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SUMMARY

The three-dimensional nonlinear partial differential equation
for the velocity potential in a supersonic stream is transformed by
the method of characteristics to obtain a system of three ordinery
differential equations wherein 81l quantities are known or can be
calculated except the three velocity differentials. When the ordi-
nary differential equations are converted to difference equations )
the velocity components at an unknown point in e network of charac-
teristics can be calculated if the velocity components at three
neighboring points of the network are known. Use of the difference
equations for computing the supersonic potential flow past unsym-
metricel boundaries is discussed.

Application of the method of characteristics to the linearized
three-dimensional equation results in a relatively simple system of
difference equations that can be used to compute the supersonic flow
pest boundaries for which no other linearized solution is available.

INTRODUCTION

The velocity potential in a steady supersonic stream is described
by a nonlinear partial differential equation of second order with ,
three independent varisbles. If the velocity throughout the disturbed
portion of the flow field is assumed to differ very little from the
velocity in the undisturbed stream, the complete equetion can be
reduced to a linear equation whose form is identical to the wave
equation of physics. Many solutions of the linearized equation have
been obtained for particular types of boundary condition. The pres-
sure distributions on thin wings, for example, can now be determined
for many plan forms and profiles (references 1 to 5). Solutions are
also avallable for determining the pressure distribution on axially
symmetric bodies (references 6 and 7) or on cones that may be
-unsymmetrical (reference 8). No linearized solutions are known, :
however, for general body forms or for general wing-body combinations.
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When the Mach number and the velocity change appreciably as
the flow passes a solid bounding surface, the complete differential
equation must be solved if accurate results are required. For a
few special cases, such as plane flow (reference 9) and axially
symmetric conical flow (reference 10), the exact equation has been
solved without use of the method of characteristics. 'These solutions
were: obtainable because the problems to which they apply are com-
pletely determined by a single independent variable. For plane flow,
the local Mach number is determined by the angle of the streamline
with respect to the base plane and, for axially symmetric conical
flow, the local Mach number depends only .on the angle of the conical
ray with respect to the axis of symmetry. When reduction of the
problen to a single independent variasble is impossible, solutions
for the exact equation are available by application of the method
of characteristics. .-

In references 11 and 12, the method of characteristics 1s applied
to the calculation of the supersonic flow in a field that is plane
or has axial symmetry. For plane flow, the procedure is essentially
a step-by-step development of the Prandtl-Meyer solution (reference 9),
whereby the effect of interacting characteristics is determined. ZEach
characteristic has a constant strength throughout the field and the
inclination of the characteristic with respect to the local stream
direction is the locel Mach angle. For axially symmetric flows, the
strength of a characteristic varies with the distance from the axis
of symmetry; hence the problem cannot be reduced to a single vari-
eble. The computations are therefore somewhat more laborious than
for plane flows, but the simplicity of geometry is maintained. The
flow can still be completely represented in a single coordinate plane
and the angle between the characteristic and the local stream direc-
tion is still the local Mach angle. For plane and axially symmetric
flows, the method of characteristics has been extended to include
rotational flow (reference 12).

When the flow variables vary simultaneously in all three
coordinate directions, graphical representation is more difficult
and numerical computations are more lengthy. The relation between
the characteristic surfaces and the coordinate planes is no longer
simple. A formmlation of the procedure for unsymmetrical flows has
been published by Ferrari (reference 13), who derived the ordinary
differential equations that determine the variation of velocity
components along intersections of characteristic surfaces with
meridian planes and discussed the procedure for the case of an
axially symmetric body at angle of attack.
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A reformlation and generalization of the methods described in
reference 13 was completed at the NACA Iewis laboratory in March 1948
and is presented herein. The physical concepts used in the method
of characteristics for general flows are described in some detail
and the required difference equations are derived for the three com-
mon orthogonal coordinate systems. With these equations and con-
cepts, the potential flow past three-dimensional boundaries can be
determined by point-to-point computation to any desired degree of
accuracy. By application of this method to the linearized differen-
tial equation for supersonic potential flow, solutions can be obtained
for boundaries for which no other solutions are yet available or for
which other solutions involve more computation than the procedure
described. No attempt is made to determine the effect of shock waves
on the flow field. All shock waves are assumed to be replaced by
isentropic campresgion waves in order to retain the assumption of
potential flow. To the extent that this assumption is valid, the
resulting solution can satisfy the boundary conditions of the real
flow fleld.

SYMBOLS

The following symbols are used in this report:

—

A partial differential equation of characteristics
Al,Az;As ’ .

B, ,B5,B3 quantities depending on velocity components and
€1,C2,Cz coordinates at points of characteristic network
Dy ,D2,D3 '

P1,P3

AC AT, A", . A source of characteristic surface that extends
“downetream and away from solid boundary (type I)

a3,k coefficients of Di’kllf in potential equation

BO,B',B". . .BU source of characteristic surface that extends
downstream and toward solid boundary (type II)

co,cr,c". . JCR source curve determined by intersection of two
characteristic surfaces

_ S%y -
Dy, w‘ = Seyony (1,k = 1,2,3., table I)
Do,p',p", . DU gource curve defined by intersection of charac-

teristic of type IT with x; = constant surface



EO,E' ,E'. . .EU
FO,F)F". . .F¢
£(x; ,X3)

@,6',6". . G

H(Vi )x-j_)

r,0,®

VgsVysVy
VxsVrsVg
Vr,Ve,Vq)

X,r,P

X,¥,2
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source curve defined by intersection of charac-
teristic of type I with x; = constant surface

derived source curve on solid boundary and lying
in x; = constant surface

function defining integral surface
S = Xy - f(xy,x3) =0

intersection curve of characteristic of type II
with solid boundary

function in potential equation whose nature
depends on coordinate system used

. i
ratio of critical speed to speed of sound

Mach humber‘

ratio of coordinate differences required to solve
simltaneous difference equations for velocity
components '

spherical coordinates

. integral surface of potential equation

T t1 g xj Vi T and —
ucetlion o
? ’ d.x] ? dI3

ratio of local flow velocity to critical speed

first partial derivatives of ¥ with respect.
to x4 (i=1,2,3) '

ratio of velocity components to critical speed

in Cartesian, cylindrical, and spherical
coordinates, respectively

cylindrical coordinates

Cartesian coordinates



NACA TN No, 1849 : » 5

Xy ,Xp,X3 orthogonal coordinates used in derivation

y . ratio of specific heats (y = 1.40 for air)

) angle between tangent to solid boundary and
x3 = constant surface

€ engle between tangent to solid boundary and
Xy = constant swrface

1 factor required to eliminate coordinate factors
from vy to establish boundary condition
(table I) '

A 2 along characteristic

X e
H X2 alo characteristic
S e .

¥ ratio of velocity potential to critical speed

Subscripts:

AC,A',A", . GR values of quantity at point of characteristic
network ‘

1,2,3 - coordinate directions, X3 5Xp,X3

Superscripts:

m ) last point of source curve

n general intermediate point of source curve

THEORY

Physical Concepts

The physical basis of the method of characteristics is the
nature of wave propagation in a supersonic stream. Consider a moving
stream of compressible fluid that is uniform except for the effects.
of a single stationary point source of disturbance (fig. 1). If the
stream is moving subsonically, the Wwave front of a disturbance (shown
-at successive intervals of time in fig. 1) has no stationary envelope;
when steady-state conditions are obtained, the discontinuous wave
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front has disappeared from the field of interest and a continmuous
disturbed flow field remains. If the stream is moving supersonically
(f1g. 1(b)), the wave front possesses a stationary conical envelope.
The vertex of this envelope 1s the point source, its axis is the
stream direction, and its conical half-angle is the Mach angle.

When steady-state conditions are obtained, the initial spherical
surface of discontinuity has disappeared, but the conical envelope

of the disturbed portion of the field (Mach cone) remains. The Mach
cone is a surface of infinitesimal discontinuity upon which the stream
variables have two values, that of the free stream and that of the
disturbed stream. Such a surface, upon which two solutions simlta-
neously exist, is called a characteristic and its differential equa-
tion can be directly obtained from the differential equation of the
entire flow field.

Consider now a space curve that acts as a source of disturbzmce
in a supersonic stream (not necessarily uniform) (fig. 2). The shape
of the space-curve source may be arbitrary except that each point
of the curve is assumed to lie outside the Mach cones emanating from
all other points of the curve. In figure 2 the curve is assumed,
for convenience, to lie in a plane perpendicular to a coordinate axis
and the flow is in the general direction of the x;-axis. The
envelope of all disturbances from this source forms two distinct sur-
faces. These surfaces are characteristics and the stream variables
may have either of two solutions at any point on the surfaces. If
the line source is regarded as a series of point disturbances, the
shapes of the characteristics are clearly such that they form an
envelope to the Mach cones emanating from all point sources on the
curve. If only very small regions of the flow field are considered,
the characteristics are closely approximated by their tangent planes.
These tangent planes and their intersections with coordinate planes
and with each other are used in the method of characteristics to con-
struct continuously varying flow fields (reference 13). (For spher-
ical coordinates, the surfaces xj = constant becomes spheres rather
than planes, but because most problems are best adapted to the use
of Cartesian or cylindrical coordinates, the term "coordinate plane"

- 18 sometimes used to describe a surface for which either x; or
x3 1s constant.)

The initial sources of the characteristicse are actual or
‘agsumed discontinuities at the boundaries of the flow. These bound-
aries consist of the body past which, or through which, the flow is
to be computed and the surface that separates the disturbed and
wndisturbed regions of the flow field. Smoothly varying boundaries
are replaced by a succession of tangent planes whose spatial dimen-
sions are small so that the original boundary is closely approximated
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by the resulting polyhedral surface. For boundary sources, it is
convenient in most cases to choose curves that lie in surfaces for
which one of the coordinates is constant. If Carteslian or cylindri-
cal coordinates are used, for example, all initial sources can be

so chosen that they lie in x; = constant planes. If the flow vari-
ables are known on an initial source lying on the solid boundary, a
characteristic surface of type T (fig. 2) is determined. Intersection
of this surface with a characteristic of type IT, whose source is a
small distance from the initiel source, determines another curve that
may be regarded as a secondary source of two more characteristic sur-
faces (one of each type). The secondary source so determined does
not, in general, lie in an Xx; = constant plane, but a procedure is
subsequently described whereby all secondary sources can be transferred
to planes parallel to the initlal source.

When each characteristic 1s replaced by its tangent planes, the
flow field 1s represented by a network of points, each of which is
a Junction of two or three lines of intersection of planes tangent
to the characteristic with coordinate planes. The mathematical theory
of characteristics provides equations that determine the velocity
components at these Junction points when conditions at neighboring
Junction points are Imown.

Mathematical Development -

The theory of characteristics is presented in many texts dealing
with differential equations (for example, references 14 to 16). The
following development considers the theory for nonlinear partial dif-
ferential equations of the second order in three independent variables.
This type represents the equation for compressible potential flow in
a three-dimsnsional orthogonal coordinate system. Although the fol-
lowing development differs from the derivation given for cylindrical
coordinates In reference 13, the final total-differential equations
obtained are identical.

The differential equation of the velocity potential for com-
pressible, nonviscous, irrotational flow can be written as

811011¥ + a12D12¥ + a13D13¥ + apaDpo¥ + apzDazV + az Dz + H =
' (1)

where ay .,k and H are functions of velocity components and coor-

dinates and the symbols Dj k¥ represent the second partial deriva-
tives of V¥ with respect to the coordinates. The nature of the
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quentities in equation (1) for Cartesian, cylindrical, and spherical
coordinates is indicated in table I. The irrotational-flow condi-
tions required to derive equation (1) are

Dyp¥ =DpnV¥
Dpz¥ = D3p¥
The feasibility of integrating equation (1) depends on the

existence of surfaces in the flow field along which the derivatives
of ¥ are continuous. If discontinuities are possible in the field,
these surfaces (often called integral surfaces) must be so defined
that the flow variesbles may be discontinuous across the surfaces but
not along them. The differential equation that defines such a family
of surfaces is derived as follows: Assume that the surface

S(x;,X5,%z) = 0 1s an integral surface of equation (1). If S is
solved for one of its independent variables, such as xp, then

S=1x, - f(xl,xs) =0 (3)

and the relation between the increments dx,,dx;, and dxz on
this surface is _

d.xz = )\dxl + p.d.Xs _ (4) '

where

A _axz

The differential of vy may be written

dv, = Di’l‘lfd.xl + ])1’211&1.:;2 + 1)1’311&1.::3 (1 =1,2,3) (5)
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If one of the coordinate increments, for example dx,, is eliminated
from equation (5) by means of equation (4), then equation (5) becomes

dvi = (D1’1W+ >\D1,2W)dxl + (Di’sllf + pDi’z‘F)dxs (6)

Because x; and Xz are independent variables, the increments

dxy and dxz may be alternately set equal to zero to obtaln the
relations :

| dvy
Di,I¥ = <d.x1 - M)i,z!lf (7)
Xz = constant
dv
i -
Dy, = (&g) WDy 27 (7a)
X = constant
dvy dvy
where = and = are taken along the intersections of S with

font plang
xz = constant planes and x; = constant planes, respectively.

With equations (7) and (7a), all second derivatives of V¥ .
except one can be eliminated from equation (1); thus, if Dyo¥ 1is
the exception, equation (1) becomes

Ay ¥ + T=0 (8)
. dvy dvy
vhere T 1is a function of vy, x4, = and =’ and the
coefficient of Do ¥ is 1 3
- 2 . 2
A= 8.11)\ - alz)\ + 8.13)\;.1 + 89o =~ 8gzu + azzp (9)

Bquation (9) is called the characteristic form of equation (1). If
A # 0, then Dyo¥ and consequently all other partial derivatives
of ¥ are uniquely determined by equation (8) and are consequently
single-valued. If A = O, however, the partial derivatives are not
uniquely determined by equation (8) and may therefore be multivalued.
Hence the possibility that discontinuities may exist in the flow
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field 1s established by the condition A = O. The integral surfaces
defined by the relation A = 0 are called the characteristics of
equation (1). If the characteristics exist and are real, they con-
stitute a family of surfaces along which equation (1) is necessarily
integrable. Other surfaces may cross the characteristics and hence
contain discontinuities in the derivatives of ¥. In general, if the
flow is supersonic, real characteristic surfaces exlist. An interest-
ing exception is the equation for conical flow, which is discussed
in appendix A.

If the coefficient of Doo¥ (equation (9)) is set equal to
zero and the resulting equation is solved for A, the differential
equation of the characteristics of equation (1) becomes

N (agp - uegz)* ’\ﬂuals - 815)% - 4a3) (agp - paps + nlazz)
=28
1

(10)

vhere the + and - are used for characteristics of types I and
II, respectively (fig. 2). The quantities A and u may be called
intersection parameters of the characteristic surfaces because they
determine the rate of change of x2 with respect to x3 and x3,
respectively, along the characteristics. (For plane and axially
symnetric flows, the velocity vector can always be represented in a
single plane. The parameter p 1is then zero a.nd equation (10) can
be reduced to

A = tan (6% B)

vhere 6 1is the angle between the local velocity vector and the
x-axis and B is the local Mach angle.)

For three-dimensional flow the significance of A and u 1is
shown in figure 3, where x;, x3, and X3 are represented as
Cartesian coordinates. If in figure 3(a) the intersection of the
characteristic with an x; = constant surface is given (line AOA'),
then two values of A at point A9 can be calculated from equa-
tion (10), in which the approximate value of u at A 1s given
by the difference ratio _.:i

L= (dxz) -~ Xp,p1-X2 00
T \dx T x =X, A0
AT Xy = constant S’A" 5,A

~
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These two values of A determine the slope of the intersection at

A° of a characteristic of each type with the xz = constant plane
conteining AC. If the intersection of a characteristic with an

x3 = constant plane is given (1line AOCO, fig. 3(b)), two values of

p can be calculated from the equation obtained by solving the charac-
teristic equation (10) for . Because the xj-axis is assumed to
be in the general direction of the flow, the parameter p will
usually be given and the two values of A will be computed from
equation (10).

The expressions for the changes in the velocity components in
passing from one point to a neighboring point along a characteristic
intersection can be detexrmined by setting the function T, obtained
in equation (8), equal to zero. Because the nature of this function
has not yet been specified, the derivation will be repeated in more
detail. With the aid of the irrotational flow conditions (equa-
tiom(s (?)) » the following relations are obtained from equations (7)
end (7a):

\
dvl dvz
d.Vz
D =& - Y
(1)
st .
D1s’ = &, "~ MoV r
dvz
Dodl = gz, - D22V
dvs dvo
= 2 . L . 2
Dadd =& ~ M, * DY
—

and equation (8) becomes
T = a_udvl + (8.12 - )\&u)de + a13dv3

| av, d.v3 _
+ (%3-7\613-@33)&;+8.33d—%-+ﬁ d.xl=0 (12)
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vhere the coefficient of D22 ¥ has been set equal to zero in accord-
ance with the characteristic condition. Equation (12) provides a
relation between the velocity increments in moving a small distance
dxy along intersections of characteristics with = xz = constant

surfaces. If, for example, the velocity components and coordinates
are known at A° and A' in figure 3(a), all quantities in equa-
tion (12) are known except dvy, dv,, and dvz. With the aid of
equations (7) and (7a), the relation ,

" Ade=ud72+d73-dvl
dx3 d.xl d.xl dx3

is obtained and equation (12) can be converted to
a.13dvl + (a23 - u&ss)dVZ + a33d73

( Aa ) d_vz d—vl H| dxz = O (13)
+ a2 - Aayy - uay3) g3 81 gt 3=
) 1 1

vwhich relates the velocity components in moving a distance dxz along
intersections of characteristics with x; = constant planes. For
cylindrical coordinates, equations (12) and (13) are identical to
those derived by Ferrari (reference 13). When equations (12) and

(13) are converted to difference equations, the supersonic flow past
arbitrary boundaries can be constructed by a point-to-point process

of mmerical integrationm.

Formulation of difference equations along characteristic inter-
sections. - The problem of constructing the supersonic flow past
arbitrary boundary surfaces may be divided into two parts: (1) Given
two neighboring source curves, both of which lie in surfaces for
which x; = constant, determine a third source curve lying in another
X; = constant surface slightly downstream; (2) glven one source
curve on the solid boundary and another curve Just off the solid
boundary, £ind another source curve (slightly downstream) on the
solid boundary. (All source curves are again to lle in surtaces for
which x3 = constant.) These problems and the geometry of the
solution are illustrated in figure 4, where Xx;, X, and xz are
represented as Cartesian coordinates.

Suppose that the points A%, A', A", F°, F', F", G°, G', and G"
are located on a body that represents a boundary of the flow. The
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A}

rectangles AOCA'F'FO and A'A"F'F' are assumed to be sufficiently
small to closely approximate the actual contour of the body in the
region ACA"F'FP. The rectangles ACA'E'EC and A'A"E'E' are
tangent planes that closely approximate a characteristic surface of
type I whose source is the curve AOA'A" on the body; the rectangles
BOB'D'DO and B'B"D"D' are tangent planes that closely approximate
a characteristic of type II whose source is BOB'B". It is desired
first to determine the coordinates and velocity components at points
E°, E', and E" (or D°, D', and D") when the coordinates and velocity
components are known at points A%, A', A", B°, B, and B". When
"the new field source ECE'E" has 'been determined , the second problem
requires the determination of the velocity components at the new
surface source FOF'F".

The fact that lines such as A'E' and B'D' do not generally
intersect at the same value.of xj; as the lines ACEC and BCDO
mst be noted in solving the first problem. If the body is very
wmsymmetrical, the x; value of the intersection point changes
. appreciably as the successive points E',E'. . .ER are computed.

Such lines as A'E' and EOE', however, which are intersections of
the same characteristic tangent plane with xz = constant surfaces
and x; = constant surfaces, respectively, naturally intersect at
the chosen values of Xx; and Xz ,

The velocity components along the derived source curve EOE'E"
can be determined with equations (12) and (13), which may be written
as follows: Along an intersection of a characteristic with an
x3 = constant plane, :

8114vy + (815 = Aaq7)dVs + aqzdvz + Pidxy = O (14)
11971 + (2812 - Aagy)dvp + 2)3dvs + Pidxy

where

dvz d.v3
= (agz - M3 - uazsz) &, * e EE, O

Along an intersection of a characteristic with an x; = constant
plane, _

EIdel + (8.23 - |J,8.33)d.72 + 8.33dv3 + P36x3 =0 o (15)
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1]

where

de dvl
= (232 - ways -Rapy) o+ e - ¢+ E

If the velocity gradients and the coordinates change only
slightly in moving from one point to a neighboring point on the
network of characteristic intersections, the differentials in equa-
~ tioms (14) and (15) may be replaced by differences. The coordinate
differences dx; and dxz are easlly obtained. For any point such
as C° (or C' or C"), which is a junction of two intersections
of characteristices with an xz = constant plane, the two relations

A szCo - xz,Bo
B® T x -x
1,c° ~ “1,B°

_%2,00 " 2,00

A
A% " 323 6o - X1 p0

can be used to determine - X,c° and X2,c0 (x3 co is given for
such points). Explicitly the required coordina.tes are

_ *2,A0 - %2,B0 *+ Apo¥) BO - ’\A°xl A°
xlxco Ago "Mo

> (16)

Mgo¥Xp 40 = ApoXp po +Agodo (xl,Bo - %) g0}
Apo " Ao _

X2,c0 =

For such points as E', D', E", and D", which are jJunctions of
intersections of the same characteristic tangent plane with an
X; = constant plane and with an xz = constant plane, the coor-

dinates Jtl and xz are known from preceding points and X, can
be determined from relations such as, for point E',

_X2,E = X2,A

A =
Al X m T X" .

(17)
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In order to determine the velocity components at points such as
E', three equations are required. From equations (14) and (15) the
following difference equations may be obtained:

Along A'E'

(e31),, (vi,g' - vi,a) + (e12 - Reyy),, (V2@ - v2,a0)

. , )
* (als)A. Va3, m0 - Vs,A') PP g - xl,A') =0
: (18)
Along B'D' ,
(11)p: (va,er - v1,m0) + (812 - Aapy)y, (vo ¢ - V2, 30)
+ (ay3)y, (V3,00 - ?3,3') +Pyp (400 - % p) = ° 29)
Along ECE'
(813)g0 (v1,mr - vy po) + (ag3 - vazz)p (V2 - vz po)
+ (a33) 0 (V3,80 - v3,m0) + P3 o (%35 - X3 30) =0
(20)

Because only two characteristic intersections join at points
such as E', three independent relations between the three velocity
components at E' cannot be obtained unless the assumption that the
quantities v; vary linearly for small distances along characteristic
intersections is used to eliminate vi,ce from equation (19). This

assumption 1s expressed by the relation

vi,C' - vi)A' - xl,cu - xl)A' = R (21)
YL,B0 " Vi, XL,m T *a
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With equation (21), equation (19) becomes

(a11);, [Bvy,mr = va,p + (1R
+ (8, - M‘ll)B. [RVZ,E, - Vo pi * (l-R)vz’A,]
Y (513)13' [RVS’Ev - v3,p + (l-R)Vs,Ac]

+ Pl,B' (Il’cv - xl,B') =0 (22)

The solutions of equations (18), (22), and (20) are

where

A= Al (3203 - B:J)CZ) - Az (BlCS - Bscl) + A3 (BlCZ - BzCi)

A = (aqy),, - B = .(alz -hepy), G = (ag5),
Az = (a‘]_'I.)Bl By = (a3 - >‘a'll)Bl Cz = (aIS)Bt
Az = (a13)0 By = (a3 - mazs), C5 = (a33)0

Dy = = A1Vy ar = ByVp av = C1vz a0 + Py pe (X @ - Xy p)
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1-R
Dz =%~ (szl,A' + Bava ar szs,A-)

P
1 1,B!
- ﬁ (szl,B' + BZVZ’B| + CZVS,B') + ——ﬁ-—— (xl’c' - xl,B')
D3 = - Azv) g0 - BsVp 5o - C3vz go + P3 po(xz m - X3 50)

[ dvs | dvy ]
Prar = Lless gz + (eez - Megs - uaz3) o N

dv, av
P1,p = [ass T, * (a23 - Meys - wegs) o+ E

Pz g0 = [311 = + (812 - wayz - any) g7 + E £

The difference formé of the derivatives in the expressions for
Py,at» Py pi, and Py po are glven by equations (B16) and (B17)
in appendix B. -

- By means of equation (23), the velocity components at any point
I of a derived source curve can be determined provided that the
velocity components at points An, Bn and En-1 are known. Inas-
mich as the source curves ACA' . . A and BOB' . . .B are given,
the velocity components at 811 A and B points can be considered
known. The determination of the EC point, however, is also required
before the computation can proceed. Because only two equatlons are
available to determine the velocity components at EO, (one along
AOEO and one along BOEC), ome of the velocity components at KO
mist be known or assumed. If the problem has a plane of symmetry,
that plane can be used as a reference plane on which the cross com-
ponent of the velocity vz i1s zero. For most practical problems,
such a reference plane can usually be found. If none is available,
however, the camputations mmst proceed by trial and error, that is,

"an initial velue must be assumed for one of the velocity components

at E° and the now source EOE'. . .En mst then be computed entirely
around the body. If the final computed value of the velocity com-
ponent is considerably different from the assumed value, this value
mist be correspondingly modified and the computations repeated. The
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resulting process may be much too lengthy in practice. The value

of vz in the reference plane = 0 1is therefore assumed to be
known and equal to zero. From equations (14) and (15), the following
difference equations for the velocity components at E® are then
obtained:

(an)AO (Vl,EO - Vl’AO) + (8.12 - Aa.ll)Ao (VZ,EO - vz,Ao)

+ Pl,AO (xl’Eo - xl,Ao)' =0 (24)

(a11)go (vy,p0 - v1,30) + (212 -Aayy)po (v2,50 - v2,p0)

+ Pl,Bo (xl’EO - xl,A.O) =0 ) (25)
whose solutions are
By Dy} A&y Dy
By Dy Ay Do '
n = R - (ze)
Az B ' © |az B ,
where
Ay = . = |
1= (en)po ?’1 = (815 - Repy)po
Az = (a17)po '~ Bz = (a3 - May;)po
Dl = - A’lvl,Ao - Blvz’AO + Pl,Ao (Il’EO —Vxl,AO)

Dz = - szl,BO - 3272’30 + Pl,B° (xl,Eo - xl,AO)
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dv d'VS
F1,80 - HgE g T 33 &g T D 20

dv, dv3
P07 \Mss & s E, R o

This solution can also be obtainé_d from equation (23) by setting

A = =D =0 and C_=R = 1.
3 BS 3 . 3

{

With equations (26). and (23), the new field source

E°E' . . .E® can be camputed. This new source curve determines
two new characteristics, one of which extends toward the body
vhereas the other extends away from the body. The characteristic
that extends away from the body may intersect another .character-
istic of type ITI whose source is a curve above B°B' . . .B®

in figure 4. This intersection can be calculated by the procedure
used to calculate ECE' . . .HFA; thus the entire characteristic
vhose initial source is ACA' . . .A® can be computed if con-
ditions on a surface a small distance upstream of it are known.
The determination of a new initial source on the body, such as
FOF* . . .F®, mst now be considered.

The xl-coord:lnate of the surface in which the new initial
gource FOF' . . .F® 1ig to be located may be chosen as the
Junction of the type-II-characteristic intersection from E°
with the body. This value of Xy g0 1s determined from the
relations ’

1
an g0 = _22A% FEFO ~ ¥2,80)
X1,F0 = X3,40
_ ¥2,F0 - X,F0

X1,F° - X3,R°
where tan is the slope of ACFO and )‘EO is calculated from
equation (1 with

_Xe,m - X2,E0

133
o X3,p0 = X3,E0
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The factor 1/112’ po 1is given in table I for each of the coordinate
systems.

The coordinates of points that are junctions of the character-
istic intersection from E' with the body can be determined from the
relations

(x2,60 - %2,41)

1,60 T %,a

n
ta.nac, - 2,A'

X2,G6' - %2,
}\E' xl G - Xl )L

For determining the veloclity components at F', two character-
istic equations are available, one along E'G" and one along FOF'.
Te third independent relation is obteined from the condition that
the velocity vector at any point on the body must be in a plane tan-
gent to the body at that point. This condition 1s evidently given by
the relation (fig. 5)

NaVy = NzVz cot € + v tan B (27)

vwhere ¢ is the angle between the x,-direction and the trace of
the body tangent plane in an x) = constant swrface and 5 1is the

angle between the xj-direction and the trace of the tangent plane
in an xz = constant surface. The quantities 1 and nz are
required to eliminate the coordinate factor from vy when angular

coordinates are used (table I). Along the characteristic source
FOF', the following relation is obtained from equation (15):

(aIS)Fo (Vl’Fl - vl,FO) + (8.23 = Hasg)Fo (Vz’Fl - Vz,FO)

+ (a33)p0 (V3,51 - V3,p0) *+ P3po (X3, - X5,50) =
(28)

Equations (27) and (28) are two of the relations required to determine
the velocity components at F'. In order to obtain the third relation,
an assumption similar to that made in determining E' 1is required

to eliminate vi,g' from the characterlstic relation along E'G'.

The required assumption is
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v y =V ' X - X 1
1,60 ~Vi,Aa _ R,e LA _ g (29)
Vi,Fr " Vi,ar X1,F T X1,a

When equation (29) is used to'replace vi,0 in the relation

(&) (V1,00 - v1,m) + (B12 - Aayy)y (vo,00 - v2,m)

+ (233)g (v3,60 - V3,m) + Py (53,60 - X ) =0

(30)
the third required equation becomes
(a13), [va,F' -v,m * (1'3)"1,AJ
+ (8,12 -)\all)E' [RVZ,F' - VZ,E' + (l-R)Vz,A]
+ (als)E, [Rvs,F' - VS,E' + (l-R)VS,A]
+ Pl,E' (xl,G" - xl,E') =0 (31)
The solution of equations (27), (28), and (31) is
Bl 1 O Ay C1 O Ay By ©
By C3 D Ay C; D A, By D
TL,F T -5 ¢ Y, <t [P L Y
(32)
where
A = A (BaC3 - B3Cz) - Az (B1C3 - B3Cy) + Az (ByCp - BpCy)
Al = tan SF' Bl = - ﬂz,Fc - Cl = (T]s cot € )F'
Az = (als)Fo Bz = (323 - uass)Fo Cz = (a33)F°
Az = (a1)y, Bz = (a1p -Aapy)p C3 = (a13)g,
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Dp = - ApV1 o - BpVp yo - CpVz,wo + Pz po (X33 - X3 yo)
1-R

D3 = %~ (As"l,A' + Bgvp pr t CSVS,A')

1/, L
- R (As"l,E' + Bgva,mr + Cs"s,E') + 5 (x,¢ - %,m)

de dvl
Py po = [(312 M - A1) &y 1 Ml &) H]Fo
: dv dv3 ]
Py,Er = [(523 - Mays - wagz) gt ess g, B

El

For point FO, which lies in the reference plane, Vs is
assumed to be zero and equation (27) becomes

(nav2)po = v),po tan SFo (33)

The second relation required to determine v, ,FO and V1,50 is
obtained from equation (14), which, for vz = O, becomes’

(all)EO (v1,50 - v1,70) + (812 - Aag1)go (V2 50 - V2,%0)

+ Pl,Eo (xl’FO - xl’Eo) =0 (34)

d.v de H]
Preo = (@33 (g " M &)

The solution of equations (33) and (34) for vy,F0 18
(811) 0 V1,50 + (212 - Aeq1)pg Vom0 - Py,pe (X1,50 - %) 50)

where

V1,0 =

. (a'll)EO + (8.12 -)\an)Eo (tilzl 8) )
F

N

(35)
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With equations (32), (33), and (35), new initial sources on the
surface can be computed when conditions on a field source and on
another initial source (both slightly upstream) are kmown.

Equations (23), (26), (32), (33), and (35) constitute the
solution to the two basic problems mentioned at the beginning of
the section. With these equations, the entire disturbed flow field
about a body placed in a supersonic stream can be calculated pro-
vided that (1) the flow remains everywhere supersonic, (2) the
rotation and the viscosity of the flow are zero or negligible,

(3) conditions are known along the surface that separates the uni-
form flow field from the disturbed flow field, and (4) a reference
surface exists for which vz = O. Condition (4) is a practical
limitation that will eliminate trial-and-error procedure. It may

be replaced by some other mown condition satisfied by one of the
velocity components at points of types EC and FO if the equations
for these points are appropriately altered.

The initial surface required by condition (3) may be, for example,
the shock surface attached to the nose of a pointed body or to the
1lip of an open-nosed body. For unsymmetrical bodies, the determina-
tion of the form and intensity of the initial shock surface is diffi-
cult and the replacement of the shock by a characteristic surface
may be essential for solution of some problems. This procedure
-neglects not only the rotationality of the real flow field, but also
the ebrupt compression at the foremost boundary of the disturbed
portion of the field. The resulting solution therefore falls to
satisfy exactly the real boundary conditions.' For such problems,
the linearized characteristic equations (to be derived subsequently)
may yleld a solution as accurate as that o'btainable with the non-
linearized equations.

If the flow over a pointed body is to be computed, soms assump-
tion must initially be made concerning the velocity components near
the point of the body because the vertex itself is singular. Perhaps
the simplest assumption is that the flow 1s conical for a small dis-
tance beyond the vertex. Any reasonable assumption is valid, how-
ever, because the effect of that initial assumption can be mede neg-
ligible by scaling up the body so that the portion near the vertex
is a very small part of the entire body. The initiation of the char-
acteristic solution for pointed bodies is discussed in more detall
in eppendix A. For open-nosed bodies the starting process is soms-
vhat more straightforward because the velocity components a small
distance from the lip are accurately obtainable from two-dimensional
flow theory. 4
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The equations required to carry out computations are summarized
in appendix B, whereas in appendix C the first steps involved in
the computation of the flow past a cone that has an elliptic cross
section are described.

Solution of the linearized equation by msans of characteristic
surfaces. ~ When the changes in the velocity components throughout
the disturbed flow field are small relative to the critical velocity,
equation (1) can be reduced to a linear equation, which, for
Cartesian and cylindrical coordinates, has the form

211011 Y + ap2D22¥ + a33Dz3¥ + H = 0 (36)
where
&11 = (l-Mz)

and where the quantities k—zviz are neglected in the expressions
for ags, azz, and H (table I). The value of M 1is now assumed
to remain constant throughout the flow field.

The linearized theory for supersonic flow consists in finding
solutions to equation (36) for various boundary conditions. For
some types of solid boundary, such as thin wings and conical bodies,
a variety of solutions are available. These solutions permit the
determination of flow parameters at the surface of the boundary with-
- out determining the flow in the entire disturbed field. Solutions
that have been obtained for bodies whose contour varies in the
stream direction or for body-wing combinations postulate some
restriction as to the shape of the boundary and in themselves involve
conslderable computation. For bodies that are not axially sym-
metric, solutions have as yet been obtained only for the condition
that the flow is conical (reference 8). The following discussion
develops a method of characteristics for solution of the linearized
differential equation for general boundaries. The resulting equa-
tions are quite simple relative to those obtained for nonlinear flow,
although the method involves, as with nonlinear flow, computation
of the entire flow field. The method is consequently not intended
to be used when boundary-surface solutions are available unless these
solutions involve more computation than the one presented herein.

The differential equation for the .characteristic surfaces of
equation (36) is

an_7\2 + azz + 6.33}12 =0 (37)
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which, for Cartesian coordinates, becomes

A% H (38)

In equation (37), A and p have the same significance as in equa-
tion (4); hence equations (7) and (7a) may be used to eliminate the
partial derivatives from equation (36) in the mamnner used for non-
linear flow. The resulting ordinary differential equatinn that relates
the velocity components in moving from one point to a neighboring
point along an intersection of a characteristic with an x3z = constant
surface is

d.VS

8y (dvl - Advz) + 8y (a—xg - &ve )dxl + Hix, = (39)

The corresponding relation along intersections of a characteristic
with an x; = constant surface becomes

a & a2 )ag, + ma (40)
a3z V3 = udvp + a1 dx-——l- dxl 3 + Xz =

Equations (39) and (40) can also be obtained by setting a5, 233,
and 5,23 equal to zero in equations (14) and (15). The difference
equations for each type of source point may consequently be derived
simply by setting these coefficlents equal to zero in the nonlin-
earized equations. The resulting equations are given in appendix B
for a general field-source point En (equation (BS)) and for a
general solid-boundary source point FR (equation (B7)). If vz
is again assumed to be zero in the x3 = O surface, the velocity

components for points EC can be obtained from equation (B6) by
setting Dz = K go-1 = O and R =1l. The veloclity components for
point FO are given by equations (B8) and (B9). .The expressions

for the coordinates of the various types of source point are the

same as for nonlinear theory and are given by equations (Bl2) to (Bl15).

With the expressions given in appendix B, the linearized
solution for the supersonic flow past general boundaries can be
obtained provided that, to the conditions mentioned for the nonlinear
solutions, the additional condition is added that the velocity is
novhere greatly different from the velocity of the undisturbed
stream. The initlal surface that is required to start the computations
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is, for linearized theory, the foremost characteristic surface of
the disturbed field, upon which it may be assumed that the velocity
components have their free-stream values. An initial source curve
on the boundary surface mst be assumed, but the effect of this
initiel assumption can again be made negligible by scaling up the
initial section of the body.

SUMMARY OF ANALYSIS

The method of characteristics has been applied to the non-
linear and linearized partial differential equations for the velocity
potential in a supersonic stream.” By use of the resulting difference
equations, the velocity components can be computed throughout an
irrotational supersonic flow field for arbitrary boundary conditions.
The solution for the linearized equation involves considerably less
computation then the solution for the nonlinearized equation, although
both require the determination of the entire flow field that Influ-
ences the flow variables at the boundaries. The use of the linearized
solution is suggested in those problems for which the disturbances
resulting from the presence of boundary surfaces are everywhere small
and for which no simpler linearized solution is available. The non-
linearized solution is required, for accurate results, when the
presence of solid boundaries results in large changes in the velocity
components. No procedure has been given for treating the effects
of an initial shock surface; however, the replacement of the initial
shock surface with a characteristic surface should not lead to serious
error unless the shock is intense.

Lewis Flight Propulsion.laboratory,
National Advisory Committee for Aeronautics, .
Cleveland, Ohio, December 29, 1948.
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APPENDIX A

TREATMENT CF UNSYMME’JRICAL CONICAL FLOW FIELDS

If the supersonic flow over pointed bodies is to be determined,
the initial portion of the body near the point can usually be
regarded as a small cone. If the nose is axially symmetric, the
velocity components at the surface of the initial cone and through-
out the conical portion of the field can be calculated by the method
of Taylor and Maccoll (reference 10). If the initial cone is not
axially symmetric, however (if it has, for example, an elliptic
cross section), no exact solution other than the method of character-
igtics is known for determining the flow throughout the conical
field. If a linearized solutlion is desired, the procedure presented
in reference 8 may be used for determining the velocity components
at the surface of an unsymmetrical cone. This method may be used
to obtain the initial source curve required to start the solution
by means of characteristics if the conical nose is‘only a small part
of the entire body. If the conical nose is a considerable part of
the body, however, flow conditions must be accurately known over an
entire surface ahead of the characteristic whose source is the first
variation of the body from the conical shape of the nose. A method
for determining the velocity components throughout an unsymmetrical
conical flow field must therefore be developed.

The method of characteristics camnot be simplified to solve
this problem because the assumption that the flow is conical leads
to an equation that has no real characteristic solutions. If the
conical-flow conditions are imposed on equation (1), then for spher-
ical coordinates, equation (1) becomes

822])22]1‘ + 8.23]32311r + &331)331’ +H =0 (Al)

where
" =V—I:(2-k2v2 -k2v2)+zgcote(1+k2v2)
T e ® r ©
The cheracteristic form of equation (Al) is

E = agp - uaps + nlazs | (42)
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If equation (A2) is set equal to zero, the characteristics can be
shown to be imaginary unless

kz 2 2 22.
Vo +_kvq) 1l

Because Vg and V. are generally quite small near the cone surface,
the inequality is invalid throughout a conical field.

The following procedure may be used, however, to determine the
flow past unsymmetrical cones by means of characteristics. The con-
ditions at an initial source curve near the point can be fixed at .
some reasoneble values, possibly based on a linear variation of
velocity components with the conical half-angle 6. The normal pro-
cedure described in the text can then be used to develop the flow
field until there is no further variation of the velocity components
along a given radius vector from the vertex of the cone. The number
of computations required to establish the conical solution will
depend on the accuracy of the initial assumption. The use of this
procedure to compute the flow over an elliptic cone is described in
appendix C. Other procedures, such as the direct numerical integra-
tion of equation (Al) in hodograph planes or along prescribed conical
surfaces, appears to be feasible and their development should con-
stitute a profitable field for future research.
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APPENDIX B

SUMMARY OF EQUATIONS
Nonlinear Theory

The following equations are used for field-source points En:

5 Bl(CzD3>-C3D2)-Bg(C]_D5'C:5D1)+BS(C1D2'C2Di)
: )

vl,En (BLY
C,D,-C.D,)-A,(C, D -C,D C,D,-C,D
vy g - A, (€;D5-C5D;)-Ay 1A3 5Dy ) +A5(C,D,-CoDy ) (52)
_ Ma(BeDs-BaDg)-a(ByD5-BDy) s (ByDp-BpDy)
3,E% -4
1
= - E]-. <A1v1,En+Blv2,En + D1> (33)
where
A = Aj (BpC3-B3Cp)-Ap(ByC5-B5Cy ) +A5 (B Co-BaC1 )
8 = (o)) 0 By = (egp-Aayy)ym C; = (813)n
Ay = (a1))gn By = (agp-A 813)pm Cz = (a13)gn
Az = (813)gn-1 By = (ag5-n 833)gn-1 C5 = (ag3)pn-1

Dy = -Ayvy gn -Byvp an -CyVy yn + By pn(X gn -x) pn)

1-R
Dy =% <A271,An + BpVp an ¥+ Cz"s,An>

. P
' 1,B%
- % (szl + Bzvz ¥ szS)Bn * _ﬁ_— (xl.vcn -xl:Bn)
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])3 = -stl + B3V2 + CSVS)En_l + Ps’En-l (XB,EII-I%’EJI-].)

B — . p—

dv. dv.
= =2 A =2 + X
Pl,An = 1833 dxgz T (agz-A &y3-nezs3) dxz aD
[T aw ( vy, B
P. im = — + (852=A @yz-pa,z) =— + H
1,B® Lass dx, 237" 1379337 ax, =

—

P [ L, Najp) D2 4 g
n-1 = |8y 5= + (8127H833-A 397) — +
5,E dx; - dx  |gn-1

_ xi ch-Xq an

1,27 ", a0
O - . = = = = =
For point. E (v3 =0): A; =B; =Dz =0, C3=R-=1.

Equations for the velocity components v1,F0, Vo FO, and -

3 FR at the solid-boundary source point Fo have the same forms

as equations (Bl), (B2), and (B3), respectively, where the coef-
ficients are given by the following expressions:

(nz cot e)Fn

Ay = tan By By = -Nz,;m Cy =

Ap = (e33)n1 By - (agz-wezz)in-1 . Cp = (agg)Fn_

Az = (ag))n By = (a2} any)pn Cz = (a13)gn
D=0

D,

- <sz1 + Bpvp + Cz"3>Fn-1 * Py el (x5 g0 = %5 gn-1)

1-R
Dy =% (“3"1,&1 + BzVp pn + Cs"s,An>

L (e + c FiEn
R (BsV1 + BaVe * C3Vs)gn + —4— (% %) gn)
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v dv, dvy ]
Py, m-1 = [(B1zmkeisdenn) - v e gt Bl
[ , dvz dxs 7]
Pl,En = |(agz-Nayz-kasz) Ty T 33 Txg T B -

X -X

R = _L,G% 1,47
X -X
1,F* T1,AR

For point F° (v3=0), the following equations are used:

a v - -P -
) (811) g0 pot(B127A811) 0", go 1,505 o %) go)

v. = (B4)
1,F° tan &
2 (all)Eo'f'(&lz-)\all)Eo ( nz ) o
. F
st de
P10 = |%3\@x; M &g T Bl go
(ngvz)Fo = (Vl tan 5)F° (35)

Linearized Theory

The following equations are used for field-source points B9

v =
1,ER Ay an-AAn
D,-D
W | \  (6)

v = —T—'—_—y
Z,En Al )\Bn'AAn i

“En-l(Dl“DZ)
Va,gn = D3 - 2y O\~ A n) =Dz +Hm-1 Y, gn )
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where
A = M-l
= =Ay(vy =N + P X -X
Dy = ~hy(v1-Wp) l,An( 1,E8 1,An)
1-R 1 P10
D, = — A, (v “A LV ) = = (vq-Av,) ,, + —2—
2 R 1 1’An an’An R 1 7'2/gn .R

Dy = (Vg-uv,) + P (x -X )
3 ( 3 7 2 -1 S,En"l 3,ED S,En'l

dv3 : dvz ]
P = - — - u=—]+H

.

[ v, :.Jv:) ]
e e (m m)

p ) Al dvl-kd.v2 _E
3,En'1 az3 dxl

( )

X =X
1,c® 1,B"

»(B7)

8'33 En..l
The following equations are used for boundary-surface source
points P

AjA_Dp(nz cot €) -Di Eq - _1(113 cot ¢) ]\
v I i Fo 2,F2 §° il

A (nz cot € -D; tan & _
. i 1Dz (n3 o 03 n
Z:En A
o _ MD2(n, pnhgn ten Bpn)-incy Ds ten 8
3,F0 A

i (n72) ™Yy g 82 O

(1]3 cot e)Fn
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where
A = Al EIZ,Fn.an'l (n3 cot e)Fn -)\En tan 8F1£l
Ay = M2 .
Ay [dvy d"z) i
Dy = (va=uv,) 9 + -A - (x -X 1)
27 VsTpnel Tlagg \On A%/ agz)ng 5,0 3,F0
- _ _ 1 E"
Dy = % Ay (v), 407" an) - ("1 R e -~
dv av.
- S _ 4 2
1T Ess (dxs " ‘”‘3) ! %lnn
For point F° (vz=0), the following equations .a.pply:
P
(V]_")\Vz)Eo ( 1, Fo 1 Eo) _
Vo= (B8)
LF tan .
1-2o (=
E 2 /o
dv av
_2
Pl go = "33
1,E dxs " g
= (v; tan B)Fo (B9)

(."z"z )F°
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Expressions Involving Coordinates and Derivations of
Velocity Components (Nonlinear or Linear Theory)

The difference equations for p and )\ are:

N

X l-x
_2,ARH 2.0

Y8 =.
n 'x -X
A S,Am”l 3, A0

X Bn+l-X n
e (20
- T3, B0

X -X
" _ 2,88 2,mn-1
-1 x -X
E 5,80 5, ERl

N

Nonlinear,
/
2 2
-(8yp-ney5)% /uﬁs-w ~4aq7 (855-nep3 1 ag3)
>\ =
'2&11
. Linear, : ) g(Bll)
2
Bopt M 833
ANEENT ey
11
2 2 2 2 2
where vy V5% V% Vg end v,“ are neglected in ai,kj'

For computing En, + 1is used for )xAn and >\En.1 and - for
?\Bn- :

For computing F%, + is used for >\Fn"1 and - for %En.

The expressions for the coordinates of the points in the net-
work are as follows: :
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Coordinates of Cn are

X -X +A X, “A_nX,
- _"2,B% "2,AR A,AR >‘13’1-14,1311 )
1,07 Apn~Ngn
x =X o\ _(x -x
2,00 2,A" AR 1,7 1AM
b4 =x ~_ =X ’
3,0 3,A" 3,80 J
Coordinates of EY are
x = x = x ' )
1,EB 1,E° 1,C°
%p, B0 = %p,puAyn(%) pnX) 4n) f
X =X = X
3,82 3,  3,BR ‘)

Coordinates of G2 are

X -X +X tan & _-A _x
X __2,E 2,0 14" ¢h BN 1,ER \W
1,68 tan SanxEn
x =x A\ (x -X n) )
2, 2,8% E* 1,0 1,B
X = X

)

35

(B12)

(B13)

(B14)
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Coordinates of FR are

X =X = X \

1,7 1,F° 1,6°

X =x +(n,) . tan & _(x -X ) (B15)
2,Fi  2,An  2'pn FOUO,FR 1,AR ?

%5, T %3, g0 y,

The velocity derivatives in difference form are as follows:

For P,,
av v -V \
<—§> - S,An+1 S,An
X -X
» . (me)
v -v
<EV£> __2,A% 347
X -X
dxs iy 3, aAn+l 3,A" J
Similar expressions apply for points B® and E°.
For P3,
v v A
<ﬂ> _ 1,EMt !
dx x -X
1/ n- -1 n-1
-l 1,E? 1,4
) (B17)
v -V
-1 -
<f’_g> _Z,E 2A 1
X -X
n-1 n-1
a1 -1 1,E - 1,A J

Similar expressions apply for points Fn-l
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APPENDIX C

COMPUTATION OF FLOW OVER CONE
WITH ELLIPTIC CROSS SECTION

As an example of the use of the nonlinearized method of char-
acteristics for unsymmetrical bodies, the first steps in deter-
mining the flow over an elliptic cone are described in detail. This
example illustrates the starting procedure for pointed bodies in
general, because the shape of the body can be modified progressively
downstream once the initial conical field at the p01nt has been
determined.

The elliptic cone used is similar to that described in refer-
ence 8 and is shown in figure 6. The ratio of the major to the
minor axis of the cross section is 3 and the slope of the cone in
the plane o= 90° is 0. 315 thus the cone is represented by the
equation

H

T _oten s = 0.315 (c1)

* 4/5 cos%p+sin2m

and the expression'for cot ¢ 1is

cote=dr - Bsilecp cos

rd®

(c2)
9 cos“op + sinch :
The free-stream Mach number was assumed to be 1.90, as in refer-
ence 8.

A preliminary computation plan is illustrated in figure 7,
where each point in the plane @ = 0 (fig. 7(a)) represents a
source curve composed of 17 points circumferentially distributed
at values of ¢ of 0, 10, 20, 30, 40, 50, 60, 65, 70, 73, 76, 79,
82, 85, 87, 89, and 90° (flg. 7(b)) As yet no basis other than
experience is known for determining the number and distribution
of points required for a prescribed degree of accuracy. It is
evident, however, that a denser distribution of points is required
where the shape of the surface varies most rapidly. '

In order to start the computations, values of Vgy W and

r?
vep were assumed at the points of source curves 1 to 6 (flgs. 6
and 7). At group 1, on the cone surface, the velocity components
were assigned according to the equations
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vr,n = vx,n tan 8n~ +Vv , cot €n
2 _ 2 2 2
Vol = Vxn” * Ve, * Von (c3)

wherein V and vcp were assumed at each of the 17 points and Ve
and Ve Wwere then calculated. For n=0 (q)=O°), V was assumed
to have the value resulting from two-dimensional compression of

8, = tan"l 0.105; for n =16 (p=90°), V wis assumed to have
the value obtained on a symmetrical cone of half-angle 516 =
tan! 0.315. For n=0 and n = 16, v, must be zero because

the flow is symmetrical with respect to these planes. For other
values of n, the values of V and v, were selected by drawing

_ reasonable-looking curves between their values at ¢ = 0° and

® = 90°.

r
the assumed free-stream Mach number 1.90). For groups 2 to 5 the
velocity components and the values of r/x were assumed to vary
linearly (for each value of n) between their values at the cone
surface and at the Mach cone.

At the Mach cone (group 6), Vp = Vp =0 and v, = 1.585 (for

With the velocity components and coordinates thus assigned
at groups 1 to 6, the velocity components and coordinates at
groups 7,. 9, 13, 19, and 27 can be simultaneously computed by
equations (Bl) to (B3) and (BlO) to (B13) in appendix B. In order
to compute group 7, for example, the points in group 1 are used as

‘the AT points and the points in group 2 are the B points. When

group 7 (E°, EL, . . . E1®) has been computed, these points
together with group 1 can be used to compute the new solid-boundary
source (group 8).

An alternate procedure to the one outlined would consist in
assigning values only at groups 1 and 6 and computing groups 31
and 36. This procedure has the advantage that values need be
assumed only at one surface source curve and at the Mach cone,
conditions at the Mach cone being known if no shock is assumed to
occur. The increments of r between the groups, however, are
very large relative to the value of r at the solid boundary;
thus the assumption that the coordinate increments are small is
violated. It is therefore doubtful whether the computed values of
the velocity components would converge as rapidly to their conical-
field values as with the procedure previously described. The
alternate procedure has the additional disadvantage that only one
source curve can be computed at a time.
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Because o is zero both for ® = 0 and for ® = 90°, either

of these planes can be used as the reference plane (fig. 7(b)).
When two or more reference planes are availeble, any cumulative
error involved in the computation of a source curve can be reduced
by using each reference plane as a locus of E° and F° points

and computing values of E® and F* from two directions. This
procedure was used in the present preliminary computations. The
difference between computed values of the wvelocity components
resulting from the use of this procedure rather than computation
in one direction is shown for group 9 in figure 8. Part of the
difference between the two results is due to the difference in the
value of x for the two groups of points, inasmuch as the n =0
points determine the x-coordinate of the entire group. Most of
the difference, however, probably results from the fact that the
values of some of the total derivatives, when approximated by their
difference form, depend somewhat on the direction of computation
(equations (Bl0) and (B16)).

In order to determine whether the number of points used in a
group greatly affects the computation results, group 7 was com-~
puted twice. For the first computation 17 points were used and
for the second 31 points. In addition, the assumed values of

Yoo in groups 1 and 2 were slightly altered to determine the

sensitivity of the computed results to changes in initial values.
The results of these computations are shown in figure 9. The
assumed values for groups 1 and 2 are indicated with solid lines.
'The alteration in the assumed values of v, for the 1l7-point
computation is indicated for group 1 by a broken line. The
oscillation of the computed value of Ve about the assumed

initial values occurred for both sets of computations, and no
difference in results is apparent that could be attributed to
the use of & different number of points per group. The sbrupt
changes in Vg at 0° and 20° for the 31l-point group were attrib-

utable to computation errors. These errors were retained to
determine their effect on succeeding points in the group. The
results indicate that the influence of such errors is limited
to the immediate vicinity of/the point for which the error is
made.

The differeéence in the initial values of . vq) for the two

groups resulted in relatively large changes in the computed values
of vq) and smaller changes in the computed values of Vy and

Voo In the regions for which the assumed valpes of Ve Were the

r
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same (the leftward-running computations), the computed results were
almost the same except near the peaks of the oscillations in vy

and Vv _.
P

The cause of the oscillations in the computed values of - vy -
and Vo has not been definitely determined. The fact that an

increase in the number of points did not reduce their amplitude
indicates that the magnitude of the coordinate differences was not
responsible. This conclusion is further substantiated by the fact
that the oscillations occurred regardless of the direction of com-
putation, although the peaks were somewhat displaced. The hypoth-
esis is therefore advanced that the initial values chosen for the
velocity components were unsatisfactory and tended to initiate
strong compression and expansion waves in the flow field. Insuf-
ficient time was available to check this hypothesis by altering
the initial values. If the hypothesis is correct, a more accurate
knowledge of initial values for each of the velocity components
would appear to be very desirable for the computation of unsym-
metrical flow fields by the method presented. Convergence of the
computations may be very slow if the assumed values can be cor-
rected only by means of strong compression or expansion of the
flow. .

With ordinary calculating machines, a group of 17 points com-
prising a source curve could be computed and checked in about
80 man-hours. The computation setup consisted of 186 colummns for

the E° groups and 130 columns for the F© groups. For a
linearized solution these figures may be reduced by about one
half. The use of electronic calculators will, of course, reduce
~ both computation time and the possibility of error.
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(a) Subsonic stream, (b) Supersonic stream,

Figure 1, « Illustration of propagation of initial disturbahce in
stream moving at subsonic and at supersonic velocities.

Source
curve

Figure 2, -~ Illustration of two possible characteristic surfaces
originating at source curve,
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{a) Velocity components (b) Velocity components
given at points AC and A', given at points A® and C°,

Figure 3. ~ Illustration of method of determining characteristic inter-
gections when velocity components at two polnts are known,
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Figure 4, — Network of characteristic Intersections near a solid boundéry.
All surfaces replaced by successlve tangent planes,
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Filgure 5., — Illustration of boundary condition on velocity components,
Plane tangent to solid boundary at point P,

Y

/

Initial assumed
source curves

, .
| R SNACA

Figure 6, — Sketch of elliptic cone used in example (appendix C).

Free—stream Mach number, 1.90; a/bt = 3.0; a/x = 0.315,
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computed.

n=1 9 8 6 4 20
n=0 1 2 3 4 5 6 7 8 10 12 14 16

/ / Group
. 6 (Mach cone)
5
.///”" *
.4 | I :
1] -
I g :
) L gradiips 1 (Solid cone)
// /,/ A
/'/ 7//'{////"
.2 > /// b7
A A i
5 % %
'/ / // N 9% % ///
o 20 40 60 80 100

¢, deg

(v) Plane x = 1,0, showing distribution of points Iin
assumed source curves,

Figure 7, - Illustration of preliminary computation plan,
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