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REINFORCED CIRCULAR CUTOUTS IN PLANE SHEETS

By H. Relssner and M. Morduchow
SUMMARY

The problem treated here is to design the reinforcement of a cutout
in a plane sheet 1n such a way that it 1s as nearly as possible equivalent
to the part of the structure which has been cut out. A perfect equivalence
would mean that the stresses and displacements of the structure remain the
same as those which would have appeared without the cutout.

General formulas are developed for the cilrcumferential distribution of
the cross-sectional moment of inertia I,. and of the area A. of a

circular reinforcement required for perfect equivalence. These formulas
are then applied to some cases of external edge tractions: Hydrostatic
stress, pure shear, uniaxial tension, and pure bending. It is found that
in the first two cases, the required cross sections are physically possible
(1.6., I,, and A, come out positive), although the required moment of
inertla is in some cases found to be quite high in comparison with the
required area.

In the cases of uniaxial tension and pure bending, it is shown that
constralnt stresses, that is, additional stresses in the sheet due to the
reinforced cutout, are practically unavoidable. Simple formulas are
developed for calculating these "constraint" stresses for any given (constant)
cross-sectional characteristics of the reinforcement ring. These formulas
are derived on the basis of the assumption that the constraints diminish
sufficiently rapidly with radial distance from the cutout so as to have
little effect at the external edges of the sheet.

To check the influence which actual boundary conditions might have on
the practical validity of these formulas, a test was made on a plane sheet
with a reinforced circular cutout subjected to a tensile load causing
constant displacements at the loaded edges. It was found that the values
of the strains calculated from the exact formulas developed in this report
for an infinite sheet were falrly similar to the values of the measured
strains in the specimen, except along the loaded edges, where the actual
strain decreased more rapidly toward the center of the sheet than the
calculated strains. This discrepancy must be due, at least in part, to
the actual condition of constant displacements at the loaded edges of
finite length instead of, as in the analytical formulas, constant stress
at the remote loaded edges of infinite length.
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INTRODUCTION

This investigation i1s concerned with the problem of the reinforcement
of cutouts in plane sheets. Such cutouts may serve either to make a
structure lighter or to provide space for personnel or accessories. The
problem of designing a reinforcement ring around the cutout so that it will
be elastically equivalent to the portion of the sheet removed is treated
here by an inverse method. The treatment is given first in general terms
and then applied in detail for several types of edge loading.

A test was made on a plane sheet with a reinforced cutout to check
the effect of some of the simplifying assumptions on the formulas developed.

This investigation was carried out at the Polytechnic Institute of
Brooklyn under the sponsorship and with the financial assistance of the
National Advisory Committee for Aeronautics. Grateful acknowledgement is
hereby also made to Professor N. J. Hoff and to Dr. B. Boley for glving
the authors the benefit of the experience of the Laboratory for Aircraft
Structures of the Polytechnic Institute of Brooklyn.

SYMBOLS

Ag effective area of reinforcement ring with rivet holes
Ay, cross-sectional area of cutout reinforcement ring

a radius of center line of ring

a, radius of outer circumference of ring

b half width of sheet

Cmn arbitrary constants in stress function

d radial width of ring

e distance from edge to neutral fiber of reinforcement ring
12 modulus of elasticity of ring material

Ey modulus of elasticity of sheet material

G bending moment in cross section of ring

h height of web
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I moment of inertia; with subscripts e, F, and W,
the effective moment of inertia, moment of inertia of
the flanges, and moment of inertia of the web,

respectively

Ir cross-sectional moment of inertia of ring

al dimensionless parameter of moment of inertia <§‘J—g ;2%2&(1 + V)>

1 half length of sheet

Son abbreviations for products of cp, and powers of a;

M bending moment about z-axis

N radial shear force on cross section of reinforcement ring

n order of terms of stress function

P load

Pn(r), Qn(r) coefficients in stress function (cf. equation (3a))

36 radial distance from center of cutout

o radial distance fram center of cutout to neutral fiber

t thickness of sheet

It normal stress resultant

Bly 57 displacements in x- and y-directions, respectively

Wn, U game displacement system in radial and transverse
directions, respectively

S, Cartesian coordinates, measured from center of cutout

Ny tangential and radial loads on ring per unit of
circumference

a dimensionless parameter of area of ring <%§-2§2(l + \0>

7r@ shear strain

! dimensionless parameter of width of ring (d/2a)



> G
€5 ecp
Ry
AY
P

Sub-subscripts:
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strain in x- and y-directions, respectively
radial and transverse strain, respectively
change of curvature of ring

Poisson's ratio

radius of curvature

normal and shear stresses in sheet (Cartesian coordinates)

radial, transverse, and shear stresses in sheet (polar
coordinates)

original shear stress
angular polar coordinate (fig. 1)

stress (Airy) function

original
constraint

total

GENERAL EQUATIONS AND GENERAL SOLUTIONS

In order to analyze the effect of a circular cutout in a plane sheet,
the stresses, displacements, and strains in such a sheet may be represented
in a polar-coordinate system (fig. 1). The original stresses and displace-
ments, before being disturbed by the cutout, will then appear in the form

=
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The cutout edges are assumed to carry reinforcement strips or angles. It
is the purpose of the analysis of thils paper to choose the elastic properties
of such an edge reinforcement so that the increments Grl, Oql’ and Trqi

to the original stresses (the original stresses being given by the sheet
edge loading) become zero or as small as possible.

Stresses

The stress 1n a plane sheet can be expressed by & stress function
¥(r, @) such that

r 2y + ply

Q
Il

ANy = 0 (3)
where
Xy d°
Ay = —7§-+ —1f
ox dy<
__1_@_<a;v>+la£ﬂ:
=T &N o T rR oF |

in which the edge stresses taken around the circumference of the circular

The camplete solution of equation (3) for the case considered hers,
cutout have zero resultant, may be written in the form:
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V= Zij P, cos n@-+j§:i Q, sin ng (3a)
n=0

n=it "

where

_ : : |
PO = Cyg * Coor * 30 loge T+ cpgr loge r

= 3 =1
Py = cyqr + oy 4 C3F Tt T log, r 8 (3b)
o n -n n+2 -(n-2)
ILEQ = O 7 Copt Tt OaF T CynT

)

The expressions for the functions Q are the same, except with
possibly different numerical values of the constants c.

From equations (2) and (3a) it follows that

0. = Z§; <-n2r‘2Pn + r'an') cos ng )
n=
0cp = E Pn" cos nQ N (4)
n=0 5
W = (I‘-IPQ' n sin n
re E & »
n=0

The terms in Q may be obtained from equations (4) by exchanging cosine
for sine and vice versa and by making the right-hand side minus in the

last equation for TTQ.

Displacements

The radial and transverse strains €N and e@ in the sheet follow

from the stresses by Hooke's law:
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Egep = Egu. = op - Vog

=
m
Il

_l' - -
s 9 Br (ut+ur>_0cp Vo

where Eg 1s the modulus of elasticity of the sheet material.

The stress-strain relations of the reinforcement ring can be expressed
in the form (see appendix A):

Ta . o gl
el T (6a)
2
o Ga o
k8% = - B I = W Vs (6b)

where, for the ring, er and K, are, respectively, the extension strain

and curvature, T 1is the normal stress resultant, G the bending moment

(at any @), d the width of the ring, A, and I, the cross-sectional

area and moment of inertia of the ring (which may be functions of o),
and u; and w, the circumferential and radial displacements of the ring

at i1ts outer circumference (r = aj).

Since the displacements of the ring must be the same as those of the
sheet where the ring is Joined to the sheet, it follows that the displace-
ments in ‘equations (6a) and (6b) can be obtained by putting r = a;] in

equations (5) for the displacements in the sheet.

The stress and moment resultants T and G in the ring can be
derived from the equations of equilibrium of the ring with the use of the
fact that the unit loads acting on the reinforcement ring are due to the

radial and shear stresses o, and Tr@ in the sheet along the circumference
of the cutout ring.

Cross-Sectional Properties in Terms of the Airy Function
Substituting the expressions, as obtained in the preceding discussion

(see appendix B), for the displacements and the stress resultants into
equations (6a) and (6b) and solving these equations for A, and I, yield




the following expressions for the cross-sectional area and moment of inertia of the cutout
reinforcement ring:

z <? ' cos no 8 sin ¢ + 3 cos @
B = r=al,n¥l t t
Ar = at E— P
r § o Ppn . " o d ' n 2 L-FPn ]
cos n nv— - VP + a.P EEN A ==S VP = = gy = db dr
= P { al n =52 2a )0 aj ( ) ;2 r=al
- 02 23 Cl
cos no |P_'a; - (f '%) - P a™l - = gin ¢ - cos + —
Eg nZ=O i [n PN UnA Thfrea) § i e
o= a3t =
r § 2-1>P 1 _yp ! - 2-1>j1> ~
cos no (n 081 - n 22 e

L

where cq, cp, and c, are integration constants. Sine terms are included in equations (7a)

5

and (Tb) by merely adding terms exactly similar to the corresponding cosine terms, with P,
replaced by Q-

General Possibility of Exact Equlvalence or Zero Constraints

Equations (7a) and (Tb) have the following significance. Suppose any type of original
stress dlstribution as represented by an Airy function in the general form, equation (3a), is
given (i.e., given by the loading at the external edges of the sheet). This means that, for

‘ an equivalent cutout reinforcement, P, and Q, are given. Then substitution for P,

| and Qpn into equations (7a) and (7b) gives the distribution of cross-sectional cutout-ring

area and moment of inertia required to gilve zero constraints, that is, required to replace
with elastic equivalence the portion of the sheet cut out. If the values of A, and I, thus

(Ta)

2SQT "ON NI VOVN
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obtained are positive for any ¢, then these are the correct and only
values for zero constraints. If, on the other hand, the resulting values
of A, and I, are negative or Infinite for certain values of ¢, then

an elastically equivalent reinforcement cannot be obtained. This procedure
is considered in more detail in the following discussion.

In equations (7a) and (7b), the P's (or Q's) in the general case
represent the total stresses, that is, original plus "constraint" stresses,
in the sheet. In case the reinforcement ring around the cutout is equivalent
to the cutout portion of the sheet, then the constraint stresses will be
zero and only the original stress distribution will exist in the sheet-
Hence in that case, and in that case only, the P's will represent the
original stresses. The original stresses in a sheet due to any loading of
the external edges must be finite at all finite values of r 1including the
center (r = 0); hence they can be represented in general by an Airy func-
tion of the form given by equation (3a) in which the coefficients Pp
(or Qp) have the form (cf. equations (3b)):

= A
Fo = coor
P, = °21r3 \, (3c)
P =c rR+ ¢ rRte
n=2 dn 3n J

The expressions (3c) can, if desired, be put into equations (Ta) and (Tb) to
glve slightly more explicit expressioms for A, and I, (as functions

of @) in terms of the constants c¢ which depend on the given edge-loading
conditions.

SPECIAL CASES

Cases of Zero Constraint Stresses

The problem of the choice of an exactly equivalent reinforcement ring
around a circular cutout in a plane sheet is, in principle, completely
solved in GENERAL EQUATIONS AND GENERAL SOLUTIONS. It remains to show some
of the practical implications of this solution. For this purpose, the
special case will first be considered in which the edge loading on the
sheet is such that the original stress distribution can be represented by
an Airy function with only a single trigonometric term, that is,
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P

E=
1l

n COS no

or

<
Il

Qn sin no

where P, and Q, are given by expressions (3c). This class of cases

will lead to cross sections constant along the circumference of the ring.

For n = Q, equations (7a) and (7b) <52 =cg = O Dbecause of the
radial symmetr%> lead to the result:

E
Ar _ at s (8&)
IS
3 a
a-t o} 1
ETOR <% - 2a " ateyg C?) el ~

The fact that the constant c¢; 1s arbitrary shows that in this case the
moment of 1nertia Ir is arbitrary; but the cross-sectional area must,

for zero constraints, have the value given by equation (8a).

For n =1 there results (assuming symmetry with respect to the
y-axis and setting, therefore, co = 0):

E k
A, = at— 3 F
Er koy [6 -2y - — (1 - 3V)]
a c
2k (; + —;> -k + —
B, |70 T o) T 3| B PT
I. = adt—
3
T 0
where, for abbreviation,
k. = 33
3 0t

k?l - CQla




NACA TN No. 1852 aLL

In order that I, be finite, it 1s necessary that

cl=O
d
k3_2k21<l+2a>
Whence,
e D)
Ay = at — = (9)
T 6-2v- & (1-3Y)

2a

Again, as for the case n = 0, I, may be chosen as desired, but the
area A, required for zero constraints is fixed by equation (9).
For n = 2, by setting Cp =Cp = o3 = O to obtain a constant cross

section, equations (7a) and (7b) lead to:

Eq Kn +n+ 2

T KE’l(n-l+2g-a-n2>(l+ VE' +(n+l)[(n'2)v +n+2]+£ia [(n+2)v+n-2]

(10a)

B, KEn-l)%—ﬂ+[(n+l)%"£]

Br g2 -1 -n(l+V)K+[2-n-V(2+nZl

Iy = a3t (10b)

where

Cin
2

c_ a
3nrl

=

and K 1s prescribed by the original stress distribution. Here both the

moment of inertia and the area are fixed if zero constraints are to be
achieved.
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Two technically important cases of exactly equivalent reinforcements
having constant cross sections are included in egquations (8a), (8b), (1loa),
and (10b) and are those of hydrostatic stress and of pure shear. This can
be readily seen in the following discussion.

Homogeneous hydrostatic stress o, = I —rr@ = 0.- In this case the

Airy function, as may be verified by- equations (2), is given by equations (3D)
as

ES
A = = (11a)
1¢

I,. = Arbitrary value (11v)

These equations show that the equivalence of the reinforcement is assured for
the definite value of the cross section A, given by equation (1la) but for

an arbltrary value of the moment of inertia I,, of the ring. The value

of I, will then, of course, be chosen as small as is compatible with- A
and with buckling considerations.

Homogeneous shear distribution.- This (original) stress distribution
can be expressed by Tyxy = ~To in Cartesian coordinates. In polar

coordinates,

Q
Il

T =T, ein‘2Q

Q
Il

T, sin 29 ¢ (12}

ro ~T, CO8 20 J

4
Il
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The corresponding Airy function, from equations (2), 1s seen to be
re

¥ =T, 5 sin 29 (12a)

signifying that (cf. equations (3c))

Q = 012r2 - 0321')1L
where
Cip = To/2

Using equations (7a) and {Tb), but with sine terms instead of cosine terms
and with ¢y = cp = c3 = O to obtain a constant cross section, gives

o = (13)
r - E 13
(l+v)<l+:—d>r
a
3 .4
" . t<% 25) Eg (14)

AT

States of Stress with Imperfectly Equivalent Reinforcement Rings

In the previous special cases of one trigonometric term for the Airy
function corresponding to the original stress distribution in the sheet, 1t
was seen that a reinforcement around a cutout could, theoretically, be
designed so as to produce no additional stresses due to the cutout. The
required cross sections were, in fact, constant along the circumference.
For most other cases of external edge loading, however, it will be found
that equations (7a) and (7Tb), intended to give full equivalence, will lead
to physically impossible (i.e., negative or infinite) values of A, and I

for at least some values of ¢ and that zero constraints are therefore
impossible. Moreover, even in cases where zero constraints can be theore-
tically achieved, it may be found (as in the case of pure shear, discussed

7
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further in the following section) that the required geometric properties

of the cross sections are in practice not realizable. In such cases it 1s
of interest to determine how small the constraint stresses can be made for -
(preferably) constant cross sections of a reinforcement ring.

The constraint stresses can be calculated without difficulty by
substituting some given constant values of Ar and Ir into equations (7a)
and (Tb), using expressions (3b) for the P, (or Qp), including both the
original (given) and constraint (unknown) terms, and then determining the

unknown constants Con and Chn (corresponding to the constraint stresses)

so that equations (7a) and (7b) are identically satisfied for any angle .
The constraint stresses will be calculated here under the assumption that
they vanish at infinity. A number of constants then disappear in the
expressions (3b). This condition is selected to give practically negligible
constraint stresses near the edges of the sheet. Because of this condition
the constraint stresses in the sheet as derived in this report must be
considered as approximate (they would be exact for an infinite sheet), but
the approximation will be good if, as 1s commonly the case, the constraint
stresses diminish sufficiently rapidly with distance from the cutout so as
to have a very small or negligible magnitude at the edges of the sheet.

Three special cases of edge loading are now considered in detail. .

Pure shear.- It will be found, upon closer examination of expressions (13)
and (14), that the moment of inertia of the ring required for an -
exactly equivalent reinforcement in the case of pure shear is very high
if its cross-sectional area be not higher than that required by equation (13).

In actual design, therefore, the cross-sectional properties given by

equations (13) and (14) cannot ordinarily be realized, and constraint -
stresses must be allowed. In the following paragraphs the method of cal-

culating these stresses is given in detail.

For pure shear it suffices, except for the addition of terms in r,
to employ only the trigonametric term in the series for the Airy stress
function V¥ which was used in the case of no constraints, namely:

¥ = Q sin 29
where (cf. equations (3b))
@y = 012 + CptTE * Cup (15)
and, as before,
To
12 = 2 .
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The constraints are given by the terms in cpp and cpp, which are the

unknowns. In expressions (3b), the constant c¢ must be made zero because

32
otherwise it would give constraint stresses which do not decrease with
distance from the cutout. Putting equation (15) into equations (T7a) and (7b)
and introducing for abbreviation

Shtid:
Bl 2a
kpp = cppay | > (15a)
= -2
K0 = 008
the expressions for Ar and I,. became:
Es at Tg © 2k22
By = o= (16a)
L T T {1+ dBY + (6 - B0k, - ( 168, - 8u )k
& e2 A E I I Y he
e By 03 To(l - 8) + (2 + 6d)kpp + (2 + 23)k) 5 b
T E. 6(1 +v) — "
o~ HEge Term ke
Let
E
1 at
ESAT C2(1+ V)a
Es = 2)4-(1 a5 V)




0.3 glves

Then solving equations (16a) and (16b) for kpp and kjpo with v

(1 -8 -0.251)(0.462 - 6.15%)a - (2 + 20 + 0.771)[a(o.5 + 28) - 1:| \

k = T
227 % o4 65+ 0.51)(6.156 - 0.462)e + (2 + 26 + 0.771)[2 + a(3 - uB)]

>
T (2 + 66 + 0.51)[a(0.5 + 28) - 1] - (1L - & - 0.251)[2 + a(3 - uza)]
he © (2 + 65 + 0.51)(6.155 - 0.462)a + (2 + 25 + o.771)[2 + a(3 - ua)] /

Substituting the terms in cop and c)o of equation (15) into the stress expressions and using the
abbreviations of expressions (15a), the expressions for the constraint stresses become:

S\
-l -2
Url = - 6k22C§§ + hku2<§i> sin 2¢
o = bk, (= = sin 2 >
¢ 22 8y ®
-l -
5 r
Trqi = -[}k22<§;> - 2kh2<?:> cos 29
/

For a gilven set of values of A. and Ir’ the constants k22 and kh? can be evaluated by means

of equations (17), and the total stresses in the sheet can then be calculated by determining the
constraint stresses as given by equations (18) and adding these to the original stresses,
equations (12).

(18)

91

2G8T *ON NI VOVN
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The following table gives the values of koo and k), for several

reasonably practical sets of values of thickness, area, and the stiffness
ratios d, a, and 1. The entry values for & = O must be understood to
be an approximation for a very small width of the ring. The approximation
1 =0 for very small values of 8 1introduces only negligible errors.

PURE SHEAR
a 0 3k = 4 8
S 03 1m0
k22/15 0.5 | o0.161 R s i R
kuz/To -1.0 -. 661 o] s SRR L
5= 0.15 4 =280
LT W B B B Rt N
oy e -—-- -.Lho ~e AR () emmmanl A Beee St
B =i0adad —Sre
oo | T = e -0.0675 =0 =
kue/Tb EREE BT -.284 =183 | fommnmms
5 =0.13 1 =04
kee/To cmmm | mmmmme | mmmeeeo -0.153 -0.226
kuz/To e TR SRS -.149 -.0884
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Tt will be seen from this table and equations (18) and (12) that in
actual design it is difficult to avoid entirely some stress concentration

I
(@)
—

-

12
at the cutout <ai = %>- Without any reinforcement (i.e., for & =1 = «

the stress concentration at the cutout is extremely high, for

where 0cp is the total tangential normal stress with cutout and 0cp is
il o

the original stress (without cutout). It will be found that reinforcements

with practical cross sections, such as those in the foregoing table, will

relieve this normal-stress concentration, although they will introduce a

smaller shear-stress concentration Trm‘ From the point of view of minimum

ratios of total stresses to local original stresses, the most suitable
cross section given in the foregoing table is & = 0.1, 1 = 0.1, a = 1.
The stresses for this section are given in the following table. (Also,
see table I.)

PURE SHEAR

g 0rl/To ch/To Tr@i/ © OrT/UQO Oqﬁ/oqb Tr@T/Trqb

1-0 1.46 0.303 QF T -0.46 1.303 1577

1.25 | 1.00 124 .438 .00 1.12k 1.438

Uniform single tension or compression.- In Cartesian coordinates, this
state of original stress is given by

where do is a constant.
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In polar coordinates, the same state of stress is:

%o 2 R
Op, = (@ - 2 cos 29
- 00(2 il 20) (19)
o@o by cos 29 ﬁ
"5 ol s 20
T =
rmo T J

The Alry function following from equations (2) and (19) has the form

¥ =c re + c..r° cos 20

. 20 12
25
Here, Eop =810 = Zn Thus,
o
v, = ]frg(l + cos 2¢) (20)

It 1s easy to show that in this case, a perfectly equivalent reinforce-
ment ring is not realizable (see appendix C). The Airy function for the
final state of stress in the sheet will therefore contain terms representing
stresses due to the reinforced cutout, that is, constraint terms, in addi-
tlon to those corresponding to the original state of stress. Referring to
equation (20), it is seen that the Airy function for the original (super-
script o) state of stress is of the form

Vo = B° + P,° cos 29

where

with
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The constraint stresses, which will occur in the sheet with the reinforcedo
cutout, are included by merely adding to the expressions for POO and Po

the additional terms appearing in expressions (3b). Thus,

WT =P, + Py cos 29
where
2
Py = copr + c3ologe T2
(21)
_ 2 -2
Bp = epof # coon = Cp
in which
€ = Cap = %o
20 12 L
The constants c¢), and c32 in expressions (3b) can and must be set

equal to zero, since otherwise they would give constraint stresses which
do not diminish with increasing distance r from the cutout. The

constant c10 has been omitted since it would not contribute anything to the

stresses or displacements. In expressions (21), cppg and cjp are given

M

are the unknowns. These unknowns are determined for a given reinforcement

ring by putting expressions (21) into equations (7a) and (Tb), which express
and I,, and by satisfying equations (7a) and (7b) in every trigono-

metric term. With the abbreviations:

o
equal to -%) by the original state of stress, while 030, Coo)s and o
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_2— k \
C3Oal = 30
Copll - Fikpp
-2 _
S e
; (22)
a _
5a =0
L 8
SR Y =
a3t Ps -
Ay By
&—t :‘E_s(l + V) = al
A
the following result is obtained (see appendix D):
o
o or,l(l -V) 1
w50 T By ey B
Ho 2 9a(3®) 3h o Al an e w)]
hél +E> <1+V 2?_+6+ = il czl(l.+lt6)
5.+ % = "
e i
<l+36+il>a1 1+V> <l+8+ +V>Exl(6-86) +2:I
l/ AL VE
- Ek+36+11)|:l-a l+)+6):l--2:11-1+6)l:al(6-86)+2:l
yo ~

16
1+v

1 +

<1+35+1J> <’*" 5>-<1+5+2'V>[(6-86)+2:]

s (23]

/.
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Putting expressions (21) into equations (4) and omitting the terms in o0

and Cio5 the expressions for the constraint stresses are seen to be:

_ r -2 r “)-l' r -2
Orl = k30(a_]_> = 61{22 (a'—l> + ukug(a—l> cos 2@
r\-2 r\-4
Oq’l = -k30<a—l) + 6k22<a_l) cos 29 > (24)

-y 2]
Tr®l = - [6k22<§i> + 2ku2<§i> ] sin 2¢
/

In order to calculate the stresses in a plane sheet with a reinforced
cutout under an external edge loading causing an original state of stress
(i.e., state of stress if there were no cutout at all in the sheet)

given by o, = 0, = Constant, it 1s necessary to calculate 5, iy,

and o, 1in accordance with expressions (22) from the dimensions of the

reinforcement ring, determine k3o, kgg’ and khE directly from equa-

tions (23), find the constraint-stress distribution from equations (24),
and add this to the original stress distribution, equations (19).

The case of uniform tension corresponds approximately to the experi-
ments carried out for this report and, with the analytical calculation
of the stresses in the test specimen (appendix G), serves as an illustrative
example.

Pure-bending stress.- If an I-beam consisting of a rectangular web
and flanges, as shown in figure 1, is subJected to a pure-bending moment M
about an axis 2z perpendicular to the plane of the plate, then the stress
distribution in the plate will be:

where




NACA TN No. 1852 23

In polar coordinates this state of stress is given by:

"
ol i%;r(cos 3¢ - cos O)
M !
g, = -—1(3 cos @ + cos 39) > (25)
P~ ThI,
i ] o= ~E%—r(sin ¢ + sin 3¢)
(pO W J

It can be verified by equations (2) that the Airy function for this
original state of stress 1s given by

r3 cos @ + ¢ r3 cos 3¢

Vo = %oy i3

where
_ ot
Bog T o0 81,

By substitution into equations (7a) and (7b) it is found (see appendix E)
that it 1s not possible to design a reinforcement ring producing exactly
zero constraint stresses.

To determine the approximate additional stresses (in this case
unavoidable) due to a cutout reinforced by a ring of given dimensions,
there must, as in the preceding case, be added to the Airy function the
additional terms in expressions (3b) corresponding to the seme trigo-
nometric orders as occur in wo' Thus, for the stresses in the sheet

under pure bending with a reinforced cutout

V¥ =Py cos p+ P3 cos 39

Pl = c21r3 + c3lr-l > (26)

P3 013r3 + c23r'3 + cu3r'1

/
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The constants cu1 and c33 in expressions (3b) have been omitted since

they would otherwise violate the assumed condition of constraint stresses
decreasing to small values at the edges of the sheet. The constant c17

has been omitted since 1t has no effect on the calculations.
Substituting equations (26) into equations (Ta) and (Tb), determining
the constants c3j, Coz and °)3 (cp; and c13, as stated, are fixed

by the applied bending moment) so that equations (7a) and (7b) are
identically satisfied (see appendix F), and using the abbreviations

c 3

c,a 3=k > (27)

no
=
C oS
}_J
+
=
Il
l_l
N




and the assumption v = 0.3, the following results are obtained:

ky = -(1 + 8)<6K + 2k3l>

(i =3 & ea)[a(e - 4.58) + 1] # (441 ua)[a(l + h.58) - 1]

k,, ==K
43 (1.361 + 1 + 28) [:a(E - 4.5%) + 1] - I:o,(o.6l+1 - 6.12%) + 0.333](1 + 1 + U4d)

_K(i -1+ 25)[a(o.61+1 - 6.128) + 0.33i + [or,(l + 4.58) - 1](1.361 + 1 + 29) > (28)
(L1 +1+ us)[a(o.&l - 6.213) + 0.333] - [&(2 - 4.58) + 1](1.361 + 1 + 28)

_K[a(2.78 + 40.68) - 3 + 66] + k23ﬁ|:a(18 - 40.48) + 9:| + k)*3[cx(5.76 - 558) + 3:'

k3 =

e}
a,(l--2->+2+25 J

Putting equations (26) into equations (4) and omitting the terms in cpp and cy3 (which give the
original stresses), the constraint stresses in the sheet due to the reinforced cutout are found to be:

ok S 3 ry=3
Orl = —2}{31 <é;> cos @ - E2k23 (z;i) + lOkh3<a—]> :l cos 3¢
1 21(31 <a£>'3 cos @ + I:l2k23 (511;) 27 P 2};18 (%) —3:] cos 39 (29)
il 1 ; \ .

P\ -3 T\ NS
Trq)l = 2k3l <3—l> sin ¢ + |:12k23 <a_l) + 6ku3 <ﬁ> ] sin 3¢

Q
1l
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With the constants LS k23, and k determined from equations (27)

31
and (28), the stresses in the sheet can be readily calculated by adding

the constraint stresses, as given by equations (29), to the original
stresses, as given by equations (25).

In many actual cases, the reinforcement rings are quite narrow, so
that if the approximations & =0 and 1 = 0 are made only negligible
errors will be introduced. The stresses in the sheet are then functions
of only the cross-sectional area of the ring. This is true, of course,
for any type of external edge loading on the sheet as well as for a pure-
bending load. The following table gives the values of the constants k
for pure bending for different values of the area concentrated in such a
line reinforcement -

PURE BENDING
[} =NO =<ﬂ
Ay
= = 2 2
a at2(1 + V) 0 iy il
k, _|K .00 1.85 1.48 Tl 82
3/ ’ !
-2. -. -.48 -.182
k23/K 2800 857 486
2k __[K -6.00 -2.31 426 3.22
31/ 3

Figure 2 shows the stress distribution in the sheet for q = 1 and,
for comparison, for o = O (1.e., no reinforcement around the cutout) .

Summary of Special Cases

Table I gives a brief summary of the mumerical results of the
theoretical investigation of the speclal cases treated here. In this
table, W.-R. denotes the rativ of the weight of material added (in order
to form the reinforcement ring) to the welght of material cut out. Assuming

that material of the same density 1s used for both ring and sheet, this
weight ratio is given by
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Table I shows also the ratios, at the cutout <;i = %), of maximum

total (i.e., original plus constraint) stresses to maximum original stresses.
In the column headed 'Remarks,' the term 'satisfactory' means that the

cross section concerned has practical dimensions and that at the same

time it prevents high stresses in the sheet.

An examination of table I shows that it is theoretically possible to
obtain, for the cases of hydrostatic stress, pure shear, single tension
(or campression), and pure bending, zero or minimum constraints and minimum
total stresses by reinforcement rings. However, except for hydrostatic
stress, the required cross sections of such rings would have very high
moments of inertia but very small widths and areas. Such sections are
extremely difricult to design in practice. The table also shows, on the
other hand, that in all cases considered here, not the minimum but at
least fairly low total stresses in the sheet can be obtained by using
appropriate reinforcement rings of practical dimensions. It appears,
moreover, that in several instances, such rings may weigh less than the
material removed from the sheet to form the cutout.

TEST ON PLANE SHEET WITH REINFORCED CUTOUT

For the experimental part of this research a test was made on a
plane sheet with a reinforced circular cutout under a tensile load,
realized by a heavy I-beam transmitting four concentrated loads to the
sheet (see figs. 3 and 4). The loads were produced by adjustable jack-
screws and measured by calibrated strain gages on the eight connecting
links.

Before carrying out the main test, a preliminary test was made with
a sheet of the same dimensions but without cutout. The purpose of this
preliminary test was to ascertain whether the means of ap§lication of

the load would produce a uniform tension stress (ox =0 Two different

total-load stages were used, with the loads distributed as evenly as
possible over the length of the I-beam. The total loads for the preliminary
test were 1475 and 3016 pounds. For the main test (i.e., with cutout),

the loads were 3000 and 4020 pounds.

The locations of the strain gages (including rosettes) together with
the results of experimental measurements in the sheet without cutout are
shown in figures 5 and 6.

From the measured values of the test on the sheet without cutout,
it is seen that the axial strain ey was distributed fairly uniformly
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throughout the sheet. At the higher load, the maximum deviations from the
average measured value were -10 and 6.4 percent while, from the expected

016
value of € = 2%£E = 3
8 0.052 x 18.5 x 10.5 x 10
deviation was 10.4 percent.

z = 2.98 x 10'“, the maximum

Near &the loaded edges rosette strain gages were attached to show the
influence of the lateral constraint of the riveted joint of sheet and
I-beam. The small average magnitude of the transverse strain €y in

the sheet near the loaded edges indicated that in fact the load was
transmitted by the heavy I-bars in such a way that the transverse strain ¢

(énd not the stress °y> was practically zero at these edges. If the
stress Oy had been zero at the edges, then the magnitude of €5 would

y

have been much higher, namely ey = JVGX = -O.3€x.

Having checked this type of original stress (or strain) distribution
in the sheet obtained with the particular loading used here (see fig. 3),
a circular hole was made in the center of the same sheet specimen and was
reinforced by a ring of dimensions given in figure 3. Strain rosettes and
simple straln gages were then placed on the sheet in the symmetric posi-
tions indicated in figure 7. Two different loads were applied, 3000 and
4020 pounds. Since both loads produced proportional results, only those
corresponding to the higher load are given here. The results of the
measurements are shown in figure 7.

It may be of interest to compare the strains measured in the actual
test specimen with the stralns calculated, in accordance with the theory,
on the basis of an infinite sheet. Since the boundary conditions of the
test piece are obviously different from those of an infinite sheet, the
strains may be expected to be different in these two cases. A comparison
of the strains for these cases may nevertheless be instructive in indicating
the influence which the finite-edge conditions have on the strain (or
stress) distribution in the sheet. This comparison is given by the strain
diagram in figure 7. Because of the symmetry about both x- and y-axes,
the theoretical values for the infinite sheet are given only at the points
indicated in the diagram.

From figure 7, it will be observed that, qualitatively, the finite
sheet behaves quite similarly to the infinite sheet. For example, in
both cases the transverse normal strain (€¢) decreases steadily

g

Lo 2ye

&
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with @ from a maximum at ¢ = 0° +to a minimum at ¢ = 90°.

Also (e \ near the rigid bars varies in both cases from a
AX=G DT,

maximum at the edge of the sheet to a minimum in the center. (See graph

below strain diagram, fig. 7.) The radial strains were all of a relatively

low order of magnitude, but it can be stated that here, also, both the

order of magnitude and the variation of S corresponding to the calcula-

tions for an infinite sheet were similar to those of the test specimen.

The effect of the particular boundary conditions of the test plece
appears to be pronounced at two places. The maximum transverse normal
strain . (perpendicular to the radius and, at ¢ = 0, in the direction

of the general tension stress) near the cutout ring (E: = l.38> is higher
il
for the test plece than for the infinite sheet, the percentage difference

5.06 - 4.07

5.06
bars (see graph below strain diagram, fig. 7) decrease more sharply in the
actual specimen than in the specimen calculated as an infinite sheet, the

32032
local percentage difference at the center being -—-5—55-—— X 100 = 36.6 per-
cent, although the analytical values were practically equal to the experi-
mental values at the quarter points of the sheet. The difference at the
center must be due to the fact that in the actual test piece the rigid
bars caused constant axial displacements and zero transverse displacements
at the finite loaded edges, whereas in the theoretical work an infinite
sheet was treated with constant axial stress at the remote loaded edges.

being X 100 = 19.6 percent. The axial strains near the loaded

The maximum strain measured in the sheet was the shearing strain

at @ = 459, and it will be observed that this value (7-66 5 lO-u) was
practically unaffected by the difference in the boundary conditions between
the actual and the theoretical specimen, since the experimental and the
theoretical values are practically equal.

The calculations for the infinite-sheet specimen, based on the formulas
developed in the analysis preceding the experiments, are shown in Appendix G.

It may be remarked that in-these calculations account was taken of
the rivet holes in the cutout ring. These holes had the effect of reducing
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the actual cross-sectional area of the ring. To determine the amount of
this reduction, a test with the same size and spacing of the rivet holes
as 1n the sheet specimen was carried out.

The ratio of the effective area to the full gecmetric area was thus
found to be 0.80. Therefore in the calculation of the theoretical stresses
in the test specimen used in the experiment the cross-sectional area of the
cutout ring was taken as 0.80 times the full gecmetric area.

CONCLUDING DISCUSSION

The problem first considered was what must be the cross section of
a ring reinforcing a circular cutout in a plane sheet in order that the
stresses in the sheet remain unchanged by the cutout. The general solution
to this problem is given by equations (7a) and (Tb). In these equations
the required distributions of mament of inertia I, and of cross-section

area A, along the circumference of the reinforcement ring are expressed
in terms of the stress function (with coefficients P, and Q, as

defined by equations (3a) and (3b)) for the original stress distribution,
that 1s, for the stresses in the sheet without cutout or reinforcement

rings.

It was found that these expressions in terms of the circumferential
angle @ for I. eand A, lead to physically possible (i.e., positive)

values only in a limited number of cases (for example, when the original
stress function has no or only one trigonometric term, as in centric
symmetry and in pure shear, respectively). In the other cases, which
Include uniaxial tension and pure bending, constraint stresses, that is,
additional stresses due to the reinforced cutout, are unavoidable. A
method of calculating such stresses in the sheet for a given (constant)
cross section of the reinforcement ring was developed, based on the
requirement that the constraint stresses and displacements vanish suffi-
clently rapidly with increasing distance fram the cutout so as to have a
negligible influence at the edges of the sheet. The formulas, which are
straightforward and convenient to apply, were derived in detail for the
cases of pure shear, uniform axial tension (or compression), and pure
bending. For example, in the case of uniform axial tension, it is
necessary merely to calculate the values of the dimensionless constants 1
and aq (proportional, respectively, to the cross-sectional moment of

inertia and the area of the reinforcement ring) from the given data in
accordance with the definitions, equations (22), of 1; and a,. The

values of the constants k30’ kon, and kh2 follow from the elastic
properties of the ring and are determined by equations (23). The
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constraint stresses (which must be added to the original stress distri-
bution oy = 0, = Constant) then follow readily from equations (24).

In the formulas derived for the cases deemed technically important,
it cean be seen that for the narrow reinforcement rings commonly used only
small errors will be introduced in the numerical calculations if the moment
of inertia is taken as zero.l The results of the analysis therefore show
that the stresses in a plane sheet with a cutout are a function only of
the cross-sectional area of the ring reinforcing the cutout, while the
moment of inertia is of practically no influence. This means that

the ring experiences primarily tensile or compressive stress result-
ants and not bending moments.

In general the approximation given by the formulas of the report will
be closer the smaller the constraint stresses are at the edges of the finite
sheet.

In the experimental part, a test was made of a plane sheet with a
reinforced cutout subJjected to a uniform tensile displacement. The
purpose of this experiment was to see how great an error is produced by
boundary conditions which differ from those for which the theoretical
formulas are exact. In particular, the sheet specimen was (of course)
not infinite, while at the loaded edges, the axial displacements, and not
the stresses, were constant (with zero transverse displacements thers).
On the two other opposite edges the normal and the tangential edge tractions
were zero.

It was found that qualitatively the strain (and therefore stress)
distribution in the sheet specimen was quite similar to that predicted
by the theoretical formulas for an infinite specimen with the same rein-
forced cutout. Quantitatively, the chief effect of the actual boundary
conditions seemed to be at the loaded edges where the axial strains
decreased more sharply toward the center of the sheet than predicted by
the formulas for the infinite sheet.

The transverse strain 6@ at the transverse center line of the

sheet near the cutout (@ =0, él = 1.38> was actually about 20 percent
1

LThis, of course, i1s true only if there is no concentration of the
original stress along any radius of the cutout circle, a case which appears
for a concentrated load at an external edge but which was not considered
in this report.
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higher than according to the theory for the infinite sheet. In other
respects, however, the quantitative results appeared not to be greatly
affected by the particular boundary conditions of the test specimen,
since the experimental values of the strains were fairly similar to the
analytical values based on an infinite sheet.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., June 27, 1947
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APPENDIX A
STRESS-STRAIN RELATIONS OF REINFORCEMENT RING

The theory of curved beams states that the change of curvature k

of a ring due to a bending moment G is

where the effective moment of inertia I, 1s given by

and where r = r, denotes the radius of the neutral fiber, while b 1is

the width perpendicular to the plane of bending of a cross section, and rg,
moreover, is given by (cf., for example, reference 1)

r = a, - e

21
2 ar

al-d 2

The following table, however, shows that for a cross section of I-shape
(for example) with values of d/a up to 0.4, a ring may be treated as a
straight beam, so that it is permissible to put

Yo =2 T

N | e
I
)

(0]
Il
SITY
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COMPARISON BETWEEN CURVED BEAM AND STRAIGHT BEAM

d
d/ al - 5 rO Ie Ir
a
(in.) (in.) (1n.%) s
0.2 6 5.973049 0.041855 0.04187
.3 6 5.93044 .119638 .124966
o 6 5.865331 .252761 .260266
It follows then that
o - - &
T3 ErIr

as in equation (6b). The extension strain e. and the curvature k. of

T T
a ring are given in terms of the radlal and tangential displacements Up

-

and W at the neutral fiber r = r, by the following well-known relations:
o}

Krae B _(uro ! 1.iro)rr_al

Since the radial displacement w,. of the ring for any given ¢ will

be constant along the width of the ring, it follows that

Rrae B -<£T ’ ijrr>r=r ) ~<ur ’ ﬁa
(6]

r=al

The tangential straln, however, will vary along the width as, in fact,
can be seen from figure 8,
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Hence

Thus, equations (6a)

I o Gl
Era=(ut+ur+ur£>

and (6b) follow.

59
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APPENDIX B

EXPLICIT EXPRESSIONS FOR STRESS RESULTANTS AND
STRAINS OF REINFORCEMENT RING
From figure 1 the following equilibrium conditions between the stress

resultants T, G, and N 1in a ring and the unit load forces Y and 2
can be derived:

T +N=-Ya = '(Trcp) i alb (B1)
r=a;
N'T=-Za=-<c> a5t
il T) g, 1 (B2)
1l
G - Nr, = -Yaje = _(TI'@)r:alalte X

ol

Noting that r, ® a, e ® = (see appendix A), the last equation can be

written as

: d
G - Na = -'rrq)alt > (B3)

Equations (Bl) to (B3) can be solved for T and G as follows:
From equations (Bl) and (B2),

T+ T =ayt (cr B Trq))r::al (BY4)
Moreover, fram (Bl) and (B3),

2 .
= -Ta - T
G a -8t f( I“P)r:al dp + cq (BS) .
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By putting o, and Trcp in terms of the stress function V (relations (2))
equation (B4) can be directly integrated with the results:

fer n # e

- 1
T = alt (r lwy)r:al + cy sin ¢ + c3 cos @

- 1 -
G = a1t % (r lwy)r=a1._ algt (r Ew)rzal + ¢y - coa 8in ¢ - c3a cos @

eI S = 0

Ty =cop sin @+ c, cos ¢

3

Gy = -cya sin @ - c38 CO8 @ + ¢y + algt (r'l\f‘- r-EW)r=al

Substitution for ¥ by means of relations (3) will give expressions
for T and G 1in terms of P, and o

Expressions in terms of P, for the extension strain and curvature

can be obtained by putting equations (2) into equations (5) and integrating
the latter to find wu, and ut.2 Thus,

2Two arbitrary functions fl(r) and fe(w) will appear as a result

of this integration. However, it can be shown that, for compatibility
between deformation values (involving also the shear strain 7r¢) and

the equilibrium conditions, the functions must have forms which are
already included in the general expressions (3a) and (3b) for the Airy
function.
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(“r “r fw %({1}+¢)_V({y'+\y)'

R Ve "¥ a
iy ) - A ¥y 8 (- )

1e

_‘;<E.+ fl WD" - VW'

0P 2a

By using the expression (3a) for V¥, the strains in terms of P, and ¢
are obtained.
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APPENDIX C
IMPOSSIBILITY OF ZERO CONSTRAINTS IN CASE OF UNIFORM TENSION
(Ux = Constant)

From the expression (20) for v,

el 2
(o]
(o) &
P2 = )+I'

Substituting these values into (7a) and (7b), putting ¢, = c3 =0 (for

symmetry about both x- and y-axes), and simplifying give the following
expressions for the distribution of cross-sectional area and moment of
inertia:

e g Eg 1 + cos 2¢
T Br (L -v) + L+ v+ 41+ v)] cos 29
(1 - 8)( 20) - =t
E = 0) (At Sega2o)e =
I, = adt = o

Er2(1 -v) + 6(1 +v) cos 29

where ® = d/2a.

It is not difficult to see that I, can be made positive for all

values of o (by choosing a proper value for cl) but that A. neces-

sarily becomes negative and infinite for some values of ¢- Hence a
perfectly equivalent reinforcement is not realizable in this case.




APPENDIX D
DERIVATION OF EQUATIONS (23) PERTAINING TO AN ORIGINAL STATE OF UNIFORM TENSION

Putting equations (21) into equations (7a) and (Tb) with the abbreviations (22), the following

equations result:
0o 0o
<E + k30> + (—2— = 2k22> cos 29
Ly

go(l - v) _ o _ 16
[2(1 + V) k3(J i |:E 4+ 6k22 + o vklh? + B <200 - 8k22 mkl@ cos 29

o
Kl 0 I:f(l - 3) + k22 - k1+2 + 8(31(22 + klﬁ):, cos 20

1. =

ak - k o
—_— ., - + | — -k - k cos 2
[12(1 +v) ° 6:| [u = 1*2] 7

where

1 a

Ky = -klal' + f(l - B) + k3o[(l + 8) log a; - z‘il

Clearing each of the preceding two equations of fractions and equating the coefficients of equal
trigonometric orders (viz, constant terms and terms with cos 2¢), the following four relations
are obtained:

Ot

26QT *ON NI VOVN
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9% B GollesV). .

2 ¥ T [2(1+V) ksc]

90 1 Ly - 165
e [co<§-+ 28) + kpp(6 - 80) + Ky (TT)]

"y 1-v %30
1T S I e T

2 5) ( 5 Bl 1 =2 c

'E(l_ +k221+3 ) +k)+2(l+ = 15 5 k22 l+vk)+2
The first of these four equations can be solved immediately for k30' The
third equation determines the value of K;, which, however, has no influence

on the stresses in the sheet. Hence this equation need not be considered
any further here. The second and fourth equations can be solved simul-
taneously for k22 and kh2° The results are given by equations (23).
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APPENDIX E

PRACTICAL IMPOSSIBILITY OF PERFECT EQUIVALENCE IN

CASE OF PURE BENDING

From the expression for V,, it 1s seen that, corresponding to the
{original) state of stress due to pure bending,

3
Pl = cglr
= 3
P3 = cl3r
M
c =83c = o
21 = 3°13 ~ Tgr,

Substitution into equations (7a) and (Tb) leads to the following expressions
for A, and I, (c¢q =c, =0, because of the antisymmetry about the x-axis ~

and the symmetry about the y-axi%):

C
cos ® + cos 39

at 36 eng

S
o2+ +v) [6-2va+ 5(3v - 1) . 3
cos cos
(2 + 90)(1 + V) i ¢
c
___é___ - 6(1 + d) (1L -28) ¢ cos @+ cos 30
a3t a1°tcy3
Ir = '—-—_(l = 26)
2L(1 + V)

cos 30

It will be shown now that Ar and I, for zero constraints can both be

made positive for any ¢ only if the value of the ratio d (identical
with d/2a) is extremely low, too low in fact for practical purposes.
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From the second of the two equations, in order that I, be everywhere
positive 1t is necessary that

)
2
al tc

= 6(1 + d)
13

Substituti then, for c into the expression for the area A, glves
ng, ’ 3 r r

= 2(1 + 8) cos @ + cos 30

=(2+98)(l+\/) 6 -2v+ 53V -1)
(l 7 v)(2 "+ 95) | cos @ + cos 3¢

e

The value of this expression for A, will be positive regardless of ¢ if
and only if
- D =
2(1 + ) _ 6= v @y = 1)
(1 + v)(2 + 99)

With V = 0.3, the positive root of this quadratic equation in & 1is
® = 0.00684

In practical design, this low value for ® (identical with d/2a, fig. 1)
will be incompatible with the large required moment of inertia

adt

- veura Lo

i
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APPENDIX F
DERIVATION OF EQUATIONS (28) PERTAINING TO CASE OF PURE BENDING

Substitution of the expressions (26) for Py and Py into equations (7a) and (7b), with the
abbreviations (27), leads to the following results:
[—k3 - (1 + 9) (6K + 2k3l):l cos @ + I:K(l SN2 = k23(l + 48) - k43(l o QS)J cos 39

-
2+ v
l:K + k23 + 30+ V)k%‘l cos 30

k3 cos @ - EK + 3k23 + le:' cos 30

e GER R R <-§> - 21 Sif c 410V -95(5+ V)
{K[ T +62(1+v)]+k3ll > cos @ + {-K(3+ 25 +]s23 6-5-6 +kl¥3 2(1 + V) cos 39

Clearing each of these two equations of fractions and equating coefficients of like trigonometric terms
(cos @ and cos 39) give four simultaneous equations:

kg - (1 + 8)(6K 3 2k3l) =0

a =

K(1 - 28) - kpa(1l + U8) - I3(1 +28) =1 [K o %%V—v;k%}

33 - v) 3'9V
- - el _ 2T 2 + 10V - 95(5 + V)
@K+3k23+kh3>—al:l{<3+ 28>+k23<6 2%'*}‘&3 ) }

.
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The second and fourth equations are linear equations in k22 and k)+3’
which can therefore be readily solved for these two unknowns. By
eliminating k3 from the first and third equations, k3l can be solved

for in terms of k23 and kh3' The results are given by equations (28).
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APPENDIX G

CALCULATION OF STRAINS IN INFINITE-SHEET SPECIMEN WITH SAME
REINFORCED CUTOUT AS ACTUAL SPECIMEN
The dimensions of the specimen are given in figure 3. From the
dimensions,

3.66 inches

)
Il

3.5 + 2 = 3.81 inches

o
Il

1 16
t = 0.052 inch
2
s=% . 16 _ 5 0ue6

Ag = 0.80 <£% X O.h3%> = 0.1085 square inch

Ag(L + V) _0.1085 x 1.3 _ 0.7k

at 3.66 X 0.052
3
2
=) X 0.434 =
oo - 1.1 x 103 inch*
T 12

Ir 7.8x1.1x1073
a3t (3.66)3 x 0.052

= 3.37 X 1073

i = 6(1 + V)

From equations (23) substitution of the preceding values leads to the
following numerical results for the constants k30, LY and khE:




NACA TN No. 1852 LT

k30 - -O-l7300
k22 = O.02280O
k42 = —0.25200

From equations (24) it then follows that the calculated constraint
gtresses in the sheet will be:

%y -2 =l -2
= -0-173<ZL> = O-l368<%i> - 1.008<EL> cos 29
o'o al a al
“o 2 -
- 0-173¢§>_ + O-l368¢%> cos 29

(e}

il r \ -k T\ =2
— [0.1368<a—l) - o.5ol+<a—l) sin 29

The calculated stresses without cutout (see equations (19)) are:

0o

0. = =(1 = cos 2
G = ( ?)
)
(o] = —(1 +
P, 2( cos 2¢)
O .
Tr@o = =5 aln 49

Hence, adding the constraint to the original stresses, the total stresses
in the sheet at any point (r, @) are found to be:

-2 - -2
0, =0, 0’500-0’173<a£l> = [)-500+O-1368<i£l> 4 = 1-008(5—1) ] cos 2@

-2 -4
0 = 0§ 0-500 + o.173<a£l> + [0.500 + o.1368<%> j’ cos 29

T W(Z\E 2 el SR
re = % 0.500 + 0.50k & - O.1368-§i> sin 2¢
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From these stresses, the strains expressed in polar coordinates at any
point are:

The strains €, in the direction of the load were obtained by first

X
determining the Cartesian stresses o, and O‘y according to the relations:
i 2 + 2r 2
Oy =5 @r+cq>-<cr-cq)>cos ® + I.cpsincp

-1 ’ .
cy =5 <cr + cqb + <°r Ocp> cos 2¢ 21-1,@ sin 20

= —1

The strain is then readily obtained by

L
- =
“x :Es<§x Oé>

The value of the original stress o, without cutout 1s

€x

\p
O, = —
Of S oht

where 2b 1s the width of the sheet. For the test specimen and for a
load of 4020 pounds,

4020

0. = —————— = U160 pounds per square inch
°©~ 18.5 x 0.052 P per 84
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For the strain this can be expressed as:

4160

= = 0.99 X 10‘4
o 10.5 x 10 x k.02

€
X

The actual measurement gave 1.04 X 107%

of 5 percent in the strain gages.

, that 1is, an average inaccuracy

The numerical results of the preceding calculations are given in the
data diagram (fig. 7).
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TABIE I

Sl

SUMMARY OF THEORETICAL INVESTIGATION OF SPECIAL CASES

Ratios of maximum
total stresses to
maximum original
stresses at r/al =1
Remarks
Loading = A—r i— W.R.
2a | &t | 3¢ | (1) g Tkt oo (3)
[of
o |59 |7e |%
ry P re, o
(@)
0 |1.43 |Any 2.86 |1.00 [1.00 |1.00
Hydrostatic il g oy 3.04 |1.00 |1.00 [1.00 | 2 Zero co?straints,
o, = Constant satisfactory
.211.43 |Any 3.21 |[1.00 |1.00 [1.00
Zero constraints, but Ir
.2| .428/0.1025| .0875/1.0 |1.0 |1.0 too high to conform with
A. and d/a
Pure shear
1| .385| .0032| .457 |-.46 |1.30 [1.58 | & Satisfactory
T.. = Constant
Zero constraints, but 1Ly
-1} -550] .1155| .865 |1.0 |1l.0 1.0 too high to conform with
A. and d/a
Low constraints, but IE
.1] .882] .115 |1.69 .822} .872|1.31 too high to conform with
A, and d/a
Single uniform Low constraints, but I,
tensile (or 21 .795] .1025[1.232 | .783| .790(1.43 | 3 too high to conform with
compressive) A, and d/a
stress
0y = Constant (0 .615 [0 1.23 -T50[1.44 |1.63 Satisfactory
1] .461 )0 . 682 .512§1.34 |1.59 Satisfactory
Almost zero constraints, but
0 -385| .0320| .770 f1.015| .995]|1.015 I, too high to conform
Pure bending 2 with A, and a/a
o |.38s)0 .770 |1.01 |1.10 [1.3%4 Satisfactory
1y.R. ratio of the weight of material added (to form reinforcement ring) to the weight

of material cut out.

2
No reinforcement.

3n

Satisfactory” means that the cross section h%s practical dimensions and that at the

same time it prevents high stresses in the sheet. 'Zero constraints' means that the rein-

forcement ring is exactly equivalent to the portion of the sheet which has been cut out.

~_NACA ~
e
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Figure 1.-
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SECTION A-—-A

Stress resultants and displacements in a reinforcement ring represented in a
polar-coordinate system.
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2.0

n; @=0, r/a =1

4 e T Iy e NN m, 0, py @=1, /o =l —
\ —-—-—m,n, p; @=0,r/q, =1.25

—--—-— m,n, p; a=l, rh, =1.25

Stress ratio

\/

O 10 20 30 40 50 60 70 80 90 (00 IO 120

P oo A

Figure 2.- Total-stress distribution in sheet produced by pure bending,

B M 01 T %, rep * Tro, d
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LOAD

PLANE-SHEET
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i

’ |
Y l %
|
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REINFORCEMENT RING
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I (= d) nén
_[®
y *\ i o
-7 %"(=2 a)A—J
6 1]
~NACA l
P P P P
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Figure 3.-

Experimental setup.
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Test specimen,

Figure 4.-
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369 364 360 369
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17" 12 I i7"
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=i [P P Sl S
h |.56 1.73 rer  1.690 .48
3.24 837 ==l 2.9]
. 9.2"
.61 1.59 |.65 |.68
‘ i i 3.20 02 3.06 3.17
‘ A A PaN A
|
363 379 372 374
760 770 749 769

Figure 5.- Measured strains €, X 104 in direction of loading. Top

values are for a total load 4P of 1475 pounds; bottom values are for
J a load of 3016 pounds. Rosette, A; simple strain gage, m . Drawing
not exactly to scale.
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Figure 6.-

P 7 P P
FaN Pay a A
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-0.30 -0.08 -0.05 -008
-.60 =14 .13 AT
O AN (A a
P ® P P

Measured strains e

i

NACA TN No. 1852

X 1O4 transverse to direction of loading.

Top values are for a total load 4P of 1475 pounds; bottom values are -
for a load of 3016 pounds.
Drawing not exactly to scale.

Rosette, A.

For dimensions see figure 5.
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29

. 980 972 963 1000
‘ k #4.53"#4.53"—#453"—1"] Y
- . 6"
000 e 4.06'7' n—4.oe"‘m— 4.06"—m '
m5.01 3.77 2.B2 3.82 4.80
th (4.26) (3.84) (3.17)
‘ 10.3"
__4-0.504(-0.295)
i I.88 61 ( 1.62 x29.2"
| .94(1.88)
| .595(.935)
\ 4.13 5.06 7.69 (7.62)
32.6"| -.80
248 ; y Y
TN .91 (4.00
-.79| (-.488)
s \ 25 (0
N 4
.20
- 4.74 3.73 2.23 3.8l 4.68
k-
1040 1050 998 1020
\ | - L)
- 85 .
5x10%— | m B
2 e Qk\a\ _ = EK—'::Q —
‘ T W th —3
oe— 2
IO e (éx)x = 9.2" QQOIHSf y e
‘ el —0
Figure 7.- Strain measurements on plane sheet with reinforced cutout.

. Total load, 4020 pounds; rosette, A ; simple strain gage, ; values
in parentheses are corresponding theoretical values for reinforced
cutout but for an infinite sheet (see appendix G). For each rosette,

the top, middle, and bottom values are, respectively, normal transverse,

normal radial, and shear strain times 104. For each simple gage,
values given are those of axial strains e = 104,
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Figure 8.- Contribution of curvature of cutout ring to extension at outer

e o d
= o Uy o=

boundary of ring. u; 1
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