
1r3, 
rl 
LD 
co 

- rl 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

TECHNICAL NOTE 

No. 1851 

CRITICAL SHEAR STRESS OF INFINITELY LONG, Sllv1PLY 

SUPPORTED PLATE WITH TRANSVERSE STIFFENERS 

By Manuel Stein and Robert W. Fralich 

Langley Aeronautical Laboratory 
Langley Air Force Base, Va. 

Washington 

April 1949 

GOVT. DOG .. 

qU~1 ESS, SCf£NeE 
& I !:.C,HNuL06Y DEP'T • .. 



NATIONAL AJJVTSORY COMMITTEE F OR AERONAU:'ICS 

TECHNICAL NOTE NO. 1851 
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SUPPORl'ED PLATE WITH TRANSVERSE srJJ!li'ENERS 

By Manuel stein and Robert W. Fralich 

SUMMARY 

A theoretical solution is given for t he cri tical shear stress of 
an infinitely long, simply supported, fl~t plate with ident ical, equally 
spaced, transverse stiffeners of zero torsional stiffness. Results are 
obtained by means of the Lagrangian multiplier method and are presented 
in the form of design charts. Experimental result s are included and 
are found to be in good. agr-eement with the theoretical result s. 

INTRODUCTION 

The design of shear web beams and nonwrinkling skin surfaces 
requires a knowledge of the critical shear stress of stiffened plates. 
The purpose of the present paper is to give the theoretical critical 
shear stress of an infinitely long, simply supported, flat plate rein­
forced with identical, equally spaced, transverse stiffener s. 

The results are found by means of the Lagr'angian multiplier method. 
The stiffeners are assumed to have bending stiffness but no t orsional 
st iffness and are assumed to be concentrated along transverse lines in 
the middle plane of the plate. The assumption that the stiffeners have 
no torsional stiffness applies with little error in the case of many 
open section stiffeners. The assumption that the stiffeners are con­
centrated along transverse lines in the middle plane of the pl ate is 
applicable whenever the width of the attached flange is small in com­
parison with the stiffener spacing . 

The theoretical analysis of the pr oblem is given in the appendixes . 
For completeness, an energy solution for the pl ate wi th relatively weak 
stiffeners is given in appendix A. The solution f or a pl ate with 
stiffeners of intermediate or higher bending stiffne ss is given in 
appendix B. The r esults are present ed in the form of nondimensional 
curves which cover the complete range of stiffener stiffness and various 
stiffener spacings and in a table giving values from whi ch the curves 
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were drawn (table r). E:x::perlmental results are present ed for 20 panels . 
Comparison of these results with the present theory indicat es good 
agreement bet ween theory and experiment. 
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coefficients of deflection function 

undetermined Lagrangian multipliers 

v internal energy of bending of the plate 

internal energy of bending of stiffeners 

T external work of the stresses 

BACKGROUND 

~he problem of the buckling of stiffened plates in shear has been 
treated by many authors by the use of both theoretical and semi­
empirical methods. In 1930 Schmieden (reference 1) solved the differ­
ential equation for an infinitely long plate stiffened by closely 
spaced transverse stiffeners (equivalent to orthotropic plate) and 
found exact stability criterions for shear buckling of plates with 
simply supported edges and with clamped edges. By making certain 
simplifying modifications of the stability criterions~ Schmieden 
obtained approximate values of the critical shear stresses. Later in 
1930 Seydel (reference 2) obtained exact solutions for infinitely long 
orthotropic plates with simply supported "or clamped edges. With the 
use of the proper parameters Seydel's results can be readily applied 
to p1ate-stiffener combinations. The values of the stresses obtained 
from Schmieden's theory lie slightly below the exact values of Seydel. 
In 1947 T. K. Wang (reference 3) used the energy method to obtain an 
approximate solution for plate-stiffener combinations with simply 
supported edges. Wang's results lie above the exact values of Seydel. 
All the foregoing solutions are applicable only to the case of weak 
stiffeners~ where the stiffening effect of the stiffeners can be 
considered to be uniformly distributed over the plate. 

3 

Solutions are also available for plates reinforced by rigid 
stiffeners. In 1936 Timoshenko (reference 4) treated the case of 
simply supported rectangular plates reinforced with one or two 
stiffeners. By means of the energy met~od Timoshenko found the 
stiffener flexural rigidity necessary to prevent b~ckling across 
stiffeners with the conservative assumption that the stiffeners act as 
simple supports. In 1948~ Budiansky~ Conner, and stein (reference 5) 
found the critical shear stress for an infinitely long~ clamped plate 
divided into square panels by nondeflecting intermediate supports which 
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correspond to rigid stiffeners . They also considered the case of a 
pl ate of infinite l ength and wi dth having nondeflecting intermediat e 
supports that form an array of s quare panels . 

Kuhn has written a number of papers on r elated subjects in which 
he presents semiempir ical results for the critical shear stress of 
stiffened plates . (See, for example, reference 6.) 

The availabl e the oretical sol utions treat the r elatively unim­
portant case of weak or cl osely spaced stiffeners and the case of 
rigid stiffeners that divide a pl ate into square panels. None of the 
theoretical solutions presents results for the pr actical range of 
intermediate stiffener stiffness and very l ittle theory is presented 
for the practical range of spacing of rigid stiffeners . Also, it is 
felt that the semiempirical r e sults for transver s e stiffened pl ate s 
cannot be extended to al l stiffener spacings and stiffnesses without 
a sound theoretical basis . The theoretical r e sults of the pre sent 
paper cover the complete range of stiffener stiffness and the pr actical 
range of s t iffener spacing . 

RESULTS AND DISCUSSION 

The critical shear stre ss for a plate-stiffener combination 
is given by the formula 

T 

Curves are presented in figure 1 giving corresponding val ues of k s 

ruld the stiffness parameter EI for simpl y supported, t r ansver sely 
Dd 

stiffened plates with panel aspect ratios of 1, 2, and 5. These 
results are replot.ted in l ogarithmic form i n figure 2 for comparison 
with experimental resul ts . 

The points of disc ontinuity of the sl opes in the curves of f i gure 1 
represent chru1ges in buckl e patterns . The pre sent r esults for an ortho­
t ropic plate agree with the exact r esults of ref erence 2. The der i ­
vation of the buckl ing cr iterion f or an orthotr opic pl ate (a pl ate 
stiffened by stiffeners of l ow bending stiffness ) is given in appendi x A. 
The der ivation of the buckl ing cr iteri on for pl ates stiffened by 
stiffeners of higher bending stiffness i s given in appendix B. 
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In previous solutions, values of ks were found by using the 

orthotropic-plate curve and a cut-off at the value of ks for simply 

supported panels. (See fig. 1.) These figures show that the present 
solution yields values of ks that are considerably below those given 

by the orthotropic-plate curve in the intermediate range of stiffener 
stiffness. Also, the present solution for more rigid stiffeners yields 
a curve that is higher than the cut-off, which is obtained by assuming 
the stiffeners to have the effect of simple supports. Since the conti­
nuity of the plate across the stiffeners of higher bending stiffness 
certainly adds a constraint ' to the plate, a higher buckling stress than 
that corresponding to a simply supported edge is obtained. 

5 

In figure 2, experimental results are compared with the theoretical 
curves. These results are fram two sources; The first set of experi­
mental data is taken from NACA tests on shear webs of 248--lI' aluminum 
alloy attached to torsion boxes. Drawings of a shear web and torsion 
box 'and the method of loading are given in reference 7. Buckling loads 
were obtained from the stiffener load-deflection curves which were 
taken from the original data. Each of the buckling loads given in the 
present paper is the average load at which the stiffeners start to 
deflect. The properties of the specimens and the buckling data are 
given in table II. 

The second set of experimental data is taken from NACA tests on 
thick web beams described in reference g. The beams were made of 
24s-T aluminum alloy with heavy flanges and with joggled stiffeners 
riveted to the flanges. The open spaces in the joggles were filled 
with soft metal. A picture of a failed beam is shown in figure 3. 
The load was applied at the center and the reactions were at the 
ends of the beams. Lateral deflections were prevented by lateral 
supports . The load, when strain was first observed in the stiffeners, 
was taken as the buckling load. The properties of the specimens and 
the buckling data are given in table III. 

The stiffener spacings for the test results are not the same as 
those for the theoretical results. All the test results fall in the 
expected regions among the theoretical curves. Only the group of test 

results for which Q = 2.4 fall in the range which serves to verify 
d 

the present theory over previous theory which considered the orthotropic­
plate curve to hold up to the cut-off at which the stiffeners are 
assumed to act as simple supports. The other groups of test results 
agree with the present theory, but they do not cover the range in which 
an appreciable difference exists between the present theory and previous 
theory. More experimental results are required to confirm the present 
theory fully. 
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CONCLUDING REMARKS 

Charts are presented from which the theoretical critical shear 
stresses can be obtained for infinitely long, simply supported plate s 
stiffened with identical, equally spaced, transverse stiffeners of zero 
torsional stiffness. The theoretical result s are based on the Lagrangian 
multiplier method. Previous theory considered the orthotropic curve 
to hold up to a cut-off value corresponding to the stiffener stiffness 
at which the buckling load was equal to the buckling load of a simply 
supported panel the size of each bay. Comparison of the present theory 
and previous theory shows that previous theory gives unconservative 
results for stiffeners of intermediate stiffness and conservative 
results for stiffeners of high stiffness. Test results of 20 panels 
are presented which are in good agreement with the present theory. For 
a conclusive check additional test results are reqUired. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., January 28, 1949 

.. 
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APPENDIX A 

THEORETICAL SOLUTION OF CRITICAL SHEAR STRESS OF PLATES · 

WITH TRANSVERSE SI'IFFENERS OF LOW BENDING SI'IFFNESS 

If the stiffener bending stiffness is law and the stiffeners are 
fairly closely spaced, the buckle pattern may be considered independent 
of the s t iffener spaci ng, and the plat e st i ffener combinat ion can t hen 
be analyzed as a plate with different bending properties in each 
di rection, that is, an orthotropic plate. In this appendix buckling in 
shear of an orthotropic plate is analyzed by means of the energy method. 

The buckling configuration of the plat e shown in figure 4 is 
represented by the trigonometric series 

w 

<Xl 

1t'x~ 
sin"""i ~ 

n=2,4, .•• 

<Xl 

n:rry ~ ~ 
~ sin b + cos II. ~ 

n=1,3, ••• 

which sat isfies the boundary conditions of simple support term by term. 
The internal bending energy of the plate V, the internal bending energy 
of t he st iff eners Vs ' and the ext ernal work of t he shear stresses T 

are given by the expressions 

T = - Ttl b 1'" Ow Ow dx dy ox oy 
o 0 

(Al) 

(A2) 
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Substitution of the ex~ansion for w (equation (Al)) into these 
energy integrals gives 

V=-- ~ ~ -+n +~ DM4 ~ 2(b2 2)2 ~ 
8b3 A, 2 

n=2,4,... n=1,3, ••• 

00 

v = ED){4(t= 
s 8db3 n=2,4, ... 

24 ~ 
an n + L-

n=1,3, ... 

00 00 

T = 2Ttrc ~ L 

Then 

n=1,3, •.. q=2,4, ... 

00 

8b3 ~ 
(V + V8 - T) DM4 = ~ 

n=2,4, .•. 

00 

+~ 
n=1,3, ••. 

16bk LOO 

_8 

rcA, 

00 

L 
n=1,3, ... q=2,4, ... 

(A3) 
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where 

According to the energy method the potential energy (V + Vs - T) 
must be minimized with respect to the unknown coefficients ~ and bn • 
By minimizing (V + Vs - T) with respect to the coefficients an and bn , 
the following set of equations is obtained: 

~b2 2)2 4 E~ 8bks ~oo Bn-+n +n----",2 Dd 1{", 

q:::;1, 3, ••• 

b nq :::; 0 
q (q2 _ n2) 

(A4) 

(n=2,4,6, ••• ) 

~b2 2)2 4 E~ Bbks Lao b -+n +n----n /..2 Dd' 1{", 

q:::;2,4, ••• 

a nq = 0 
q (n2 _ q2) 

(A5) 

(n=1,3,5, ••• ) 

The coefficients a can be found in t erms of b from n r 
equation (A4). Substitution of the resulting expression for an in 
equation (A5) results in the following equations: 

W
b2 

2)2 4 E~ b -+ n +n-n ",2 Dd 

• 
2 rnq 

Q"2, 4, . .. r"l, 3, ... b
r 

-( n-2-_-l-)-(-r2-_-q-2)-~=('-:~-+-q-2 )-2-+ -q-4 -~-=~" 0 

(n=1,3,5, ... ) (A6) 
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A solution to equations (A6) exists if the following stability determi­
nant vanishes: 

where 

C3l C33 C35 

C
5l 

C
53 

C
55 

CD 

= 0 (AI ) 

= C = _ (8bk
s)2 ~ 

rn 1rA, ~ 
q=2.,4., ••• (n2 _ q2)(r2 _ q2)~:: + q2)2 + q4 ~ 

(where n.J: r) 

A solution including all the an's and b
l 

can be obtained by 
setting equal t o zero the first approximation of the determinant 
equation (AI) 

----- ------- ------ -- -- ---- ---------------------
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Similarly the second approximation includes all the 

b3 

11 

~'s, 

Higher approximations are found in a similar manner. A second approxi­
mation was found to give satisfactory result s. For a given approxi­
mation it is necessary to try values of b/~ and find the corre­
sponding values of ks until a minimum value of ks with respect 

to b/~ is found for each ~. The result s are given in table I and 

in figure 1. 
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APPENDIX B 

THEORETICAL SOLUTION OF CRITICAL SHEAR srRESS OF PLATES 

WITH TRANSVERSE STIFFENERS OF HIGHER BENDING STIFFNESS 

In appendix A a t heoret i cal solution for a plate stiffened by 
stiffeners of law bending stiffness is present ed where the buckle 
pattern was taken as sinusoidal in the longitudinal direction. The 
buckle pattern of plates with stiffeners of higher bending stiffness 
is. no longer sinusoidal in the longitudinal direction. It is then 
necessary to consider deflection functions which are either symmetric 
or antisymmetric about t he ~tdpoint of each bay and are periodic over 
an integral number of bays. The critical shear stress of plates with 
transverse stiffeners of higher bending stiffness is analyzed by means 
of the Lagrangian multiplier method. 

Deflection functions.- The correct buckle configuration for any 
given plate-stiffener combination is that which corresponds to the 
lowest buckling load. Several types of configurations are investi­
gat ed. These buckling configurations are represented by the following 
two-dimensional trigonometric series (the coordinates are given in 
fig . 4). Symmetr ic buckl i ng, peri odic over each bay: 

00 00 

L L mrcx sin 
n11:y 

w = a sin --
m..'1 d b 

m=2,4, ••• n=2,4, ••• 

00 00 

L L b Ill1CX: sin n11:'y 
(Bla) + cos 

d b mn 
m=O,2, ••• n=1,3,· •• 

Antisymmetric buckling, periodic over each bay: 

00 00 

L L mrcx sin nny w a sin - b Inn d 
m=2,4, ••• n=1,3, ••• 

00 00 

L L bmn 
mrcx sin n11:y (Bl b ) + cos --

d b 
m=O,2, •.• n=2,4, ••• 

---- -_. 

. I 

. j 

I 

I , 
I 
I 

. ~ 
J 

I 

I 
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Symmetric buckling, periodic over t wo bays : 

(Xl 00 

w ~ L s i n 
m:rrx nrry a sin mn d b 

. m=1, 3, •.• n=l,3 , ••• 

ex> ()o 

+L L bmn 
mrcx sin n11:y cos 

d b 
(Blc) 

m=1 , 3, . • • n=2,4, ..• 

Anti symmetri c buckling, periodic over two b9.ys: 

00 00 

~ ~ 
Ill1U sin n rry w = Bwn sin - -

d b 
m=1, 3, ••• n=2,4, .•. 

00 00 

L L mrcx n11:y 
+ b cos sin mn d b 

(Bld) 

m=1, 3, • • • n=l, 3, •.. 

Symmet~ic buckling, one ,bay; antisymmetric buckling~ next bay; periodic 
over four bays : 

00 00 

[ ~l 
w ~ ~ Bwn sin ~ + (-1) 2 cos ~Sin TI1ry 

m=1, 3, . •. n=1, 3, • • • 
2d 2d b 

00 00 m-l 
m:rrx 

13 

b~ Gin +L ~ ""2 =~ nrry --- (-1) cos -- sin (Ble) 2d 2d b 
m==l, 3, ••• n==2,4, • . • 
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Careful study has shown that other buckle patterns would require higher 
buckling loads and that only the five buckle patterns given need be 
considered. 

These deflection functions all satisfy term by term the conditions 
of simply supported edges at y = 0, b and continuity of the plate 
across the stiffeners at x = 0, d, 2d, •••• The condition that 
stiffener deflection equal plate def lection at the stiffeners is 
introduced by means of Lagi-angian muJ. t 'ipliers. 

The deflection functions (BId) and (Ble) are found to be the 
governing ones for the aspect ratios investigated; the others lead 
to unconservative solutions. Buckling criterions for the critical 
shear stress are derived for the deflection functions (BId) and (Ble). 

Antis tric bucklin s.- The deflection 
~~~~~~~~~~~~~~~~~~~~~ 

of the plate 

CX> 

w=~ 
wu: n1CY 

amn sin d sin b 

~1,3, ••• n=2,4, ••• 

00 wu: n1Cy 
bmn cos -- sin --

d b +~ 
mFl,3, ••• n=1,3, ••• 

The deflection of the i'th stiffener is taken as 

00 

n1Cy 
L\i sin b (B2) 
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where, since the interval to be considered includes two stiffeners, i 1 
and 2. The boundary conditions that stiffener deflection equal plate 
deflection are 

w(id,y) - (wsh = 0 (i=1,2) 

or upon substitution, 

co 

~ b +L\u = 0 mn (n=1,3, ••• ) 

:m:=:l, 3" •.• 
co 

> bmn -in2 = 0 (n=1,3, .•. ) 

m=1,3, ••. 

These equations show that A - __ A "111 - ~2· If ~ is redefined as ~ 

the boundary conditions become 

co 

L o (n=1,3, .•• ) (B3) 

m=1,3, ••• 

These boundary conditions will be satisfied in the energy expression by 
means of Lagrangian multipliers. 

The internal bending energy of the plate V, the internal bending 
energy of the stiffeners VB' and the external work of the shear 
stresses T are given by the expressions 
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(B4) 

i=1,2, ... 

j b [2d Ow Ow 
T = --Jft 0 J 0 (]x dY d.x dy 

Substitution of the deflection functions of the plate and stiffeners 
into these energy integrals gives 

00 

L 
~1,3, •.• n=2,4, ••• 

00 00 

~1,3, ..• n=1,3, ..• 

EI1{4 CD 2 4 
V ~ ~n 

8 = 2b 3 ~ 
n=1,3, ... 

2 
bmn 

00 00 

LL 

(B5) 

a b mnq 
mnmq ( 2 2) q - n . 
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The energy method requires that the potential energy (V + Vs - T) 
be minimized with respect to ·the a's, b'a, and 6's. Since the als, 
bls, and 6 1 s are, however, bound by equat ions (B3), t he minimi zat ion 
is performed by the Lagrangian multiplier method by minimizing the 
following function F with respect to the a's, b's, and 6'8: 

V + Vs - T ~oo 
F:::~) + 

\-4~3-) n=1,3, ••• 

where the ,IS are the Lagrangian multipliers. When this minimization 
is performed, the following set of equations is obtained: 

dF 
(2 2 2/ + 16ks E. ~ b~ --= 0 2~ m :2 + n 

d~ 1( d mq n2 _ q2 
q=1,3, ••• 

(m:::l,3, ••• ) 
(n=2,4, ••• ) 

( 2 b2 2 J 16kB b 
00 

dF 
0 L mnq 

--= = 2b m -+n +--- ~q (2 2) + 'n tlb mIl d2 1( d 
mn q - n 

q=2,4, ••• 

(IDr=1,3, ••. ) 
(n=1,3, .•• ) 

dF 0 
4EI 4 

(n:::l.,3, •.• ) - . = :::-n~+, 
dDn Dd n 

(B6) 

(B7) 
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When the equations (B7) are combined, the following equations are 
obtained: 

q=2,4, ••• r=1,3, ••• 

b m2q~ = 0 

mr (2 2)( 2 2)( 2 b
2 + 2)2 n -q r -q m - q 

d2 

(m:l,3, .• ;) 
(n=1,3, .•. ) 

Equations (B8a) written in matrix form are 

Cml Cml3 Cml5 bml ' 2L\ 

Cm31 Cm3 Cm35 ... bm3 16~ . 
EI - -

Cm51 Cm53 Cm5 bm5 
Di 

1250~ 

(m=1,3, ... ) 

where 

Cmn = (m2 :~ + n2)2 _ (S::b)2 ~ 
q=2,4, ••• 

(:aBa) 

(B8b) 
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A solution including all the ~'s and bml's can be obtained 

by the first approximation of the matrix equation {EBb) 

(m=l,3., •.. ) (B9) 

19 

Substitution of bml from equation (B9) into the boundary equation (B3) 
yields 

(~ c~ + 2 ~I) L\ = 0 
~1,3,... Dd 

(B10) 

The following stability criterion is obtained by setting equal to 
zero the coefficient of ~: 

m=1,3, ••. 

1 1 
-+--=0 
Cml 2 EI 

Dd 

(Bll) 

Similarly, the second appro:x:imation includes all the amnls, bml's, 

and bm3 's. Two simultaneous equations result from 'Which b
ml 

and b
m3 

can be found. Substitution of these values into the boundary equation (B3) 
yields two linear homogeneous equations in ~ and S. If the determi-

nant of t he coefficients of these two equations i s set equal to zero, the 
following stability criterion is obtained: 
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-(~ ... 
Higher approximations are found in a similar manner. A second 

approximation was found to give satisfactory results. For each of 
these approximations, it is necessary to find the lowest value 

EI 
of ks for each value of Dd. The results are given in table I and 

in figure 1. 

Buckling periodic over four bays.- The deflection of the plate is 
given by equation (Ble) as 

m=1,3, ••• n=1,3, ••• 

~1,3,o •• n=2,4, ••• 

a ~in~+ 
mn L 2d 

m-l -2 
(-1) cos :ma:~ rucr -- sin--

2d b 

t m-l ~ 1D:ICX T mx n1Cy 
b sin - - (-1) cos - sin-

mn 2d 2d b 

The deflection of the i'th etiffener is taken as 

n=1,2, ••• 

~ e1n~ 
b 

------- ---- -- --- --

(B12) 

(B13) 
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where i = 1~ 2~ 3~ and 4~ since the interval considered includes four 
stiffeners. The boundary conditions 

w(id~y) - (Ws)i = 0 (i=1,2,3,4) 

become 

00 m-1 

~ 
-

a (-1) 2 -~1 = 0 (n=1,3, ••• ) 
mn 

m::::l~3~ ••• 

00 m-l 

L b (_1)2 -b. = 0 (n=2,4,. .•. ) mn hl 
m=1,3, .•• 

c:> m-1 

L a (-1) 2 + tn2 = 0 (n=1,3, •.• ) mn 
IIl;=1,3, •.• 

CD m-1 

~ bmn (_1)2 -~2 = 0 (n=2,4, •.• ) 

m=1~3~ ••. 

00 m-1 

L B:mn (_1)2 + l:n3 :::: 0 (n=l, 3, ... ) 

m=1,3, ••. 

00 m-l 

L b (-1) 2 mn + ~3 = 0 (n=2~4, ••. ) 

m=1~3, • • • 

21 
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00 m-l 

~ (-1) 2 - ~4 = 0 (n=1,3, ••• ) 

m=1,3, ••• 

00 m-l 
bmn (_1)2 + ~4 = 0 (n=2,4, ••• ) 

m;::1,3, ••• 

These equations shaw that 

(n=1,3, ••• ) 

(n=2,4, ••• ) 

If ~l is redefined as ~, the boundary conditions become 

m-l 

L -"2 
~ (-1) - An = 0 (n=1,3, ••• ) 

m;::1,3, ••• 

00 m-1 

b (-1) 2 - 4I = 0 :mn (n=2,4, ••• ) 

m;::1,3, ••• 

These boundary conditions will be satisfied in the energy expression by 
IOOans of Lagrangian multipliers. 

The energy integrals are the SaIOO as the energy integrals (B4), 
except that in the present problem the upper limit of integration 2d 
is replaced by 4d and the upper limit of the summation 2 is 
replaced by 4. 

(B14) 

.l 



NAeA TN No. 1851 23 

The deflection functions of the plate (equation (Ble)) and stiffeners 
(equation (B13)) are substituted into these energy integrals and result 
in the following expressions: 

v " ~4 @~3"" ;::~3"" 
co co 

m=1,3, ••. n=2,4, ... 

co 00 00 m-l 

a b (-1) 2 
mn mq 

mnq 

The minimization of (V + Vs - T) is performed by the Lagrangian 

multiplier method by minimizing the following f unction F with respect 
to the a's, bls, and ~'s. 

~ ro nr-l l 
+ ~ ••• 7n~ ••. "mn (-1)2_~ 

00 

7n r i=' bmn (_l)n;l - J 
G=1,3,... J 

00 

n=2,4, •.• 

where t he "I I a are the Lagrangian multipliers. 

(B15) 
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When the minimization is performed and the resulting equations 
are coIDhined, the following set of equations is obtained: 

where 

co 

~amn - rm >"'-­
q=2,4, ••• 

A 
ron 

m-l 
nq EI 4 2 

bm ( 2 2 ) + 2 - n .tn (-1) = 0 q n -q Dd. 

8k b m-l 

(m=1,3, .•• ) 
(n=1,3, •.• ) 

(m=1,3, •.• ) 
(n=2,4, .•• ) 

s 2 
rm = -- m(-l) 

rt'd 

------- ---------

(B16a) 
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Equations (Blba) in matrix form are 

Aru 
2 0 ~f 0 ~f '3 fm 15 m 35 m · .. aru 

~ f Am2 
6 0 _ 10 f 0 bm2 --f · .. 

3 m 5 m 21 m 

6 12 f ~f ... 1 0 --f A 0 a
m3 5 m m3 7 m 3 m m+l 

~r 0 12 r 
~4 

_ 20 r 0 bm4 (-1) 2 EI 

15 m 7 m 9 
m Dd 

0 _ 10 f 0 _ 20 f 
~5 

3Qr · .. a 
21 m 9 m 11 m m5 

~f 0 ~f 0 30 f 
~6 ••. bm6 

35 ill 3 
m 11 m 

(m=l,3, ... ) 

A first approximation of k s 
1s found by considering all the 

and bm2 's in equation (B16b). 

m+1 
2 (-1) 2 2 EI 6

1 (m=l, 3, ... ) ~aml + "3 fmbm2 = Dd 

m+l 
2 

fmBml + Am2 b.m2 (_1)2 32 EI ~ (m:=1, 3, ••. ) = 
3 Dd 

25 

2 61 

32 ~ 

162 ~ 

512 L\ 

1250 ~ 

2592 ~ 

a f S 
ml 

Substltution of ~ and bm2 from equat ions (B17) int o the boundary 

equations (B14) yields 

(B16b) 

(B17) 
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l_\~ = 0 
+ 32 iii 

(B1S) 

If the determinant of the coefficients of the linear homogeneous 
equations (B1S) is set equal to zero, the following stability crit erion 
is obtained; 

------A-
m2

-
4
----2 + --~-I ~m 

A A --r 2-
ml m2 9 m m=1,3, ••• 

4 2 
A A - - rm 
ml m2 9 

Similarly, from the second approximation, including all the a
ml

, 

bm2, and a
m3 

terms , the following stability criterion is obtained; 

(B19) 



CD 

~ 
m=1,3, ..• 

36 2 
Am2Am3 - 25 r m 

Bm 

00 

rnAn3 
;~ l\n m=1,3, ••• 

4 ClO 
r 2 

5L m 

Bm 
IIFl,3, ••• 

where 

+ __ 1_ 

2!! 
:00 

CD 

~~ 
m=l 3 , , ... 

CD 

rIIAnJ 

Bm 

~ l\u.~3 + -2: 

IIFl,3, ..• 
Bm 32 EI 

:00 

(Xl 

~L 
rmAml 

Bm 
m.=1,3,.·· 

CD 

L 
IIl;::1,3, ... 

36 2 4 2 

00 

~L 
5 m=1,3, .•• 

CD 

~L 
m=1,3, .•. 

2 
rm 

Em 

rm\u 

Em 

4 2 
AmlAr02 - '9 rm + 1 

162 E 
:00 

B 
m 

B = A A A __ r A __ r A 
m ml m2 m3 25 ill ml 9 m m3 

= 0 (B20) 

In a similar manner, a stability criterio~ is obtained from a third approximation, which inGludes 
all the ~, bm2 , ~3' and bm4 terms. A second approximation was found to give satisfactory results 

for most cases. For certain cases noted in table I far a panel aspect ratio of 5, however, third 
approximations shoulu be used. The terms used in these approximations are given in table I. For each 

of these approximat ions, i t is necessary to find the lowest value of 

results are given in table I and in figure 1. 

k s for each value of EI The :00. 

~ 
~ 
8 
~ 

~ . 
...... 
CP 
V1 
...... 

(\) 
--.J 
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TABLE I. - S~TRESS COEFFICIENTS FOR STIFFENED PLATE..S 

WITH PANEL ASPECT RATIOS OF ONE, TWO, AND FIVE 

Plates with st1f'feners of low Plates with st1f'feners of higher 
bending stiffnessa bending stiffness 

Antisymmetric 
buckling 

periodic over 
EI k Aspect t wo bays 
Dd 8 

ratio 
~ k 
Dd s 

0 5.34 0 5.53 
2 10·34- 2.91 7.85 
5 16.07 1 7.78 9.82 

20 37. 14 22.29 11.78 
50 68.99 00 13.86 

100 112.2 
200 184.6 0 9.65 

3·35 l2.0 
14.50 16.0 
22·99 18.0 
33·11 20.0 

2 45.77 22.0 
61.97 24.0 
82.92 26.0 

112·3 28.0 
605 35.0 

00 37·05 

0 42.5 
18.02 70 

5 90·99 90 
176.8 100 
444.7 120 
704.4 140 

aIndependent of aspect ratio. 

bAll the aml, bm2, am3' and Dm4 coefficients used. 

CAll the ~3' ~4' ~5' and ~6 coeffi cients used. 

Buckling 
periodic 

over 
four bays 

EI k 
Dd s 

0 6.08 
7·09 10.0 

19.03 10: .. 5 
00 10.86 

0 5.54 
5.475 15·0 

11.93 20.0 
26·37 23 .. 0 
36.29 24.5 
68.92 26.0 

145.4 27·0 
625 28.0 

00 28.2 

0 13·37 
49.19 60 

112.8 b100 
220 c140 

00 
c143 
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TABLE II. - EXEERJMENTAL BUCKLING DATA OF 8HEAR WEBS 

WITH UPRIGHTS NOT CONNECTED TO THE FLANGE3 

Specimen d b t Uprights 
EI T 

(nominal size) ks (a) (in. ) (in. ) (in. ) (in. ) Dd (ksi) 

2-D-0 5.0 23.5 0.0397 1/2 X 1/2 X 1/16 221 2.66 101 

3-D-0 5.0 23.5 .0394 3/4 X 3/4 x 1/16 6eo 3.08 il6.5 

4-D-0 5.0 23.5 .0405 3/4 x 3/4 x 3/32 946 3.295 il7.5 

5-D-O 10.0 23.5 .0404 1/2 x 1/2 x 1/16 98.3 1.21 43.3 

6-D-0 10.0 23.5 .0408 3/4 x 3/4 x 1/16 306 1.54 54.2 

7-D-0 10.0 23.5 .0410 3/4 x 3/4 x 3/32 456 1.47 51.3 

8-8-0 5.0 23.5 .0394 1/2 x 1/2 x 0.064 95.8 2.895 109 

9-8-0 5.0 23.5 .0399 3/4 x 3/4 x 3/32 456 3.01 ill 

10-8-0 10.0 23.5 .0410 1/2 x 1/2 x 1/16 41.4 .82 28.6 

11-8-0 10.0 23.5 .0398 3/4 x 3/4 x 1/16 151.5 1.357 50.1 

12-8-0 10.0 23.5 .0405 3/4 x 3/4 x 3/32 217 1.41 50.3 

a8~ st iffeners on one side of plat e. 
D~ stiffeners ·:m bot h sides of plate. 
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TABLE III. - EXPERIMENTAL BUCKLING DATA OF THICK WEB BEAMS 

WITH UPRIGHl'S CONNECTED TO THE FLANGES 

Specimen b d t Uprights EI T k 
(a) (in . ) (in . ) (in. ) (nominal size) Dd (ksi) s 

(in. ) -

V-12-7S 9.88 7 ·00 0.1005 11 X 11 X 1 91.0 15·5 15.4 
8 8 8 

V-12-8S 9.88 7 ·00 .1044 3/4 X 3/4 X 1/8 25.8 15.4 14.15 

V-12- 9D 9.13 7 ·00 .1025 5/8 X 5/8 X 1/8 40.4 16.8 13·65 

V-12-10S 9.88 7·00 . 1043 5/8 X 5/ 8 X 1/8 14.5 16 · 3 15!0 

V-12-11D 9.13 7·00 .1025 5/8 X 5/8 X 3/32 30 .3 17 ·2 14.0 

V-12-12S 9 . 88 7 ·00 .0987 1/2 X 1/2 X 1/16 4.1 12·3 12·7 

V-12-13D 9.13 7 ·00 .1000 1/2 X 1/2 X 1/16 11. 3 13. 1 11.15 

V-12-14s 9.88 7 ·00 .1007 5/8 X 5/8 X 3/32 11.2 13·2 13·1 

V-12-15D 9.13 7 ·00 .1057 5/8 X 5/ 8 X 1/16 18.8 15 · 7 12.0 

aS~ ~tiffeners on one side of pl ate. 
D, stiffeners on both sides of plat e. 
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Figure 4.- Infinitely l ong , simply suppor ted plate, wi th t r ansver s e 
stiffener s , ~der shear. 
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