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TECHNICAL NOTE NO. 1849 

UaE OF CHARACTERISTIC SURFACES FOR UNSYNMETRICAL 

SUPERSOIIC FlOW PROBLE 

By W. E. MDeckel 

The three-dimensional nonlinear partial differential equation 
for the velocity potential in a supersonic stream is transformed by 
the method of characteristics to obtain a system of three ordinary 
differential equations wherein all quantitiep are known or can be 
calculated except the three velocity differentials. When the ordi-
nary differential equations are converted to difference equations, 
the velocity components at an urknown point in a network of charac-
teristics can be calculated if the velocity components at three 
neighboring points of- the network are known. Use of the difference 
equations for computing the supersonic potential flow past unzym-
metrical boundaries is discussed. 

Application of the method of characteristics to the linearized 
three-dimensional equation results in a relatively simple system of 
difference equations that can be used to compute the supersonic flow 
past boundaries for which no other linearized solution is available. 

INTRODUCTION 

The velocity potential in a steady supersonic stream is described 
by a nonlinear partial differential equation of second order with 
three independent riables. If the velocity throughout the disturbed 
portion of the flow field is assumed to differ very little from the 
velocity in the undisturbed stream, the complete equation can be 
reduced to a linear equation whose form is identical to the wave 
equation of physics.	 ny solutions of the linearized equation have 
been obtained for particular types of boundary condition. The pres-
sure distributions on thin wings, for example, can now be determined I 
for many plan forms and. profiles (references 1 to 5). Solutions are 
also available for determining the pressure distribution on axially 
symmetric bodies (references 6 and 7) or on cones that may be 
unsymmnetrical (reference 8). No linearized solutions are known, 
however, for general body forms or for general wing-body combinations.
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When the ch number and the velocity change appreciably as 
the flow passes a solid bounding surface, the conxplete differential 
equation must be solved if accurate results are required. For a 
few special cases, such as plane flow (reference 9) and. axially 
symnetric conical flow (reference 10), the exact equation has been 
solved without use of the method of characteristics. These solutions 
were' obtainable because the problems to which they apply are com-
pletely determined by a single Independent variable. For plane flow, 
the local Itch number is determined by the angle of the s1reamline 
with respect to the base plane and, for axially syumietric . conical 
flow, the local ch number depends only on the angle of the conical 
ray with respect to the axis of symmetry. When reduction of the 
problem to a single independent variable is impossible, solutions 
f or the exact equation are available by application of the method 
of characteristics. 

In references 11 and 12, the method of characteristics is applied 
to the calculation of the supersonic flow in a field that is plane 
or has axial symmetry. For plane flow, the procedure is essentially 
a Btep-by-step development of the Prandtl-?yer solution (reference 9), 
whereby the effect of interacting characteristics is determined. Each 
characteristic has a constant strength throughout the field and the 
inclination of the characteristic with respect to the local stream 
direction is the local ch angle. For axially symmetric flows, the 
strength of a characteristic varies with the distance from the axis 
of symmetry; hence the problem cannot be reduced to a single vari-
able. The computations are therefore somewhat more laborious than 
for plshe flows, but the eimplidty of geometry is maintained. The 
flow can still be completely represented. In a single coordinate plane 
and the angle between the characteristic and. the local stream direc-
tion Is still the local ).ch angle. For plane and axially symmetric 
flows, the method of characteristics has been extended to include 
rotational flow (reference 12). 

• When the flow variables vary simultaneously in all three 
coordinate directions, aphical representation is more difficult 
and numerical computations are more lengthy. The relation between 
the characteristic surfaces and the coordinate planes is no longer 
simple. A formulation of the procedure for unsyimnetrical flows has 
been published. by Ferrari (reference 13), who derived the ordinary 
differential equations that determine the variation of velocity 
components along intersections of characteristic surfaces with 
meridian planes and discussed the procedure for the case of an 
axially symmetric body at angle of attack.
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A reformulation aru]. generalization of the methods described in 
reference 13 was completed at the NACA Lewis laboratory in rch 1948 
and is presented herein. The physical concepts used in the method 
of characteristics for general flows are described in some detail 
and the required difference equations are derived for the three com-
mon orthogonal coordinate systems. With these equations and con-
cepts, the potential flow past three-dimensional boundaries can be 
determined by point-to-point computation to any desired de'ee of 
accuracy. By application of this method to the linearized differen-
tial equation for supersonic potential flow, solutions can be obtained 
for boundaries for which no other solutions are yet available or for 
which other solutions involve more computation than the procedure 
described. No attempt is xde to determine the effect of shock waves 
on the flow field. All shock waves are assumed to be replaced by 
isentropic compression waves in order to retain the assumption of 
potential flow. To the extent that this assumption is valid, the 
resulting solution can satisfy the boundary conditions of the real 
flow field.

SYMBOLS 

The following symbols are used in this report: 

partial differential equation of characteristics 

A1 ,A2 , A3 
B1,,B2 ,B3	 quantities depending on velocity components and 
C1,C2 ,C3	 coordinates at points of characteristic network 
D1,D2,D3 
Pl,P3 

A0 ;A',A". . .A11	 source of characteristic surface that extends 
downstream and away from solid boundary (type I) 

ai,k	 coefficients of Dj,kl' in potential equation 

B°,B',B'7 . . .Bm	 source of characteristic surface that extends 
downstream and. toward solid boundary (type II) 

C°,C',C". .	 source curve dete±'mined by intersection of two 

characteristic surfaces 

) 2iir Dj,k	
=	 ox.Xk 

(i,k = 1,2,3, table I) 

D°,D' ,Dtt. . .DD1 	 source curve defined by intersection of charac-
teristic of type II with x1 = constant surface
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E°,E ,E'. . .'	 source curve defined, by intersection of charac-
teristic of type I with x1 = constant surface 

F°,F F. . .F	 derived source curve on solid boundary and. lying 
in x1 = constant surface 

f(x1,x3)	 function defining integral surface 
S =	 - f(x1,x3) = 0 

G°,G',C". . .0	 intersection curve of characteristic of type II 
with solid boundary 

H(-v1 ,x.j )	 function in potential equation whose nature 
depend.s on coordinate system used 

k	 ratio of critical speed to speed of sound. 

M	 ch number 

P	 ratio of coordinate differences required to solve 
simultaneous difference equations for velocity 
components 

r,O,q)	 spherical coordinates 

S	 integral surface of potential equation 

dvi	 dvi 
function of x1, Vj,	 -, and. 

V	 ratio of local flow velocity to critical speed 

first partial derivatives of 11T with respect 
-	 to L1 (i = 1,2,3) 

ratio of velocity components to critical speed 

vx,vr,vO I,.	 in Cartesian, cylindrical, and spherical 

vr,ve,v I	 coordinates, respectively 

x,r,cp	 cylindrical coordinates 

x,y, z	 Cartesian coordinates
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orthogonal coordinates used in derivation 

y	 ratio of specific heats (' = 1.40 for air) 

8	 angle between tangent to solid boundary and 
x3 constant surface 

£	 angle between tangent to solid boundary and 
xl = constant surface 

factor required. to eliminate coordinate factors 
from vi to establish boundary condition 

(table I) 

along characteristic 

-. along characteristic 
ox3 

ratio of velocity potential to critical speed 

Subscripts: 

jO,jt ,A". . .G'	 values of quantity at point of characteristic 
network 

1,2,3	 coordinate directions, x1,x2,x3 

Superscripts: 

m	 last point of source curve 

n	 general intermediate point of source curve 

TifEORY 

Physical Concepts 

The physical basis of the method of characteristics is the 
nature of wave propagation in a supersonic stream. Consider a moving 
stream of compressible fluid that is uniform except for the effects 
of a single stationary point source of disturbance (fig. 1). If the 
stream is moving subsonicafly, the 'ave front of a disturbance (shown 
at successive intervals of time in fig. 1) há& no stationary envelope; 
when steady-state conditions are obtained, the discontinuous wave



6	 NACA TN No. 1849 

front has disappeared from the field of interest and. a continuous 
disturbed flow field reina. If the stream is moving supersonically 
(fig. 1(b)), the wave front possesses a stationary conical envelope. 
The vertex of this envelope is the point source, its axis is the 
stream direction, and. its conical half-angle is the Ivch angle. 
When steady-state conditions are obtained, the initial spherical 
surface of discontinuity has disappeared, but the conical envelope 
of the disturbed portion of the field (Ich cone) renmlns. The Ich 
cone Is a surface of infiniteslnmJ. discontinuity upon which the stream 
variables have two values, that of the free stream and. that of the 
disturbed stream. Such a surface, upon which two solutions simulta-
neously exist, Is called a characteristic and. Its differential equa-
tion can be directly obtained from the differential equation of the 
entire flow field. 

Consider now a space curve that acts as a source of disturbance 
in a supersonic stream (not necessarily uniform) (fig. 2). The shape 
of' the space-curve source rz.y be arbitrary except that each point 
of the curve is assumed to lie outside the Zv ch cones emenating from 
all other points of the curve. In figure 2 the curve is assumed, 
for convenience, to lie in a plane perpendicular to a coordinate axis 
and the flow is in the genera]. direction of the x1-axis. The 
envelope of all disturbances from this source foxins two distinct sur-
faces. These surfaces are characteristics and. the stream variables 
rimy have either of two solutions at any point on the surfaces. If 
the line source is rerded as a series of point disturbances, the 
shapes of the characteristics are clearly such that they form an 
envelope to the ch cones emenating from all point sources on the 
curve. If only very snll regions of the flow field are considered, 
the characteristics are closely appromted by their tangent planes. 
These tangent planes and. their intersections with coordinate planes 
and. with each other are used In the method of characteristics to con-
struct continuoualy varying flow fields (reference 13). (For spher-
ical coordinates, the surfaces x = constant become spheres rather 
than planes, but because most problems are best adapted to the use 
of Cartesian or cylindrical coordinates, the term "coordinate plane" 
is sometimes used. to describe a surface for which either x1 or 
x3 is constant.) 

The initial sources of the characteristics are actual or 
assumed discontinulties at the boundaries of 'the flow. These bound-
aries consist of the body past which, or through which, the flow is 
to be computed and the surface that separates the disturbed and. 
undisturbed regions of the flow field. nooth1y varying boundaries 
are replaced by a succession of tangent planes whose spatial dimen-
sions are nit11 so that the original boundary is closely approxizns.ted
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by the resulting polyhedral surface. For boundary sources, it is 
convenient in most cases to choose curves that lie in surfaces for 
which one of the coordinates is constant. If Cartesian or cylindri-
cal coordinates are used, for example, a].]. Initial sources can be 
so chosen that they lie in x = constant planes. If the flow van - 
ables are known on an Initial source lying on the solid boundary, a 
characteristic surface of type 1 (fig. 2) is determined. Intersection 
of this surface with a characteristic of type II, whose source is a 
cnn11 distance from the Initial source, determines another curve that 
may be regarded as a secondary source of two more characteristic sur-
faces (one of each type). The secondary source so determined does 
not, in general, lie in an x1 = constant plane, but a procedure is 
subsequently described whereby all secondary sources can be transferred 
to planes parallel to the initial source. 

When each characteristic Is replaced by its tangent planes, the 
flow field is represented by a network of points, each of which is 
a junction of two or three lines of intersection of planes tangent 
to the characteristic with coordinate planes. The mathematical theory 
of characteristics provides equations that determine the velocity 
components at these junction points when conditions at neighboring 
junction points are known. 

thematical Development 

The theory of characteristics is presented in many texts dealing 
with differential equations (for example, references 14 to 16). The 
following development considers the theory f or nonlinear partial dif-
ferential equations of the second order In three independent variables. 
This type represents the equation for compressible potential flow in 
a three-dimensional orthogonal coordinate system. Although the fol-
lowing development differs from the derivation given for cylindrical 
coordinates in reference 13, the final total-differential equations 
obtained are identical. 

The differential equation of the velocity potential f or com-
pressible, nonviscous, irrotational flaw can be written as 

aUDlli' + a12D12 + a13D13 U + a22D22 P + a23D23 ^ a33D3 7 + H = 0 

(1) 

where aj,k and H are functions of velocity components and coor-
dinates and the symbols Di,k'Lt represent the second partial deriva-
tives of ' with respect to the coordinates. The nature of the
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quantities in equation (1) for Cartesian, cylindrical, and spherical 
coordinates is. indicated in table I. The irrotational-flow condi-
tions required to derive equation (1) are 

= D2fU 

D13 k'=D31 '	 (2) 

D23'I' = 

The feasibility of inteatin€ equation (1) depends on the 
existence of surfaces in the flow field along which the derivatives 
of IjI are continuous. If discontinuities are possible in the field, 
these surfaces (often called 1nteal surfaces) must be so defined 
that the flow variables may be discontinuous across the surfaces but 
not along them. The differential equation that defines such a family 
of surfaces is derived as follows: Assume that the surface 
S(x1 ,x2 ,x3) = 0 is an int'e'al surface of equation (1). If S is 
solved for one of its independent variables, such as x2, then 

S = x2 - f(x1,x3) = 0	 (3) 

and the relation between, the increments &x1,dx2 , and. dx3 on 
this surface is

= 'l + tdx3 	 (4) 

where

- x2 

- 

The differential of v1 may be written 

dv1 = D1,1Vdx1 + Di,21TdX2 + D1,31Pdx3	 (1 = 1,2,3) (5)
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It one of the coordinate increments, for example &x2, is eliminated 
from equation (5) by means of equation (4), then equation (5) becomes 

dy1 = (D1,1 11 + ?D1,21)dx1 + (D1,37 + ILDI,2 1P)dx3	 (6)


Because x1 and 13 are Independent variables, the increments 
dx1 and dx3 me.y be alternately set equal to zero to obtain the 
relations

Di,]! (dvi\ 
= aj)	

- ?Di,2 1l 	 (7)

13 = constant 

D1,1t (d.vl\ -	 (7a)

111 = constant 

dv 
where - and. T are taken along the intersections of S with 

= con&Eant planes and x = constant planes, respectively. 

With equations (7) and. (7a), all second derivatives of 1t 
except one can be eliminAted from equation (1); thus, if D22 1T is 
the exception, equation (1) becs 

22 +T0	 (8) 

dvj	 dvi 
where T is a function of v1, x.1,	 -, and	 and the 

coefficient of D22 Y is 

= a11X2 - a12 + a13l + a22 - a2 .t + a3 p2 	 (9) 

Equation (9) is called the characteristic form of equation (1). it 
A 0, then D22l1 and consequently all other partial derivatives 
of	 are uniquely determined, by equation (8) and are consequently 

single-valued. If A = 0, however, the partial derivatives are not 
uniquely determined, by equation (8) and y therefore be multivalued. 
Eence the possibility that discontinuities me.y exist in the flow
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field is established by the condition 	 = 0. The inteal surfaces

defined: by the relation A = 0 are called the characteristics of 
equation (1). If the characteristics exist and. are real, they con-
stitute a fan11y of surfaces along which equation (1) is necessarily 
Integrable. Other surfaces ixy cross the characteristics and hence 
contain discontinuities in the derivatives of '1'. In general, if the 
flow is supersonic, real characteristic surfaces exist. An interest-
lug exception is the equation for conical flow, which is discussed 
in appendix A. 

If the coefficient of D 2211T (equation (9)) is set equal to 
zero and the resulting equation is solved for \, the differential 
equation of the characteristics of equation (1) becomes 

- (a - 1ja13) ± .'V'(ital3 - a12) 2 - 4a11 (a22 - 23 +

(10) 

where the + and. - are used. for characteristics of types I and 
II, respectively (fig. 2). The quantities ? and 	 may be called

intersection parameters of the characteristic surfaces because they 
determine the rate of change of x2 with respect to xi and X3 
respectively, along the characteristics. (For plane and axially 
simnetric flows, the velocity vector can always be represented in a 
single plane. The parameter i is then zero and equation (10) can 
be reduced to

= tan (e± ) 

where e is the angle between the local velocity vector and. the 
x-axis and 3 is the local 1ch angle.) 

For three-dimensional flow the sigeificance of ? and.	 is 
shown in figure 3, where x1, x2 , and. x3 are represented as 
Cartesian coordinates. If n figure 3(a) the intersection of the 
characteristic with an x1 = constant surface is given (line A0At), 
then two values of at point A0 can be calculated from equa-
tion (10), in which the approximate value of i at A is given 
by the difference ratio 

_(dx2 '\	 ...x2,Atx2,Ao 

- '3'c1 = constant X3,A, X3,Ao
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These two values of ? determine the slope of the intersection at 
A0 of a characteristic of' each type with the x 3 = constant plane 
containing A°. If the intersection of a characteristic with an 
X3 = constant plane is given (line A00O3 fig. 3(b)), two values of 

can be ca].cu.].ated from the equation obtained by solving the charac-
teristic equation (10) for i. Because the xl-a.xis is assumed to 
be in the general direction of the flow, the parameter 	 vii]. 
usually be given and the two values of N will be coiirputed from 
equation (10). 

The expressions for the changes in the velocity components in 
passing from one point to a neighboring point along a characteristic 
intersection can be determined by setting the function T, obtained 
in equation (8), equal to zero. Because the nature of this function 
has not yet been specified, the derivation will be repeated in more 
detail. With the aid of the irrotational flow conditions (equa-
tions (2)), the following relations are obtained from equations (7) 
and (7a):

dv1	 dv2 
D1111r =
	

- N a + ND22 

dv2

D1	

22

(U) 

	

D13 =	 - ND23It 

dv 

=

d.v3 

	

=	 -	 + 

and equation (8) becomes 

T = adv1 + (a12 - Na11 )dy2 + a13dv3 

dv2	 dv3 
+ [(a23 - Na13 - 33)	 + a33	 + H] l = 0 (12)
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where the coefficient of D22 11! has been set equal to zero in accord-
ance with the characteristic condition. EquatIon (12) provides a 
relation between the velocity Increments in moving a snail distance 
dx1 along intersections of characteristics with x 3 constant 
surfaces. If, for emple, the velocity ccnuponente and coordinates 
are known at A° and A' In fIgure 3(a), all quantities In equa-
tion (12) are known except dv1, dy2, and dy3. With the aid. of 
equatIons (7) and. (7a), the relation 

dy2	 dy2 dv3 dv1 

Is obtained and. equatIon (12) can be converted. to 

a13dv1 + (a23 - i.ta33)dv2 + a33dv3 

-	
-	 - a 3 )	 + a	 + HI 

dx3 = 0	 (is) 
+ [(a12 ?a
	

dv2	 dy1 

which relates the velocity components in moving a distance dx3 along 
intersections of characteristics with x1 = constant planes. For 
cylindrical, coordinates, equatIons (12) and (13) are Identical to 
those derived by Ferrari (reference 13). When equations (1?) and 
(13) are converted to difference equations, the supersonic flow past 
arbitrary boan,vies can be constructed by a point-to-point process 
of mmierical Integration. 

Formnic tIon of difference equations along characteristic inter-
sections. The rob1em of constructing the supersonic flow past 
arbitrary boundary surfaces nay be divided into two parts: (1) GIven 
two neighboring source curves, both of which lie in surfaces for 
which x1 = constant, determine a third source curve lying in another 

= constant surface slightly downstream; (2) given one source 
curve On the solid boundary and another curve just off the solid 
boiimi y, find another source curve (slightly downstream) on the 
solid. boundary. (Al]. source curves are a.In to lie in surfaces for 
which xl = constant.) These problems and the geometry of the 
solution are illustrated in figure 4, where x1, x2 , and x3 are 
represented. as Cartesian coordinates. 

Suppose that the points A°, A', A", F°, F', F", G°, G', and. G" 
are located on a body that represents a boundary of the flow. The
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rectangles AOA'F'FO and A'A"F'F' are assumed to be sufficiently 
mi1 1 to closely approxinmte the actual contour of the body in the 
region A°A"F'F°. The rectangles A°A'E'E° and A'A"E"E t are 
tangent planes that closely appro1i'-te a characteristic surface of 
type I whose source is the curve A OA' A" on the body; the rectangles 
B°B'D'D° and B'B"D"D' are tangent planes that closely approTii'-te 
a characteristic of type II whose source is B°B'B". It is desired 
first to determine the coordinates and velocity components at points 
E°, E', and E" (or D°, D', and D") when the coordinates and velocity 
components are imown at points A 0, A', A", B°, B', and B". When 
the new field source E°E'F' hae'been determined, the second problem 
requires the determination of the velocity components at the new 
surface source F°F'F". 

The fact that lines such as A'E' and B'D' do not generally 
intersect at the same value . of x1 as the lines AOEO and BODO 
nuist be noted in solving the first problem. If the body is very 
wisymrnotrical, the xl value of the Intersection point changes 
appreciably as the successi y points E' ,F'. . . fl are computed. 

Such lines as A'E' and E°E', however, which are intersections of 
the same characteristic tangent plane with x3 = constant surfaóes 
and x1 = constant surfaces, respectively, naturally Intersect at 
the chosen values of' x1 and x3. 

The velocity components along the derived source curve E°E' F' 
can be determined with equations (12) and (13), which nmy be written 
as follows: Along an Intersection of a characteristic with an 
X3 = constant plane, 

a11dv1 + (a12 - ll) va + a13dv3 + P1dx1 = 0	 (14) 

where

dv2	 d.v3 
P1 = (a23 - ?a13 - 33)	 + a33 — + B 

Along an intersection of a characteristic with an x 1 = constant 
plane,

a13dv1 + (a23 - a33)dv2 + a33dT3 + P3&x3 = 0	 (15)
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where

dv2	 dv1 
P3 = (a12 - 13 -?a11) - + a11 - + B 

If the velocity 'adients and the coordinates change only 
slightly in moving from one point to a neighboring point on the 
network of characteristic intersections, the differentials in equa-
tions (14) aM (15) y be replaced by differences. The coordinate 
differences dx1 and &x3 are easily obtained. For. any point such 
as C0 (or C' or C"), which is a junction of two intersections 
of characteristics with an x3 = constant plane, the two relations 

= X2 ,co X2,B0 

B	
- X1BO 

and

- X2 , C0 ._'2,A0 
A9 - x1,Co Xl,AO 

can be used to determine x1,Co and X2,CO (x3,Co is given for 
such points). cp1icit1y the required coordinates are 

X2,AO - X2,BO + ?\B0X1,B0 - AoX1,AO 

=	 \B0 AO 

x2,Co = o
X2 ,A0 _AoX2,BO +0 A0 (,Bo - Xl,Ao	

(16) 

'BO - 'AO 

For such points as E', D', ', and D", which are junctions of 
intersections of the same characteristic tangent plane with an 

= constant plane and with an	 = constant plane, the coor-
dinates	 and x3 are Imown fron preceding points and. x 2 can 
be determined from relations such as, for point E', 

- x2,At	
(17) 

A'	 Xl,E, -
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In order to determine the velocity components at points such as 
E', three equations are required. From equations (14) and (15) the 
following difference equations may be obtained: 

Along A'E' 

(afl)A (T1,E t - 1,A' + (a12 - Xall )A , ( 2,E' - 2,A') 

+ (a )	 (v	 _v3,A,)	 1,A' Xl ,E, _x1,A,) =0 13 ,	 3,E

(18) 

Along B'D' 

(all )B, (vl,Ct - l,B,) + (a12 - ?aU)B (v2,Ct - 

+ (a13)B , (' 3,C'	 '3,B' ) ^ l,B' (xl,C, - x1,B?) = 0
(19) 

Along E°E' 

(a13)10 ( 1,E' - vl,Eo) + (a23 - 33Eo ( '2,E , - v2,Eo) 

+ (a33 )10 (v3,Et - 73,E0) + 3,Eo (x3,E, - x3,Eo) = 0

(20)  

Because only two characteristic intersections join at points 
such as E', three independent relations between the three velocity 
components at E' cannot be obtained unless the assumption- that the 
quantities V1 vary linearly for small distances along characteristic 
intersections Ia used to eliminate VI,C I from equation (19). This 
assumption is expressed by the relation 

- i,A' = x1,C t -	 = R	 (21) 
- 1,A1	 Xl ,E, -
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With equation (21), equatIon (19) becomes 

(aU)B , [1 1,E,	 V1,BI + (].-R)v1,Al] 

+ (a12 - ?a ) [Rv2,E , - 2,B' + (1_R)v2,A,] 
B' 

+ (a13 ) B ['3,E' - T3,B' + (1-R)v3,At] 

+ l,B' (',c - X1,B?) = 0	 (22) 

The solutions of equations (16), (22), and. (20) are 

	

Bi Cl Di1	 A1 Ci Djj	 Al Bi Di 

A2 B2 

	

__________	 __________	 A3 B3 D3 
v3,E, =	 -A

(23) 

where 

A = A1 (B2c3 - B3C2 ) - A2 (B1C3 - B3C1) + A3 (B1c2 - B2CI) 

= (a) ,	 B1 = (a12 - UA'
	

C = (a), 

A2 = (afl)B,	 = (a12 - \aU)B,	 C2 = 

A3 = (a13 )	 B3 = (a23 - ia33),	 C3 =. 

1B2 C2 D21 

B3 C3 D31 
-A

A2 02 D2 

A3 C3 D3 
V2,E? = A V1,E	 =

D1 = - Alvl,A, - B1v2,A? - C1V3,A, + l,A' ( xl,E, - xi,A,) 
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D2 =	 (A2v1,At + B2V2,A? + C2v3At) 

-	 + B2V2,B, + C2V3,BI) 
+	

(XlCt - Xl,Bt) 

= - A3vl,Eo - B3V2,EO - C3v3,Eo + P3,Eo (x3,E, - X3,EO) 

	

[a33	 + (a23 - 7a13 -a33) dx3 + 
1A' 

	

= [a33	 ^ (a23 -	 - a33 )	 + 

dv	 dv2 + 

	

= [a11	 + (a12 -	 - a)	 j 

The difference forms of the derivatives in the expressions for 
A''	 B'' and P1 o are given by equations (Bl6) and (B17) 

in'appendii B.	 -, 

By means of equation (23), the velocity components at any point 
of a derived source curve can be determined provided that the 

velocity components at points All, B11 and Efl1 are known. Thae-
much as the source curves AOA ? . . .A 1 and BOB' . . .Bfl1 are given, 
the velocity components at all A and B points can be considered 
known. The deterinTh,tion of the E° point, however, is also required 
before the computation can proceed. Because only two equations are 
available to determine the velocity components at Eo, (one along 
A°E° and. one along BOEO ), one of the velocity components at E0 
must be known or assumed. If the problem has a plane of synunetry, 
that plane can be used. as a reference plane on which the cross com-
ponent of the velocity v3 Is zero. For most practical problems, 
such a reference plane can usually be found. If none is available, 
however, the computations must proceed by trial and error, that is, 
an Initial value must be assumed for one of the velocity components 
at E° and the new source E0E'. • • 21 must then be computed entirely 
around the body. If the final computed value of the velocity com-
ponent is considerably different from the assumed value, this value 
must be correspondingly modified and the computations repeated. The
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resultin€ process ii.y be much too lengthy in practice. The value 
of V3 in the reference plane x3 = 0 is therefore assumed to be 
known and equal to zero. 	 om equations (14) and (15), the followin€ 
difference equations for the velocity components at E° are then 
obtained: 

(afl)AO (vl,Eo - vl,Ao) + (a - ?afl)Ao (v2,Eo - v2,Ao) 

+ P1,Ao (xl,Eo - Xl,AO) = 0
	

(24) 

(afl )Bo (v1,EO - vl,Bo) + (a12 _ %aU)Bo ('2, o - 2,Ao) 

+ P1,BO (Xl,EO - x1,Ao) = 0
	

(25) 

whose solutions are 

where

A1D1 

B2 D2 .	 A2D2 

= Ai Bi	 Y2,E° = - - Ai Bi 

A2 B2	 A2B2 

A1 = (afl)Ao	 B1 = (a12 - 11)Ao 

A2 = (aU)Bo	 B2 = (a12 - 

D1 = - Alvl,Ao - B1v2,Ao + P1,AO (x1,Eo xl,Ao) 

D2 = - A2v1,Bo - B2v2 ,B° + P1,BO (x1,Eo - x1 ,A°)

(26) 

F1
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Pl,Ao = (
	 d.v3 

a33	 + a33 a; + lAO 

Pl,Bo	
(	 dv3 

=	 33 dx + 33 (3j + ) B° 

This solution can also be obtained from equation (23) by setting 
A =B =D =0 and C =R=l. 
3	 3	 3	 3 

With equations (26). and (23), the new field source 
EOE t . .	 can be computed. This new source curve determines 
two new characteristics, one of which extends toward the body 
whereas the other extends away from the body. The characteristic 
that extends away from the body nay intersect another character-
istic of type II whose source'is a curve above B°B' • • 
in figure 4. This intersection can be calculated by the procedure 
used to calculate E°E' . . 	 thus the entire characteristic 
whose initial source is A°A' . . 	 can be computed if con-
ditions on a surface a snail distance upstream of it are known. 
The determination of a new initial source on the body, such as 
F°F' . . ., must now be considered. 

The x1-coordinate of the surface in which the new initial 
source F°P' . .	 is to be located nay be chosen as the 
junction of the type-Il-characteristic intersection from E0 
with the body. This value of x1 	 Is determined from the 
relations

1 
tan BpO = 2,A0 (X2,yo - X2,AO) 

X1,po - xl,Ao 

X2po - X2,Eo 
?E0 = X],pO - 

where tan ôpO Is the slope of 0P0 and	 Is calculated from 

equation (io) with

X2E? - X2,EO 
.tEO =

x3,Eo - X3,Eo
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The factor 1/112,Ao is given in table I for each of the coordinate 
systems. 

The coordinates of points that are junctions of the character-
istic intersection from E' with the body can be determined from the 
relations

1 

= 12,A' (X
2, i - x2,) 

tan &,

=	 -X2,Et 

E' x1, - XlE 

For determining the velocity components_at F', two character-
istic equations are available, one along E' G' and one along FOF'. 
The third independent relation is obtained from the condition that 
the velocity vector at any point on the body must be In a plane tan-
gent to the body at that point. This condition Is evidently given by 
the relation (fig. 5) 

12v2 = i3v3 cot C + v1 tan B
	

(27) 

where c is the angle between the x2 -direction and the trace of 
the body tangent plane in an xi_ = constant surface and B is the 
angle between the xi-directIon and the trace of the tangent plane 
In an	 = constant surface. The quantitIes 12 and 13 are 
required to eliminate the coordinate factor from v1 when angular 
coordinates are used. (table I). Along the characteristIc source 
FOP', the foflowing relation is obtained from equation (15): 

(a13) 0 (V1,FI - v1,po) + (a23 - ua33)o (v2,p - v2,po) 

+ (a33)0 (v3,pi - v3,po) + P3,po (x3,pt - x3,po) 	 0

(28) 

Equations (27) and (28) are two of the relations required to determine 
the velocity components at F'. In order to obtain the third relation, 
an assumption similar to that made' in determining E' is required 
to eliminate vj ,G' from the characteristic relation along E' G'. 
The required assumption is
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VI,G, VI,A =	 - X1A? 
= R 

V1,F! - VI,A?	 X1,pt -
	 (29) 

When equatIon (29) Is used to replace i' in the relation 

(all )EI ( l,G.' - vl,E,) + (a12 - ?afl) E, (v2,G, - 2,E') 

+ (a13 )E, (v3,Gt - V3,E?) + l,E' ( xl,G, - xl,E,) = 0 

the third required equation becomes 

(all )E [RV L,F1 - 1,E' + (]...R)vl,Ai 

+ (a12 _ ?%aU )E , ['2,F' - V2,Et + (l_R)v2,Ai 

+ (a13 ) E,	 - 73,E' + (l-n)v3,Aj

(30) 

^ 1,E' ( xl,Gt - Xl,Et) = 0 

The solution of equations (27), (28), and (31) is 

B çi 0	 Al Cl 0 

B2 C2 D2	 c2 D2 

- B3 C3 D3	 A3 C3 D3 
-	 -	 2,F' -	 A 

where

(31)  

Al Bi 0 

A2 B2 D2 

- A3 B3 D3 
-

(32)  

A = A1 (B2c3 - B3C2) - A2 (Bc3 - B3C1) + A3 . (Bc2 - B2Ci) 

	

A1 =tan8 1 	 B1= - 112,p	 Ci=(il3cotc)1 

	

= (a13)Fo	 B2 = (a23 - a33 ) O	 C2 = (a33)Fo 

	

A3 = (afl)El	 B3 = (a12 _Xafl)E,	 C3 = (a)
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D2 = - A2v1, o - B2v2,po - C2v3,po +	 ('3,F' - x3,Fo) 

l-R D3 = -- (A3v1,At + B3v2A, + C3V3At) 

- (v1,	 + B3V2,Et + c3v3,EI) + 1E' ( L,a' - xl,Et) 

dv1	 1 
3,F0 = [(a12 - ia13 - Xa11 )	 + a11	

+ 

dv2	 dv3 H] 
= [(8 3 - Xa13 - La33)	 + a33	

+ 

For point P°, which lies in the reference plane, v3 is 
assumed. to be zero ath equation (27) becomes 

	

(2v2)Fo = V1,po tan o	 (33) 

	

The second. relation required. to determine v2 	 and. v,	 Is 

	

,.I.	 .I.)J. 
obtained front equation (14), which, for V3 = 0, becomes 

(afl)Eo (v1,po - v1,Eo) + (a12 - \aU)Eo (v'2,po - V2,EO) 

	

+ Pl,Eo (x1,po - xl,Eo ) = 0	 (34)


where
f d.v	 dv2\ + 

H1 Pl,Eo=[a33_t)	 J 

The solution of equations (33) and. (34) for V1,pO 15 

(a) v1,Eo + (a12 - a11) v2,Eo - P1,	 (x1,po - xl,Eo) 
V] ,pO =

I tan \ (a11 ) + (a12 - ?a11)	
2 Jpo

(35)
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With equations (32), (33), and. (35), new initial sources on the 
surface can be computed when conditions on a field source and on 
another initial source (both slightly upstream) are lmown. 

Equations (23), (26), (32), (33), and. (35) constitute the 
solution to the two basic problems mentioned at the beginning of 
the section. With these equations, the entire disturbed flow field 
about a body placed in a supersonic stream can be calculated pro-
vided that (1) the flow remains everywhere supersonic, (2) the 
rotation and the viscosity of the f].ow are zero or negligible, 
(3) conditions are known along the surface that separates the uni-
form flow field from the disturbed flow field, and (4) a reference 
surface exists for which v3 = 0. Condition (4) is a practical 
limitation that wifl eliminate trial-and-error procedure. It may 
be replaced by some other known condition satisfied by on of the 
velocity components at points of types E0 and.	 if the equations 
for these points are appropriately altered. 

The initial surface required by condition (3) may be, for example, 
the shock surface attached to the nose of a pointed body or to the 
lip of an open-nosed body. For unsymmetrical bodies, the determina-
tion of the form and in,tensity of the initial shock surface is diffi-
cult and. the replacement of the shock by a characteristic surface 
may be essential for solution of some problems. This procedure 
neglects not only the rotationality of the real flow field, but also 
the abrupt compression at the foremost boundary of the disturbed 
portion of the field. The resulting solution therefore fails to 
satisfy exactly the real boundary conditions. For such problems, 
the linearized characteristic equations (to be derived subsequently) 
may yield a solution as accurate as that obtainable with the non-
linearized equations. 

If the flow over a pointed body is to be computed, some assump-
tion must initially be made concerning the velocity components near 
the point of the body because the vertex itself is singular. Perhaps 
the simplest assumption is that the flow is conical for a small. dis-
tance beyond. the vertex. Any reasonable assumption is valid, how-
ever, because the effect of that initial assumption can be made neg-
ligible by scaling up the body so that the portion near the vertex 
is a very small part of the entire body. The initiation of the char-
acteristic solution for pointed bodies is discussed in more detail 
in appendix A. For open-nosed bodies the starting process is some-
what more straightforward because the velocity components a small 
distance from the lip are accurately obtainable from two-dimensional 
flow theory.
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The equations required to carry out computations are swnm-rized 
in appendix B, whereas in appendix C the first steps involved in 
the computation of the flow pa8t a cone that has an elliptic cross 
section are described. 

Solution of the linearized equation by means of characteristic 
surfaces. - When the changes in the velocity components throughout 
the disturbed flow field are small relative to the critical velocity, 
equatIon (1) can be reduced to a linear equation, which,. for 
Cartesian and cylindrical coordinates, has the form 

ailDilY + a22D2211 + a33D331L1 + H = 0	 (36) 

where

a11 = (l-M2) 

and where the quantities k2v12 are neglected in the expressions 
for a22 , a33 , and H (table I). The value of M is now assumed 
to remain constant throughout the flow field. 

The linearized theory for supersonic flow consists in finding 
solutions to equation (36) for various boundary conditions. For 
some types of solid boundary, such as thin wings and conical bodies, 
a variety of solutions are available. These solutions permit the 
determination of flow prainaters at the surface of the boundary with-
out determining the flow in the entire disturbed field. Solutions 
that have been obtained for bodies whose contour varies in the 
stream direction or for body-wing combinations postulate some 
restriction as to the shape of the boundary and in thenwelves involve 
considerable computation. For bodies that are not axially sym-
metric, solutions have as yet been obtained only for the condition 
that the flow is conical (reference 8). The following discussion 
develops a method of characteristics for solution of the linearized 
differential equation for general boundaries. The resulting equa-
tions are quite simple relative to those obtained for nonlinear flow, 
although the method involves, as with nonlinear flow, computation 
of the entire flow field. The method is consequently not intended 
to be used when boundary-surface solutions are available unless these 
solutions involve more computation than the one presented herein. 

The differential equation for the characteristic surfaces of 
equation (36) Is

a11X2 + a22 + a3 i2 = 0	 (37)
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which, for Cartesian coordinates, becomes 

il^2	 (38) 
M2l 

In equation (37), \ and. .t have the same sIifficance as in equa-
tion (4); hence equations (7) aM (7a) may be used. to eliminate the 
partial derivatives from equation (36) In the manner used for non-
linear flow. The resulting ordinary differential equation that relates 
the velocity components in moving from one point to a neighboring 
point along an intersection of a characteristic with an x3 = constant 
surface is

(dv3	 dv2\ 
a11 (dv1 - Xdv2) + a33	 - 

u.-) 
dx + Hdx = 0	 (9) 

The corresponding relation along intersections of a characteristic 
with an xl = constant surface becomes 

fdv1 	 dv2\ 
a33 (dv3 - .tdv2) + a11	 - ? -) dx3 + Kdx3 = 0	 (40) 

EquatIons (39) and. (40) can also be obtained by setting a 12 , a13, 
and a23 equal to zero in equations (14) and. (15). The difference 
equations for each type of source point may consequently be derived 
simply by setting these coefficients equal to zero In the nonlln-
earized equations. The resulting equations are given in appendix B 
for a general field-source point E1 (equation (B6)) and. for a 
general solid-boundary source point	 (equation (B7)). If 
is ain assumed to be zero In the X3 = 0 surface, the velocity 
components for points E° can be obtained from equation (B6) by 
setting D3 = = 0 and B = 1. The velocity components for 
point F° are given by equations (B8) and. (B9). The expressions 
for the coordinates of the various types of source point are the 
same as for nonlinear theory and. are given by equations (B12) to (B15). 

With the expressions given In appendix B, the linearized 
solution for the supersonic flow past general boundaries can be 
obtained provided that, to the conditions mentioned for the nonlinear 
solutions, the additional, condition is added that the velocity Is 
nowhere eatly different from the velocity of the undisturbed 
stream. The initial surface that is required to start the computations
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is, for linearized theory, the foremost characteristic surface of 
the disturbed field, upon which it may be assumed that the velocity 
components have their free -stream values. An initial source curve 
on the boundary surface . nnst be assumed, but the effect of this 
initial asstuixption can ain be made negligible by scaling up the 
initial section of the body. 

SUMMARY OF ANALYSIS 

The method of characteristics has been applied to the non-
linear and linearized partial differential equations for the velocity 
potential in a supersonic streain. By use of the resulting difference 
equations, the velocity components can be computed throughout an 
irrotatiorial supersonic flow field for arbitrary boundary conditions. 
The solution for the linearized equation involves considerably less 
computation than the solution for the nonlinearized. equation, although 
both require the determination of the entire flow field that iriflu-
ences the flow variables at the boundaries. The use of the linearized 
solution is suggested in those problems for which the disturbances 
resultinë from the presence of boundary surfaces are everywhere small 
and for which no simpler linearized solution is available. The non-
linearized solution is required, for accurate results, when the 
presence of solid boundaries results in large changes in the velocity 
components. No procedure has been given for treating the effects 
of an Initial shock surface; however, the replacement of the initial 
shock surface with a characteristic surface should not lead to serious 
error unless the shock is intense. 

Lewis Flight Propulsion, laboratory, 
National Advisory Conunittee for Aeronautics, 


Cleveland, Ohio, December 29, 1948.
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APPEIWIX A 

TREA'fl'IIUINT QF U!STh1METRICAL CONICAL FL(M FIElDS 

If the supersonic flow over pointed bodies is to be determined, 
the initial portion of the body near the point can usually be 
re.rded as a small cone. If the nose Is axially symmetric, the 
velocity components at the surface of the initial cone and through-
out the conical portion of the field can be calculated by the method 
of Thylor and ?ccoU (reference 10). If the initial cone is not 
axially symmetric, however (If. it has, for example, an elliptic 
cross section), no exact solution other than the method of character-
istics is Imown for determining the flow throughout the conical 
field, If a linearized solution Is desi' ed, the procedure presented 
In reference 8 may be used for determining the velocity components 
at the surface of an unsymmetrical cone. This method may be used 
to obtain the initial source curve required to start the solution 
by means of characteristics if the conical nose is 'only a small part 
of the entire body. If. the conical nose is a considerable part of 
the body, however, flow conditions must be accurately imown over an 
entire surface ahead of the characteristic whose source is the first 
variation of the body from the conical shape of the nose. A method 
for determining the velocity components throughout an unsymmetrical 
conical flow field must therefore be developed. 

The method of chnra&teristics cannot be simplified to solve 
this problem because the assumption that the flow is conical leads 
to an equation that has no real characteristic solutions, If the 
conical-flow conditions are imposed on equation (1), then for spher-
ical coordinates, equation (1) becomes 

a22D22 1 + a23D23 + a33D33 1t + H' = 0	 (Al) 

where

ye 
H' =	 (2 - k2ve2 - k2Vq,2 ) + - cot e (1 + k2vq,2) r . 

The characteristic form of equation (Al) Is 

A = a22 - .ia23 + j.i2a33 	 (A2)
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If equation (A2) is set equal to zero, the characteristics can be 
shown to be imaginary unless 

k2v02 + k2Vq,2 ^ I 

Because ye ath Vp are generally quite small near the cone surcace, 
the inequality is invalid throughout a conical field. 

The following procedure may be used, however, to determine the 
flow past unsynmetrica1 cones by means of characteristics. The con-
ditions at an initial source curve near the point can be fixed at 
some reasonable values, possibly based on a linear variation of 
velocity components with the conical half-angle e. The normal pro-
cedure described in the text can then be used. to develop the flow 
field until, there is no further variation of the velocity components 
along a given radius vector from the vertex of the cone • The number 
of computations required to establish the conical solution will 
depend on the accuracy of the initial assumption. The use of this 
procedure to compute the flow over an elliptic cone is described in 
appendix C. Other procedures, such as the direct numerical integra-
tion of equation (Al) in hod.o'aph planes or along prescribed conical 
surfaces, appears to be feasible and their development should con-
stitute a profitable field for future research.
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APPENDIX B


STJ}4MABY OF EQUATIONS


Nonlinear Theory


The following equations are used for field-source points 

-	
Bi V1En	 -A 

A(c2D3-c3D2)-A2(C1D3-C3D1)+A3(C1D2-C2D1) 
=	 (B2) 

A1 (B2D3-B3D2 ) -A2 (B1D3-B3D1) 3(B1D2-B2D1) 

V3En	 -A 

= - k (Aivi,^v2	

+	

(B3) 

where 

A = A 1 (Bc3-B3C2)-A2(B,C3-B3C1)^A3(B,1C2-B2C1) 

A1 
= 

(a11 )	 B,1 = (a12-2 a11 )	 l = 

A2 = (all)En	 B2 = (a12-? all)Bn	 C2 = (a13)Bn 

A3 = (a13)Efl...l	 = (a23-t 33)Efl..1	 = (a33)En_l 

	

D1 = -A1V1,AU _B1v2 ,An _C1V3,An +	 '1,A' 

D2 =	 (V1,Afl + B2V2,A11 + C2v3,An) 

- (vi + B2v2 + C2v3)En 
+ lB 

( Xl,Cfl l,Bh1)
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= - ( 3V1 + V2 + c3v3) En_1 + 3,Efl 1 (,,En-l)


dv3 	 dv 

	

= [a33	 + ( a23- a13-a33)	 + 

dv	 dv2 j 

	

P1, n [a33	 ^ ( a23- a13-a33)	
+ jBfl 

T dv	 ^Hh 

	

= La11	
+ (a12 -iia13- a11) dx1

	 jE' 

X, 1fl-X1 ,n 
B =

XlEnXl,An 

Forpoint E°(v3 =0): A3 =B=D3 =0, C3=R=l. 

Equations for the velodity components V1 pfl, V2,pn, and 

v3,	 at the solid-boundary source point F have the saiie form$ 

as equations (Bi), (B2), and (B3), respectively, where the coef-
ficients are given by the following expressions: 

A1 = tan	 B1 =2,F"	 C1 = ( ii3 cot €)pn 

= ()fl-i	 B2 = (a23-ia33)_i	 c2 = (a33)_i 

A3 = (all)En	 B3 = (a12- all)En	 C3 = (a)n 

D=O 

D2 = - ( 1 + B2v2 + C2v3)n1 + 3,F1 (x3,pn - X3,pn_1) 

D3 =	 (Jvl,An + B3v2,An + C3v3,An) 

+ - (A3v1 +B3V2 + C3V3)En	 B (x
1, Gnxl
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dv2	 dv1 

	

3,Ffl1 = [(al2_ al3_ afl )	 + a	 + 

d.v2	 dv3 

	

= [(a23_ ai3_ a33 )	 + a33	
+ jEn 

Xl,_Xl,An 

X1 F]Xl 

For point F° (v3=O), the following equations are used: 

p	 (x (a1l)Eovl,Eo+(a12_a1l)Eov2,Eo__1,E° l,F0xl,E0) 
tan \	

(B4) 
V1FO =
	 (a11)Eo+(a12_?a11)Eo (
	 2 ) 

T fdv3	 dv2\ 1 
Pl,Eo =
	 -	

+ 

( 2v2 ) 0 = (v1 tan Fo
	

(B5) 

Linearized Theory 

The following equations are used for field-source points E': 

XD2- B" 

V1En = A1(?fl7\Afl) 

V2En = A1(?-?)
	 (B6) 

(D,-D2) 

V
3,En = D3 - Al(NBfl?fl) = 	

+ n-1 V
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where 

A1=M2-1 

= _A1 (vl_ ?v2 )Afl + Pl,An(xl,En_xl,An) 

A1	 ____ 
D2 =	 A1(vlAn_1,v2An) - r (v1-)v2 ) 1' + R (X1nX1ii) 

D3 = (v3-iiv2)1	 3,E"- (x3,_x3,En_1) 

rfdv3	 dv2'\ +

JA1' 

[ fdv3 
Pl, =--

[A1 11dv1 

3,E1 = [
	 dx1) - 33JE 

The following equations are used. for boundary-surface source 

points F1':

yfl	 [12Ffl-Ffl_13 cot A1D2(113 cot c) -D3 

vin=

A1D2 ( cot c) -D3 tan B 
F1'	 F1' v2Fn =

(B7) 

AlD2(T2pnXEn tan BFn)-ipn..1 D3 tan 
v3,Fn.=

tan 

=	 (113 cot
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where 

= A1 
[2,FxF11_1 

(113 cot £)Ffl 7'E tan 
F] 

A1 = M2-1

D2 = (v3-I.tv2 )-i +
[A1 (dv1 dv2\ 

-	 t (x3	 -x3_1) 

L
'

P 
D3 -	 Ai (vl,An_nv2 ,An) -	 (v-?v2) + 

1,E (x	 -x	 ) 
B	 1,G'1 1,E 

L 
(d.v3 	 + 

=- a33	 __L;) 
JE 

For point P0 (v3=O), the following equations apply: 

(v1_v2)Eo - P

	

(xl,po_xl,Eo)	
(Ba) 

(tan 
=	 1	 EO \J 

	

[ (d.v3 	 dv2\ +

=-a33ç-.L) lEO 

= (V1 ten 6)po	 (B9) 
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Expressions Involving Coordinates and Derivations of 

Velocity Components (Nonlinear or Linear Theory) 

The difference equations for t and \ are: 

x	 -x 
. An+l •) Afl


	

=	 .,tt 
An x Afl+1_X Afl 

X2+lX2Bn	 I	
(Blo) 

LBfl = x3Bn+1_x3Bn 

x	 -x 
2,E'1 2,En-1 

= X3,X3,En_1 

Nonlinear,

	

J	
/ 

2	 2 
-(a12 -Ita13 )± (i.ia13- a,2) 4a11 (a22 i 3+i.t a33) 

Linear,	 ( Bli) 

/a22 + t2a33 

-a11 

where	 v2, v 2 , Vr2 ) ye2 and. v 2 are neglected. in al,kJ 

For computing E, + is used for 7\ 	 and XEn_1 and - for 
A 

For computing F, + is used for	 and - for 

The expressions for the coordinates of the points in the net-
work are as follows:
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Coordinates of C" are 

x = 2,nx2,An+Anxl,An_XnXl,Bn 

1,cn

J x	 =x	 ^ (x	 -x 
2,C"	 2,A" A" i,C" 1,A" 

=	 = X3Bn 

Coordinates of E'1 are 

x	 •=x	 =x 

	

1,E"	 1,E°	 1,C° 

X2 ,En = x2,AnAn1,En1,An) 

x	 =x 

	

3,E"	 3,A"	 3,B"

(B12)

(B13) 

Coordinates of G" are 

X2_X2An+X	 tan b - x 

	

1,A"	 G" E" 1,E' x	 =
tan

I x	 =x	 +?, (x	 -x	 ) 
2,G	 2,E" E 1,GXl 1,E 

x	 =x 
3,G"	 3,E"

(B14)
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Coordinates of F'1 are 

x	 =x	 =x 
l,F'1	 1,F°	 1,G° 

2,pfl	 2,A'1 2 A	 l,	 1,A	 (Bl5) X	 =x	 +(ii)	 tans (x	 -x 

x3,pfl	 3,E' 

The velocity derivatives in difference form are as follows: 

For P1,

/dv3\	 V3,An+l_V3,An 

= X3An+lX3An 

(dv2 \	 V2 A"12 

\dX3/fl = X3An+1_X3An

(B16) 

Similar expressions apply for points B'1 and E'1. 

For P3,

(d.vl"\	 - 
V 

E'1	
n-1 

x	 -x 
E'-	 1,Eh1_l l,A' 

(dv	 = V2EnlV2An.1 

'14n1 XlEn..lXlAn..l 

Similar expressions apply for points

(B17)
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APPENDIX C 

COMPUTATION OF FLOW OVER CONE 

WITH ELLIPTIC CROSS SECTION 

As an example of the use of the nonhinearized method of char-
acteristics for unsymmetrical bodies, the first steps in deter-
mining the flow over an elliptic cone are described in detail. This 
example illustrates the starting procedure for pointed bodies in 
general, because the shape of the body can be modified progressively 
downstream once the initial conical, field at the point has been 
determined. 

The elliptic cone used is similar to that described in ref er-
ence 8 and is shown in figure 6. The ratio of the major to the 
minor axis of the cross section is 3 and the slope of the cone in 
the plane cp = 9Q0 is 0.315; thus the cone is represented by the 
equation

= tan =	 0.315	 •(Cl)


AJ9 coscp+sin2cp 

and the expression t for cot c is 

cot € =	 = 8 Siiicp cos cp	 (c2) rd.Cp	
cos2cp+ sin2cp 

The free-stream Mach number was assumed to be 1.90, as in ref er-
ence 8. 

A preliminary computation plan is illustrated in figure 7, 
where each point in the plane q. = 0 (fig. 7(a)) represents a 
source curve composed of 17 points circumferentiahly distributed 
at values of cp of 0, 10, 20, 30, 40, 50, 60, 65, 70, 73, 76, 79, 
82, 85, 87, 89, and 900 (fig. 7(b)). As yet no basis other than 
experience Is known for determining the number and distribution 
of points required for a prescribed degree of accuracy. It is 
evident, however, that a denser distribution of points is required 
where the shape of the surface varies most rapidly. 

In order to start the computations, values of v, Vr and 

vcp were assumed at the points of source curves 1 to 6 (figs. 6 
and 7). At group 1, on the cone surface, the velocity components 
were assIied according to the equations 

$
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V	 =v tan r,n	 +v	 cot€ n	 cp,fl	 n 

V 2 =	 2 + Vr,n2 + V p,fl2	 (C3) n	 X,fl 

wherein V and v were assumed at each of the 17 points and Vr 

and v were then calculated. For n=0 (cp=0°), V was assumed 

to have the value resulting from two-dimensional compression of 

= tan 0.105; for n = 16 (cp = 900), V ws assumed to have 

the value obtained on a symmetrical cone of half-angle 16 = 

tari 0.315. For n = 0 and n = 16, vq, must be zero because 
the flow is symmetrical with respect to these planes. For other 
values of n, the values of V and Vq were selected by drawing 
reasonable-looking curves between their values at p = 0 0 and 
cp=90°. 

At the Mach cone (group 6), vp = Vr = 0 and v	 1.585 (for 

the assumed free-stream Mach number 1.90). For groups 2 to 5 the 
velocity components and the values of r/x were assumed to vary 
linearly (for each value of n) between their values at the cone 
surface and at the Mach cone. 

With the velocity components and coordinates thus assigned 
at groups 1 to 6, the velocity components and coordinates at 
groups 7,. 9, 13, 19, and 27 can be simultaneously computed by 
equations (B].) to (B3) and (BlO) to (B13) in appendix B. In order 
to compute group 7, for example, the points In group 1 are used as 

the AT1 points and the points In group 2 are the Bn points. When 

group 7 (E°, B1, . . . B16 ) has been computed, these points 
together with group 1 can be used to compute the new solid-boundary 
source (group 8). 

An alternate procedure to the one outlined would consist in 
assigning values only at groups 1 and 6 and computing groups 31 
and 36. This procedure has the advantage that values need be 
assumed only at one surface source curve and at the Mach cone, 
conditions at the Mach cone being known if no shock is assumed to 
occur. The increments of r between the groups, however, are 
very large relative to the value of r at the solid boundary; 
thus the assumption that the coordinate increments are small is 
violated. It is therefore doubtful whether the computed values of 
the velocity components would converge as rapidly to their conical-
field values as with the procedure previously described. The 
alternate procedure has the additional disadvantage that only one 
source curve can be computed at a time.
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Because v is zero both for	 = 0 and for q = 900 , either 

of these planes can be used as the reference plane (fig. 7(b)). 
When two or more reference planes are available, any cumulative 
error involved in the computation of a source áurve can be reduced 
by using each reference plane as a locus of E° and F° points 

and computing values of E'1 and 
F from two directions. This 

procedure was used in the present preliminary computations. The 
difference between computed values of the velocity components 
resulting from the use of this procedure rather than computation 
in one direction is shown for group 9 in figure 8. Part of the 
difference between the two results is due to the difference in the 
value of x for the two groups of points, inasmuch as the n = 0 
points determine the x-coordinate of the entire group. Most of 
the difference, however, probably results from the fact that the 
values of some of the total derivatives, when approximated by their 
difference form, depend somewhat on the direction of computation 
(equations (BlO) ?nd (B16)). 

In order to determine whether the number of points used in a 
group greatly affects the computation results, group 7 was com-
puted twice. For the first computation 17 points were used and 
for the second 31 points. In addition, the assumed values of 
v iii groups 1 and 2 were slightly altered to determine the 

sensitivity of the computed results to changes in initial values. 
The results of these computations are shown in figure 9. The 
assumed values for groups 1 and 2 are indicated with solid lines. 
'The alteration in the assumed values of 	 for the 17-point 
computation is indicated for group 1 by a broken line. The 
oscillation of the computed value of v about the assumed 

initial values occurred for both sets of computations, and no 
difference in results is apparent that could be attributed to 
the use of a different number of points per group. The abrupt 
changes in v at 0° and 20° for the 31-point group were attrib-

utable to computation errors. These errors were retained to 
determine their effect on succeeding points in the group. The 
results indicate that the influence of such errors is limited 
to the immediate vicinity of-the point for which the error is 
made.

The difference in the initial values of. Vq) for the two 

groups resulted in relatively large changes in the computed values 
of vp and smaller changes in the computed values of v and 

Vr• In the regions for which the assumed values of v were the
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same (the leftward-running computations), the computed results were 
almost the same except near the peaks of the oscillations in 
and v. 

The cause of the oscillations in the computed values of 

and v has not been definitely detrniined. The fact that an 

increase in the number of points did not reduce their amplitude 
indicates that the magnitude of the coordinate differences was not 
responsible. This conclusion is further substantiated by the fact 
that the oscillations occurred regardless of the direction of com-
putation, although the peaks were somewhat displaced. The hypoth-
esis is therefore advanced that the initial values chosen for the 
velocity components were unsatisfactory and tended to initiate 
strong compression and expansion waves in the flow field. Insuf-
ficient time was available to check this hypothesis by altering 
the initial values. If the hypothesis is correct, a more accurate 
knowledge of initial values for each of the velocity components 
would appear to be very desirable for the computation of unsym-
metrical flow fields by the method presented. Convergence of the 
computations may be very slow if the assumed values can be cor-
rected only by means of strong compression or expansion of the 
flow.

With ordinary calculating machines, a group of 17 points com-
prising a source curve could be computed and checked in about 
80 man-hours. The computation setup consisted of 186 columns for 

the E" groups and 130 columns for the F groups. For a 
linearized solution these figures may be reduced by about one 
half. The use of electronic calculators will, Of course, reduce 
both computation time and the possibility of error. 
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Figure 1. - Illustration of propagation of initial disturbance in

stream moving at subsonic and at supersonic velocities. 

x2 

Figure 2. - Illustration of two possible characteristic surfaces 
originating at source curve.
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20 
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(a) Velocity components	 (b) Velocity components 
given at points A° arid A'.	 given at points A° and C0. 

Figure 3. - Illustration of method of determining characteristic inter-




sections when velocity components at two points are known. 

Figure 4. - Network of characteristic lntersections.near a solid boundary. 


All surfaces replaced by successive tangent planes.
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x2	 I

x3

Figure 5. - Illustration of boundary condition on velocity components. 

Plane tangent to solid boundary at point P. 

Figure 6. - sketch of elliptic cone used in example (appendix C).

Free-stream Mach number, 1.90; a/b = 3.0; a/x = 0.315.
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(a) Plane cp = 0, showing source curves assumed and to be

computed. 

n1098 6420 
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cp, deg 

(b) Plane x = 1.0, showing distribution of points in 

assumed source curves. 

Figure 7. - Illustration of preliminary computation plan.
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Figure 8. - Comparison of two methods of computing group 9 from 

assumed values in groups 2 and 3. 
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Figure 9. — Computed velocity components for group 7 from assumed 

values in groups 1 and 2.
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