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ON COMPRESSIBIIJTY CORRECTIONS FOR EXJBONIC FIQW

OTUR EKIDQ33OF REVOLUTION

~ Eric Reissner

A study of the subsotic flow pat an infinitely.1OW corrugated
circular cylinder is presented to show the relation letween two-dimensional
and axisymmetrical flow. In fact, a solution is obtained which contaim
as limiting cases both the Prandtl-Glauert correction for two-dimensional.
flow and the Gothert correction for flow past slender bodies of revolution.
Tncluded in the ~per are velocity-correctionformulas for a cylinder
with a single bump and for a corrugated cylinder in the presence of walJs.

INTRODUCTION

The Tresent payer is concerned with the form of the compressibility
corrections for subsonic flow which folJmw from the linear-perturbation
theory. It is now welJ bown that there are essential dMferences
between the compressibility corrections for two-dimensionalflow and the
corres~nd3ng corrections for flow about slender bodies of revolution.
This problem has been the subject of several papers by vezious authors.
(S,s0,for example, references land 2.)

The analysis presented herein shows that the relation between two-
dtiensional and axisymmetrical flow can be clearly demonstrated in the
solution for the flow past an infinitely long corrugated cylinder.l In
fact, a solution is obtained which contains as limithg cases both the
Prandtl-Glauert correction for two-dimensionalflow and the G6thert
correction for flow past slender bodies of revolution. Although the
results for these two limiting case9 are alraady lmoTm, the r=wlt
obtained in the present paper shows the nature of the transition from
one limiting case to the other. The nature of this transition has been
treated.from a different point of view in reference 4, where the bodies
considered consisted of a family of ellipsoids ranging from the ellipsoid
of revolution’to the infinitely long elliptic cylinder. It iS of
interest that the present example is a natural extension of th9 two-

Mmensional wavy wall.treated by Ackeret ina classical paper (reference 5).

%r. C. C. Lin has pointed out to the author that flow past a corrugated
circular cylinder has previously been considered by Th. von %rm6n
(reference 3) in a clifferent comaction as an example of the
calculation of wave drag for supersonic flow past boties of revolution.
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FLOW PAST A CORRUGATED CYLINDER

Let u + U and v he componentsof fluid velocl@ in the axial and
radial directions, respectively. Let ~(x,r) le the perturbationVelbci@
potential h terms of wlxLch

where x and r are the axial and radial directions, respectively.
The linearized differential equation for ~ is

where Mm is

Let r =
of revolution

(1)

(2)

the undisturbed streem Wch nuuiber.

a + f(x) be the equation of the meridiam profile of the lody
such that If(x)l<< a and If‘(x)[<< i. The boundary condition

r =a

e
= w’(x)1

at the surface of the body of revolution is then of the follbwing form:

Co~ider now the prtic~ez case in which

f(x)
()

= 18 COB +

(3)

(4)

where b is the thiclmess ratio q/Z of the ripple,(q is the amplitude
and 22 is the wave length of the ripple (fig. 1)). An approwiate
solution of dll?ferentialequation (2) is
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(5)

where 10 and ~ ere modified.Bessel functions of
‘ An emd ~ are arbitraq constants. The following

10 and ~ are needed:

order zero and
properties of

10 ‘(X) = Ii(x); ~ ‘(X) = ‘K1(X) 1
(6)

.

When the boundary of the cylinder is given by equation (4), only the first
term of the series (equation (5)) is needed.

For the body of revolution in an unlimited ati stream, the asymptotic
lehavior‘of the functions In requires @at the coefficients An vanish.
ltromequations (5), (4), and [3), it follows that the form of the perturbation
potential caused by the ripple is

(7)

J@wtion (7) leati to the foil.ow5q expression for the axial velocity u
at the surface of the body of revolution:

u(x,a) = —
&

(8)
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The ratio of U(X,a) for compressible and.for ticcmpressibleflow is then

%(GG+ ‘+?)
?=&K_j ~(+

lhom equations (9) and (6) it fo~ows, in

when YC~~ q >>1-
2 >

particular, that,

and, when $ <<1,

t
u

4

loge@.-M:d
%1 +

1.03 + loge;

(9)

,

(La)

(lOb)

~uation (lOa) is of the form pf the Premdtl-Glauert correction and equation
(lOb) is of the form of the Gdhert correction. The transition between the
two formE is supplied by eqution (9). I?igwe 2 shows the relation between
the results of equations (9) and (10) for a given value of the undisturbed
stream Mach number (~ = 0.$56).

Note that the validi~ of the forego~ formulas is governed by the
following two restrictions. First, the use of the linearized bouudary

concMtion (equation (3)) reqties that 5 = ~ << 1 and, second, that 5 << ~.

When the second of these two restrictions is not satisfied, it isxnecessary
to satisfy the boundary condition along the line r = a + q cos

(!)
rather

than along the line r . a and hence the veloci~ correction formulas

depend on two length ratios ~ end }.

VELOCITY CORRJI!TIONFORMUIA FOR CYIZNIER WI’ITiBUMP

l?romthe foregoing results the correspond.hg results may be deduced
for a body ‘ofrevolution hav5ng a meridian profile given by an equation of the

,

fOrm

/

w

r=a+ q(x) cos(Ax)dA (U)

(o
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H, now, the substitutions

axe

The

Y(—= 11A

Z5=V

made, equations (5) and (7) yfeld

corresponding solution for incompressible

Sino.x)(m

flow is

A comparison of equations (14), (13), and (M-) shows that8

(M

(13)

(14)

(15)

which is in accortice witi the general results for this case (reference2).
The velociw correction formula which folJ_oimfrom equation (13) is of the form

/— \

(16)

VELOCITY CORRECTION FORMDIA FCIl?RITPLE IN TEE ITUHT?CE

H, again, a ripple of the form of equation (4) is
boundary condition (equation (3)) at the swface of the
thOre is now an additional condition at the boundary of
radius b, namely, for r = b

OF TUNNEL WAIW

taken with the
body of revolution,
a tunnel of

(17)
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The ~erturbation potential f# which satisfies equations (3) and (17) ●

I
is of the foldmwdng form: ‘

—

1 UZb Il(@)~(Pr) + K1(Ph)Io(Pr)
Sin(ax)$ = ~ I1(Pb)K@) - Kl(Pb)Il(Pa)

where

U=z
z 1p=~z:

When b+~, eqmtion (18) reduces to equation (7). The axial
perturbation velociti u at the surface of the body of revolution
follows from equation (18) in the form

~~ Il(Pb)~(Pa) + Kl(Pb)Io(@)
U(X,a) =

~ Ilk - K1(Pb)Il(@)
.

Cos(ax)

(18)

(19)

●

●

(m) I

\

On the basis of equation (20), the values of ~~ ~, for given values of
I
1

a b
A

-a
7’ 2 } - ~, be calculated numerically. I

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

_ey MrForce~se, Vs., ~cem.er 30, 1948
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Figure 2.- Compmison of co~r~sibility
“oorreatlons. Mw= . .
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