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THE APPLICATION OF GREEN'S THEOREM TO THE SOLUTION 

OF BOUNDARY-VALUE PROBLEMS IN LINEARIZED 

SUPERSONIC WING THEORyl 

By Max. A. Heaslet and Harvard Lomax 

SUMMARY 

FollOwing the introduction of the linearized partial differen
tial equation for nonsteady three-dimensional compressible flow, 
general methods of solution are given for the two- and three
dimensional steady-state and two-dimensional unsteady-state equations. 
It is also pointed out that, in the absence of thickness effects, 
linear theory yields solutions consistent with the assumptions made 
when applied to lifting-surface problems for swept-back plan forms 
at sonic speeds. The solutions of the particular equations are 
determined in all cases by means of Green's theorem and thus depend 
on the use of Green's equivalent layer of sources, sinks, and 
doublets. Improper integrals in the supersonic theory are treated 
by means of Hadamard's "finite part" technique. 

Four applications of the general solutions are given: First, 
the angle-of-attack load distribution for a supersonic, yawed, 
triangular plate with subsonic leading edges is determined. Second, 
downwash is calculated along the center line in the plane of the 
unyawed triangular wing. Third, the growth of load distribution is 
presented for subsonic and supersonic two-dimensional flat plates 
either starting from rest at a uniform velocity or experiencing an 
abrupt angle-of-attack change. The transient effects on lift-curve 
slope are then calculated. Finally, the load distribution and lif~ 
curve slope of a specific swept-back lifting surface are determined 
at a free-stream Mach number of one. 

Ipresented by Dr. Heaslet at the VII International Congress of 
Applied MechaniCS, September 1948, London. 
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INTRODUCTION 

If the effects of viscosity are assumed small and shock-free 
compressible flow is considered, the velocity field about a two- or 
three-dimensional body placed in a uniform free stream is irrota
tional and thus possesses a velocity potential. In the determination 
of the pressures exerted on such a body or in the calculation of the 
induced velocity components, the theoretical aerodynamicist is 
concerned essentially with finding the velocity potential of the flow 
field and, thus, must determine the solution of a second-order non
linear partial differential equation subject to certain boundary 
conditions. The known mathematical difficulties that arise in the 
treatment of such a problem make it expedient to resort to simplify
ing assumptions. In applied aerodynamics, however, efficiency of 
flight at high speeds has focused attention on bodies inducing 
relatively small velocities throughout the field of flow and, as a 
consequence, the demands of engineering furnish a guide for the 
mathematical simplification of the theory. The so-called linearized 
theory of compressible flow was developed to solve such problems and, 
although considerable work of a more precise nature has been presented 
in two dimensions, a large amount of investigation in unsteady flight 
and in three-dimensional wing theory remains to be completed within 
the framework of the simplifying conditions. 

The present paper is restricted to a discussion of wing theory 
subject to the assumptions of linearized compressible flow. It 
therefore employs solutions of La.place's equation and the wave 
equation for cases where the boundary conditions are specified in 
the plane of the wing. Attention will be directed primarily to the 
analysis of steady-state conditions although an equivalence will be 
established between the two-dimensional differential equation con
taining the time variable and the equation applying to three
dimensional supersonic wing theory. Solutions in all cases will be 
obtained through the use of Green's theorem and the resultant concept 
of Green's equivalent layer of sources, sinks, and doublets. The 
correspondence between the theoretical development for subsonic and 
supersonic speeds is particularly useful since experience related to 
analysis in either flight regime is more readily transferred. 

In view of the widespread use of sources, sinks, and doublets 
in low-speed studies and the fact that the earlier applications to 
supersonic wing theory by Prandtl (reference 1) and Schlichting 
(reference 2) corresponded to the use of Green's equivalent layer, 
it is notable that later emphasis has shifted to other methods of 
solution. Sources alone were used by Puckett (reference 3) to create 
symmetrical nonlifting wings and were also applied to the study of 

- - --- -------~ 
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lifting triangular wings with supersonic leading edges, but the use 
of source, sink, and doublet sheets has not been as extensive as 
might have been expected. This anomaly is even more apparent in view 
of the vast mathematical and physical literature centering around 
the use of Green's theorem. One possible explanation may stem from 
the fact that the interest of the mathematician and physicist in the 
wave equation has arisen in connection with problems in acoustics, 
optics, and vibrating membranes. Such problems introduce boundary 
conditions of the Cauchy type, that is, initial conditions need to 
be known both for the unknown function and its rate of change. The 
supporting surface for such 'boundary conditions cuts the character
istic cone of an arbitrary point in a closed curve and has been 
called by Hadamard (reference 4) a duly inclined surface. In aero
dynamics the supporting surface is nonduly inclined and cuts the 
characteristic surface or Mach cone along the arc of a hyperbola and, 
as a result, the problem is no longer of the Cauchy type and the 
analysis becomes similar to that used in subsonic theory in the solu
tion of Laplace's equation . Prior to the interest of the theoretical 
aerodynamicist in supersonic wing theory, it appears that little 
attention in application was paid to this type of solution. 

The material presented here is divided into two main divisions: 
Analysis and Applications. In the first part of the Analysis 
division, the linearized differential equation for nonsteady com
pressible flow is given together with the underlying assumptions made. 
Specific forms of this equation for two- and three-dimensional steady 
states and two-dimensional unsteady states are then considered. It 
is pointed out in particular that for swept-back lifting surfaces 
linearized theory yields consistent solutions at a free-stream Mach 
number of one although the analysis of arbitrary thickness distribu
tions is not possible . FollOwing the various equations, Green's 
theorem is. applied to find, in terms of the known boundary con~tions, 
the desired solution by means of source and doublet distributions. 

Applications of the general methods are confined to four problems. 
As an example of the manner in which angle-of-attack load distributions 
are determined for a lifting flat plate, the case of a yawed triangular 
wing with subsonic leading edges is solved. Doublet distributions are 
then applied in the second problem to the calculation of downwash 
behind the same wing in an unyawed position. Third, the growth of 
load distribution with time is derived for a supersonic two-dimensional 
flat plate either experiencing a sudden sinking motion or starting 
from rest at a uniform velocity. Such distributions are of value in 
the calculation of indicial lift functions and can be used, together 
with Duhamel's integral, in the study of certain dynamic maneuvers. 
The final application considers at a Mach number equal to one the case 
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of a swept-back lifting surface with tips normal to the free-stream 
direction. 

All important symbol., are defined in the appendix. 

ANALYSIS 

The Partial Differential Equations 

Basic differential equation.- Consider an aerodynamic body 
flying at an arbitrary Mach number Me in air initially at rest. 
If a Cartesian coordinate system x, y, z is fixed relative to the 
body, the body may then be assumed stationary and situated in a free 
stream with the same Mach number. If the free-stream velocity vector 
is parallel to and in the direction of the position x axis and if ~ 

denotes the perturbation velocity potential for isentropic flow, the 
linearized partial differential equation for ~ may be written in 
the form 

where ao is the velocity of sound in the free stream and t denotes 
time. 

The assumptions underlying the derivation of equation (1) have 
been stated in numerous places but are not always obviously compatible. 

u v w It is assumed here that the ratios -- -- -- are small compared to 
Vo' Vo' Vo 

one, where u, v, ware induced velocity components and Vo is the 
velocity of the free stream; moreover, 

and, finally, the velocity gradients at a given point of the flow 
field are all of similar magnitude. 

Special cases.- The particular forms of equation (1) to be 
considered are given in table I. In the steady-state equations the 
original independent variables are retained; the two-dimensional 
unsteady-state equation has, however, new variables defined by the 
relations 

./ .. L.. ___ _ _ _ ---' 
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XV = X - aoMot, z' z, t' ( 2) 

and consequently the boundary conditions for any particular example 
will be subject to the same transformation. In all the equations 
the constraints imposed by the linearization permit, for problems in 
wing theory, the boundary conditions to be specified in the plane of 
the wing. This plane shall arbitrarily be taken to be z=O. 

TABLE I.- LINEARIZED PAR'ITAL DIFFERENTIAL EQUATIONS OF 
COMPRESSIBLE FLOW 

Steady State 

Two { (l-Mo
2

) (j)xx + q:Jzz = 0, Mo<l, (A) 

Dimensions (M02-1) q:lxx- (j)zz = 0, Mo>l, (B) 

{(1-Mo
2

) 'llxx + <Pyy + CPzz = 0, Mo< 1, (C) 
Three (Mo2-1) q:Jxx - rryy - Cj)zz = 0, Me> Ij (D) 

Dimensions 
q:Jyy + q:Jzz = 0 Mo = 1, (E) 

unsteady State 

Two 
q:Jtft f - <&: fxt - Cfiz ' z t = ° (F) Dimensions 

The Mach number range for which the equations are valid cannot 
be prescribed a priori since induced velocities are functions of wing 
geometry and angle of attack. We can say, however, that for certain 
configurations at small angles of attack the equations and their 
solutions are consistent with the assumptions. In particular, three
dimensional lifting surfaces with sufficient sweepback yield solutions 
of this class at Mo=l . The differential equati on shows that in this 
case the boundary conditions need only be specified along strips in 
the transverse direction. The surfaces of the Mach cones also are 
normal to the free-stream direction so that any disturbance point 
makes itself felt at all points not upstream of it. Since for these 
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lifting surfaces the disturbances do not become excessive at MQ=l, 
we have a speci~ic kind o~ lateral strip theory that yields ~ormal 
solutions compatible with the assumptions made. 

Boundary Conditions 

steady state.- The boundary conditions are given in the z=O 
plane and in the case of two-dimensional theory the wing is assumed 
to extend infinitely, parallel to the y axis. As a convenience in 
notation, two subscripts will be introduced: the first, u, denotes 
conditions on the upper surface of the wing, that is, the limit of 
the function as z approaches zero through positive values; the 
second, I, denotes conditions on the lower surface of the wing, that 
is, the limit o~ the function as z approaches zero through nega
tive values. 

Four types of boundary conditions arise in practice: 

1. Symmetrical nonlifting wing (boundary-value problem of the 
first kind).- The conditions Wu = wI = 0 hold over all 
o~ the xy plane except for the region occupied by the wing. 
On the wing, the relations 2wu = - 2wI = 6wo = f(x,y) 
are given, the function f(x,y) being determined by the 
geometry of the configuration. Over all o~ the xy plane, 
6uo = Uu - uI = 0 applies. 

2. Lifting surface with specified loading (boundary value 
problem o~ the first kind). - The condition 
6uo = Uu - uI = 0 holds over the xy plane except ~or the 
region occupied by the wing. On the wing, the relations 
2uu = - 2uI = 6 uo = f(x,y) are given, the function f(x,y) 
being determined by the specified loading. Over all of 
the xy plane, 6wo = 0 applies . 

3. Lifting surface with specified camber and angle of attack 
(boundary-value problem of the second kind).- The 
condition 6uo = 0 holds over the xy plane except for 
the region occupied by the wing. On the wing the 
relation w = f(x,y) is given, the function f(x,y) 
being determined by the given camber, twist, and angle 
of incidence. Over all of the xy plane, 6wo = 0 applies. 

4. Symmetrical wing with specified pressure distribution 
(boundary-value problem of the second kind). - The 
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condition 6wo = 0 holds over all of the xy plane except 
for the region occupied by the wing. On the wing the 
relation u = f(x,y) is given, the function f(x,y) being 
determined by the specified pressure distribution. Over 
all of the xy plane, 6uo 0 applies. 

In all cases, induced velocity u is related to pressure coef
ficient Cp by the relation 

Unsteady state .- The steady-state boundary conditions have been 
given in the most general terms possible. The unsteady- state condi
tions will be limited to a more restricted type of problem, namely, 
cases wherein the airfoil is assumed to experience at t=O either an 
abrupt change in angle of attack without pitching or starts to travel 
at the instantaneous velocity Vo and angle of attack ~ . In this 
way the transient variation of load distribution and airfoil charac
teristics can be calculated for unit angle-of-attack change. Similar 
methods can treat unit rate of pitching, or deflection of aileron, as 
well as the effects produced 
when the airfoil enters a gust 
of given structure . The use 
of solutions of such problems 
in connection with operational 
methods is well known in applied 
mathematics. Applications of 
these operational methods to 
aerodynamics have been given by 
R. T. Jones (references 5 and 6) 
for incompressible fluid theory 
and by Heaslet and Lomax (refer
ence 7) for supersonic flow. 

If the rectangular coor
dinate system xt,z~,tY assoc
iated with equation (2) is con
sidered t o be fixed, the airfoil 
moves in the negative x' direc
tion and the free-stream velocity 
is zero. A simple distortion of 
the time axis is also introduced 
to simplify the differential 
equation. Figures l(a) and l(b) 
aid in the visualization of the 

LEADING - EDGE 
TRACE 

~~--x' 

" " " "-
" 

(a) Supersonic wing. 

t' 

, , 
" OF " 

" " , 

CHARACTERISTIC 
CONES " 

"-
" , , 

" TR~L~G-EDGE TRACE 

(b) Subsonic wing. 

Figure 1.- Diagram for use in deter
mining boundary conditions in two
dimensional unsteady motion. 
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problems involved. The airfoil section is assumed to lie initially 
on the x' axis with leading edge at the origin and trailing edge at 
the point x a = co. As time progresses the airfoil sweeps across a 
portion of the x't' plane, the leading edge traversing the line 
x' = - Mot' while the trace of the trailing edge is the line 
x' = Co - Mot'. The region bounded by these lines and the line 
t' = 0 is that swept by the airfoil. The characteristic cones of 
the differential equation cut the x't' plane along lines inclined 
at ± 450 to either axis. If the airfoil experiences an angle-of
attack change 0, without pitching, the "area" swept over by the wing 
must yield w = - Voo,. On the other hand, if the airfoil enters a 
gust of constant vertical velocity wo, the region over which the 
modification of w is effective is restricted to the region occupied 
simultaneously by the airfoil and the gust. If, for example, the 
edge of the gust is fixed along the tt axis, this axis will form the 
right-hand boundary of the region over which the change in boundary 
conditions occurs. A statement of these boundary conditions may be 
put in the following form: 

1. Lifting surface undergoing abrupt change or starting from 
rest with given velocity.- The condition ~uo = 0 holds 
over all of the xYt' plane except for the region swept 
across by the airfoil. In this latter region, the rela
tion w = f(x',t ' ) is given, the function f(x',t') being 
determined by the modification in airfoil angle of attack, 
pitching velocity, aileron deflection, or by the gust 
structure. Over all of the x't ' plane, ~wo = 0 applies. 

The expression for pressure coefficient is 

Cp = -2 (d<p + Vo ~) V
0

2 ct 

-2 ccp 
= 

VeMo ct' 

Solution of Boundary-Value Problems 

General treatment.- The use of Green's theorem in the solution 
of second-order partial differential equations leads one to the con
sideration of certain particular solutions of the given equations . 
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Because o~ the physical importance as well as the mathematical appli
cability, attention has been centered on the use of a so-called 
fundamental solution or source potential. Thus, in the subsonic 
case, the potential at the point x,z of a unit source located at 
the point ~,s and applicable to equation (A), table I, is the 
logarithmic function 

cp(x,z) 

while for equation (C) the potential at x,y,z of the unit source 
at ~,T},S is 

cp(x,y,z) = (4 ) 

Here and elsewhere we have ~2 = Il-Mo21 where the bars indicate 
that absolute values are to be taken. 

The application of these potential functions to the solution of 
boundary-value problems in subsonic linearized flow is well known. 
Supersonic theory, however, introduces added complications when 
the fundamental solutions are considered and, although methods have 
been established, the mathematical techniques are of comparatively 
recent origin. The principal difficulty lies in the integration of 
higher-ordered singularities that appear in the three-dimensional 
analysis. Hadamard (reference 4) resolved these difficulties and 
thus avoided the more specialized approach of Volterra (reference 8). 
It would appear, however, that a more direct method of derivation 
stems from Marcel Riesz's use of fractional integration. (See, in 
this connection, references 9 and 10.) The oddness or evenness of 
the number of dimensions still involves considerable differences 
but the final solutions are easily applied. 

In two-dimensional supersonic flow, the potential at the point 
X,z of a unit source located at the point ~, S is defined as 
follows: 

cp(x,z) = 0 for (X_~)2< ~2(z_S) 2 

(~X,z) ::: _l:.. for (X_~)2~ ~2(Z_S) 2 
2~ -
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In three dimensions, the source potential is 

cp(x,y,z) -1 -1 
= -2rrr-

D 
= -2rr-J'''7=( x=-=~~) 2==-j3~2 ::=;[ (;=y-T]==:=)===2=+ (=:=Z=_::=S)::=::2:=:=] 

(6) 

at all points for which the radical is real and is zero elsewhere. 

These functions are directly applicable to equations (B) and (D) 
of table I. Equations (E) and (F) are, of course, special mathe
matical cases of equations (A) and (D) for which Me is 0 and~, 
respectively. 

By means of the various source potentials, it is now possible 
to present solutions of the differential equations in terms of the 
prescribed boundary conditions. These conditions are assumed to be 
given in the z=O plane and subscripts u and 1 shall again 
denote conditions at z=O+ and z=o-, respectively. The general 
solutions appear as follows: 

Equation (A), Mo < 1, 

cp(x,z) = 2;f3 LOO 

[2n(rA\=0 (~_:2)_ (CPU-.(j)2) (d~2n rJ~:=oJd~ 
(7) 

Equation (B), Mo>l 

= _ ~Jx-f3z dCl>u rl~ for z > 0 cp(x, z) (j dz u>;, 

-00 

1 [+f3Z CJcpl 
= - i3 dx d; for z < 0 

-00 

(8) 

Equation (C), Me < 1 

cp(x,y,z) -1100

1
00

[( 1 ) (dCJlu CJcp2) ( d 1 ) ] = - - - - - - (cru-<pz) - - d~dT) 
4rr 00 -00 rC dZ dZ dS rC - s=O s =0 (9) 
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Equation (D), Me> 1 

cp(x,y,z) = 

(10) 

In the last equation, the range of integration is confined to that 
portion of the z=O plane that lies within the Mach fore cone of the 
point x,y,z, that is, within the half-portion of the right circular 
cone 

lying upstream of the point x,y,z. The semivertex angle ~ of this 
cone is the Mach angle and is given by the relation 

. 1 arc Sln-
Mo 

arc cot 13 

The symbol f was introduced by Hadamard and denotes the 
"fini te part" of the integral. As in the case of Cauchyl s principal 
value, an improper integral is reduced by a prescribed technique to 
a finite and unique value . By definition (see also reference 11), 

In the two-dimensional supersonic case, the solution for the 
velocity potential is expressed as the integral of a distribution of 
source potentials. In all other cases, both the source potential 
and its derivative appear in the integrand, this latter expression 
being identified with the doublet potential. 

Nonlifting case (s)illmetrical wing, boundary-value problem of the 
first kind.- Equations (7), (8), (9), and (10) are applicable directly 
to the calculation of the potential function corresponding to a 
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symmetrical wing. The relation ~u = ~I follows from the condition 
U U Mo ·f dzu denotes the 1 1 1 u ':: 7, • reover, l dx oca s ope of the upper 

surface of the wing, 

=(~u) 

and the solutions of the various equations are expressed in terms of 
source distributions alone. 

For example, equation (10) becomes 

~(x,y,z) [f (12) 

where the finite part Sign is dropped since the integral is proper . 
This equation was given by Puckett in· reference 3. 

The pressure coefficient on the surface of the wing is 

Cp = 

Lifting case (boundary- value problem of the first kind) .- From 
the condition WU = WI we have 6wo = 0 and the integrands in 
equations (7), (9), and (10) are expressed solely in terms of 
doublet distributions, while equation (8) yields the result that 
conditions on either side of the wing have no effect on the other 
side. 

Taking equation (10) as an example, the solution under the pre
scribed conditions is 

cp(x,y,z) (13) 
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where x 
Cj)u--<Pl = J 6uO( ~,T)) d s 

-00 

A more direct evaluation of perturbation velocity u can be obtained 
from the alternate expression 

1 [f (14) u =--
2rr 

Similar expressions exist for equations (7) and (9). 

Lifting case (boundary-value problem of the second kind).- This 
type of boundary condition cannot be solved directly by means of the 
formulas which have been presented but resolves always into the 
required solution of an integral equation. In three-dimensional sub
sonic wing theory, the method of solution depends usually on~me 
modification of Prandtl's lifting-line theory although, more recently, 
lifting-surface theories by Falkner (reference 12) and Cohen (refer
ence 13) have been applied successfully. 

In the case of three-dimensional supersonic-wing theory, sources, 
sinks, and doublets have been utilized in two ways in the solution 
of lifting-surface problems. The first of these methods was given by 
Evvard (references 14 and 15) and is particularly powerful when one of 
the leading edges of the wing is of the supersonic type, that is, 
when the velocity component of the free stream normal to the edge is 
greater than the speed of sound. A second method of solution was 
presented in reference 16 for the important case of wings with sub
sonic leading edges, provided the flow field about the wing is of the 
conical type introduced by Busemann (reference 17). The essential 
feature of this method is the use of differential lifting elements 
carrying a constant load and designed for use in conical flow fields. 
The solution consists of determining the distribution of loading 
over these elements so that the resultant induced vertical velocity 
at any point on the lifting surface satisfies the local boundary 
condition. When approached from this standpoint, the problem again 
requires the solution of an integral equation but the equation is of 
the form 
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and is thus well known from low-speed airfoil-section theory. 
Inversions of this equation have been provided by Allen (refer

ence 18) and von Mises and 
Friedrichs (reference 19). 

Figure 2 shows the 
elemental lifting surface to be 
used. The sides of the element 
extend back from the tip of the 
Mach cone, making angles 5 and 
5+.65 with the positive x axis 
or free-stream direction. The 
vertical velocity induced at the 
point x,y,O by the element will 
be a function of 5, 65, and Z x 
or, changing the notation, e, 6e> 

Figure 2.- Lifting surface element 
carrying constant load. 

and ill where 

e f3 tan 5 

e+6e f3 tan (5 + 65) 

ill = f3 Y 
x 

Denoting the gradient of this vertical velocity with respect to e 
dWz=o 

by ~' it follows that 

lim w(e+6e,ill)-W(e,ill) 
6e~O 6e 

where W(e,ill) and w(e+6 e,ill) are the velocities induced by right
triangular lifting surfaces with constant loading and with vertex 
angles equal to 5 and 5+65, respectively. The velocities 
induced by the constantly loaded surface are determined directly 
from equation (13). The results of these calculations yield the 
follOwing expressions: 

For ill < e 
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and for (l) > e 

where 

c = V0 2 6p 
2 q 

15 

(16a) 

(16b) 

The term 6p is the load coefficient and is equal to the difference 
q 

between pressure coefficients on the lower and upper surface of the 
wing, 

Nonlif'ting case (boundary-value problem of the second kina). - In 
the previously discussed lif'ting case, the induced vertical-velocity 
field of a constantly loaded element was calculated. An analogous 
type of element can also be developed for use in the determination of 
nonlif'ting wings with prescribed pressure distributions. It is 
apparent that differential expressions similar to equations (16a) and 
(16b) must be derived which establish the induced field of the 
x component of perturbation velocity for a conical-flow element with 
constant vertical velocity. From equation (12), the following 
expressions result: 

For (l) < e 
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and for (J.) > e 

! mldilll 
1 -( m-l--e-=)'"=2-J"'rl=,..-(l)=1;;:2 

(lTb) 

where pressure coefficient Cp and surface slope A are 

2u 
Cp == - V

o
' 

The application of equations (17a) and (170) to the determination 
of a thickness distribution supporting a given pressure distribution 
consists of determining A as a function of e such that the desired 
pressure results. The essential simplification of the method is brought 
about by the use of elements which lead to single integral equations of 
standard form. 

APPLICATIONS 

Yawed Triangular Lifting Surface 

Consider a yawed, triangular flat plate with subsonic leading 
edges such as is indicated in figure 3. Relative to the x axis or 
free-stream direction, the sides of the triangle make the angles 

Figure 3.- Yawed triangular flat
plate lifting surface with sub
sonic leading edges. 

00 and 01 so that the total 
vertex angle is 00+01==26. 
The quantities eo, el , and m 
are also introduced where 

y 
m==f3-x 
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The vertical induced velocity at any point on the wing can be 
found from equations (16a) and (16b), provided the distribution of 
the loading factor C is known. Setting c=c(e), the downwash is 
given by the expression: 

( 18) 

Since the lifting surface is flat, the function c(e) must be found 
such that wz=o is independent of m for -tl1 < m< eo. The integral 
equation can be greatly simplified by integrating the m1 variation 
by parts and then taking the partial derivative of both sides of the 
equation with respect to m. In this manner, equation (18) reduces 
to 

which becomes 

e 
o = ~J 0 C(e)de 

dru m-e 
-tl1 

(20) 

The solution of equation (20) can be written 

(21) 

and, if the integrated loading of the wing is finite 

(22) 
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Substitution of equation (22) into equation (18) yields the two 
relationp 

and 

( 24) 

where 

and 

(26) 

Equations (25) and (26) may be integrated by the standard methods 
for elliptic integrals and, after substituting into equations (23) 
and (24) and solving for A and B, we have 

and 

where 

G 
1+808l - ~(1-e02)(1-el2) 

80+8l 

(28) 

and E' is the complete elliptic integral of the second kind with 
modulus Jl-G2

• 

The load distribution over the wing can now be calculated from 
equations (22), (27), and (28 ). It follows that 
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~ _ 2C(B) = 2a. ~ [ (B o-Bl )B+2BOBl ] 

q v0 2 I3E' J ~ J(Bl+B)(Bo-B) 
(30) 

Typical load distributions over a yawed wing are shown in figure 4 for 
13 tan Ol = 0.6 and for 13 tan 00 equal to 0, 0.3, 0.6, and 0.9. 

./ 
./ 

./ 
./ 

./ 

/ 
/ 

./ 

~o 

+-----1r---+----+----+--- 6 t------+- -+-------;I---__+_ 

'13~ 
<t 

t----+---t-.-----r-----t--- 5 t-----+- -+-----t--- ---I 

---+----+--- 4 t---"....-+-

'\..+----+-- 3 t-----+·~I 

-1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 

{l TAN 8 

Figure 4.- Angle-of-attack load distribution over yawed triangular 
plan form, 13 tan Ol = 0.6 . 

1.0 
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Integration of equation (30) over the surface of the triangular 
wing determines for lift coefficient the expression 

CL = 2cx;T( cosAjG tan 6. 
E.' f3 

( 31) 

where A is sideslip angle and ~ is the angle between the leading 
edges. Equation (31) was derived for wings with subsonic leading 
edges and supersonic trailing edge and consequently is valid only for 
cases for which 

6. + A< ~ 

6. - A> 0 ( 32) 

Downwash Behind Triangular Wing in Supersonic Flow 

The second application will show how doublet distributions may 
be employed in the calculation of downwash in the wake of an unyawed 
triangular wing with subsonic leading edges. The expression for the 

velocity potential will be 
given in general form, but 

Figure 5.- Triangular wing and wake 
together with regions used in cal
culating downwash. 

in order to avoid detailed 
analysis the value of down
wash is determined only 
along the center line in 
the plane of the wing. 

A plan view of the 
wing and wake is shown in 
figure 5. The load distri
bution over the wing is 
found from equation (30), 
after setting Bo=G l , to 
be 

6.p 4Bo2a.x 
q Etof3Jeo2x2-f32y2 

• 
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where E' 0 has the modulus Jl~02. Moreover 

so that the jump in potential ~~l on the surface of the wing is 

2aVo ..; 2_5' 2_.2 
~1. = -- eo x--f3 ;y 

E'ol3 
(34) 

and for points in the wake is 

(35) 

where Co is the root chord of the wing. Since the wing and its 
wake form a discontinuity surface for the perturbation velocity 
potential and since for all points on this surface 

it follows from equation (10) that the velocity potential at an 
arbitrary point x,y,z is given by the relation 

(36) 

where T is that portion of the wing and wake forward of the Mach 
forecone from the point x,y,z and (~~l) is given by equa
tions (34) and (35). 

The value of the downwash aft of the "Wing and along the x axis 
will be calculated from equation (36), thus 
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w = [fz cp (x, y, z) ] z=o 
y=O 

is to be determined. In carrying out these calculations, it is 
necessary to consider two segments of the x axis behind the wing : 

Region A extends from the trailing edge to t he point where the 
trailing Mach cones from the tips of the wing intersect the x axis 
and thus includes values of x satisfying the inequality 

Region B includes values of x for which 

The final expressions for downwash in the two regions are 
found, after some manipulation, to be 

Region A: 

Rec-.; i on B: 
w 2El 2 [l K- E dk 

nE ' 0 + rcEv 0 0 k+8 0 
-= 
Wo 

where 

induced vel~ical velocity on the wing 

K complete elliptic integral of the first kind 

complete elliptic integral of the first kind with 
moduli kl' k2' respectively 

E complete elliptic integral of the second kind 

-------- ----

( 38) 
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complete elliptic integral of the second kind with moduli 
k1J k2J respectively 

coeo 
x-eo 

Figure 6 shows the variation of ~ along the x axis for various 
o 

23 

values of the parameter eo=~ tan °0 , The asymptotic values at x=oo 
aloe also indicated and can be shown to agree with the values of 
downwash at infinity for a wing with the same span load distribution 
in incompressible flow. The discontinuity in downwash at the trailing 
edge is a characteristic property of supersonic-type trailing edges. 

1.°1 I ~.L-:2-8o =~.2--+-_--+-_-t---T--=IT-

.J--r=~/- II' II : : -~--i!,--~ 01 ------+I-----tI~1 
w'6l I~~I 
Wo I ~ I FOR WING SWEPT 45~ 

.4~-----+-------r------4-------+-

.2~-----+-------r------4--------r-

80 f3 Mo 
.2 .2 1.02 
.4 .4 1.08 
.6 .6 1.16 
.8 .8 1.28 

---ASYMPTOTIC VALUES 

0L-..-.----L----1.----L-..---J.-~1 ---L...-_...I..--I~ 
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

~ ,DISTANCE IN CHORDS 
o 

Figure 6.- Variation of downwash on x axis behind a triangular 
wing plotted as a function of distance in chord lengths. 
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Denoting downwash at this point by Wt, Lagerstrom and Graham 
(reference 20) have shown that 

A mor e detailed development of the results shown in figure 6 has 
been given in reference 21. 

Two-Dimensional Unsteady Lift Problems 

It has already been pointed out that, in the case of unsteady 
motion in a two-dimensional compressible-flow field, the linearized 
partial-differential equation for the perturbation velocity potential 
can b e transformed into the same form that has been considered in 
solving steady-state problems in supersonic wing theory. This 
immediately indicate s the possibility that for certain types of 
b oundary-value problems in the unsteady case an analogy can be estab
lished with three-dimensional lifting-surface problems. 

As an example, let us consider an airfoil that has been flying 
at supersonic speed and then experiences at t'=O an abrupt angle
of -atta ck change without pitching. Since the angle-of-attack change 
i s a ssumed to take place at t'=O, it can be assumed that previous 
t o t hi s time the induced velocities of the wing are zero and only 
subsequent perturbations are to be calculated. Throughout the swept 
a r ea in the x't' plane (fig. 1) the vertical induced velocity w is 
con s t ant and equal to -Voa. Elsewhere in the z'=O plane there is 

no discontinuity in the value of pressure, that is, d~ is contin-
uous at Z7=0 . dt' 

Suppose now that the area is a wing plan form and that the 
f r ee s tream i s directed along the t' axis. The characteristic 
c one s of the unsteady problem b ecome the Mach cones of the steady
s t at e pr oblem, and the Ma ch number of the free stream is ~ since 
the characteristic lines in the figure are inclined 450 to the axes. 

Moreover, the induced vertical velocity is ~~ and the perturba-
oz' d 

t i on ve l oc ity in the free-stream direction is dt~' A correspond-

ence can thus be established between the unsteady problem and a 
t hree-dimensional lifting-surface problem. 
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As outlined, the boundary-value problem is one of the second 
kind, that is, w is specified on the wing and 6u~w=0 off the 
wing. In our particular example, however, the edges of the wing are 
of the supersonic type and no interaction exists between the two 
surfaces of the lifting plate so that pressures on either side can be 
calculated by the methods used for symmetrical nonlifting wings. 
Thus, from equation (12), for z ' >O 

cv(t' ,x ' , z') If dt 'ldx'l 
T -.;-;;==( ==t ==' _:::t=' 1:::)==2==_:::(:::X:::':::-=X='==1=)==2=_=Z='===2 

and for all z ' 

cp(t ' ,X i ,z') = - cp(t' ,Xl ,-z') 

The expressions for the indicial load coefficient 
follows: 

40, [ ~ 

6p 40, 

q Mo 

Region C (between lines x'= - Mot' and x ' =- t ') 

(40) 

are as 

( 4la) 

(4lc) 



26 NACA TN No. 1767 

The growth of 6: with time, as obtained from equations (4la), 
(4lb), and (4lc), is shown in the portion of figure 7 designed 
"supersonic." At t'=O the loading jumps to the value ~ and is 
constant along the entire chord. This value persists throughout the 
previously denoted Region A and thus, with advancing time, moves 
rearward along the chord, leaving the trailing edge at t' = MC~l' 
Over the forward portion of the chord the familiar Ackeret typg of 
steady-state loading becomes effective, spreading back from the 
leading edge and occupying the entire chord length after t' = Mcol' 

c 0-
Previous to t' = Mo~l a transition region between the two types of 
constant loading exists, and subsequent to this time this transition 
region moves aft and leaves the trailing edge at t' = M~~l' 

Figure 7.- Pressure distributions on wing undergoing sudden angle-of
attack change at t'=O. 

For purposes of comparison, the growth with time of the angle-of
attack indicial load coefficient for subsonic flight is also shown in 
the part of figure 7 entitled "subsonic." Since in this case the 

- I 
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lifting-surface analogue involves subsonic leading and trailing 
edges, the analysis requires the solution of a boundary-value problem 
of the second kind . The method of Evvard (reference 15) was used to 
obtain the results shown. It is to be noted that the expression 

6p = 40, 
q Me 

holds at t'=O for all values of Mach number. 

" 

o 

.8 

/ 

/ 

" " 

1.2 

Figure 8.- Indicial lift-curve slope for Mach numbers between 
o and 1.4 shown to time required to travel 12 half-chord lengths . 

Figure 8 shows the variation of the indicial lift function 
CLo,(t ' ) defined by the relation 

( 42) 
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as a function of Mach number and half-chords s traveled by the 
airfoil. The curve at M6==0 was first studied by Wagner (refer
tnce 22) and R. T. Jones (reference 6). Since the starting value is 
Mo' CL~(tt) must initially be infinite. Immediately afterward, 
however, it assumes the value n and then rises to the asymptotic 
value 2n. At a Mach number of 0.4 the starting value of CL~(t f ) 
is 10 followed by a decrease for the time required to travel approxi
mately one-half chord length and finally a steady rise takes place 

2n to the asymptotic value At Mo==0.8 the behavior is similar. 
jl~I02 

The dashed portions of the curves were determined from the known 
variations of the functions and were not calculated explicitly. The 
asymptotic values of C~ consistent with the Prandtl-Glauert correc
tion become so high, however, with increasing Mach number that the 
assumptions of small perturbation theory are undoubtedly invalidated 
near Mo==l for sufficiently large values of s . The initial portions 
of the subsonic curves shown in the figure are, however, valid results 
of the theory. The nature of the indicial lift function is somewhat 
different at supersonic Mach numbers in that the beginning portions of 
the curves are flat. The curves rise afterwards, however, in a finite 
time t o their steady- state value . From equations ( 41a), (41b), and 
(41c) the expressions for CLa,(t f ) are easily calculated for ~fo~ 1 
end are as follows: 

First time interval 0 < t t < 1 ~~ 

== 4 (43a) 

Second time interval ~ < tf < ~ 
l+Mo Mo- l 

~[~(~ + arc 
n Me 2 

(43b) 
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Third time interval 

4 (43c) 

Some of the ab ove results, along with further developments 
involving the entrance at supersonic speed of an unrestrained air
foil into a gust, have been given in reference 7. 

Swept-Back Wings at Mo=l 

We turn now to the special form of the basic differential equa
tion for the case Mo=l. As given in table I, equation (E), the 
velocity potential satisfies Laplace's equation 

'Pyy + CPzz 0 

in two dimensions. The boundary conditions need, therefore, to be 
given along strips normal to the free-stream direction. Equation (7) 
expresses the solution of the equation in terms of two-dimensional 
sources, sinks, and doublets where now 

The proposed problem is the determination of the angle-of
attack load distribution over a swept-back lifting plate, the 
leading edges will be assumed straight lines while the trailing edge 
will, for the time being, be left arbitrary. The nature of the wing 
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is thus indicated somewhat arbitrarily in figure 9(a) . 

. -------y 

x 
(a) Plan form with arbitrary 

trailing edge. 

x 
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y 

(b) Plan form satisfying Kutta-Joukowski 
condition. 

Figure 9.- Swept-back wings for analysis at Mo=l. 

Denoting the semi vertex angle by Do so that the equations of the 
leading edges are 

y = ± x tan Do ± mx ( 44) 

it follows from equation (7) that since 

-=-
dZ dZ 
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the velocity potential is given by the relation 

cp(X,y,z) ;rr J: 6CPo(x,!l) d1') (y_1'))2+Z2 
-IDX 

vrhere 

6CPo(x,y) 
= l Y 

6vo( x, 1'),0) d1') 
mx 

It is then possible, after integrating equation (45) by parts and 
imposing the condition that 6qv(x,y) = 0 at 1') = ± mx, to calcu
late the derivative of cP with respect to z and thus obtain for 
wo, induced vertical velocity on the wing, the expr ession 

Wo ( 46) 

This inte§;ral equation is to be solved for 6vo' the velocity Wo 
being assumed constant on the wing and equal to -Voa where a is 
angle of attack. The load distribution can then be calculated from 
this solution by means of the relatioD 

The 

6p 

q 

The ~emainder of the analysis 
first case treating values of 

dealing with the remaining values 

Case I: o ~ x ~ co.- Since 

can best be divided into two parts: 
x between 0 ar.d co, the second 

of x on the wing . 

the leading edges of the wing are 
of subsonic type, singularities in pressure occur at these edges so 
that the required solution of equation (46) is of the form 

6vo(x, y) = 
A+By 

(48) 
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Substitution into equation (46) and use of the fact that 6~(x,y) is 
an even function of y leads to the result A==O, B==-2wo . Hence 

6cpo(x,y) == - 2wO JrrPx2-;? 

and 

61' ~Wom2X 

"""if == Vo ./m2 x2-;? == 
(50) 

Case II: Co ~ x.- Let the equation of the trailing edge be 

y == a(x) or x == a*(y) (51) 

Using in equation (46) the fact that 

6vo(x,y) == - 6vo(x,-y) 

the expression for WQ becomes 

(52) 

If, on the surface of the wing, 6CPo(x,~) is known, then, in 
the wake, the discontinuity in the velocity potential is 6CPo [a*(~),~)] 
since no contribution to the jump in potential is made past the 
trailing edge. It follows that if on the wing 

then, in the wake 
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(54) 

Substituting equations (53) and (54) into equat i on (52) and intro
ducing the Kutta condition that loading at the trailing edge is zero, 
we get the modified integral equation 

where the variables cr, crl now replace y2, ~2 , r espectively. 
The function 

f(x,cr) = 2wo 

satisfies equation (55) and it remains now to determine a(x) so 
that pressure is zero at the trailing edge . But from equation (53) 

and thus 

6p(x,y) 

q 

6cp(x,y) = 2wo ! 

=4a[ da 
- k' -- F(k,W) + mE(k,W) 

dx 

Y 
+

X 

where k' = ~ and E(k,W),F(k,w) are incomplete elliptic in~egrals 

with mOdulus
IDX 

k = Ji-k,2 a.TJ.d argument w=arc sin ~ j 1 - m;'x2 

At the trailing edge y=a(x) and 
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where the elliptic integrals are now complete. If load coefficient 
is set equal to zero, the differential equation 

where a2 

- m2x2' follows. 

The integration of equation (58) leads to the shape of the 
trailing edge for which the Kutta condition is satisfied. Figure 9(b) 
shows the plan form of the wing. It can be shown that the slope of 
the extended trailing edge approaches the slope of the leading edge. 

Figure 10 .- Load distribution over swept-back plan form at Mo=l . 

In figure 10 the load distribution is shown at three spanwise 
stations for the case when the wing is cut off along a line normal 
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to the free-stream direction. Over the center section of the wing 
the Ackeret type of distribution exists. The remaining sections have 
discontinuities in slope of the loading at the point where the chord 
line is cut by the Mach cone arising at the trailing edge of the root 
chord. This behavior of the loading has been noted elsewhere for 
swept-back wings at higher Mach numbers. (See, e.g., reference 23.) 

Lift coefficient CL of the wing is given by the expression 

CL=- fly ...Rdx lIb I T
•
E

• t:,. 

S -b L.E. q 

where Sand b are, respectively, area and semispan of the wing and 
the first integral extends from the leading edge to the trailing edge. 
This equation may be rewritten as 

2 fb CL SVo t:,.q:> (T • E • , y) fly 
o 

where ~(T.E.,y) is the jump in potential at the trailing edge and 
thus equal to the circulation function r(y). The following results 
are obtained: 

r (y) 2mVococx" O~ y~ A 

( 60 ) 

where k = ~l - ~: and A is the lateral distance to the inboard 



tip of the wing. (See fig. 9(b).) 

I I I I 
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Figure 11.- Spanwise distribution 
of circulation for swept-back 
wing at Mo=l, b=1.325 Co t~~ 00 
and AR=4 . 57 tan °0 • 

6 ~ 1 

5 

CL~ 
TAN 8. 
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3 
4 .0 4.4 4.8 5.2 5.& 6 .0 6.4 6.8 

AR/TAN 3. 

Figure 12.- Lift-curve slope as a 
function of aspect ratio for 
swept-back wing at Mo=l . 

Ames Aeronautical Laboratory, 

NACA TN No. 1767 

In figure 11 the value of 
r is plotted as 

Vocoa tan 00 
a function of y 

Co tan 00 
for a wing with semispan 
b=1.325 Co tan 00 and aspect 
ratio AR=4.57 tan 00 . Results 
of the integration of equation 
(59) are shown in figure 12 

where 
CLa 

tan 00 

function of 

is plotted as a 

AR 

The methods presented here 
can be applied to the case of 
the swept-back wing with tips 
cut off parallel to the free 
stream. In this case a Mach 
cone originates not only at the 
trailing edge of the root chord 
but also at the intersection of 
the leading and the lateral 
edges . On the portion of the 
wing downstream of this Mach 
cone, the load distribution is 
modified so that an abrupt dis
continuity exists at the Mach 
cone and negative loading is 
effective over this part of 
the wing. A similar effect on 
this type of swept-back wing has 
also been noted at higher Mach 
numbers in reference 23. 

National Advisory Committee for Aeronautics, 
Moffett Field, Calif. 
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ao 

A 

AR 

b 

Co 

c, c(e) 

CL 

CLa, 

CLa,( tV) 

Cp 

E 

Et, Eto 

F(k,w) 

G 

APPENDIX 

List of Important Symbols 

speed-of sound in free stream 

lateral distance to inboard tip of swept wing (See fig. 9) 

aspect ratio 

semi span 

chord length (two dimensions) 
root chord (three dimensions) 

load distribution factor introduced in equation (16) 

lift coefficient 

lift-curve slope 

indicial lift function 

pressure coefficient Cr:po
) 

complete elliptic integral of the second kind with modulus k 

complete elliptic integrals of the second kind with moduli 
Jl-{J2, JI-Bo2, respectively 

complete elliptic integrals of the second kind with moduli 
kl' k2' respectively 

* ~ Jl-k2sin2~ d~ 

r* d~ 
J 0 Jl-k2sin2cp 

parameter defined in equation (29) 

coBo 
x-co 
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K complete elliptic integral of the first kind with modulus k 

K1 , K2 complete elliptic integrals of the first kind with moduli 
kl' k2' respectively 

m tan °0 

Me free-stream Mach number 

p local static pressure 

Po free-stream static pressure 

q free-stream dynamic pressure (~ V 2) 
2 00 

~(X-S) 2+~2(Z-S)2 

j (x-f, ) 2+ ~2 [ ( Y-TJ ) 2+ ( z-s) 2 ] 

s distance traveled in half-chords 

s 

t 

u,v,W 

area of wing 

time 

perturbation velocity components parallel to x,y,z axes, 
respectively 

6uo, 6wo jump in value of u, w at the z=O plane 

velocity of free stream 

x,y,z Cartesian coordinates 

x',z',t' coordinates introduced in equation (2) 

~ angle of attack in radians 

~ J 1l -Mo2
1 

~ load coefficient (Cp7.~pu) 
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6. semi vertex angle of yawed triangular wing 

o angle between lifting element and x axis 

00 , Ol angles between leading edges of yawed triangle and x axis 

A sideslip angle of yawed triangle 

~ Mach angle (arc sin ~) 
s,D,s Cartesian coordinates 

Po free-stream density 

T region of, integration in equation (10) 

~ perturbation velocity potential 

u 

sign denoting "finite part" of integral 

Subscripts 

subscript denoting value of variable on upper surface 
of wing 

subscript denoting value of variable on lower surface 
of wing 
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