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TECHNICAL NOTE NO. 1852 

REINFORCED CIRCULAR CUTOUTS IN PLANE SREETS 

By R. Reissner and M. Morduchow 

SUMMARY 

The problem treated here is to design the reinforcement of a cutout 
in a plane sheet in such a way that it is as nearly as possible e~uivalent 
to the part of the structure which has been cut out. A perfect e~uivalence 
would mean that the stresses and displacement s of the structure remain the 
same as those which would have appeared without the cutout. 

General formulas are developed for the cil 'cumferential distribution of 
the cross-sectional mament of inertia Ir and of the area Ar of a 

circular reinforcement re~uired for perfect e~uivalence . These formulas 
are then applied to some cases Of external edge tractions: HYdrostatiC 
stress, pure shear, uniaxial tension, and pure bending. It is found that 
in the first two cases, the re~uired cross sections are physically possible 
(i.e., Ir and ~ came out positive), although the re~uired moment of 
inertia is in some cases found to be ~uite high in comparison with the 
re~uired area. 

In the cases of uniaxial tension and pure bending, it is shown that 
constraint stresses, that is, additional stresses in the sheet due to the 
reinforced cutout, are practically unavoidable. Simple formulas are 

If II ( ) developed for calculating these constraint stresses for any given constant 
cross-sectional characteristics of the reinforcement ring. These formulas 
are derived on the basis of the assumption that the constraints dimini sh 
sufficiently rapidly with radial distance fram the cutout so as to have 
little effect at the external edges of the sheet . 

To check the influence which actual boundary conditions might have on 
the practical validity of these formulas, a test was made on a plane sheet 
with a reinforced circular cutout subjected to a tensile l'oad causing 
constant displacements at the loaded edges. It was found that the values 
of the strains calculated fram the exact formulas developed in this report 
for an infinite sheet were fairly similar to the values of the measured 
strains in the specimen, except along the loaded edges, where the actual 
strain decreased more rapidly toward the center of the sheet than the 
calculated strains. This discrepancy must be due, at least in part, to 
the actual condition of constant displacement s at the loaded edges of 
finite length instead of, as in the analytical formulas, constant stress 
at the remote loaded edges of infinite length. 
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INTRODUCTION 

This investigation is concerned with the problem of the reinforcement 
of cutouts in plane sheets. Such cutouts may serve either to make a 
structure lighter or to provide space for personnel or accessories. The 
problem of designing a reinforcement ring around the cutout so that it will 
be elastically e~uivalent to the portion of the sheet removed is treated 
here by an inverse method. The treatment is given first in general terms 
and then applied in detail for several types of edge loading. 

A test was made on a plane sheet with a reinforced cutout to check 
the effect of some of the simplifying assumptions on the formulas developed. 

This investigation was carried out at the Polytechnic Institute of 
Brooklyn under the sponsorship and with the financial assistance of the 
National Advisory Committee for Aeronautics . Grateful acknowledgement is 
hereby also made to Professor N. J. Hoff and to Dr. B. Boley for giving 
the authors the benefit of the experience of the Laboratory for Aircraft 
Structures of the Polytechnic Institute of Brooklyn. 

SYMBOLS 

effective area of reinforcement ring with rivet holes 

cross-sectjonal area of cutout reinforcement ring 

a radius of center line of ring 

radius of outer circumference of ring 

half width of sheet 

arbitrary constants in stress function 

d radial width of ring 

e distance from edge to neutral fiber of reinforcement ring 

modulus of elasticity of ring material 

modulus of elasticity of sheet material 

G bending moment in cross section of ring 

h height of web 
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I moment of inertia; with subscripts e, F, and W, 
the eff ective moment of inertia, moment of inertia of 
the flanges, and moment of inertia of the web, 
respectively 

Ir cross-sectional moment of inertia of ring 

i 

2 

~ 

M 

N 

n 

p 

P n (r ) , ~(r) 

r 

ro 

t 

T 

u, v 

~,lit 

x, y, z 

Y, Z 

!rep 

dimensionless parameter of moment of inertia (~~ aj't24(1 + v~ 

half length of sheet 

abbreviations for products of Cmn and powers of al 

bending moment about z-axis 

radial shear force on cross section of reinforcement ring 

order of terms of stress function 

load 

coefficient s in stress function (cf. e~uation (3a)) 

radial distance from center of cutout 

radial distance from center of cutout to neutral fiber 

thickness of sheet 

normal stress resultant 

displacements in x- and y-directions, respectively 

same displacement system in radial and transverse 
directions, respectively 

Cartesian coordinates, measured from cent~r of cutout 

tangential and radial loads on ring per unit of 
circumference 

(
Er ~( dimensionless parameter of area of ring Es at 1 

shear strain 

dimensionless parameter of width of ring (d/2a) 
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strain in x- and y-directions, respectively 

radial and transverse strain, respectively 

change of curvature of ring 

Poisson's ratio 

radi us of curvature 

normal and shear stresses in sheet (Cartesian coordinates) 

radial, transverse, and shear stresses in sheet (polar 
coordinates) 

original shear stress 

angular polar coordinate (fig. 1) 

stress (Airy) function 

original 

constraint 

total 

GENERAL EQUATIONS AND GENERAL SOLUTIONS 

In order to analyze the effect of a circular cutout in a plane sheet, 
the stresses, displacements, and strains in such a sheet may be represented 
in a polar-coordinate system (fig. 1). The original stresses and displace
ments, before being disturbed by the cutout, will then appear in the form 

Or 
0 

a 
epo 

Tcpr 
0 (1) 

Uyo 

~o 
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The cutout edges are assumed to carry reinforcement strips 
is the purpose of the analysis of this paper to choose the 
of such an edge reinforcement so that the increments or' 

1 

5 

or angle s. It 
elastic properties 
O~, and T rCil 

to the original stresses (the original stresses being given by the sheet 
edge loading) become zero or as small as possible. 

Stresses 

The stress in a plane sheet can be expressed by a stress function 

'" (r, cp) such that 

2 ~,; r -1"" r- 't' + 't' 

where the primes and dots are defined by 

o 
Or 

= 

(2) 

The function "', moreover, must be such that it satisfies the e~uation 

where 

02 ", 

oy2 

o 

== ~ ~r ~ :) + ~ ~~ 

The complete solution of e~uation (3) for the case considered here, 
in which the edge stresses taken around the circumference of the circular 
cutout have zero resultant, may be written in the form: 
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where 

P 
n?:2 

'If = L Pn cos ncp + L ~ sin ncp 
n=O n=l 

C r n + c r-n + c rn+2 -(n-2) 
In 2n 3n + c4nr 

The expressions for the functions Q are the same, except with 
possibly different numerical values of the constants c. 

From e~uations (2) and (3a) it follows that 

ar = ~ (-n2r-2Pn + r-1Pn ') cos ncp 
n=O 

acp = I Pn" cos ncp 

n=O 

Trcp = I ~-lp~' n s in ncp 

n=O 

( 4) 

The terms in Q may be obtained from e~uations (4 ) by exchanging cosine 
for s ine and vice versa and by making the right-hand s ide minus in the 
last e~uation for Trcp· 

Displacement s 

The radial and transverse strains 

from the stresses by Rooke' s law: 

and in the sheet follow 
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a - Va ep r 

where Es is the modulus of elasticity of the sheet material. 

The stress-strain relations of the reinforcement ring can be expressed 
in the form (see appendix A): 

Ta d 
Era 

Ex-Ar ~ + ~ + ~ 2a 
( 00) 

Kra 2 Ga2 

ErIr 
Ur+Ur ( 6b ) 

where, for the ring, Er and Kr are, respectively, the extension strain 

and curvature, T is the normal stress resultant, G the bending moment 
(at any ep), d the width of the ring, ~ and Ir the cross-sectional 

area and moment of inertia of the ring (which may be functions of ep) , 
and ut and Ur the circumferential and radial displacements of the ring 

at its outer circumference (r = al). 

Since the di splacements of the ring must be the same a s those of the 
sheet where the ring is joined to the sheet, it follows that the di splace
ments in -equations (6a ) and (6b ) can be obtained by putting r = al in 
equations (5) for the di splacements in the sheet. 

The stre s s and moment re sultants T and G in the ring can be 
derived from the equations of equilibrium of the ring with the use of the 
fact that the unit loads acting on the reinforcement ring are due to the 
radi al and shear stresses ar and T in the sheet along the circumference rep 
of the cutout ring. 

Cros s -Sectional Properties in Terms of the Airy Function 

Substituting the expressions, as obtained in t he preceding di scuss ion 
( see appendix B) , for the di splacements and the stres s re sultant s into 
equations (00 ) and (6b) and solving these equations for ~ and Ir yield 



the following expressions for the cross-sectional area and moment of inertia of the cutout 
reinforcement ring: 

Ar at 

Ir 

~ ( ~ c2 c3 LPn I cos ncp 1 + - sin cp + - cos cp 
E 0 r==a nIt t s n== l' 

Er ~ { 2 Pn "2 d ~ Pn (2 ,\ JPn ]} L cos ncp n Va - vP n I + alP n + n 2a vP n I a + n - ~ :2 dr _ 
n==O 1 1 r r-al 

E ~ cos ncp ~n'al - (Pnl~nrl 
3 s n=O L 

-pJ -1 n a-
r==a 

1 

c2 c'J c 
- sin cp - --l cos cp + --.1 
t t at 

a t ~ 

~ COB n<p (n
2 

- ~ ~nBl-l - VPn' - (n
2 

- ~ J Pnr -2 drJr"B
1 

where cl ' c2' and c
3 

are integration constants. Sine terms are included in equations (7a) 

and (7b) by merely adding terms exactly similar to the corresponding cosine terms, with Fn 
replaced by Qn' 

General Possibility of Exact Equivalence or Zero Constraints 

Equations (7a) and (7b) have the following significance. Suppose any type of original 
stress distribution as represented by an Airy function in the general form, equation (3a), is 
given (i.e., given by the loading at the external edges of the sheet). This means that, for 
an equivalent cutout reinforcement, Fn and ~ are given. Then substitution for Pn 
and Qn into equations (7a) and (7b) gives the distribution of cross-sectional cutout-ring 

area and moment of inertia required to give zero constraints, that is, required to replace 
with elastic equivalence the portion of the sheet cut out. If the values of Ar and Ir thus 

(7a) 

(7b) 

c: 

0:> 

~ 
:r> 
8 
~ 

~ 
o 

r-' 
0:> 
VI 
f\) 
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obtained are positive for any ~,then these are the correct and only 
values for zero constraints. If, on the other hand, the resulting values 
of ~ and Ir are negative or infinite for certain values of ~,then 

an elastically equivalent reinforcement cannot be obtained. This procedure 
is considered in more detail in the following di scussion. 

In equations (7a) and (7b), the pI S (or Qls) in the general case 
II II represent the total stresses , that is, original plus constraint stresses, 

in the sheet. In case the reinforcement ring around the cutout is equivalent 
to the cutout portion of the sheet, then the constraint stresses will be 
zero and only the original stress di stribution will exist in the sheet. 
Hence in that case, and in that case only, the pI S will represent the 
original stresses. The original stresses in a sheet due to any loading of 
the external edges must be finite at all finite values of r including the 
center (r = 0) ; hence they can be represented in general by an Airy func
tion of the form given by equation (3a) in which the coefficients PR 
(or ~) have the form (cf. equations (3b)) : 

P c rn + c rn+2 
n~2 In 3n 

The expressions (3c) can, if desired, be put into equations (7a) and (7b) to 
give slightly more explicit expressions for ~ and Ir (as functions 

of ~) in terms of the constants c which depend on the given edge-loading 
conditions. 

SPECIAL CASES 

Cases of Zero Constraint Stresses 

The problem of the choice of an exactly equivalent reinforcement ring 
around a circular cutout in a plane sheet is, in principle, completely 
solved in GENERAL EQUATIONS .ANI) GENERAL SOLUTIONS . It remains to show some 
of the practical implications of this solution. For this purpose, the 
special case will first be considered in which the edge loading on the 
sheet is such that the original stress distribution can be represented by 
an Airy function with only a single trigonometric term, that is, 
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Pn cos ncp 

or 

where Pn and ~ are given by expressions (3c). This class of cases 

will lead to cross sections constant along the circumference of the ring. 

For n = 0, equations (fa) and ((b) (c2 = c
3 

= 0 because of the 
radial symmetr0 lead to the result: 

at Es 
~ 1 - v Er 

( 8a) 

a 3t (1 -~ - al 
cl ) Ir 2(1 - V) a atc20 

( 8b) 

The fact that the constant cl is arbitrary shows that in this case the 

moment of inertia Ir is arbitrary; but the cross-sectional area must, 

for zero constraints, have the value given by equation (8a). 

For n = 1 there results (assuming symmetry with respect to the 
y-axis and setting, therefore, c2 = 0): 

Ar 
Es 

at-
k21 [6 Er - 2v 

Ir 
Es 

a3t-
G~l(i + 2~) 

Er 

where, for abbreviation, 
c 

k ==.J 
3 t 

k3 
d 

3v)] 2a (1 -

k3] 
cl 

cos cp + 
at 

0 
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In order that Ir be finite, it is nece s sary that 

Whence, 

Again, as for the case 

area ~ reQuired for 

For n > 2, by setting 

section, eQuations (7a) 

where 

Es 
at -

Er 6 - 2V - A (1 - 3v) 2a 

n = 0, Ir may be chosen as desired, but 

zero constraints is fixed by eQuation (9 ) · 

the 

cl = c2 = c3 0 to obtain a constant cross 

and (Th) lead to: 

-n(l + V)K + ~ 

cln 
K= 

c a 2 
3n 1 

n - V ( 2 + nD 

11 

(loa) 

(lOb) 

and K is prescribed by the original stress distribution. Here both the 
moment of inertia and the area are fixed if zero constraints are to be 
achieved. 
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Two technically important cases of exactly eQuivalent reinforcements 
having constant cross sections are included in equations (8a ) , (8b ) , (lOa ) , 
and (lOb ) and are those of hydrostatic stress and of pure shear. This can 
be readily seen in the followi~ discussion . 

Homogeneous h~drostatic stress ar = a~, Tr~ = 0 .- In this case the 

Airy function, as may be verified by· eQuations (2), is given by eQuations (3b) 
as 

From eQuations (7a) and (70) it follows, as in eQuations (8a) and (8b) , that 

(lla ) 

Arbitrary value (llb) 

The se eQuations show that the eQuivalence of the reinforcement is as ~ured for 
the definite value of the cross section Ar given by eQuation (lla) but for 

an arbitrary value of the moment of inertia Ir of the ring. The value 

of Ir will then, of course , be chosen as small as is compatible with- ~ 
and with buckling considerations. 

Homogeneous shear distribution.- This (original) stress distribution 
can be expressed by Txy = -T o in Cartesian coordinates. In polar 

coordinates, 

ar = -To sin 2 ~ 

a~ To sin 2ep 

T = -T cos 2 ep rep 0 

l 
J 

(12 ) 
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The corresponding Airy function, from equations (2), is seen to be 

r2 
TO 2 sin 2cp (12a) 

signifying that (cf. equations (3c)) 

where 

o 

Using equations (7a) and (7b), but with sine terms instead of cosine terms 
and with cl = c2 = c3 = 0 to obtain a constant cross section, gives 

at E s 
Ar 

(1 + V)(l + 4d) Er 
2a 

Ir 
a3t~ - 2~ Es 

6(1 + v) Er 
(14) 

States of Stress with Imperfectly Equivalent Reinforcement Rings 

In the previous special cases of one trigonometric term for the Airy 
function corresponding to the original stress distribution in the sheet, it 
was seen that a reinforcement around a cutout could, theoretically, be 
designed so as to produce no additional stresses due to the cutout. The 
required cross sections were, in fact, constant along the circumference. 
For most other cases of external edge loading, however, it will be found 
that equations (7a) and (7b), intended to give full equivalence, will lead 
to physically impossible (i.e.} negative or infinite) values of Ay and Ir 

for at least some values of cp and that zero constraints are therefore 
impossible. Moreover, even in cases where zero constraints can be theore
tically achieved, it may be found (as in the case of pure shear, discussed 
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fur~her in the following section) that the required geometric properties 
of the cross sections are in practice not realizable. In such cases it is 
of intere st to determine how small the constraint stresses can be made for 
(preferably) constant cross sections of a reinforcement ring. 

The constraint stresses can be calculated without difficulty by 
substituting some given constant values of Ay and Ir into equations (7a) 
and (7b), using expressions (3b) for the Pn (or Qn), including both the 
original (given) and constraint (unknown) terms, and then determining the 
unknown constants cen and c4n (corresponding to the constraint stresses) 
so that equations (7a) and (7b) are identically satisfied for any angle ~. 
The constraint stresses will be calculated here under the assumption that 
they vanish at infinity. A number of constants then disappear in the 
expressions (3b). This condition is selected to give practically negligible 
constraint stresses near the edges of the sheet. Because of this condition 
the constraint stresses in the sheet as derived in this report must be 
considered as approximate (they would be exact for an infinite sheet) , but 
the approximation will be good if, as is commonly the case, the constraint 
stresses diminish sufficiently rapidly with distance from the cutout so as 
to have a very small or negligible magnitude at the edges of the sheet. 

Three special cases of edge loading are now considered in detail. 

Pure shear . - It will be found, upon closer examination of expressions (13) 
and (14), that the moment of inertia of the ring required for an 
exactly equivalent reinforcement in the case of pure shear is very high 
if its cross-sectional area be not higher than that required by equation (13) · 
In actual design, therefore, the cross - sectional properties given by 
equations (13) and (14) cannot ordinarily be realized, and constraint 
stresses must be allowed. In the following paragraphs the method of cal 
culating these stresses is given in detail. 

For pure shear it suffices, except for the addition of terms in r, 
to employ only the trigonometric term in the series for the Airy stress 
function ~ which was used in the case of no constraints, namely: 

~ ~ sin 2~ 

where (cf. equations (3b)) 

~ = c
12

r 2 + c22r -2 + c42 

and, as before, 

T.2 
2 

( 15) 
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The constraints are given by the terms in c22 and c42' which are the 

unknowns. In expressions (3b), the constant c32 must be made zero because 

otherwise it would give constraint stresses which do not decrease with 
distance from the cutout. Putting e~uation (15) into e~uations (7a) and (7b) 
and introducing for abbreviation 

d 
5 == -2a 

the expressions for ~ and Iy became: 

Let 

__ Es at 
Ar ----

Er1+V (6 
TO (1 + 45) + (6 - 85) k - ~ - -1L \ k42 

22 1 + v 1 + v) 

T 0 (1 - 5) + (2 + 65) ·k22 + (2 + 25) k 42 

4 
TO - 2k22 - ----k42 1 + v 

Er at 
-Pr - ( V)o, Es 2 1 + 

a3t 
- i 

24(1 + v) 

(15a) 

(16a) 

(16b) 



I , 

Then solving equations (16a ) and (16b) for k22 and k42 with V 0·3 gives 

(1 - 5 - 0 . 25i) (0 .462 - 6.155) ~ - (2 + 25 + 0.77i)[~(0.5 + 25) - ~ 
T 

o (2 + 65 + 0 . 5i ) (6.155 - 0.462)a + (2 + 25 + 0·77i)[2 + ~(3 - 45U 
k22 

k42 
(2 + 60 + 0.5i)[~(0.5 + 25) - lJ - (1 - 5 - 0.25i )[2 + ~(3 - 45)J 

T 

o (2 + 65 + 0.5i)(6.155 - 0.462)~ + (2 + 25 + 0.77i ) [2 + ~(3 - 45)J 

Subst i tuting the terms in c22 and c42 of equation (15) into the stress expressions and using the 

abbreviations of expressions (15a), the expressions for the constraint stresses became: 

(jr 
1 

-[6k22(:~ -4 + 4k42@)-2J sin 2~ 

(17) 

(j~ 
(F)-4 6k22 ~1 s in 2cp ~ (18 ) 

T rCIJ. -[6k22~J4 + 2k42(:lrJ cos 2~ 
For a given set of values of Ay and I r , the constant s k22 and k42 can be evaluated by means 

of equations (17) , and the total stres ses in the sheet can then be calculated by determining the 
constraint stresses as given by equations (18) and adding these to the original stresses , 
equations (12). 

f-' 
0\ 

~ 
!J> 
1-3 
~ 

~ 
o 

f-' 
CP 
V1 
J\) 
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The following t able gives the values of k22 and k42 for sever al 

reasonably practical sets of values of thicknes s , area, and the stiffness 
ratios 5 , a, and i. The entry values for 5 = 0 must be under stood to 
be an approximation for a ver y small wi dth of the ring . The approximation 
i = 0 for very small va lue s of 5 intr oduces ~nly negligible err ors . 

PURE SHEAR 

a 0 l 2 4 8 

5 = 0 ; i = 0 

k22 /TO 0 · 5 0 .161 0 . 0652 ------ - - -----

k42 / TO - 1. 0 -. 661 -· 565 ----- - ---- - --

5 = 0.1; i = 0 .1 

k22 / TO ---- 0 . 0505 - 0 . 0682 ------ -------

k42 / TO ---- - .440 -·304 ------ - - -----

5 = 0 . 1 ; i = 0 . 2 

k 22 1 TO --- - - ----- - 0 . 0675 - 0 . 154 ---- - --

k42 / TO -- -- - --- - - -. 284 -. 183 - - - -- --

0 = 0 . 1; i = 0 .4 

k22 / TO - - -- - ----- ----- - - - 0 . 153 -0 . 22 6 

k42to ---- - - ---- ----- - - -. 149 -. 0884 
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It will be seen from this table and equations (18) and (12 ) that in 
actual design it is difficult to avoid entirely some stress concentration 

at the cutout (:1 =~. Without any reinforcement (i.e., for B = i = ~ = 0), · 

the stress concentration at the cutout is extremely high, for 

where is the total tangential normal stress with cutout and is 

the original stress (without cutout). It will be found that reinforcements 
with practical cross sections, such as those in the foregoing table, will 
relieve this normal-stress concentration, although they will introduce a 
amaller shear-stress concentration Tr~. From the point of view of minimum 

ratios of total stresses to local original stresses, the most suitable 
cross section given in the foregoing table is 5 = 0.1, i = 0.1, a = 1. 
The stresses for this section are given in the following table. (Also, 
see table I.) 

PURE SHEAR 

a3t at 
0.1; ~ 2(1 + V)' Ir 240(1 + v)' V 

rial (Jrl/To (J CJ>lr 0 T r r~ 0 (JrT/(J~o a CJt:/ (J ~o T r r~ r% 

1.0 1.46 0·303 0·51'7 -0.46 1·303 1.51'7 

1.25 1.00 .124 .438 .00 1.124 1.438 

Uniform single tension or compression.- In Cartesian coordinates , this 
s tate of original stress is given by 

where (J is a constant. o 

T 
XYo 

o 
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In polar coordinates, the same state of stress is: 

°0 4"(2 - 2 cos 2ep) 

° 
°epo 

~(2 
4 

+ 2 cos 2cp) (19 ) 

T 
°0 2 sin 2ep == T rcpo 

The Airy function following from e~uations (2) and (19) has the form 

°0 
4 

Here, c20 

,Ir == c r2 + c r2 cos 2m 
'f 20 12 't' 

Thus, 

00 2 ( 1jr == -r 1 + cos 2ep) 
o 4 

(20) 

It is easy to show that in this case, a perfectly e~uivalent reinforce
ment ring is not realizable (see appendix C). The Airy function for the 
final state of stress in the sheet will therefore contain terms representing 
stresses due to the reinforced cutout, that is, constraint terms, in addi
tion to those corresponding to the original state of stress. Referring to 
e~uation (20), it is seen that the Airy function for the original (super
script 0) state of stress is of the form 

to p 0 + 
0 

p 0 
2 cos 2ep 

where 

p 0 2 
0 c20r 

p 0 2 
== c12r 2 

with 

c
20 

°0 
c12 "4 
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The constraint stresses, which will occur in the sheet with the reinforced 
cutout, are included by merely adding to the expressions for PO

o and P2 0 

the additional terms appearing in expressions (3b). Thus, 

where 

(21) 

in which 

The constants and in expressions (3b) can and must be set 

equal to zero, since otherwise they would give constraint stresses which 
do not diminish with increasing distance r fram the cutout. The 
constant clO has been omitted since it would not contribute anything ~o the 

stresses or displacements. In expressions (21), c20 and c12 are given 

~qual to :0) by the original state of stress, while c3o' c22 , and c42 

are the unknowns. These unknowns are determined for a given reinforcement 
ring by putting expressions (21) into equations (7a) and (7b), which express 
~ and I r , and by satisfying equations (7a) and (7b) in every trigono
metric term. With the abbreviations: 
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-2 
c

30
a

l 

-4 
c22al 

d 
- =0 
2a 

- k30 

- k22 

I E 
.-£ .2:6(1 + v) == i 
a3t Es 1 

Ax- Er 
- - (1 + V) == Or, at Es.L 

the following result is obtained (see appendix D): 

t~l -1 + ~CL1(4: : ~6b) - ~ (l + 0 + ~) ~ :- C1:l(1.+ 40)J 

00 (1 + 35 + i~":Lt:: ~~ -(1 + 5 + 12~ ,)~(6 -85 ) + ~ 

21 

(22) 
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Putting expressions (21) into equations (4) and omitting the terms in c
20 

and c12' the express ions for the constraint stresses are seen to be: 

(r)-2 (r ) -4 -k30 \al + & 22 \a
l 

cos 2cp (24) 

In order to calculate the stresses in a plane sheet with a reinforced 
cutout under an external edge loading causing an original state of stress 
(i.e., state of stress if there were no cutout at all in the sheet ) 
given by ax = ao = Constant, it is nece ssary to calculate 5, i l , 
and ul in accordance with expressions (22) from the dimensions of the 

reinforcement ring, determine k30, k22 ' and k42 directly from equa

tions (23 ) , find the constraint-stress distribution from equations (24), 
and add thi s to the original stress distribution, equations (19)· 

The case of uniform tension corresponds approximately to the experi
ment s carried out for this report and, with the analytical calculation 
of the stresses in the test specimen (appendix G), serves as an illustrative 
example. 

Pure-bending stress.- If an I-beam consisting of a rectangular web 
and flanges, a s shown in figure 1, i s subjected to a pure-bending moment M 
about an axi s z ~erpendicular to the plane of the plate, then the stress 
distribution in the plate will be: 

M 
ax --y 

0 IW 

ay 0 
T 0 xyo 

where 

IW 
th3 

+ I F 12 
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In polar coordinates this state of stress is given by: 

M 
or 4-r (cos 3 cp - cos cp) 

o IW 

0cp 
o 

-..!£.r(3 cos cP+ cos 3cp) 
4Iw 

It can be verified by equations (2) that the Airy function for this 
original state of stress is given by 

1/ro 

where 

By substitution into equations (7a) and (7b) it is found (see appendix E) 
that it is not possible to design a reinforcement ring producing exactly 
zero constraint stresses. 

To determine the approximate additional stresses (in this case 
unavoidable) due to a cutout reinforced by a ring of given dimensions, 
there must, as in the preceding case, be added to the Airy function the 
additional terms in expressions (3b) corresponding to the same trigo
nometric orders as occur in 1/ro ' Thus, for the stresses in the sheet 

under pure bending with a reinforced cutout 

1/r Pl cos IP + P3 cos 3cp 

Pl == c21r 3 + c31r -l (26) 

P3 == c13r3 + c23r -3 + c43r -l 
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The constants and in expre ssions (3b ) have been omitted since 

they would otherwi se violate the assumed condition of constraint stresses 
decrea sing t o small values at the edges of the sheet. The constant cll 
has been omitted s ince i t has no effect on the calculations. 

Substituting e~uati ons (26) into e~uations (7a) and (71) , determining 
the constants c31' c23 ' and c43 (c21 and c13' as stated, are fixed 

by the applied bending moment) so that e~uations (7a) and (71) are 
identically satisf i ed ( see appendix F) , and using the abbrevi ations 

c a -3 == 
31 1 k31 

Mal 
241 == K 

W 

Er Ar 
+ v ) - - 2 (1 - a., 

Es at 

Er ~24 (1 + v) 
Es a3t 

i 



and the assumption V 0.3, the following results are obtained: 

k3 - (1 + 5) (ElK + 2k
31

) 

45 ) 
k43 

(i - 1 + 25) [0:.( 2 - 4·55) + ~ + (i + 1 + 45)[0:.(1 + 4· 55) - l J 
-K--------------~--------~~----------~-----------=------

(1·36i + 1 + 25) [0:.(2 - 4.55) + ~ - [0:.(0.641 - 6.125) + 0.33i} (i + 1 + 

k23 
(i - 1 + 25) [0:.( 0 .641 - 6.125) + 0.33~ + [0:.(1 + 4.55) - lJ (1·36i + 1 + 25) 

= -K--------~~--------------~~--~----------~~----------
(i + 1 + 45)[0:.(0.641 - 6.215) + 0.333J - [0:.(2 - 4· 55) + lJ (1·36i + 1 + 25) 

(28) 

_K[0:.( 2 .78 + 40 . 65) - 3 + 65J + k23[0:.(18 - 40.45) + iJ" + k43 [o:.( 5 · 76 - 555) + 3J 

o:.~ - ~) + 2 + 25 

k31 

Putting equations (26) into equations (4) and omitting the terms in c21 and c13 (which give the 

original stresses) , the constraint stresses in the sheet due to the reinforced cutout are found to be: 

Or -2k (r_ \ -3 
1 31 \aV cos 'I' - [12k23(:J5 

+ lOk43(:;:r] C08 3'1' 

(r) -3 I, (r) - 5 ( r_\ -3J 
a Cl1. = 2k31 \a

1 
cos cP + [ 2k23 \~1 + 2k43 \~ "cos 3cp (29) 

(r) -3 I, (r) - 5 (r_\-31 
T rCPl = 2k31 \a1 sin cP + [ 2k23 \a1 + 6k43 \av J sin 3cp 

~ 
(") 

~ 

1-3 
~ 

~ 
0 

I--' 
co 
\Jl 
I\) 

I\) 
\Jl 
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1{ith the constants k43 , k23 , and k31 determined from equations (27) 

and (28), the stresses in the sheet can be readily calculated by adding 
the constraint stresses, as given by equations (29), to the original 
stresses, as given by equations (25). 

In many actual cases, the reinforcement rings are quite narrow, so 
that if the approximations 5 = 0 and i = 0 are made only negligible 
errors will be introduced. The stresses in the sheet are then functions 
of only the cross-sectional area of the ring. This is true, of course, 
for any type of external edge loading on the sheet as well as for a pure
bending load. The following table gives the values of the constants k 
for pure bending for different values of the area concentrated in such a 
line reinforcement · 

PURE BENnING 

[5 = 0; i = 0] 

ex. == ~2(1 + v) 0 1/2 1 2 
at 

k43/K 3·00 1.857 1.48 1.182 

k23/K -2.00 -. 857 -.486 -.182 

2k3JK -6.00 -2·31 .426 3. 22 

Figure 2 shows the stress distribution in the sheet for ex. = 1 and, 
for comparison, for ex. = 0 (i.e., no reinforcement around the cutout). 

Summary of Special Cases 

Table I gives a brief summary of the numericai results of the 
theoretical investigation of the special cases treated here. In this 
table, W·P. denotes the ratiu of the weight of material added (in order 
to form the reinforcement ring) to the weight of material cut out. Assuming 
that material of the same density is used for both ring and sheet, this 
weight ratio is given by 

W·p. 
2(~ -~ 
(1 _ ~)2 
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Table I shows also the ratios, at the cutout (:1 = 1), of maximum 

total (i.e., original plus constraint) stresses to maximum original stresses . 
f~ " " " In the column headed ~emarks, the term satisfactory means that the 

cross section concerned has practical dimensions and that at the same 
time it prevents high stresses in the sheet. 

An examination of table I shows that it is theoretically possible to 
obtain, for the cases of hydrostatic stress, pure shear, single tension 
(or compression), and pure bending, zero or minimum constraints and minimum 
total stresses by reinforcement rings. However, except for hydrostatic 
stress, the re~uired cross sections of such rings would have very high 
moments of inertia but very small widths and areas. Such sections are 
extremely diff icult to design in practice. The table also shows, on the 
other hand, that in all cases considered here, not the minimum but at 
least fairly low total stresses in the sheet can be obtained by using 
appropriate reinforcement rings of practical dimensions. It appears, 
moreover, that in several instances, such rings may weigh less than the 
material removed from the sheet to form the cutout. 

TEST ON PLANE SBEET WITH REINFORCED CUTOUT 

For the experimental part of this research a test was made on a 
plane sheet with a reinforced circular cutout under a tensile load, 
realized by a heavy I-beam transmitting four concentrated loads to the 
sheet (see figs. 3 and 4). The loads were produced by adjustable jack
screws and measured by calibrated strain gages on the eight connecting 
links. 

Before carrying out the main test, a preliminary test was made with 
a sheet of the same dimensions but without cutout. The purpose of this 
preliminary test was to ascertain whether the means of ap~lication of 
the load would produce a uniform tension stress (ax = ao). Two different 

total-load stages were used, with the loads distributed as evenly as 
possible over the length of the I-beam. The total loads for the preliminary 
test were 1475 and 3016 pounds. For the main test (i.e., with cutout), 
the loads were 3000 and 4020 pounds. 

The l ocations of the strain gages (including rosette s ) t ogether with 
the results of experimental measurements in the sheet without cutout are 
shown in figures 5 and 6. 

From the measured values of the test on the sheet without cutout, 
it is seen that the axial strain EX was distributed fairly uniformly 
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throughout the sheet. At the higher load, the maximum deviations from the 
average measured value were -10 and 6.4 percent while, from the expected 

4p 3016 -4. 
value of € = -- = 6 = 2 ·98 x 10 ,the maxlmUill 

x 2btEs 0 . 052 x 18.5 x 10.5 x 10 

deviation was 10.4 percent. 

Near ~he loaded edges rosette strain gages were attached to show the 
influence of the lateral constraint of the riveted joint of sheet and 
I-beam. The small average magnitude of the transverse strain €y in 

the sheet near the loaded edges indicated that in fact the load was 
transmitted by the heavy I-bars in such a way that the transverse strain €y 

(and not the stress Oy) was practically zero at these edges. If the 

stress 0y had been zero at the edges, then the m.a.gn1 tude of € y would 

have been much higher, namely € = -v€ = -0.3€ . 
Y X X 

Having checked this type of original stress (or strain) distributi on 
in the sheet obtained with the particular loading used here (see fig. 3), 
a circular hole was made in the center of the same sheet specimen and was 
reinforced by a ring of dimensions given in figure 3. Strain rosettes and 
simple strain gages were then placed on the sheet in the symmetric posi
tions indicated in figure 7· Two different loads were applied, 3000 and 
4020 pounds. Since both loads produced proportional results, only those 
corresponding to the higher load are given here. The results of the 
measurement s are shown in figure 7. 

It may be of interest to compare the strains measured in the actual 
test specimen with the strains calculated, in accordance with the theory, 
on the basis of an infinite sheet. Since the boundary conditions of the 
test piece are obviously different from those of an infinite sheet, the 
strains may be expected to be different in these two cases· A comparison 
of the strains for these cases may nevertheless be instructive in indicating 
the influence which the finite-edge conditions have on the strain (or 
stress) distribution in the sheet. This comparison is given by the strain 
diagram in figure 7. Because of the symmetry about both x- and y - axes, 
the theoretical values for the infinite sheet are given only at the points 
indicated in the diagram. 

From figure 7, it 'will be observed that, qualitativel y , the finite 
sheet behaves quite similarly to the infinite sheet. For example , in 
both cases the transverse normal strain (€ \ decrease s steadily 

<p )'£'=1. ~8 
a -1 
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wi th cp from a maximum. at cp = 00 to a minimum. at cp = 900 • 

Also (6) near the rigid bars varies in both cases from a 
x x=9.2 ir.l. 

maximum. at the edge of the sheet to a minimum. in the center. (See graph 
below strain diagram, fig. 7.) The radial strains were all of a relatively 
low order of magnitude, but it can be stated that here, also, both the 
order of magnitude and the variation of Er corresponding to the calcula-

tions for an infinite sheet were similar to those of the test specimen. 

The effect of the particular boundary conditions of the test piece 
appears to be pronounced at two places. The maximum transverse normal 
strain Ecp (perpendicular to the radius and, at cp == 0, in the direction 

of the general tension stress) near the cutout ring (a: = 1.38) is higher 

for the test piece than for the infinite sheet, the percentage difference 

5·06 - 4.07 
being x 100 = 19·6 percent. The axial strains near the loaded 

5·06 
bars (see graph below strain diagram, fig. 7) decrease more sharply in the 
actual specimen than in -the specimen calculated as an infinite sheet, the 

local percentage difference at the center being 
3.17 - 2.32 

X 100 = 36.6 per-

cent, although the analytical values were practically equal to the experi
mental values at the quarter points of the sheet. The difference at the 
center must be due to the fact that in the actual test piece the rigid 
bars caused constant axial displacements and zero transverse displacements 
at the finite loaded edges, whereas in the theoretical work an infinite 
sheet was treated with constant axial stress at the remote loaded edges. 

The maximum. strain measured in the sheet was the shearing strain 

at <p = 450 , and it will be observed that this value (7.66 X 10-4) was 
practically unaffected by the difference in the boundary conditions between 
the actual and the theoretical specimen, since the experimental and the 
theoretical values are practic~ equal. 

The calculations for the infinite-sheet specimen, based on the formulas 
developed in the analysis preceding the experiments, are shown in Appendix G. 

It may be remarked that in-these calculations account was taken of 
the rivet holes in the cutout ring. These holes had the effect of reducing 
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the actual cross-sectional area of the ring. To determine the amount of 
this reduction, a test with the same size and spacing of the rivet holes 
as in the sheet specimen was carried out. 

The ratio of the effective area to the full geometric area was thus 
found to be 0.80. Therefore in the calculation of the theoretical stresses 
in the test specimen used in the experiment the cross-sectional area of the 
cutout ring was taken as 0.80 times the full geometric area. 

CONCLUDING DISCUSSION 

The problem first considered was what must be the cross section of 
a ring reinforcing a circular cutout in a plane sheet in. order that the 
stresses in the sheet remain unchanged by the cutout. The general solution 
to this problem is given by e~uations (7a) and (7b). In these e~uations 
the re~uired distributions of moment of inertia Ir and of cross-section 

area Ar along the circumference of the reinforcement ring are expressed 
in terms of the stress function (with coefficients Pn and ~ as 

defined by e~uations (3a) and (3b)) for the original stress distribution, 
that is, for the stresses in the sheet without cutout or reinforcement 
rings. 

It was found that these expressions in terms of the circumferential 
angle ~ for Ir and ~ lead to physically possible (i.e., positive) 

values only in a limited number of cases (for example, when the original 
stress function has no or only one trigonometric term, as in centric 
symmetry and in pure shear, respectively). In the other cases, which 
include uniaxial tension and pure bending, constraint stresses, that is, 
additional stresses due to the reinforced cutout, are unavoidable. A 
method of calculating such stresses in the sheet for a given (constant) 
cross section of the reinforcement ring was developed, based on the 
re~uirement that the constraint stresses and displacements vanish suffi
ciently rapidly with increasing distance from the cutout so as to have a 
negligible influence at the edges of the sheet. The formulas, which are 
straightforward and convenient to apply, were derived in detail for the 
cases of pure shear, uniform axial tension (or compression), and pure 
bending. For example, in the case of uniform axial tension, it is 
necessary merely to calculate the values of the dimensionless constants il 
and ~l (proportional, respectively, to the cross-sectional moment of 

inertia and the area of the reinforcement ring) from the given data in 
accordance with the definitions, e~uations (22), of il and ~l' The 

values of the constants k30, k22' and k42 follow from the elastic 

properties of the ring and are determined by e~uations (23). The 
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constraint stresses (which must be added to the original stress distri
bution ax = 0 0 = Constant) then follow readily from equations (24). 

In the formulas derived for the cases deemed technically important, 

31 

it can be seen that for the narrow reinforcement rings commonly used only 
small errors will be introduced in the numerical calculations if the moment 
of inertia is taken as zero. l The results of the analysis therefore show 
that the stresses in a plane sheet with a cutout are a function only of 
the cross-sectional area of the ring reinforcing the Cl.l.tout, while the 
moment of inertia is of practically no influence. This means that 
the ring experiences primarily tensile or compressive stress result-
ants and not bending moments. 

In general the approximation given by the formulas of the report will 
be closer the smaller the constraint stresses are at the edges of the finite 
sheet. 

In the experimental part, a test was made of a plane sheet with a 
reinforced cutout subjected to a uniform tensile displacement. The 
purpose of this experiment was to see how great an error is produced by 
boundary conditions which differ from those for which the theoretical 
formulas are exact. In particular, the sheet specimen was (of course) 
not infinite, while at the loaded edges, the axial displacements, and not 
the stresses, were constant (with zero transverse displacements there). 
On the two other opposite edges the normal and the tangential edge tractions 
were zero. 

It was found that qualitatively the strain (and therefore stress) 
distribution in the sheet specimen was quite similar to that predicted 
by the theoretical formulas for an infinite specimen with the same rein
forced cutout. Quantitatively, the chief effect of the actual boundary 
conditions seemed to be at the loaded edges where the axial strains 
decreased more sharply toward the center of the sheet than predicted by 
the formulas for the infinite sheet. 

The transverse strain €~ at the transverse center line of the 

sheet near the cutout (~ = 0, :1 = 1.38) was actually about 20 percent 

~hiS, of course, is true only if there is no concentration of the 
original stress along any radius of the cutout circle, a case which appears 
for a concentrated load at an external edge but which was not considered 
in this report. 
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higher than according to the theory for the infinite sheet. In other 
resp~cts, however, the ~uantitative results appeared not to be greatly 
affected by the particular boundary conditions of the test specimen, 
stnce the experimental values of the strains were fairly similar to the 
analytical values based on an infinite sheet. 

Polytechnic Institute of Brooklyn 
Brooklyn, N. y., June 27 , 1947 
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APPENDIX A 

STRESS-STRAIN RELATIONS OF REINFORCEMENT RING 

The theory of curved beams states that the change of curvature ~r 

of a ring due to a bending moment G is 

K: r 

where the effective moment of iner tia Ie is given by 

br dr - Ar 2 
o 

and where r = r o denotes the radius of the neutral fiber, while b is 

the width 
moreover, 

perpendicular to the plane of bending of a cross 
is given by (cf ., for example , reference 1) 

A 

section, and 

The following table, however, shows that for a cross section of I-shape 
(for example) with values of d/a up to 0 . 4, a ring may be treated as a 
straight beam, so that it is permissible to put 

e 

I 
e 

d 
2 

I 
r 
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COMPARISON BEl'WEEN CURVED BEAM AND STRAIGHT BEAM 

d 
Ie Ir 

dla 
al - 2' ro 

(in. ) (in. ) (in.4) (in.4) 

0.2 6 5·9'73049 0.041855 0.0418'7 

·3 6 5·93044 .ll9638 .124966 

.4 6 5·865331 .252'761 .260266 

It follows then that 

I'i. = r 

as in equation (6b). The extension strain €r and the curvature l'i. r 
a ring are given in terms of the radial and tangential displacements 

of 

Ur o 
and ~ at the neutral fiber r = ro by the following well-known relations: ~ 

o 

€ a 
r 

. 
Ut + ur o 0 

Since the radial di splacement ~ of the ring for any given ~ will 

be constant along the width of the ring, it follows that 

The tangential strain, however, will vary along the width as, in fact, 
can be seen from figure 8, 
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Hence 

Thus, e~uations (6a) and (6b) follow. 
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APPENDIX B 

EXPLICIT EXPRESSIONS FOR STRESS RESULTANTS AND 

STRAINS OF REINFORCEMENT RING 

From figure 1 the following e~uilibrium conditions between the stress 
resultants T, G, and N in a ring and the unit load forces Y and Z 
can be derived: 

. 
T + N 

N - T 

. 
o - Nr 
V" 0 

-Ya 
1 

-Za 
1 

-(T \ a te 
repJr=al 1 

(Bl) 

(B2) 

Noting that 

written as 

(see appendix A), the last e~uation can be 

G - Na d - Tat -rep 1 2 

E~uations (Bl) to (B3) can be solved for T and G a s follows: 
From e~uations (Bl) and (B2), 

Moreover, from (Bl) and (B3), 

(B4) 



.. 
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By putting ~r and Tr~ in terms of the stress function ~ (relations (2)) 

e~uation (B4) can be directly integrated with the results: 

for n" 1, 

for n 1, 

Substitution for ~ by means of relations (3) will give expressions 
for T and G in terms of Pn and ~. 

Expressior~ in terms of Pn for the extension strain and curvature 
can be obtained by putting e~uations (2) into e~uations (5) and integrating 
the latter to find ur and Ut. 2 Thus, 

2 
Two arbitrary functions fl(r) and f2(~) will appear as a result 

of this integration. However, it can be shown that, for compatibility 
between deformation values (involving also the shear strain Yr~) and 

the e~uilibrium conditions, the functions must have forms which are 
already included in the general expressions (3a) and (3b) for the Airy 
functi on. 
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( 
1/r d ~ . • V,I, I 

- V r + 2a 'II) - 'I' 

By using the expression (3a ) for 1/r, the strains in terms of Pn and ~ 
are obtained. 

• 
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APPENDIX C 

IMPOSSIBILITY OF ZERO CONSTRAINTS IN CASE OF UNIFORM TENSION 

(ax = constant) 

From the expression (20) for *0' 

"PO 
ao 2 
4 r 

P2 
ao 2 

= "4r 

Substituting these values into (7a) and (7b), putting c2 = c3 = 0 (for 

symmetry about both x- and y-axes), and simplifying give the following 
expressions for the distribution of cross-sectional area and moment of 
inertia: 

Es 1 + cos 2~ 
at -

Er (1 - v) + [1 + " + 45(1 + v)] cos 2~ 

cl 
Es (1 - 5) (1 + cos 2 ~) - B:j}iI 

Er 2(1 - v) + 6(1 + ,,) cos 2~ 

where 5 == d/2a . 

It is not difficult to see that Ir can be made positive for all 

values of ~ (by choosing a proper value for cl) but that ~ neces

sarily becomes negative and infinite for same values of ~. Hence a 
perfectly equivalent reinforcement is not realizable in this case· 

-------- - --



APPENTIIX D 

DERIVATION OF EQUATIONS (23) PERTAINING TO AN ORIGINAL srATE OF UNIFORM TENSION 

Putting equations (21) into equations (7a) and (Tb) with the abbreviations (22), the following 
equations re sult : 

~= 

where 

(cr; + k30) 

-k + -+6k + ~O(l - V) J to 
2 (1 + V) 30 2 22 

i l 
La K + -(1-

1 4 

'- 1 - V 

Li2 (1 + V)cro 

0) + ~2 

-~J + 

+ (cr; _ 2k22) cos 2cp 

4v ( --k42 + 0 2cr - 8k 
1 + V a 22 - 1 ~6l42)J cos 2~ 

+ k42 + 00k22 + k42~ cos 2cp 

[
cro 2 ~ - - k22 - --k42 cos 2cp 
4 1 + V 

1 cr 0 r, ,l 
Kl = -klal - + 1;(1 - 0) + k3001 + 0) log al - oJ 

Clearing each of the preceding two equations of fractions and equating the coefficients of equal 
t rigonometric order s (y iz, constant terms and terms with cos 2cp), the f ollowing f our relations 
are obtained: 

+" o 

~ o 
:x> 
t-3 
~ 

~ o 

~ 
OJ 
VI 
[\) 
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U
aO(l - v) J a - k 

1 2(1 + V) 30 

The first of these four equations can be solved immediately for k30 . The 

third equation determines the value of Kl , which, however, has no influence 
on the stresses in the sheet . 
any further here. The second 
taneously for k22 and k42 0 

Renee this equation need not be considered 
and fourth equations can be solved simul 
The results are given by equations (23). 



42 NACA TN No. 1852 

APPENIlIX E 

PRACTICAL IMPOSSIBILITY OF PERFECT EQUIVALENCE IN 

CASE OF PURE BENDING 

From the expression for to, it is seen that, corresponding to the 

(original) state of stress due to pure bending, 

M 

8IW 

Substitution into equations (7a) and (7b) leads to the following expressions 
for ~ and Ir eCl = c2 = 0, because of the antisymmetry about the x-axis ' 

and the symmetry about the y-axiS): 

at 

(2 + 90)(1 + v) 

cos cp + cos 3cp 

[
6 - 2V + 0(3V - 1)] 

cos cp + cos 3cp 
(2 + 90)(1 + v) 

a3
t (1 - 20) 

24(1 + v) 

i [a1:~C13 - 6(1 + 5) ] /(1 - 25)} COB cp + COB 3cp 

cos 3cp 

It will be shown now that ~ and Ir for zero constraints can both be 

made positive for any cp only if the value of the ratio 5 (identical 
with d/2a) is extremely low, t oo l ow in fact for practical purposes. 

---- - ----------
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From the second of the two equations, in order that Ir be everywhere 

positive it is necessary that 

= 6(1 + 5) 

Substituting, then, for c3 into the expression for the area Ar gives 

Ar= at 2(1 + 5) cos ~ + cos 3~ 

r -2v + 5C3V - 1)1 
( ) ( ) 

cos ~ + cos 3~ 
1 + V 2 + 95 

(2 + 95) (1 + V) 

The value of this expression for Ar will be positive regardless of ~ if 

and only if 

2(1 + 5) = 6 - 2v + 5(3v - 1) 
(1 + V) (2 + 95 ) 

With V = 0.3, the positive root of this quadratic equation in 5 is 

5 0.00684 

In practical design, this low value for 5 (identical with d/2a, fig. 1) 
will be incompatible with the large required moment of inertia 

a3t 1= (1- 25). 
r 24(1 + V) 
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DERIVATION OF EQUATIONS (28) PERTAINING TO CASE OF PURH; BENDING 

Substitution of the expressions (26) for Pl and P
3 

in~o equations (7a) and (7b ) , with the 

abbreviations (27), leads to the following re sults: 

. [-k3 - (1 + 5) (6K + 2k31) ] cos cp + [ K(l - 25) - k23 (1 + 45) - k43 (1 + 25~ cos 3cp 
1= 

[ 5 + V J 
K + ~3 + 3(1 + v )k43 cos 3cp 

k3 cos cp - ~K + 3k
23 + k4 ~ cos 3cp 

a=----------------------------~-------=~----~--~~----------------------~~----

{
K[3(3 - V) +5,3 - wl+k31(1-~)}cos CP+[K(3+275\+k23(6-275\+ k4 2 +10V -95( )5 + v51 cos 3cp L 1 + V 2 (1 + V) J 2 L 2 / \ 2 ') 3 2 (1 + v J 

Clearing each of these two equations of fractions and equating coefficients of like trigonometric terms 
(cos cp and cos 3cp) give four simultaneous equations: 

-k3 - (1 + 5) (6K + 2k31) = 0 

[ 
5 + V ] K(l - 2~) - ~3(1 + 45) - k43(1 + 25) = i K + ~3 + 3(1 + v)k43 

{ [ 
3 (3 - v) 3 - 9v J (, ~\} 

k3 = a K - 1 + V + 52 (1 + vU + k31 ~ - 2) 

~ \ [( 27 ~ (, 27~ 2 + lOY - 95( 5 + v) 1 
-~K + 3k

23 + k43) = a -K~ + 2~ + k23\6 - 2' + k43 2(1 + V) 

.j:::""" 

.j:::""" 

~ 
:x:-
1-3 
~ 

~ 
o 

b--' co 
\J1 
f\) 
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The second and fourth e~uations are linear e~uations in k23 and k43' 

which can therefore be readily solved for these two unknowns. By 
eliminating k3 from the first and third e~uations, k31 can be solved 

for in terms of The results are given by e~uations (28) . 
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APPENDIX G 

CALCULATION OF STRAINS IN INFINITE -SHEET SPECIMEN WITH SAME 

REINFORCED CUTOur AS ACTUAL SPECIMEN 

The dimensions of the specimen are given in figure 3. From the 
dimensions, 

a 3 .66 inches 

a1 3.5 + .L = 
16 

3.81 inches 

t = 0 .052 inch 

.2-
5 

d 16 0.0426 -
2a 2 x 3.66 

Ae 0 . 80 (~ x 0.43~ = 0 .1085 square inch 

0.1085 x 1·3 

3 · 66 x 0 .052 
0·74 

-3 4 1.1 x 10 inch 

7.8 x 1.1 x 10-3 

(3.66)3 x 0 .052 

From equations (23) substitution of the preceding values leads to the 
following numerical results for the constants k

30
, k22' and k42 : 
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O.0228a o 

From equations (24) it then follows that the calculated constraint 
stresses in the sheet will be: 

sin 2cp 

The calculated stresses without cutout (see equations (19)) are: 

ao 
- (1 - cos 2cp) 
2 

ao = "2 sin 2cp 

47 

Hence, adding the constraint to the original stresses, the total stresses 
in the sheet at any point (r, cp) are found to be: 

Or 00 {O. 500 - 0·173 (,:J2 
- ~. 500 + 0.1368 (:J4 -1.008(:SJ cos 2'l'} 

0'l' • 00 {0.500 + 0.m (a,;}2 + [0.500 + 0.1368(;;.t] cos 2'1'} 

T r'l' 00 [ 0.500 + 0.504(:J-2 
- 0.1368(;lr

4] Bin 2'1' 
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From these stresses , the strains expressed in polar coordinates at any 
point are: 

2(1 + V) 
-'----T 
~ rqJ 

The strains €x in the direction of the load were obtained by first 

determining the Cartesian stresses ax and ay according to the relations: 

The strain €x is then readily obtained by 

The value of the original stress 0 0 without cutout is 

where 2b is the width of the sheet. 
l oad of 4020 pounds, 

4P 
2bt 

For the test specimen and f or a 

4020 
4160 pounds per square inch 
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For the strain this can be expressed as: 

4160 0 . 99 x 10-4 

10.5 x 106 x 4 . 02 

The actual measurement gave 1 . 04 x 10-4, that is, an average inaccuracy 
of 5 percent in the strain gages. 

49 

The numerical results of the preceding calculations are given in the 
data diagram (fig . 7). 
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TABLE I 

SUMMARY OF THEORErrCAL INVESTIGATION OF SPECIAL CASES 

Ratios of maximum 
total stresses to 
maximum original 

stresses at rial = 1 

d ~ ~ Remarks 
Loading W. R . 

2a at a3t (1) ~ (3) 
° or ~ Trcp 

0cp or 0cp Trcpo 0 
0 0 

(2) 

0 1 . 43 Any 2 . 86 1. 00 1.00 1 . 00 

Hydrostatic .1 1 . 43 Any 3·04 1 . 00 1 . 00 1 . 00 2 Zero constraints; 

Or = Constant satisfactory 

. 2 1 . 43 Any 3. 21 1. 00 1 . 00 1 . 00 

Zero constraints, but I r 
. 2 . 428 0 .1025 . 0875 1 . 0 1 . 0 1 . 0 too high to conform with 

Ax: and dla 
Pure shear 

· 385 .457 -. 46 1 · 58 4 .1 . 0032 1·30 Satisfactory 
T = Constant 
xy 

Zero constraints , but lr 
.1 · 550 . 1155 . 865 1 . 0 1 . 0 1.0 too high to conform with 

~ and dla 

Low constraints , but Ir 
.1 . 882 .115 1 · 69 . 822 . 872 1 · 31 too high to conform with 

Ax: and dla 

Single uniform Low constraints, but Ir 
tensile (or . 2 · 795 . 1025 1 .232 . 783 · 790 1.43 3 too hi h to conform with 
compressive) ~ and dla 
stress 
Ox = Constant 0 . 615 0 1.23 · 750 1. 44 1 . 63 Satisfactory 

.1 . 461 0 .682 · 5l2 1 · 34 1 · 59 Satisfactory 

A:Unost zero constraints, but 
0 · 385 . 0320 ·770, 1 . 015 · 995 1.015 Ir too high to conform 

Pure bending 2 with Ax: and dla 

0 . 385 0 · 770 1 . 01 1.10 1 · 34 Satisfactory 

l W.R. ratio of the weight of material added (tv form reinforcement ring) to the weipht 
of material cut out. 

2No reinforcement . 

3" . " Satlsfactory means that the cross section has practical dimensions and that at the 
same time it prevents high stresses in the sheet . "Zero constraints" means that the rein
forcement ring is exactly equivalent to the portion of the sheet which ha~ been cut out . 
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Total-stress distribution in sheet produced by pure bending. 
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max max max 
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p p p p 

~2~.f ~'j 2~ 

LOA LINKS 

HEAVY I-BEAM I 
TRANSM ITTI NG 6" 

LOAD 

PLANE-SHEET 
THICKNESS t=O.052 

II 

X 

•• i DIAMETER 
r 5

11 :: 

T8(=d) 101«> 
0 

0.052" (\J 
.. 

y II 
~ 

(\J 

CROSS SECT ION OF 

RE I NFORCEMENT RING 

p p P p 
1-C-------lsf'(=2 b)----~ 

Figure 3. - Experimental s etup, 
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Figure 4. - Test specimen. 
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1 
9.2 " 

9 . 2" 

~ 

369 
746 

364 
764 

L::::,. 

1.56 
3. 12 

D. 

1.52 
2.98 

360 
729 

D. 

1.56 
2.99 

369 
746 

6 
1.59 
3. 12 

r 3" i 7"+ 7" 3" 416 316 316 t 4T61 

rl 
1.56 
3 .24 

1.6 1 
3 .20 
~ 

363 
760 

fl 
1.73 
3 . 29 

1. ~9 
3.02 
L::.. 

379 
770 

fl rl 
1.77 1.60 

- - -- 3.1 8 

1.65 
3.06 
A 

1.68 
3 .1 7 
.6. 

372 
749 

f) 
1.48 
2.9 1 

374 
769 

20.6" 

Figure 5. - Measured strains € x x 104 in direction of loading. Top 

values are for a total load 4P of 1475 pounds; bottom values are for 
a load of 3)16 pounds. Rosette, 6 ; simple strain gage, n. Drawing 
not exactly to scale. 
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Figure 6. - Measured strains € y x 104 transverse to direction of loading. 

Top values are for a total load 4P of 1475 pounds; bottom values are 
for a load of 3016 pounds. Rosette, 6. For dimensions see figure 5. 
Drawing not exactly to scale. 
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980 972 96:3 1000 

4.5:3" 4.5:3" 4 .5:3" i 
6" 

~4.06" M 4.06" 4.06" m 4.06"~ n m5.01 :3.77 :3.82 4.80 
ttl (4.26) (:3.84) 

10.3" 

- .504(-0.295) 
.61 ( 1 .62 X =9.2" 
.27 (0 

4 . 13 
32.6" - .80 

.28 

:3.91 (4.00) 
-.79 (- .488) 
.25 (O) 

4 .74 :3 .73 2 .23 3.81 4.68 

1040 1050 998 1020 

~o---------- 18.5" .1 
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3- ~---X----/ th 
2- .~ 
1- (EX\::9.2" against y ~ 
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-3 
-2 
-I 
-0 

Figure 7. - Strain measur ements on plane sheet with r einforced cutout. 
Total load, 4020 pounds ; rosette, 6. ; Simple strain gage, rol; values 
in parentheses are corresponding theoretical values for reinforced 
cutout but fo r an infinite sheet (s ee appendix G). For each r osette, 
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the top, middle, and bottom values are, respectively , normal t r ansverse, 
normal radial, and shear strain times 104. For each simple gage, 
values given are those of axial str ains € x x 104. 
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Figure 8. - Contribution of curvature of cutout ring to extension at outer 
. . .. d 

boundary of ring. lit 1 = ~ - ur 2a . 
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