 — p2(y2 + 22)
(1 - p26°)2

(10)
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where

(x — B2oy)

V& - p2o2 V&g — Be(y2 +:22)

¢

and x' 1s the value of x; for which the denominator of the integrand

vanishes. The potential of the complete wing may now be obtained by an
integration with respect to the dimensionless parameter o

C
@ =V/;C f(o)¢L do (11)

where tan—lC = ¢, the half-epex angle, and f£(o) is an unknown distri-
bution function. The z—component velocity w can be written for 8 %

approaching zero

BC ¢ >
240) <
pr(o) (@ — %00 3 cothlt — & St d(po)

o 2 5
i (1~ p202)5/2

C2 —1 dz
—BC

d(Ba) (12)

e fﬁc 8f (o) V1 — P62

—-8C (1 - p2c2)°

where 6 = % for convenlence. The boundary conditions for rolling may
now be written

or
- — = e |3

For pitching about the y—exis, there is obtained

w = —X
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or

= — (1k)

M=

Introduction of equations (13) and (14) into equation (12) provides
integral equations which theoretically can be solved for the unknown
function f(o). Simpler relatlions, however, may be obtalned if
equation (12) is differentiated twice with respect to 6 to obtain the

2 :
quantity é—ggézl. The method for differentiating is indicated in the
appendix and gives

2w/x) _ 1m ) [ 53 B(6-1) 83r(4) a(po)
= - B 6
A f—Bc (Bo — po)"*

BC 3f "
g f pr(o) alpo) | > o [f (6) f(g1 e

)
‘ B(6+n) (Bo — po)¥ 1 n3 |

The boundary conditions require the foregoing quantity to be zero for

both rolling and pitching with the additional requirements on f(o) that,
for rolling, at the point 6 = 0O

(w/x)p
J

=0 (16)
and, for pitching,
B(W/x)q
e e 0 (17)
d6

’ Equation (15) now yields, for rolling,
|

(G=ri) £ (). dc B e [f"(e) f(e)]
1lim P P Y
g J[ ER - ‘/29+n) i + 3 0 (18)

(o - 6) N
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and, for pitching,

1im r(6-n) £(o), do c f(o) do £"(0) £(6)
6 —L 1+ 6 el - SRR :f s _o 01
s d{C (0 —0) ' JCe+n) (¢ w00 n g 73 (23

Equations (18) and (19) are identical to the equations that would be
obtained for similar boundary conditions on a two—dimensional flat plate
if an analogous process of distributing the doublets were followed. (See
appendix.) The analogue for the rolling motion of a triangular wing
would be a two—dimensional flat plate rotating about its midchord point
in & stationary stream. The surface potential distribution and therefore
the doublet distribution would be

f(c)p = K,0 jc2 — o2 (20)

For the pitching condition the analogue would be a two—dimensional
flat plate in a stream flowing normal to the surface. The potential or
doublet distribution would be

£(0)g = K, e — o2 (21)

These potentials, which can be found in references 2 and 5, satisfy
equations (18) and (19) by analogy; however, the conditions of equations (16)
and (gz)/m%st be shown to be satisfied. For the calculations of (w/x)p

w/x

and ——55—-1, and the evaluation of K, and Kq, only one value of 6

need be considered. This value may conveniently be set equal to zero. Far
rolling motion, equation (20) indicates the doublet distribution to be
antisymmetric. Therefore the value of w/x at 6 = O must be zero, and
the condition of equation (16) is satisfied. For the pitching motion,

the doublet distribution is symmetrical about 6 = O and therefore the

quantity gigéij-must be zero at 6 = O and the condition of equation (17)
is satisfied.

The constants K _ -and Kq may now be evaluated from the relations

obtained in the appendix for 6 = O



10 NACA TN No. 1566

1im BC |/2 o 2
% =—q = f 8202 — o tanh™t Vi - p2e2 a(po)

e 80 (1 _ 2 2)%/2

BC B — P2 B(6—n) a2 _ p2g2
+ 2K / BQC — % d(Bc)+qu il Lyt s P
—B

a(po)
— p202)2 P2 (1 — p202)2

BC B0 ad
+Kf |/ac R2g2 (50) 2BCKg
B8

a(Bo) — (22)
(6+n) BPRQ — pRo2)° > Ty
d(W/X) 1im BC 3202 B202 o BQ .
0 2 o T e 5
g(6—) |/ BC \/ b
L EKpf - 3202 4 3202 e er B202 — p242 iao)
B(6+n) p2 g2
3K’pf 82523202 - 22 i _KPfBC Vp2c? — 22 o
B¢ (1 - PP =801 {7 g3 F)
b o 1 (23)
Bn
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Equations (22) and (23) may be integrated by use of tables (reference 6)
to give

[ D5 2.2
Sl BEGE g=C
D= ﬂKﬁ ——— E'(BC) ~ F*(BC) (2k4)
1 — pec? g
= 20D o o
1 —-28¢C B<C
q = K, | ——=—=— C'(BC) + F*(BC) (25)
o | 1 — pec?

F*(BC) and E'(BC) are complete elliptic integrals of the first and
gecond kind.

The pressure distribution for the rolling wing may now be obtained
from equations (9), (20), and (24) and the pressure coefficient is

b2
P = e (26)
) 2.0
2 - B°C° IO e W g
V:z—CEE'(BC) 1—;3202F (Bc)||/c 2]

Integration of the pressures over the wing surface gives the forces and
moments acting on the wing. The nondimensional derivative Cy  may then
be found P

A —=C (27)

In the analysis the pitching axls has been taken at the wing apex;
however, in application it 1s desirable to obtain the pressure distribu—
tlon and the force and moment coefficients for pitching about any point.
A superposition of motions 1s therefore required. The pitching motion
about any point Xy can be made up of a pure pitching motion about the

apex of the wing combined with a vertical translational motion of
veloclty 9Xq- The pressure distribution for this translational motion

corresponds to that of a wing at a constant angle of attack of
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qx
- ~v9 (See references 1 and 7.) The pressure distribution for the

constant angle of ettack — 369 is

2
—lCc=gx,

P = (28)
VE! (BC) |7cE — 62

Combining equations (9), (21), (25), and (28) gives for the pressure
distribution in the pitching case

2
b, qQx 202 . g2 xoC
P = - 29)
2 xE* (BC) (

Integration of the pressures over the wing surface and formation of the
nondimensional derivative ylelds

LxCx
. = = a0 = =i 2 (30)
__JZEELSL.EI(Bc) + __9_95_5 F*(BC) E*(BC)c
B C 1 — B“C
and
—6nC<— - —) lhtho(l - J—[_Q>
C
c, = + (31)
My 2n2 '
_1_—_9;23_2_ B*(BC) + ———— F1(BC) oEHpe)
1 — p2c = 5202

where T 1s the mean aerodynamic chord.

Calculations of these derivatives for triangular wings having theilr
leading edges outside the Mach cone are most easily made by the source
distribution method. In this method, the upper and lower sides of the
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wing may be considered independent of each other. The source distribution
function for the rolling wing is

&p @1’3’) ) (32)

whereas that for the pitching wing is

8(161,3’9 < Kxq (33)

The calculation of the pressure distribution is not presented, since the
subject of the integration of source distributions has been well covered

in reference 3.

The pressure distribution for .rolling wings outside the Mach cone has
been calculated to be

2 2 - p2
P = B 73 (1 + B2co) cos-l ol T (1 - p2co) cos™t % S
~(Bec2 - 1)3 B(C + 6) p(c ~a)

(34)

Integrating the pressures over the wing and expressing the derivative in
nondimensional form gives

Cy =-~23 (35)

For the pressure distribution due to pitching about the point x,, a
combination of flow patterms must again be used. The pressure distribution

a
of a wing at uniform angle of attack -—VX-Q is (reference 3)

Lax C 2 2
4 ige -1 1 - pce | o= L4 BEGD (36)

cos

afs%? - 1 B(C - 6) B(C + 6)

The pressure distribution for pitching then becomes
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255 hgx |2BC/1 — B262  p3c3 — 2BC - PO sog=1 L+ B2CO
B | g0 _ 1 (p3c2 — 1)3/2 B(C + 0)

-+ 5303 wib ol e cos—l .l_____ﬁ(ﬁ
(p2c2 — 1)3/2 g(c - 8)

Yqx~BC 2 -
! 0 el = B BR00 . g 1 - 08 (37)
VB/Boc2 — 1 B(c +6) B(c — o)
The nondimensional derivatives CL and Cm then become
q q
8x
8 0
SN 8
Ly "B g (38)
X
9-82 4
c X0 ( X )
e = + 1-2 (39)
g B BE c :

DISCUSSION AND CONCLUSIONS

Expressions for the lifting-pressure coefficients over triangular
wings in roll are given in equations (26) and (34) and in pitch in
equations (29) and (37). Equations (26) and (29) are for wings
inside the Mach cone and equations (34) and (37) for wings outside
the Mach cone. Typical pressure distributions are shown in figure 2
in which the pressure distributions for the two wings in pitch are
for pitching about the apex.

Expressions for the quantities Czp, CLq, and Cmq are given in

equations (27), (30), and (31), respectively, for the case of the wing

inside the Mach cone and in equations (35), (38), and (39) for wings lying

outgide the Mach cone. It will be seen that the parameters Bclp, BCL, »
q

and BC, may be expressed as functions of BC where
q
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itan €
tan p

BC

The stability derivatives may therefore be plotted against this parameter,

to give curves which will hold for all triangular wings at any Mach number.

These curves are given in figures 3, 4, and 5. For values of BC
approaching zero the values of the derivatives closely approach those
given in reference 2 which were based on the assumption of very low

aspect ratio.

For values of BC £ 1 (that is, for the wing lying outside the Mach
cone ), the quantities BCzp and BC, become constant, and equal to
q

- % and —1, respectively, (the pltching being about the %c point). 1In
comparison, the value of BCZP and chq for infinite—span, rectangular

wings are — % and — %, respectively, (the pitching being about the
leading edges).

It should be pointed out that the pressure distributions given in
this paper may be used directly to calculate the damping in pitch and
roll for wings having trailing edges cut off ahead of the Mach cone, the
most interesting of this series being the so—called "arrow wings."

It is apparent that a suction force exists at the leading edges of
wings in pitch and roll whenever the leading edges are swept behind the
Mach cone. A method for obtaining the values of these suction forces
was derived 1n reference 1.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., December 12, 1947
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APPENDIX
METHOD FOR DIFFERENTIATION OF EQUATION (12)

The expression for w (equation (12)) cannot be used directly when =z 1s set equal to zero

because of a troublesome singularity in the term ¢ and the occurrence of an indeterminate form
tc -1

under the integral sign. To obtain the value of w on the surface, however, it is possible to

integrate and then set z equal to zero. The troublesome parts of equation (12) come from the terms

involving These terms, written out, may be integrated as follows:

|

BC B2 2

-y (0) (-2 ce) s 1 x2

2 6-4200)"

(1—5%2) 3 51°
(Bo—p6)° + (1—43202)‘3 22 (1% 3 K lsa-fae)z + (1-p%0° BE;]
x -_—
~ y G (1—{3209)
e BC BC
> N/ 22 ‘ o
PG e G R a(8o) (Bo-5) (2R | B
2.2 252 a(po) =
L(l—ﬁeag)Q [(30—66)2 + (1—43202>Bxg l—BC o (Bo—80)2 + (18207 x; 5
&5
(A1) K




Introducing the limits and then setting z = 0 gives

*ON N.I VOVN

rf(c) (1 — g200)
_p(c)( - p260)°1 — pP6P _ pE(=0)(1 + pRec)Ph — p26? ‘/Tegf d(Bo) _ g22)° :'

(1 — B2c2)°(pc — po) (1 — B2®) (B + p6) Bo — BO d(Bc)

995T

(A2)

The integral term of the expression (A2) is improper, however, and must be evaluated at the singular
point 6 = o. If the expression (A2) is now integrated by parts, account being taeken of the singular
point, there is obtained with 2z = 0

—BC (1 - g262)°(po

= B(6—n) 82(0)(1 — 2 9)2 e
n—l—:O o Beeéf . (:2((32) o - e /1 o /;(e ) Bf(o)(1 — B ci)ﬁe)g a(go)
+1

s or (0)\1 — 39921
n

J (A3)

LT




Equation (12) may now be rewritten for w/x with z = O:

PO
X

_ lim f FB(6=n) g (g)/1 — P21 — B oe) s - 3p£(0) (1 — BRo) cothlf S
n—901J i @ - PP)po - p6)° Q - AP/

-
. opf (o))l — pe6° pC {af(a),/l — p26°(1 — Bgoe) i

d(Bc)! F
P2)° T VB(esn)| (1 - B2R) (B0 — pO)°

_382(0)( - B00) coth‘li $leo) = esf(o)|/§ g2e° 2U65) ] ~ of (8))/1 — p26° (ak)
1

(1 - p2e2)° (1 - g2R)?

Following Leibnitz! rule for differentiation under the integral sign and collecting terms gives
finally:

gt
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d(w/x)
36

—$C

BOR2f (o)

£ 5
/1 — B262(Bo — BO)

d(Bo)

B2(3Bo +2B6 + PO )f (o)

Bo) — a(Bo)
(1 — g2aR)?/2 0 /1 — BR02(1 — pRaR)? g
K 82f (o) 3 282 (o) /1 — B26°
A - 8262(1 — p2eR)(po — BO) (Bo — p6)3
2 2q2
a(Bs) — R2(3pc + 2p6 + BOR2A2 (o) 2i5i5)

3 /00 3p30f (o) coth_lg
B(6+n) | (1 — pRo2)5/2

pOR2f (o)

+
/1 — B262(Bo — )2

d(Bo)

/1 - PR( - R2R)

VL= B202(1 - B2a?)(po — BO)

(Bo = B6)3

d(BGJ

2 2 A alep
B=f (o) Weo)a 2p<f(o)/1 — p=o d(BO{]

_ _opof(e) L1 — p262r1(p)
1

Wl - B%6°

(a5)

*ON NI VOVN
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The second differentiation now gives

2 B(6—) g3
O (w/x) N limo 6|/l o BEGQf = _Bﬁ)_n a(Bo) + 6\/1— - B2 fBC _@_B_M_ d(Bo)

36° n—s —BC  (Bo — BO) B(6+n) (Bo — o)k

- Wt — % E"(e) + f(g)] (a6)
n

n

The same process may be carried through for an incompressible, two—dimensional flow. The potential of
a single doublet at a point (y7,0) in a two—dimensional field (y,z) wauld be (reference 8)

- < (AT)
¢ (Yl - Y)2 + Z2

from which wj, the velocity normal to a flat plate extending along the y—eaxis from —-C to C,
would be

c

1 272

- f £(y,) dy; = (48)
- (31 -7)2 + 22 (yp —7)2 + 2°

Integrating by parts, then setting z = O as in equations (Al) to (Al4) gives for z = 0

1im /(Y"ﬂ) £(y1) dyq ! © £(y) dy; _ 2f(y)

S (49)
S, (v -2 Y@ (;p-¥v)F M

99GT *ON NI YOVN




Differentiating twice with respect to y gives

22 _ ln f(Y'ﬂ) 6rvy) apy , [0 S0 I uer) k') (k)

3y 10N ¢ (y1 - ) (y+n) (yq - y)* n3 o

Thie equation, except for the factor |1 — B°6°, 1s analogous to equation (A6). When the boundary
ae(w/x)
362
are then seen to be solutions of equation (A6).

conditions require the term to be zero, the factor may be omitted and solutions of equation (A1O)

*ON NI VOVN
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Figure 2.-

Pressure distributions for rolling and pitching about apex.
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Figure 3.- Stability derivative C,
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Figure 4.- Stability derivative Cy about the :—23-0 point for triangular wings.
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Figure 5.- Stability derivative Cmq about the %C point for triangular wings.







