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The boEndary-layer equation of motion.&nd the boyndary-layer ener@ﬁﬂ
equatiqn for the ccmpregsiblp and,steaﬁy 1aminar boyndary layer. OnptWO? 5
dimsnsional bodies.end bodles. Qg revolution are writtenwgn a.nondimensional
form to provide a clearer indication of the effectg,of thh,number, Reynolds
number, and the propsrties of the gas.

When the ratlo of the local velocity, yo the free- gtream velocity and
the ratio of local temperature to the free-stream temperature at all points
on the surface of a body and at the outer edge of its boundary layer do not
change with Reynolds -number . and,whﬁn,tthmach Dymber..and. the physical
properties of the gas al80 do not change with Reynolds number, the boundary-
leyer thickness at-a_ fixed-polnt.on a body.is. inversely.proportional to the.
square root of the Reynolds number, the surface-friction coefficient at a
fixed point is inversely proportional to.the. .square root. of the Reynolds
number, the frictlon-drag coefficient of the pert of a body covered by a
leminar boundary.leyer:l1s inversely, proportional_to the square root of the ..
Reynolds mumber, the seperation point is indepenﬂent .of the Reynolds number,
and the nondimensional veloclity profile 1is invariable at a fixed fraction
of the body length fram the stagnation point. . By use of-the boundary-layer
equations, separation of the laminar boundary 1ayer is shown to occur only
when the static pressure along the surface rises in the directlion of flow.

CoLgnn ot
INTRODUCTION

Same useful results of the Prandtl. boundary-layer;theory for the
incampressible lamlinar boumdary layer are known to be obtainable directly
from the form of the boundary-layer equations. without. having to solve them
(reference 1). The boundaiy-layer thickness and friction drag are found to
be inversely proportional to the square root of the Reynolds nmumber, and :
the nondimensional velocity profile at a fixed point on a body and the
geparation point are found to, be, 1ndependent of the Reynolds number. These-
theoretical results sre true when the pressure distrIbution on a body is
independent cf the Reynolds number.
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Because of the Increased significance of the lamlnar boundary-layer
for flows in which the effects of compressibllity and heating are important,
1t seemed desirable to determine whether comclusions similar to those for
Incampressible flow can be drawn from the form of the boundary-layer egua-
tions for high-speed flows. An investigation to determine whether separation
of the boundary layer can occur when the pressure along the surface does
not rise in the direction of the flow also seemed desirable-

Altgpugh same of the results obtained are implicit in the work of
Von KérmAn and Tsien (reference 2) and in the wark of others, it was thought
worthwhile to develop the results both for two-dimensional flow and for
axially symmetric flow over a body of revolution, and to state them explicitly
together with the conditions for which they are valid. The results are
probably of most interest to experimentalists who require a knowledge of
boundary-layer behavior, but who have not had the opportunity to develop
these results for themselves.

SYMBOLS

u velocity inside boundary layer and parallel to surface

v velocity inside boundsry layer and perpendicular to surface

x distance along surface

Ng distancg measured fram surface in a direction perpendicular
to surface

r radius of body of revolution

T temperature

18 coefficlent of viscosity

p density

k coefficient of heat conduction

Cp gpecific heat at constant pressure

1 length of body i

U velocity at outer edge of boundary layer and parallel to
surface

U free-stream velocity
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Subscript:

o

Po zUo
Reynolds number

Ho
Uo
Mach number —
Co

veloclty of sound in free stream
static pressure

stream function for two-dimensional flow

Cpto
Prandtl nvmber

k,
surface shearing stress

ratio of speclific heats

gas constant
camponent of body force along x-axls
camponent of body force along y-axis

stream function for flow over body of revolution

free-stream conditions

Quantities which contain a bar and which do not refer to free-stream
conditions are dimensional.

ANATYSTS

Two-Dimensional Flow

Derivation of boundary-layer equations.- The steady flow of a gas
over a wall in a layer having a thickness which is a negligible fraction
of the radius of curvature of the wall is described herein by the Navier-
Stokes equatlons of motion in surface coordinates with the terms that
involve surface curvature neglected, the equation of continuity, and the
energy equation with ¢ constant.

P
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(1) The X component of the equation of motion is

zm 90 == OU ) _Rg m ¥F - d°F
T Bopr - R g Br e B
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(4) The energy equation for <p constant is
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The usual assumption of the boundary-layer theory (reference 1) that the
flow takes place in a thin layer in which the velocity is almost parallel

to the wall and in which the largest vlscous terms are of the same order

of magnitude as the inertia terms is now made by the following substitutions:

- -~
X =1lx B = HHo
¥ i y P = pp
Rol
_ - 2
u = TUou P - Py =PlUp P
_ /T ‘ S (5)
v = ———3- v Cp = CyC
<12> b Ppo
R, .
T =UU k = Kk,
PatU —
.= o““o T =TT,
Ho N

When substitutions (5) are used in equation (1), one group of terms has
the factor l/RO. For large Reynolds numbers this group is neglected and
equation (1) beccmes

u, W, (6)
= 3x+3y<l5y>
where the body forces pFy are also neglected.

When substitutions (5% are used in equation (2) and all terms containing .
the factor l/.R0 or l/RO "are neglected and the body forces be are

neglected, the result is.
0= o (7)
The use of substiltutions (5) in equation (3) results in
opu  9Ipv (8)

+ — =0

&

f et e e e - e em e e v ———— e e~ ot o n - e ety < e e T T v =~ s —me e =
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When equation (7) and substitutions (5) are used in equation (4) and

(r - M2 4 (7 - 1)M°
terms contalning the factors R ' SR ——————— are neglected,
o oRo "Ro?
equation (4) beccmes
Jr or 2 dp (811 2 19
= ==(7r -1 + + = (9
P Ty e [“ax "o/ | T & = :

Equations (6), (7), (8), and (9), together with the equation of state for a
gas and relations between p, k, and T, describe the flow in the boundary
layer. Because of equation (7) the static pressure in the boundary layer is
a function only of xj therefare, Op/dx imn equations (6) and (9) can be
replaced by dp/dx.

" A nondimensional stream function V¥ i1is then introduced, where

_1 ¥
P
(10)
1
v=-=
P
The equation of continuity (equation (8)) is autamatically satisfied.
Equation (6) beccmes
5_‘@_&5__3_‘*’3_(_1_3&) _c_lpJ,a_uB_(;é_ (11)
dy ox \P dy/ ox oy \P oy dx oy | 3y \P oy

and equation (9) beccmes

2
2E-2E-0- e 338 [50H[ 12503 o

The relative density p can be replaced by a function of T, M,, 7,
and p by the followlng development. The static pressure in the boundary
layer is a function only of xj therefore, the density at a point in the
boundary layer depends only on the temperature at the point and on the

statlc pressure at the edge of the boundary layer. Then, from the perfect
ges law

S

21 | (13)

p=
Po T
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where D 1s the static pressure at the boundary-layer edge. Fram the
definition

P -D = poUogp

the perfect gas law

Po = PoRTo
and the expression
cPo(7 - 1), = C.2

the following relation can be obtained:

D 2
— l +
o Mo P
Equation (13) then becomes
P=7 (14)

where

¢ =1+ mp

Vhen equation (14) is substituted in equations (11) and (12), equation (11)
becomes

3682560 220 o 1[5 62] w

and equation (12) becomes
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In equations (15) and (16) u and k are assumed to be functions only

of T and o, 1s assumed to depend only on the gas. Equations (15) and
(16) describe the behavior of the laminar boundary layer in & campressible
flow. The solution in a specific case requires the determination of ¥ (x,y)
and of T (x,y) subject to the following boundary conditions:

When y = 0O,

u=20 M

T = T(x)y=0

v = v(x)y=0

> (17)

when y—> o,

U = U(x)

T = 7(x)

o,

When ¢ and the boundary conditions are independent of the Reynolds number,
1t 1s seen fram equations (15) and (16) that although the Mach number and
the physical propertlies of the gas appear, the Reynolds number does not.

The conclusion, therefore, is that ¥ (x,y) eand T (x,y) are independent
of the Reynolds number but are depsndent on the physlcal properties of the
gas and on the Mach number.

Boundary-layer thickness, skin friction, separation point, and velocity
profile.- The value of y at the edge of the boundary layer 1s determined

by the requirement that % oy *U, where p (x,y) and ¥ (x,y) are inde-

&

pendent of Reynolds number. Substitutions (5) state that ¥ =< ;th /g)y .
Ro

Therefore, for a given relative pressure and temperature distribution
along the body as well as for a given Mach mumber. and gas, the boundary-
layer thickness at a fixed point on the body 1s inversely proporticnal to
the square root of the Reynolds mmber.
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The surface shearing-stress coefficlent 1s

<|—, @_2-)
S a's y=0 1 < 811)
y=0

PoUo” p U2 R/2\ 9
or with u=0 at 3 =.0 a.ndp:-';i
T 2
S 1 o<V
= pl — (18)
2 1/2 o

Because V (x,y), T (x,y) and ¢ (x) are independent of R,, the surface-
- .

friction coefficient at a fixed point on a body 1s inversely

2
Polo

proportional to the square root of the Reynolds number R, when the
boundary conditions (equations (17)), the Mach number M,, and the gas are

fixed. The friction drag coefficlient of the part of a body covered by a

laminar boundary layer also varles as 1 / \[ﬁo when the boundary conditions
(equations (17)), the Mach number M,, and the gas are fixed.

The separation polnt 1s the poilnt at which Tg = 0; that is,

5 .
Wwhere <B__2llr> = 0. The value of x at which <ig> =0 is
J y:o - ay y=0

independent of R, when V¥ (x,y), T (x,y), and ¢ (x) are independent

of R,- The ratio -f—= X 18 also indspendent of the Reynolds number.
Therefore, the separation point on a body, when the Mach number, the gas,
and the boundary conditions (equations (17)) are fixed, is independent
of the Reynolds number.

For fixed boundary conditions (17) and for a fixed gas and a fixed
Mach number, the curve of u against y 1is Independent of Reynolds number;

thus the curve of u/T against _yl_ \/Ro is invariable at a station X%/1.
This criterion can be used to test whether a velocity profile is laminar.
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10
Necessity of & positive pressure gradient for separation.- The
separation point is defined as the point at which (%) =0

y
and u>0 for y > 0.

Consider the possibility of having <g—§> = 0 when <%§) <0
=0 i___o

Fram the equation of continuity, (equation (3)) and the eguation
of motion (equation (1)) with U=v =0 at y =0 1t follows that

at y=0

0. B, P EE
S § oy
Then.for<g—i-;>—0
P
YT &

Tt 1s now assumed that the ‘velocity cen be expanded in a Taylor's serles.
Thus, '

Ti=<a—f-1> §+<a.£_ﬁ) L +<a-§> i—?,)+ e o
aii“—o 35/ - ?' 6535,:0 )

=0 :
For 8_;:.) = 0
(a’ §=0
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ox

op 62u —
For| = <0 1t follows that " < 0. Therefore u< 0 for
7=0 %750 \
emall y. This result, however, disagrees with the requirement that u >0

— : s
for y > 0. Therefore (%:) cannot be zero when <5§> < 0. Thus
7=0 §=0 -

separation cannot occur when (g—%) . < 0. If the boundary-layer assump-
y=0

tions are used then 33 =9 and 1t follows that separation cennot
&x/_ o &

occur when’ Q‘E < 0.

dx
. - om _ dp _
Consider the possibility of having (| = =0 when = = O.

Fram the full equatlion of motion with <§P

5 =0 it follows that

y=0

3°n o _
6;5 = 0 vhen %_—O=O. Thus, at y =0
§=0 =

By using the boundary-layer equation of motion (equation (6))

@ _o_/&@ _(Fw) |
wlth d;—uy=0_<a§i=d_<'6i2>_ = 0 1t can be shown that
¥=0
CIRCRRIC
-3 _ R N -
oY, T LE
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Therefore, if £ = 0 ‘and <6_1‘1> = 0, 1t follows that W= 0 for all 7 .
&= 5
=0
when it is assumed that #u can be expanded in a Teylor's Series in y. The
conclusion that @ = 0 for all ¥, however, contradicts the requirement

_ . = d
that @ >0~ for § > 0. Therefore, <8_1_1> cannot be zero when == = O.
35/ _ dax
¥y=0

Thus, separatlon. camnoet occur when g = 0.

Tt has been shown fram the cemplete equation of motion (equation (1))

that separation cannot occur when (g—§> < 0. If the boundary-layer
¥=0

assumptions are valid, then it follows that separation camnot occur

when g—i < 0. It has also been shown by using the boundary-layer equation

of motion (equation (6)) that separation camnot occur when g = 0. Therefore,

separatlion cam occur only when g > 0.

Axially Symmetrical Flow over a Body of Revolutlon

Derivation of boundary-layer equaetions.- The steady flow of a gas
over the surface of & body of revolution in a layer having a thickmess
which is a negligible fractlon of the radius of curvature of the surface
in a meridian plane 1s described herein by the Navler-Stokes equatlons of
motion in surface coordinates with the terms that involve surface
curvature neglected, the eguation of continuity, and the energy equation

with Ep constant.

(1) The X component of the equation of mokion is
—ﬁa-;u-+_Fa_.1-l—~F -a_§+E az.&—+_a.—2-u:-Ea—faj+Ea-I:‘-aj+£—.a—2;ﬁ
PETTSTETE s Gy T Np2 FTFE Ty 38 &

+5-Ea—_ ga—§'+§-a~§ +a—i_—1§‘;_-+£a-l:lﬁ_--2-a—¥-ag

3 d&x\T T oy gy 3 ax 3 ox
_2Y R, NE _2UF K

3Ty ox  oxdy 3 oxom (19)
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(2) The § component of the equation of motion is

__dF  _. o _ 3 _ 0% 1_ Pg ©TXF K mpoaom k_ 3

PU =+ PV = =pFy = =+t~ Tt T S S TS S tTH

OF 32 3 & T roxdy 3 352
+£—§_ Ea—f*.ia—‘j -gaj§+§§§E-gE§Eaj
3" F\FxETF 3wy &EoxT 3Ty
U LOowvHm 27vdrdp

= m = - - = = ' (20)
' r

(3) The equation of continuity is

é?g + OFRT =0 (21)

(4) The energy equations for constant cp 1s

— ~ - _ A2 o ~— _\2 N2
o i Z s BB B g £<a_1_1> Lo T &, MIF  (E
ey Tw Ty T G\E T a3y T\
, az)e_e_la_za_%_f_@*__+gxf<_ +§aj<_:> @)ﬁf(a_ff
T T g T OXF 3z2\F 3:2\x/\%/) 3\
x Z
_bTOomOE LW LYW LudXF _Ly¥o|, &
3FTR X 3&Ky 3T&y 3romeyy 314y %
= O
+akay+g(a_;-ag+a_§a_g (22)
oF OF 0X O oF
The usual assumptlions of boundary-layer theory are now mede and
expressed by equations (5). To these substitutions is added T = rry-
Use of these substitutions, the fact that g;; and g—_i: are of the order of

1/2

magnitude of unity, the assumption that I‘% << Ry’ , neglecting terms containing

’ 1 1 1
the fastor =, Oor and neglect the term pF. d
- 1/ Ry R——3-7§, glecting ) p¥y reduces
o

equation (19) to
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du du dp , 9 d
L (23)
& &y x My
When the development used to obtaln equation (23) from equation (19) is
1 1 1
applied to equation (20) end terms containing the factor —, ——=, or —
R’ g 3/2 R.2
)
) o
and the term pfy are neglected, the result is
0= (24)
dy
The use of substitutions (5) in equation (21) results in
or orpvy /
pu TPy _ 2
= "oy =0 (25)

(v - )M,

When the develoyment used to obtain equation (23) from equation (19% is
applied to equation (22) and terms cantaining the factor —F
(e}

(r - D42 (7 - M2 1 1
Roer ’ Ro3/2 T IR’ = CIoRol/2

are neglected, the result 1s

2 .
S =/
+ u&) + 5 k(dy) (26)

In obtaining equations (23), (24), and (26) fram equations (19), (20),
and (22) it has been assumed that all terms containing the factor 1/r are
finite. Eguations (23), (24%), (25), and (26) describe the flow in the
boundary layer. Because of equation (24), the static pressure in the boundary
layer is a function o of xj therefore Jp/dx in equations (23) and (26)
can be replaced by dp/dx : '

+p\;ra—‘g=(')'—l)MO2 u

9y

=g

M L

Pua‘;

A nondimensional stream function ¥ 1s then introduced, where
1 ¥

rp

1 d¥ - (27)
v=-1-‘?>53_‘l
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The equation of continuity, equation (25), 1s automatically satisfied.
Equation (23) becamss

+$;§-;(k§f) (29)

The relative density p 1s now replaced by ¢/T, Just as for two-dimensional
flow. ZEquation (28) then beccmes

+§_ u?-(i[l..a_ - (30)
| = oy \r 9,
and equation (29) becomss
1y 1 ¥y (-UmBAlTFap ulo (T
rdy ox T axdy royax @ T dy
19 f or
+ooay(kay> (31)

In equations (30) and (31) p and k are assumed to be functions
only of T, o, 1s assumed to depend only on the gas, and r 1is a function
of x and y. Equations (30) and (31) describe the laminar boundary
layer on a body of revolution in a_compressible flow. The solution in a
specific case requires the determination of ¥ (x,y) and of T (x,y) subject
to the boundary conditions, equations (17)°
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When y = 0, ~

u=0

T = T(x) o

v = v(x)y=o

> (1)

when y—> <

U = U(x)

T = T(x)

u

When ¢ and the boundery condltions are independent of the Reynolds
number, 1t is seen fram equations (30) and (31) that although the Mach
number M, and the physical properties of the gas appear, the Reymolds
number does not. The conclusion, therefore, is that ¥ (x,y) and T (x,y)
are independent of the Reynolds number but dependent on the physical
properties of the gas and on the Mach number.

Boundary-layer thickness, skin friction, separation point, and
velocity profile.- The conclusions concerning the boundary-layer thickness,
skin friction, separation point, and velocity profile are the same as
those obtalned for two-dimensionel motion. The concluslons are obtained
in the same way as those for two-dimensional motion, except that for the
body of revolution equation (18) is replaced by

i s (‘-I : (32)

DoUo2 ) ¢Rol/2 ¥ ? 7=0

Necessity of a positive pressure gradient for separation.- The

separation point is defined as the point at which (%) =0
, o
and u >0 for ¥ >O0.

— a—
Consider the possibility of having <§r‘§> = 0 when <§§ < 0.
§=0 y=0
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From the equation of continuity (equation (21)) and the equation of
' 5w = _ 10 10
motion (equation (19)) with u=v =0 at y =0 and with 5 N

o (1gdr o (Ligor
ai(f ai)’ and &(f asr) finite

__ D, EFT N, uJ, -
T TaTryy Ty TR
or for g—g=0
§§=ﬁa.ﬁ-1
E o

ae(3) <o

Pa
<5§2>"=o <0

Then, by the same reasoning as in the two-dimensional case, separation

a_

cannot occur when (_p> < 0. If the boundary-layer assumptions are
=20 .

— a5 a5
used then <%§>_ = é and separatlion cannot occur when d—J_;E(O.
=0
Ju ap
Consider the possibility of having B—Sr-' =0 when = = o.
y=0

The development 1s the same as that for two-dimensional flow with the

exception that equation (23) 1s used instead of equation (6) end it is

agsumed that T # O and that all its derivatives with respect to ¥y are
= 0.

finite. The conclusion is that separatlon cemnnot occur when d—i

e e e e e —— s e e s —— o — -—— - .
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The camplete equation of motion (equation (19) thus indicates that
gseparation cannot occur when <g§> < 0. If the boundery-layer
y=0

L.

assumptions are valid, it follows that separatlion canmnot occur when =
It also follows fram the boundary-layer equation of motion (equation (23))

—

that separation cammot occur when §§_= 0. Therefore, separatlion can occur

dp
(o) when =~ > 0.
nly =

DISCUSSION

The conclusicons of the present work concerning the behavior of the
laminar boundary layer were reached by the following assumptions:

(1) The boundary-layer thickness is a negligible fraction of the
radius of curvature of the wall in the plane of the velocity.

(2) The flow in the boundary layer 1s almost parallel to the
surface.

(3) The boundary-layer thickness is a small fraction of the
distance to the stagnation point.

(4) The inertia and largest viscous forces are of equal order
© of magnituds.

(5) The body forces are negligible.
(6) The coefficlents of specific heat are constant.
(7) The coefficients p and k are functions only of T.
(8) The Prandtl mumber depends only on the gas.
(9) The perfect gas law is applicable.
(10) The Reynolds mmber is large.
For the body of revolution it is also assumed that terms which contain r
or lts derivatives are finite and that the body is not very slender. The
conclusions concerning the effects of Reynolds number contain the
additional requirements that the conditions at the surface and at the outer

edge of the boundary layer, when expressed ngndimensionally equation (17),
are independent of Reynolds number.
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The assumptlions of the boundary-layer theory may be invalid down-
gtream of the separatlian polnt and perhaps even at the separation point.
Wo evidence is available, however, to Indicate that the boundary-layer
approximations became so poor at the separation point that the conclusions
concerning the separation polnt are invalid. The region near the base of
a shock wave is another at which the boundary-layer assumptions may be
invalld, but here again a definlte statement cannot yet be made.

The concluslions concerning the effect of Reynolds number are noted to
be the seme for campressible flow as for incampressible flow. Far
campressible flows, however, the boundary conditions involve the temperature
distribution as well as the pressure dlstribution. The Mach number and
the ratlio of the specific heats appear as parameters.

CONCLUSIONS

The boundary-layer equation of motion and the boundary-layer energy
equation for the campressible and steady leminar boundary layer on two-
dimensional bodles and bodies of revolution are written in & nondimensional
form to provide a clearer indication of the effects of Mach number,
Reynolds number, and the propertles of the gas.

When the ratio of the local velocity to the free-stream velocity and
the ratio of the local temperature to the free-stream temperature at all
points on the surface of a body and at the outer edge of 1ts boundary
layer do not chenge with Reynolds nuvmber and when the Mach number and the
physical properties of the gas also do not change with Reynolds number,
then it follows that:

1. The boundary-layer thickmess at a fixed polnt on a body is
inversely proportional to the square root of the Reynolds mumber R,-

2. The surface-friction coefficient at a fixed polnt is inversely
Iroportional to the square root of the Reynolds mumber R,-.

3. The friction drag coefflcient of the part of a body covered by
a laminar boundary layer lg inversely proportional to the square root
of the Reynolds mumber R,.

4. The separation point is independent of the Reynolds number Rg.

5. The nondimensional veloclty profile is invariable when the

velocity ratio ﬁ/ﬁ (where u 1is the velocipy inside the boundary layer
and parallel to the surface and U 1s the velocity at the outer edge of

the boundary layer and parallel to the surface) is plotted against & \[R,
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’

(where § 1is tHe distance measured fram the surface in a direction
perpendicular to the surface, 1 1s the length of the body, emnd R, 1s

the Reynolds mumber) at a fixed fraction of the body length from the
stagnation point. By use of the boundary-layer equations, separation
of the laminar boundery layer is shown to occur only when the static

mressure along the surface rises in the direction of flow.

Langley Aeronautical ILabaratory
Natlional Advisory Cammittee for Aeronautics
Langley Air Force Base, Va., November 22, 1948
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