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SUMMARY

A theoretical solution ig given far the critical shear stress of
an infinitely long, simply supported, flat plate with identical, equally
spaced, transverse stiffensrs of zero torgional stiffness. Results are
obtained by means of the Lagranglan multiplier method and are presented
in the form of design charts. ZExperimental results are included and
are found to be in good agreement with the theoretical results.

INTRODUCTION

The design of shear web beams and nonwrinkling skin surfaces
requires a knowledge of the critical shear gtregs of stiffened plates.
The purpose of the pregent paper is to glve the theoretical critical
ghear stress of an Infinitely long, simply gupported, flat plate rein—
forced with identical, equally spaced, transverse stiffeners.

The results are found by means of the Lagrangian multiplier method.
The stiffeners are assumed to have bending stiffness but no torsional
gtiffness and are assumed to be concentrated along transverse lines in
the middle plane of the plate. The agsumption that the stiffeners have
no torsional stiffness applies with little error in the case of many
open section gtiffeners. The assumption that the stiffeners are con—
centrated along transverse lines in the middle plane of the plate is
applicable whenever the width of the attached flange is small in com—
parigon with the stiffener spacing.

The theoretical analysis of the problem is given in the appendixes.
For completeness, an energy solution for the plate with relatively weak
gtiffeners is given in appendix A. The solution for a plate with
stiffeners of intermediate or higher bending stiffness is given in
appendix B. The results are presented in the form of nondimensional
curves which cover the complete range of stiffener gtiffness and various
stiffener spacings and in a table giving values from which the curves




e L e e el Al e SR e e
5

NACA TN No. 1851

were drawn (table I). Fxperimental results are presented for 20 panels.
Comparison of these results with the present theary indicates good
agreement between theory and experiment.

SYMBOLS
T critical shear stress
Ttb°
ks critical shear—gtress coefficient —_
Dn2
t thickness of the plate
b width of plate
da stiffener spacing
b/d panel aspect ratio
Ept3
D flexural stiffness of the plate | ———————
12(1 - p2)
Ep Young!s modulus for plate
E Young's modulus for stiffener
I effective moment of inertia of stiffener
i Poisson's ratio for material
EL ratio of gtiffener stiffness to plate stiffness
Dd
A half wave length of buckles
W deflection of the plate
(ws>i deflection of the 1'th stiffener
i reference axes

m, N, g,
», A :} integers
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& Ppmo coefficients of deflection function

¥ undetermined Lagrangian multipliers

v internal energy of bending of the plate

s internal energy of bending of stiffeners

I . external work of the gtresses
BACKGROUND

The problem of the buckling of stiffened plates in shear has been
treated by many authors by the use of both thearetical and semi—
empirical methods. In 1930 Schmieden (reference 1) solved the differ—
ential equation for an infinitely long plate gtiffened by closely
spaced transverge stiffeners (equivalent to orthotropic plate) and
found exact stability criterions for shear buckling of plates with
gimply supported edges and with clamped edges. By making certain
simplifying modifications of the stability criterions, Schmieden
obtained approximate values of the critical shear stresses. Later in
1930 Seydel (reference 2) obtained exact solutions for infinitely long
orthotropic plates with simply supported or clamped edges. With the
ugse of the proper parameters Seydel’s results can be readily applied
to plate—stiffener combinations. The values of the stresses obtained
from Schmieden?®s theory lie glightly below the exact values of Seydel.
In 1947 T. K. Wang (reference 3) used the energy method to obtain an
approximate solution for plate—stiffener combinations with simply
supported edges. Wang'!s results lie above the exact values of Seydel.
A1l the foregoing solutions are applicable only to the cagse of weak
gtiffeners, where the stiffening effect of the stiffeners can be
considered to be uniformly distributed over the plate.

Solutionsg are also available for plates reinforced by rigid
stiffeners. In 1936 Timoshenko (reference 4) treated the case of
simply supported rectangular plates reinforced with one or two
gtiffeners. By means of ths energy method Timoshenko found the
gtiffener flexural rigidity necessary to prevent buckling across
gtiffeners with the conservative assumption that the stiffeners act as
simple supports. In 1948, Budiansky, Conner, and Stein (reference 5)
found the critical shear stress for an infinitely long, clamped plate
divided into square panels by nondeflecting intermediate supports which
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correspond to rigid gtiffeners. They also considered the case of a
plate of infinite length and width having nondeflecting intermediate
supports that form an array of square panels.

Kuhn has written a number of papers on related subjects in which
he presents semiempirical results for the critical shear stress of
stiffened plates. (See, for example, reference 6.)

The available theoretical solutions treat the relatively unim—
portant case of weak or closely spaced stiffeners and the case of
rigid stiffeners that divide a plate into square panels. None of the
theoretical solutions presents results for the practical range of
intermediate stiffener stiffness and very little theory is presented
for the practical range of spacing of rigid stiffeners. Also, it is
felt that the semiempirical results for transverse stiffened plates
cannot be extended to all stiffener spacings and stiffnesses without
a sound theoretical basis. The theoretical results of the present
paper cover the complete range of stiffener stiffness and the practical
range of stiffener spacing.

RESULTS AND DISCUSSION

The critical shear stress for a plate—stiffener combination
is given by the formula

..‘
il
by
I:\
N
o

o’
ct

Curves are presented in figure 1 giving corresponding values of ks

and the stiffness parameter %% for simply supported, transversely
stiffened plates with panel aspect ratios of 1, 25y andss5 T Sihese
results are replotted in logarithmic form in figure 2 for comparison
with experimental results.

The points of discontinuity of the slopes in the curves of figure 1
represent changes in buckle patterns. The present results for an ortho—
tropic plate agree with the exact results of reference 2. The deri-—
vation of the buckling criterion for an orthotropic plate (a plate
stiffened by stiffeners of low bending gtiffness) is given in appendix A.
The derivation of the buckling criterion for plates stiffened by
stiffeners of higher bending stiffness is given in appendix B.




NACA TN No. 1851 5

In previous solutions, values of kg were found by using the
orthotropic—plate curve and a cut—off at the value of k, for simply

supported panels. (See fig. 1.) These figures show that the present
solution yields values of kg that are considerably below those given

by the orthotropic—plate curve in the intermediate range of stiffener
gstiffness. Also, the present solution for more rigid stiffeners yields
a curve that is higher than the cut—off, which is obtained by assuming
the stiffeners to have the effect of simple supparts. Since the conti-—
nuity of the plate acrosg the gtiffeners of higher bending stiffness
certainly adds a constraint to the plate, a higher buckling stress than
that carresponding to a simply supported edge is obtained.

In figure 2, experimental results are compared with the theoretical
curves. These results are from two sources, The first set of experi-—
mental data is taken from NACA tests on shear webs of 24S-T aluminum
alloy attached to torsion boxes. Drawings of a shear web and torsion
box and the method of loading are given in referénce 7. Buckling loads
were obtained from the stiffener load—deflection curves which were
taken from the original data. ZEach of the buckling loads given in the
present paper i1s the average load at which the stiffeners start to
deflect. The properties of the specimens and the buckling data are
given in table II.

The second set of experimental data is teken from NACA tests on
thick web beams described in reference 3, The beams were made of
24s-T aluminum alloy with heavy flanges and with joggled stiffeners
riveted to the flanges. The open spaces in the Joggles were filled
with soft metal., A picture of a failed beam is shown in figure 3.

The load was applied at the center and the reactions were at the

ends of the beams., Lateral deflections were prevented by lateral
supports. The load, when strain was first observed in the stiffeners,
was taken as the buckling load. The properties of the specimens and
the buckling data are given in table IIT,

The stiffener spacings for the test results are not the same as
thoge for the theoretical results. All the test results fall in the
expected regions among the theoretical curves. Only the group of test
results for which % = 2.4 fall in the range which serves to verify
the present theory over previous theory which considered the orthotropic—
plate curve to hold up to the cut—off at which the stiffeners are
agsumed to act as simple supports. The other groups of test results
agree with the present theory, but they do not cover the range in which
an appreciable difference exigsts between the present theory and previous
theory. More experimental results are required to confirm the present
theory fully.
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CONCLUDING REMARKS

Charts are presented from which the theoretical critical shear
gstresses can be obtained for infinitely long, simply supported plates
gtiffened with identical, equally spaced, transverse stiffeners of zero
torgional stiffness. The theoretical results are based on the Lagrangian
miltiplier method. Previous theory considered the orthotropic curve
to hold up to a cut—off value corresponding to the stiffener stiffness
at which the buckling load was equal to the buckling load of a simply
supported panel the size of each bay. Comparison of the present theary
and previous theory shows that previous theory gives unconservative
results for stiffeners of intermediate gtiffness and conservative
results for stiffeners of high stiffness. Test results of 20 panels
are presented which are in good agreement with the present theory. TFor
a conclusive check additional test results are required.

Langley Aeronautical Laboratory
Netional Advisory Committee for Aerconautics
Langley Air Force Base, Va., January 28, 1949
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APPENDIX A
THEORETICAL SOLUTION OF CRITICAL SHEAR STRESS OF PLATES +

WITH TRANSVERSE STIFFENERS OF LOW BENDING STIFFNESS

If the stiffener bending stiffness is low and the stiffeners are
fairly closely spaced, the buckle pattern may be considered independent
of the gtiffener spacing, and the plate stiffener combination can then
be analyzed as a plate with different bending properties in each
direction, that is, an oarthotropic plate. In this appendix buckling in
shear of an orthotropic plate is analyzed by means of the energy method.

The buckling configuration of the plate shown in figure L is
repregsented by the trigonometric series

0o

2 nny X nny
= sin-—— E a, gin . + cos 7; E bn sin o

n=2,k%,... n=1,3...

which satisfies the boundary conditions of simple support term by term.
The internal bending energy of the plate V, the internal bending energy
of the stiffeners Vé, and the external work of the shear stresses T

are given by the expressions

0 Puwdtw  Pw ¥ e
X dy2  \ox oy
CET [P MWV >
= EEL/n J/' <5§§> dx dy
0 0

—
mlb
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Substitution of the expansion for w (equation (Al)) into these
energy integrals gives

) e > = 2
z 2 /42 E 2
Vv = Dia - a, LiE3 + n2 + bn2 156 + n2
8b3 AS 22

n=l’3,ono

)+ [s¢] [¢ ] \
VS = P E anen4 + E bnznh
8ab3 \ 2.k, ... b T

b e
= 2Ttxn a TS

—l 3,... q_—2 e @

Then

n=2’)+’.oo
Zm 2 \e EI
+ b = B & n2 + nl+ —
n Xg Dd
n=l’3,ooo

| 160k, =
E _.Adl :
E A
= (A3)

2—gq
n=l,35... a=25l5400
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where
Ttbe
ks = >
Dnt
According to the energy method the potential energy (V + V )

migt be minimized with respect to the unknown coefficients a, and b,
By minimizing (V + Vg — T) with respect to the coefficients a and bn
the following set of equations is obtainsd:

2 e 8bkg :EE:::
an <§§ + n2> + nu EI cagiotll ot 2) =0 (Ak)
- n

a=1535000

(n=2:4:6:---)

2 (-]
2 8bk
b b—.. + n2 + n)+ :Ei[. — = a -——Eq_ = (A5)
Bl 40 Pai" . wx qa/ 2 2 P
A (n -q )

q=2,)+,oco

(n=113:5J'--)

The coefficients a can be found in terms of br from
equation (A4). Substitution of the resulting expression for 8. in
equation (A5) results in the following equations:

q=2,4,... r=1,3,. A Dd

8bk rng®
Z Z e T (1_3; 1 q2>2 i E_‘J

(n=113:5;--~) (A6)
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A solution to equations (A6) exists if the following stability determi-—
nant vanishes:

C c C 5.0 (A7)

where

Q
1l
AT
Io‘
n
+
(=]
L
n
+
e
|txj
=
|
~
=1
h‘

- D9

i E
bd = 2 I( 2 i _II
q=2, l{.’... q * q v

A <8bks 2 rng®
nr T =7 Z;

q=2,k45 400 (ne - q2)(r2 = q2) G; + q2>2 s

Dd

(where n # r)

A solution including all the a 's and bl can be obtained by

setting equal to zero the first approximation of the determinant
equation (AT)

Cll=0
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Similarly the second approximation includes all the a,'s, by,

and b3

2

Higher approximations are found in a similar menner. A second approxi—
mation was found to give satisfactory results. TFor a given approxi-—
mation 1t is necessary to try values of b/A and find the corre—
gsponding values of kg until a minimum value of kg with respect

to Db/A is found for each %%. The results are given in table I and

in figure 1,
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APPENDIX B

THEORETICAL SOLUTION OF CRITICAL SHEAR STRESS OF PLATES

WITH TRANSVERSE STIFFENERS OF HIGHER BENDING STIFFNESS

In appendix A a theoretical solution for a plate stiffened by
stiffeners of low bending stiffness is presented where the buckle
pattern was taken as sinusoidal in the longitudinal direction. The
buckle pattern of plates with stiffeners of higher bending stiffness
is no longer sinusoidal in the longitudinal direction. It 1s then
necessary to consider deflection functions which are either symmetric
or antisymmetric about the midpoint of each bay and are periodic over
an integral number of bays. The critical shear stress of plates with
transverse stiffeners of higher bending stiffness 1s analyzed by means
of the Legrangian multiplier method.

Deflection functlionsg.— The correct buckle configuration for any
glven plate—stiffener combination is that which corresponds to the
lowest buckling load. Several types of configurations are investi—
gated. These buckling configurations are represented by the following
two—dimensional trigonometric series (the coordinates are given in
fig. 4). Symmetric buckling, periodic over each bay:

o 00
:E E 7
w = a sin%sinn—z

mn d b
m;2,4,... n=2,h,-oo

©o

00
+ ::> ::> b, cos —Ef-sin E%Z (Bla)
M=0325 ete s} DS SIS

Antisymmetric buckling, periodic over each bay:

00 00
_ :E :E mix . Dy
W = amn sin —Ef-SLn<ﬁE—

EFQ,A,... n=l,3,.-.

[+ o] o
+ ; ; bmn cos EEE 8in E%Z (Blb)

m=0,2,. . n=2,b‘,o oo
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Symuetric buckling, periodic over two bays:

S e
W = a sgin —= gin —=
mn a b

-m;l,3,... n=l;3,o-o

@

o
S > > b cos EU% sin Eg—y (Blcﬁ)

M=l3 50l =2 o

Antigymmetric buckling, periodic over two bays:

00 )

= sinmsinin—)—r
W'> > “mn a b
m;l,3,... n=2’h’n.o

00 [¢ o]
mix ni
+ > > b S con e hdTe (B1d)
mn a b

m=l,3,ooo n=l’3’ooo

Symmetric buckling, one bay; antisymmetric buckling, next bay; periodic
over four bhays:

(e} (s o]
= gin L ; (-1) 2 cog X |gip O
e | 2

m;l,3,... n=l,3’..,

| = 2
| - > > B ain T (-—l) cos —2; sin n_gy (Ble)

m=1,35..0 n=2,4,...
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Careful study has shown that other buckle patterns would require higher
buckling loads and that only the five buckle patterns given need be
congidered.

These deflection functions all satisfy term by term the conditions
of simply supported edges at y = 0, b and continuity of the plate
across the gtiffeners at x = 0, d, 2d,.... The condition that
gtiffener deflection equal plate deflection at the stiffeners is
introduced by means of Lagrangian multipliers.,

The deflection functions (Bld) and (Ble) are found to be the
governing ones for the aspect ratios investigated; the others lead
to unconservative solutions. Buckling criterions for the critical
ghear stress are derived for the deflection functions (Bld) and (Ble).

Antisymmetric buckling, periodic over two bays.— The deflection
of the plate is given by equation (Bld) as

(o] [*o]
mtx. nny
= t:> j:> a gin — gin s
mn

nFl,3’o.. n=2,)+’ooo

00

(s 0]
mrx nny
+ :;> :>> bmn cos —E— Stﬂ-ﬁg—
m;l’3,.°. n=l’3,.on P

The deflection of the 1%th stiffener is taken as

(w )i E A 4 sin Ezz (B2)

n"l’3) eece
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where, since the interval to be considered includes two gtif-fenora, ="
and 2. The boundary conditions that stiffener deflection equal plate
deflection are

w(id,y) = (wg)y = 0 (1=1,2)

or upon substitution,

(n=l:3: .o -)

M
&
"f

I
o

X T il - (n=1,3,...)
m=1,3,...

These equations show that Ahl = —A

\p* Ef Anl is redefined ag Ah

the boundary conditions become

@

E b +4 =0 (n=1,3,...) (B3)

m=.1,3,.- .

These boundary conditions will be satisfied in the energy expression by
means of Lagrangian mmltipliers,

The internal bending energy of the plate 7V, the internal bending
energy of the gtiffeners Vg, and the extermal work of the shear

stresses T are given by the expressions
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-’ PSRN 1-" a%_(a%Q
ax2 doy2/ x2 d3y2  \ox ay)

EI 5 (ws

24 aw aw
x By

i=1, 2

> (B4)

)

Subgtitution of the deflection functions of the plate and stiffeners

thege energy integrals gives

(B5)
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: The energy mothod requires that the potential emergy (V + Vg — T)
be minimized with respect to the a's, b*s, and A's., Since the a's,
b's, and A's are, however, bound by equations (B3), the minimization
is performed by the Lagrangian multiplier method by minimizing the
following function F with respect to the ats, b's, and A's

STty ” =
: Dsd 7 <Z By + An) (86)
m=l,3,¢'o

4b3 n-1,3,...

‘ where the 7's are the Lagrangian multipliers, When this minimization
is performed, the following set of equations is obtained:

j
o 2 16k =
“ ._aE_=O=28’nn(2b n>+ SE bm 2mn
s aamn d2 Gl 9 (n® - q2
| q=l,3’°°'
(m=1,354:.)
(n=2,h,.o.)
| 2 16k =
| SO b o2 B 4 n2> B g —— - ’n
| 3 0 T od § (¢ - o2 > (BT)
q_=2,)+,ooo
(=l 350 o))
o o5 TREE
3 bET )
BE.—O=-DTD%+7n (n=l:3:---)
\
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When the equations (BT7) are combined, the following equations are

obtained:
2 2
no (P B2} Lk,
it S - Dd
(8}: b> > > Y 22iE &
m /5 2N 2 < 2 b2 2)2
q—e))"‘"oo I“l,3,.., (n q.)<r q) m EE-}- q
(MI’3’ o ;)
(nel.9,7.5)
Equations (B8a) written in matrix form are
N I (‘ o i} %
Dd
Cm5l Cm53 Cm5 . bm5 1250A5
- . . o 4 L. o] N . ¥
(m=lJ S0 )

where

(B82)

(B8b)
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A solution including all the amn's and. bml's can be obtained

by the first approximation of the matrix equation {BS8b)

Cpybyy = 2 % & (m=1,3,...) (B9)

Substitution of b, from equation (B9) into the boundary equation (B3)
yields

@

::EE::: il 1L
Dd

m=1,3,...

The following stability criterion is obtained by setting equal to
zero the coefficient of g

e g (B11)
Cmp g2l
D

m=1,35...

Similarly, the second approximation includes all the amn's, b
and bm3's. Two simultaneous equations result from which bml and bm3
can be found. Substitution of these values into the boundary equation (B3)
ylelds two linear homogeneous equations in Ai and Aj‘ If the determi—

nant of the coefficients of these two equations is set equal to zero, the
following stability criterion 1s obtained:

1
ml P2
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C ® c
; T S lE g = B ;
i EL
C..C . —C 162 — c =i 2
- e M T T n3  "ml3 Dd
® 2
ol Cm13 i (B12)

m:l,3,... lecm3 _— le32

Higher approximations are found in a similar manner. A second
approximation was found to give satisfactory results. For each of

these approximations, it 1s necessary to find the lowest value

of ks for each value of %‘% The results are glven in table I and

in figure 1.

Buckling periodic over four bays.— The deflection of the plate is
given by equation (Ble) as

m-1

= . mrex 2  mxx nxx

= > > a gin — + (1)  cos — |sin —

mn 24 24 b

m;l,3,oo. n=l,3’.o-

mrex mx nxy
+ b gin — — (1) © cos — |s8in —
et s e EE pe | g

m;l,3’noa n=2,h,n'o

The deflection of the i1%th stiffener is taken as

<> Z By etn ZX (B13)

n‘l, e
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where 1 =1, 2, 3, and 4, since the interval considered includes four

gtiffeners.

become

The boundary conditions

w(1d,y) — (wg)y = O

- -l
> e
m=1y3900e
- ml
E by (APEEA L
M= 3 e s
© m—1
'Z_ a_ (1) 2 +4ay,
M=l g etere
2@ nl
bmm (—l) e —'Ahe
=153y
® =1
E g (1) 2 4 n3
M= 53 5ies:e
oo m—1

m=l’3,c.o

|l

(i=1,2:3:u)

(.7 B RS, |

(nm2,d5..:)

(n=l:3:---)

(o2, hs o))

(&l %y v

(n=2:h:'-')

21
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® m=l
_Z_ am (K1) 2 —a, =0 (n=1,3,...)
m=1y35¢ee

) m—l
E e (1) 2 +4, =0 (pagilttn)
m=1,350e0e

These equations show that

A == A = = Ay = Ay (21,3, ...)

A1 = &n2 = = Ln3 = = Aoy e

If A, 1s redefined as Ay, the boundary conditions become

o~
o il
am (1) 2 -4, =0 (n=1,3,...)
=153y el
> (B1k4)
© ol
E b (1) 2 A =0 (n=2,k4,...)
m=1,35e0. J

These boundary conditions will be satisfied in the energy expression by
means of Lagrangian mmltipliers.

The energy integrals are the same as the energy integrals (Bk4),
except that in the present problem the upper limit of integration 2d
ig replaced by 4d and the upper limit of the summation 2 1is
replaced by L.




NACA TN No. 1851 23

The deflection functions of the plate (equation (Ble)) and stiffeners
(equation (Bl3)) are substituted into these energy integrals and result
in the following expressions:

iy %3_& >°o >°° am2<m2b2 : n2>2

2
m;l,3’00- n=l,3,o-o hd

(=]

+ > > bmn2<m2b2 : 3 n2>2

T e T 4 a2

* «©
VS = IE.IL %Enu
3 E ;

n=iee S
o - st m-1
T = 8Ttn ;:> ;:> ::> a b (-1) e ey
m mq 2 2
m;l,3,... n=l,3,o.- q=2,4,coo n N q

The minimization of (V + V, — T) is performed by the Lagrangian

multiplier method by minimizing the following function F with respect
to the atsg, b's, and Als.

V+Vyg=T = = -1
T E ’n E S LY e Sy
x Dd n=1,3,... m=1,35..
b3
® - m1
4 7o | > b (1) 2 —a (B15)
n=2’4,.-o m;l,3’oo.

where the 7y's are the Lagrangian multipliers.
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When the minimization is performed and the resulting equations

are combined, the following set of equations is obtained:

e
o m—1
E 1 EI L4 &
LR T b S R
(m=1,3,...)
(n=l:3"--)
? (Bl6a)
co m—L
ngq ET L A
b -T D 2 — -] =
AmnPun mqg—l3 amq(qg_n2)+ mnAn( ) 0
=lglseee
(m=1,3,...)
(n=2,4,...)
J
where
2.2 2
A = 2<m e, n2>
4a°
8k b m_;
Tm = ~3= m(-1)
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Equations (Bl6a) in matrix form are
R SRy e, S Gl
o) l 6
‘—11 O —‘P O —P L) 2A
2 6 10
6 12 2
S S iy —P —P LR 2
0 5 Pm - = Tn 0 > a3 e 16 A3
b p 12 p 20 p - (Liy 2 I
e e A T e R R
10 20 30
— — ——-—I‘ r on e
0 51 ‘m 0 5 m Am5 1 m am5 1250 A5
6 2 30
grm 0 grm 0 E m Am6 “e e bm6 2592%
[ . . . | _o— l_
(m=1,3,...)
A first approximation of ks igs found by considering all the aml's
and bpo's 1in equation (Bl6b),
\
m+1
2 -
AgBn + =T b o= (1) 2 2 —D%Al {2000
m+1
2 -
s Lo+ Apobpp = (1) = 32 = (3]

Substitution of a , and
equations (Blk) yields

bpo from equations (B17) into the boundary

(B16b)

(B17)
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a
(-]
Amp i}
> o EN
13... w2 75y Dd
32 = T
?E T ot
m,=l,3,...AmlAm2—'§rm
> (B18)
o4 r
il ji;;:: m
=1,3,... ‘mAmw _'9'rm
o
A
ml i
Sy Tobr il
T3, 0 TGS ra s | 35D
J

If the determinant of the coefficlents of the linear homogeneous
equations (B18) is set equal to zero, the following stability criterion
is obtained:

) A

2
2 A A _..lil‘

m=l’3,no- ml m2 9 =

_ b f— . o (B19)
(> e
21,3,... Wm2 Ty m

Similarly, from the second approximation, including all the aml’
bmz’ and am3 terms, the following stability criterion is obtained:
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In a similar manner, a stability criterion 1s obtained from a third approximation, which includes
all the a1 bmg, &m3’ and bmh terms. A second approximation was found to give satisfactory results

for most cases.

approximations shoula be used.

of these approximations, it is necessary to find the lowest value of ks for each value of

results are given in table I and in figure 1.

For certain cases noted in table I for a panel aspect ratio of 5, however, third
The terms used in these approximations are given in table T.

For each

The
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TABLE I. — SHEAR-STRESS COEFFICIENTS FOR STIFFENED PLATES
WITH PANEL ASPECT RATIOS OF ONE, TWO, AND FIVE
Plates with stiffeners of low Plates with stiffeners of higher
bending stiffness? bending stiffness
Antisymmetric Buckling
buckling periodic
periodic over over
EI ks Aspect two bays four bays
Dd ratio
EI k EI k
Dd % Dd s
0 5.3% 0 558 0 6.08
2 10.34 2.9L1 < 165 7.09| 10.0
5 16.07 1 7. 78] 9.8 19.03 | 10,5
20 37.14 22.29| 11.78 ® 10.86
50 68.99 ® 13.86
100 112.2
200 184.6 0 9.65 0 5 Sk
3.35) 12.0 S48 15.0
14.50( 16.0 11.93 | 20.0
22.99| 18.0 26,371 23.0
33.11| 20.0 36.29 | 24.5
2 45,771 22.0 68.92 | 26.0
61.97| 24.0 145 .4 27.0
82.92| 26.0 625 28.0
112.3 | 28.0 ® 28.2
605 35.0
o 37.05
0 k2.5 0 234 37
18.02| 70 49,19 b 60
5 90.99} 90 112,.8 [100
176.8 [100 220  [Fiko
Wy 7 1120 0 cl)-l-3
T04.4 |140
8Independent of aspect ratio.

PA11 the am1, by, am3, and by, coefficients used.
CAll the &m3s Pmys> 85, 8nd  bpg coefficients used.
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TABLE IT.- EXPERIMENTAL BUCKLING DATA OF SHEAR WEBS

WITH UPRIGHTS NOT CONNECTED TO THE FLANGES

Uprights
P (e [ | (any | omdmonee | 2G5,
2-D-0 5.0 23.5]0.0397]|1/2 x 1/2 x 1/16 |e21 |2.66 |101
3-D-0 5.0 23.5| .0394| 3/4 x 3/4 x 1/16 |680 | 3.08 |116.5
4-D-0 5.0 23.5| .0405| 3/b x 3/% x 3/32 | 946 | 3.295|117.5
5-D-0 W50 93.5 | ohokd Afoae 1 /o L6 9831 1 61 NIk
6-D-0 10.0| 23.5| .0u08| 3/4% x 3/% x 1/16 | 306 | 1.54 | 5.2
7-D-0 10.0| 23.5| .ok1o| 3/4 x 3/4 x 3/32 | W56 |1.47 | 51.3
8-5-0 5.0 23.5| .0394%| 1/2 x 1/2 x 0.064| 95.8| 2,895| 109
9-5-0 5.0 23.5| .0399| 3/% x 3/% x 3/32|456 | 3.01 |111
10-S-0 10.0f 23.5| .oko] 1/ex1/2 x1/16| 1.4 .8 | 28.6
11-5-0 10.0| 23.5| .0398| 3/4 x 3/4 x 1/16 | 151.5| 1,357| 50.1
12-S-0 10.0| 23.5| .0405| 3/% x 3/ x 3/32|217 |1.41 | 50.3

83, stiffeners on one side of plate. v

D, stiffeners on both sides of plate.
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TABLE III. — EXPERIMENTAL BUCKLING DATA OF THICK WEB BEAMS

WITH UPRIGHTS CONNECTED TO THE FLANGES

Uprights
Spec(;ffen T (131.) (11;1.) (nom%zisize) = <k;1) e
V-12-75 | 9.88 | 7.00 ]0.1005 1% X 1% X % 91.0| 15.5 [15.4
V-12-85 | 9.88 | 7.00 1okt 3/h x 3/4 x 1/8 | 25.8] 15.4 |14.15
2cop 1 9.13 | 7.00 .1025} 5/8'%.5/8 x 1/8 | 4o.k]| 16.8 |15.65
V-12-10S| 9.88 | 7.00 .10k3| 5/8 x 5/8 x 1/8 | 1k.5] 16.3 |15,0
V-12-11D| 9.13 | 7.00 1025] 5/8 % 5/8 x'3/321 j0.3] 1.2 {1h.0
V-12-12s| 9.88 | 7.00 00871 1/o'x% 1/a x116F 4.1 12.5'112.7
V-12-13D| 9.13 | 7.00 Abog | 1fe ® 1/e % 1/168 118 13.1 |15
V-12-14s| 9.88 | 7.00 1007 | 5/8 % 5/8 % 3/32] 1112 3.0 a3
V-12-15D| 9.13 | 7.00 1057] 5/8 % 5/8 x 1/16] 18.8} 15.7 |12.0

W

aS, gtiffeners on one side of plate.
D, stiffeners on both sides of plate.
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Figure 4.- Infinitely long, simply supported plate, with transverse
stiffeners, under shear.




