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The analytical methods that appear to be best suited to the treatment 
of two-dimensional flow with detached shock waves are reviewed, and a short 
discussion of the applications of these methods is given without details or 
proofs.

ITTRODUCTION 

The transonic flow theory has been considerably improved in recent 
years. The problems at subsonic speeds of a moving body concern chiefly 
the drag and the problems at supersonic speeds, the detached arid attached 
shock waves. Inasmuch as the literature contains some information that is 
valuable and. some other information that is misleading, the purpose of 
this paper is to discuss those analytical methods and their applications 
which are regarded as reliable in the traonic range. After these methods 
are reviewed, a short discussion without details and proofs follows to 
round out the picture.

SYMBOLS 

M	 Mach number 

u, v	 velocity components along x and y axes, respectively 

V	 velocity 

x, y	 coordinate axes 

y(x)	 body contour 

=	 = tan 13 

yl' =
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J3	 body angle; deflection angle 

y	 ratio of specific heats 

€	 shock angle 

BASIS OF THODS 

Sharp Deflections 

Within the theory of the ideal incompressible fluid nothing is more 
reliable than the -values of the velocities at which the flow passes sharp 
corners. (See fig. 1.) The velocity V is always zero when the flow 
passes a concave corner and is Infinite when the flow goes around a convex 
corner. The behavior of a subsonic flow is mainly the same as that of 
an incompressible flow and, therefore, the zero value of the velocity at 
concave corners remains the same. Only the fact that the upper limit of 
the subsonic velocities is finite makes It necessary to surrender the 
convex corner to the transonic or the supersonic range. 

The supersonic stream has a quite different method of passing sharp 
corners. At limited angles of deflection the supersonic flow turns 
sharply around the corner without exceeding the normal order of velocities. 
The angle limitations, however, depend upon the fact that the supersonic 
velocity range is a limited one, bordering on subsonic speeds or on vacuum. 
Consequently, a simple supersonic deflection occurs at small angles; the 
larger angles may belong to the subsonic stream in the case of a concave 
corner or to the cavitation effects in the case of a convex corner. 

The flow around both kinds of corners was treated In 1908 by 
L. Prandtl and T. Meyer (reference 1), who obtained a unique solution only 
in the case of the convex corner. As soon as a deflection of the opposite 
sense occurs or, more precisely, as soon as the angle of a concave corner 
is given, the number of possible solutions is unfortunately even, there 
always being two solutions for the smaller angles and no direct solution 
for the larger angles. Attached or detached shocks are discriminated by 
the limiting angle and very little additional information Is required to 
settle this alternative. The choice, however, between the two solutions 
always existing for the smaller angles is more difficult; the one in which 
the lesser changes in pressure and velocity occur (the so-called weak shock) 
was supposed to be the only correct solution, but there was no reason to 
disregard the other solution. The solutions are not always a supersonic 
and a subsonic solution; near the limiting angle both of them are normally 
subsonic. Imperfect gases may even have two supersonic solutions. In 
order to settle the question whether both of the solutions are stable, 
both of them are shown in the schlieren photographs of figure 2.
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Weak or Strong Shocks 

In figure 2 the black parts are the shadow of an intake having a 
tongue with a wed.ge-shaped tip in the mouth as demonstrated In the third 
photograph. When.the throat of the intake is sufficiently narrow, the 
flow ahead of the entrance may have a shock wave, some air still passing 
through the duct. In this kind, of flow the tongue moved slowly toward 
the shock wave. At first, the shock remained almost independent until the 
wedge came very close to it; then, the shock tried to avoid the wedge 
moving upstream. This reaction, however, ceased quickly and the wedge 
reached the shock. In this position only the strong attached shock was 
obtained. When the wedge was moved farther ahead, the attached shock was 
consistently the weaker shock. The dissyixnetry of the arrangement made it 
possible to show both solutions in the same photograph on either side of 
the wedge. These photographs were taken in 19 )42 from a motion picture 
dealing with intakes having a central body of revolution for better pressure 
recovery. Inasmuch as a cone did not clearly show a similar effect - the 
sudden jump from one of its solutions to the other - as was expected, the 
two-dimensional wedge in the same circular mouth was tested and led to 
these convincing results.

The Shock Polar 

The original representations of the possible deflections of supersonic 
streams as they were made by Prandtl and Meyer showed all these features in 
a satisfactory manner, and it was merely the use of the graphical methods 
of characteristics which led to another kind of representation - the 
so-called shock polar. (See fig. 3 . ) The shock polar connects by a curve 
all the different velocity vectors in which a given supersonic velocity 
has the choice to jump in a shock. If a polar diagram for the velocity 
vectors is used, not only are the value and the angle for the original and. 
the deflected velocities obtained but also the direction of the vector 
difference connecting the former and the new velocity arrow, which in turn 
gives the deceleration brought about by the pressure increase. The shock 
wave front is therefore perpendicular to the vector difference, and the shock 
polar shows, at the same time, the angle of deflection	 and the angle of 
the oblique shock . 

The shock polar for perfect gases is one family of curves depending 
upon only one parameter, as is represented in figure )4. The numbers at 
the different curves indicate the Mach number M, and the scale at the 
axis on the left of the circle indicates the location of the velocity pole, 
the center of the polar diagram depending on the ratio of the specific 
heats 7 . This diagram shows that the maximum deflection changes with 
the ratio of specific heats at a given Mach number in that smaller 7 
corresponds to higher deflections and vice versa.
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The whole family of curves has a very simple rule of construction. 
Choosing one point on the circle with the radius r and. connecting this 
point with all the other points of this same circle provide a system of 
vectors ending at the circle. Now it is only necessary to reduce all 
the vectors by removing sections that have the constant projection (not 

the constant length)	 in order that the reduced vectors end on the 

member of the family corresponding to the Mach number M. The pole 
distance for a given ratio of the specific heats 7 is just 7r from 
the center of the circle. This graphical representation, even though 
its accuracy may not be sufficient for all purposes, shows almost 
instantly the solutions of oblique-shock-wave problems. 

A blunt body in two-dimensional flow has a detached front wave 
(fig. 5) which contains the different points of one particular shock 
polar, as the free-stream velocity remains undisturbed. ahead of the shock 
wave; thus, the different points of the shock polar representing at 
first only independent possibilities now are continuously connected 
with their neighboring points. The successive streamlines of the flow 
pattern change their states in passing through the bow wave according to 
successive points of the shock polar. Bow waves of different bodies at 
the same Mach number differ in shape, but corresponding points of the 
shock polar have the same deflection of the streamline and the same 
direction of the front wave; the first unequal feature is the difference 
in the radii of curvature. On the other hand, it is known that a 
difference in scale of the body leads to a similar flow, pattern. The 
result is, therefore, that the similarity of the local flow pattern behind 
a shock wave at regular points in two-dimensional flow covers one more 
successive point on every streamline, which predicts the changes in pressure 
and. direction along the streamline. When this information is plotted in 
the velocity diagram, the initial directions of the streamline at every 
point of the shock polar ar.e given independently of the special shape of 
the body. These initial directions make the shock polars more useful. 
The polar including the initial directions of the streamlines, the so-
called Uhedgehoght or porcupine (fig. 6), represents the complete boundary 
conditions along the front wave; this information is very valuable, 
especially in solving the whole problem in the velocity plane. The 
differential equation of the flow is linear in the velocity plane. When 
the shape of the body can also be transferred to the velocity plane before 
the problem is completely solved, the whole situation is simplified. In 
the other cases the plotting in the velocity plane reverses the boundary 
conditions; this reversal makes the front wave fixed and the body shape 
undetermined instead of the normal aspect in the physical plane of the 
flow, where the body is fixed and. the front wave undetermined. When the 
linearized differential equation that Is gained. is considered, the 
exchange of the fixed and. the loose boundary condition may be a valuable 
asset.
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Before the development of the detached shock problem is further 
considered, a few other things should be mentioned - first of all, the 
investigators who used. these ideas in former times. L. Crocco (reference 2) 
made the first real computations of the flow pattern behind. a shock wave 
by means of his so-called "new stream function." He especially pointed 
out the connection between streamline and. shock curvature and. the fact 
that there is a special point on the front wave or the shock polar at 
which the streamline has no curvature, even when the shock wave has a 
finite curvature. The "Crocco point" in the velocity diagram has the 
radial "spine" of the hedgehog - that is, an expansion without a change 
in the direction of the velocity. This point is situated between the 
maximum deflection and the sonic state behind the shock. Perfect gases, 
therefore, have the Crocco point always at subsonic conditions. This 
point will be seen to be of a special significance. 

A real application of the whole hedgehog idea was made by F. Frankl 
(reference 3) in 1911.14., and in this paper he proved the uniqueness of 
the detached-shock-wave problem when a contour of the body is arbitrarily 
given in the velocity plane. This application is mentioned. again subse-
quently.

The Entrance Corner of the Supersonic Portion 

One more clue is needed in order to solve a problem in which the 
boundary conditions can be plotted in advance in the velocity or hodograph 
plane. This clue is offered by the transonic theory which deals with the 
behavior of the flow near the entrance and exit corners of a imixed subsonic 
stream. (See reference 14..) In a genuine potential stream, the sonic 
portion can only border a convex contour of the body. Without a convenient 
convex contour, only its entrance corner is free of singularities and 
requires, therefore, a convex bordering streamline. The exit of the 
supersonic portion contains one shock wave or a series of shock waves 
and does not require a special shape of the body for its existence. In 
figure 7 a genuine potential stream containing a supersonic portion is 
represented. Here the characteristics or Mach lines within the supersonic 
portion that is bounded by the sonic line necessarily represent expansions 
in the family arriving at the sonic line and necessarily represent com-
pressions starting at the sonic line. This phenomenon causes continuous 
pressure changes of both signs but streamline deflections always in the 
same direction fitting only a convex body. On the other hand, the 
restriction of nothing but expansions in one family and nothing but 
compressions in the other family cuts the general choice - both possi-
bilities in both families - down to one-quarter, and this reduction may 
be regarded as the reason for the rarity of genuine mixed streams without 
shock waves. The exit cornr is normally disturbed by resulting shock 
waves in order to satisfy the boundary conditions along the entire body 
contour. More important in the present problem, however, is the fact that 
the entrance corner to the supersonic portion must be smooth, and, therefore, 
can only border a convex streamline of the body.
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It should be emphasized that, generally, the conditions that result 
if the presence of shock waves in the stream is tolerated. can easily be 
satisfied. The particular condition that a bo&y in a parallel stream has 
to have at least some convex parts of the contour to let the stream enter 
the supersonic regime is almost a triviality. There is a great variety 
of bodies having nothing but convex curvature, whereas a body without 
any convex part is imposstb1e. As the following applications use bodies 
having sharp corners, it is perhaps necessary to say that sharp convex 
corners belong to the convex parts of the contour according to their 
total angle of deflection. Only in this sense the statement holds - 
that the two-dimensional contour of a solid body is predominantly convex. 

The transonic result, that the entrance to a supersonic region 
requires a convex contour, and the subsonic result, that a sharp convex 
corner of a body necessarily makes the velocities exceed the subsonic 
range, lead to one of the most reliable facts for the flow around polygons. 
The subsonic stream is not able to pass the slightest angle of a sharp 
convex deflection and the supersonic regime cannot be entered without 
the help of the convex at the corner; therefore, the only possibility is 
that the sonic line starts at the corner and is followed by a Prand.tl-
Meyer flow around the corner. (See fig. 8.) The direction of the sonic 
line is, according to the Prandtl-Meyer corner, at first perpendicular to 
the last subsonic streamline and then bent arOund the corner (in agreement 
with J. W. Maccollts assumption in reference 5) . The compression waves 
starting at the sonic line lead to a shock-wave pattern as there is no 
other way left to make them stop. 

APPLICATIONS


The Finite Wedge 

llodoraph treatment. - With this inforznat ion about the transonic flow 
there is a special case which can be solved in the velocity plane: the 
symmetrical wedge of finite length. The wedge of infinite length leads 
only to the attached shocks; if the wedge angle is too large to permit 
attac:hment, the whole plane in front of the wedge is a stagnation region. 
The finite wedge may end at a certain distance from the tip with a sharp 
convex angle sufficiently large to prevent the following part of the body 
from interfering with the mixed-flow pattern. This knowledge of only the 
shape determines the boundary conditions along the wedge in the velocity 
plane without any special information about the velocity distribution. - 
The stagnation point at the nose and the sonic velocity at the end of the 
sides followed by a deflection around the corner provide sufficient 
knowledge to permit a straight line to be drawn from the origin of the 
velocity plane to the sonic line in the direction of the wedge angle and 
to continue this line by the characteristic which originates there.
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(See fIg. 9 . ) Thus, both. the body and the shock wave are given boundaries 
in the velocity plane, and. the problem is to find, a solution of the stream-
line pattern satisfying the differential equation and. the boundary conditions. 

The differential equation of the stream function can be written with 
velocity components as the independent variables even in the case of' entropy 
differences, since the streamlines carry constant values of entropy. as sd'on 
as they leave the shock wave. The changes brought about by these different 
values of entropy, however, are small for transonic problems and a good. 
and well-established simplification is to use the potential stream instead. 
This usage gives the advantage of' a linear differential equation, which was 
a great help to F. Tricomi (reference 6) and F. Frankl (reference 3) in 
proving the uniqueness of' the solutions in a region between the subsonic 
part of the shock polar and. of' the bounding streamline and two supersonic 
characteristics, one of' them serving as the supersonic part of the 
bounding streamline. 

The stea&y transit from attached, to detached shocks.- G . Guderley 
(reference 7) made a contribution to the problem of detached and attached 
shocks by showing the transit between both extremes. The results are given 
In fIgure 10. He shows that the change of flow types is made in a series 
of very small steps. 

The pure supersonic flow past the wedge leads definitely to a shock 
wave which is straight up to the point where the first characteristic 
starting from the end reaches the shock. (See fig. 10, case 1.) The 
shock wave consists of a straight line and a following curved part. 

At a larger wedge angle (or at lower Mach number) the flow behind the 
attached shock becomes subsonic and must therefore be accelerated to arrive 
at sonic speed just at the end of the wedge. The whole attached shock will 
therefore. be curved right from the beginning. It is possible, however, to 
show exactly that the curvature changes from increasing to decreasing values 
as the angle of the wedge approaches the maximum angle for attached shocks. 
The most important point is the Crocco point where the initial direction of 
the streamline is radial and thus, for the wedge, is parallel to the bounding 
streamline (see fig. 10, case 3 or C) . This particular wedge angle is the 
only case that is not singular. At smaller angles of the wedge the following 
contradiction of the boundary conditions is obtained: The body contour 
representing a streamline is radial throughout the subsonic range and the 
spines of the shock polar giving the initial direction of streamlines 
prescribe an inwardly directed beginning even at the intersection with the 
body contour.. This overdeterimination, of. course, occurs at only one point, 
the intersection point, and causes a singularity there. The type of the 
singularity depends on the differential equation which throughout the 
subsonic range of the velocity plane i locally that of incompressible 
flow. A singularity which deflects a streamline suddenly to a more outward 
direction, therefore, corresponds to the incompressible convex corner of 
figure 1. The infinite value of the velocity in that diagram, expressed
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as a characteristic feature of the streamline pattern, means that.the corner 
is a point where the streamlines are crowded. Wherever the streamlines 
crowd in the velocity plane (see fig. 10, case 2), the real flow in the 
physical plane will have an appreciable area, indicated by the number of 
streamlines, where the velocity is almost uniform. This condition occurs 
at the tip of the wedge when the flow changes from the supersonic, where 
the velocity behind the shock is parallel, and. enters the subsonic range 
by enlarging the wedge angle. The velocity near the tip of the wedge still 
remains almost uniform. 

When the growing wedge angle goes beyond Crocco!s point, the direction 
of the spines at the intersection changes from inward to outward bound 
and the corresponding singularity, from a convex corner to a concave corner 
which is avoided by the streamlines. (See fig. 1.) The change of velocity 
near the tip of the wedge Is therefore rapid: (fig. 10, case ) and only the 
flow with Crocco's point as the Intersection point has a normal acceleration 
and. therefore a regular bow wave with finite curvature throughout. 

These features belong to the wedge with flat sides. It may help to 
clarify the case of the wedge with flat sides by considering briefly the 
case of the wedge with convex sides (two-dimensional ogival). In this case 
the supersonic stream already shows a continuous acceleration behind the 
shock and the curvature of the shock is finite at the tip. At subsonic 
velocities behind the shock the convex curvature of the sides causes no 
difficulty at the intersection so long as the spines are only inward bound. 
The convex sides therefore do not join the singular character of the flow 
of the flat wedge before Crocco's point Is passed.. This sudden termina-
tion of the nondegenerate flow past a convex body with a sharp leading 
edge before the maximum angle of deflection is reached was a result that 
puzzled Crocco in 1937 . After this historical digression, the case of 
the wedge with flat sides should again be considered. 

The flow past the wedge continuously changes from the pure supersonic 
flow In which the bow wave definitely starts with a straight part of 
finite length to the mixed flow in which the bow wave must be bent every-
where In the following manner: The curvature in figure 10, case 2 is 
zero at the tip and increases; In case 3, at Crocco's point, the curvature 
of the bow wave Is homogeneous; and in case ).4 it starts with infinite values 
and decreases. Thus, the point of maximum curvature shifts toward the 
tip before the detached shocks must occur. The next step may appear as 
a sophism, namely, to demonstrate that even the transit from attached 
shocks to detached shocks is a continuous one. Indeed, as soon as the 
intersection between the given bounding streamline and the shock polar 
disappears on account of the increasing wedge angle (or decreasing Mach 
number), the area of the hodograph looks quite different; it may be 
enlarged suddenly by an enormous factor. The only thing that matters, 
however, Is the velocity distribution in the physical plane around the 
wedge, and this distribution depends upon the number of streamlines that 
use the new area. It has been demonstrated that, before the shock detaches,
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the intersection point is already avoided by the streamlines and this 
tendency is increasing because, toward. the last possible intersection, 
not only the angle of the spines moves farther outward. but also the 
direction of the shock polar where these different directions are pre-
scribed comes closer to the radial. wedge contour. This state may also 
be approached from the other side, the open channel between shock poiar 
and wedge contour (fig. 10, case 5) . Being in the subsonic part of the 
hodograph where the differential equation of the stream function is 
locally like that of an incompressible flow, the channel may be treated 
as though it contained an incompressible flow. The boundary condition is 
a closed wall at one side and. a cascade of blades at the opposite wall 
represented by the spines of the shock polar. The flow turns out to be 
increasing in discharge exponentially. The discharge ratio between inlet 
and outlet of this narrow part depends exponentially on the length-
width ratio of the channel. As this ratio goes to infinity when the 
sides of the channel touch each other, the number of streamlines passing 
the lower speed range drops quickly to zero. Such a tendency means that 
the detached bow wave is still strongly bent near the tip of the wedge 
and that the pressure distribution around the wedge jumps to higher values 
in so small a region that drag, lift, and. moments are changing continuously 
or, to put it more accurately, that these forces have a finite first 
derivative with respect to wedge angle or Mach number. 

This result may surprise even the practical aerodynamicist and. shows 
how badly sometimes those things are feared which cannot be seen in their 
details. The more surprising fact is, perhaps, that not even a single 
line of computation was required to achieve this result. Putting the 
problem in its best coordinates and. realizing the singularities of the 
solutions accomplished the objective. 

The Body of Arbitrary Shape 

The body of arbitrary shape may be represented by an arbitrary 
streamline in the hodograph. (See fig. 11.) The lack of uniqueness of 
any problem caused by using two separate outlets to the supersonic 
range on either side of the shock polar disappears as the body contour 
must pass the center of the velocity plane, and there has to be a branch 
point of the streamline representing the stagnation point of the body. 
Symmetrical flows satisfy this condition always by symmetry. As soon 
as the stagnation point is settled in this way, it has been proved - at 
least for Mach numbers below 2 at any point used - that the solution 
satisfying the given boundary conditions and the differential equation 
in the hodograph is unique. As the real problem in the physical plane 
is known as unique by experiments, the fact that the body contour has 
to be assumed first and cannot be checked before the solution obtained 
by using the assumed contour is computed should not be regarded as another 
source of difficulty. This opinion has very strong support because 
experience has shown that the solutions are almost everywhere as little 
sensitive to changes in the boundary conditions as in an incompressible flow.
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It may be helpful at this point to digress in order to justify 
this reasoning by an objective procedure. An electrical analogy for the 
problem demonstrates the manner in which general solutions can be found. 
The electrical hodograph of C- . Kron of the General Electric Co. (refer-
ence 8) representing the differential equation for compressible gases, 
as exaôt as a network of finite meshes allows, gives the solution if it 
is adapted to adequate boundary conditions. The electrical analogy 
uses reactances instead of the simpler resistances for a given frequency 
of the alternating current to cover the supersonic and the subsonic 
part of the hodograph. The supersonic part requires a change in sign 
which can be obtained by taking capacitances instead of inductances. 
For the problem of detached shocks, the power supply along the shock 
polar requires electronic tubes furnishing currents proportional to the 
potential gradients along the polar. Figure 12 gives an idea of this 
arrangement. The points 1, 2, . . . of power supply and shock polar 
(subsonic part is sufficient) have to be connected. The other end of 
the power supply 0 can be connected with any supersonic point outside 
the triangle between the body contour and the last characteristic 
connecting the subsonic region directly with the body contour. A point 
not too close to this characteristic helps, of course, to overcome the 
troubles caused by the finite meshes of the net. The body contour is 
represented by disconnecting the outer part of the hodograph plane from 
the inner part along the contour. The quality of the characteristics of 
separating regions is due to the fact that points connected by a 
capacitance and an inductance in series can have vanishing reactance, 
which means that the electric current does not produce an electric 
potential difference between these points. 

DISCUSSION 

For the rest of this paper attention will be directed to the general 
problem of detached shocks, details and proofs being avoided since they 
would require more insight in the methods used than the preceding sections. 
Particular attention will be given to the practical case, the slender 
profile in the transonic speed range. In this range the shock polar is 
small (baby hedgehogs), and the body contour connects hodograph points 
representing small velocity angles over most of the contour. The result 
is a narrow strip from the origin of the velocity plane to the supersonic 
region containing the small shock polar as the only source of streamlines. 
The lower subsonic area Is therefore a long narrow bag with almost stagnation 
conditions of the 'streamline pattern. Areas containing more crowded 
streamlines are near or above that subsonic Mach number to which the normal 
shock jumps (that is almost the reciprocal value of the free-stream Mach 
number).
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If the case of slender profiles near Mach number 1 is chosen as the 
starting point because for this case the detached shock is completely 
unavoidable, the detached-shock-wave problem has the following aspect: 
The profile does not every-where contribute equally to the shape of the 
shock wave; especially the shape of the nose is relatively unimportant even 
when the distance between body and shock is smaller there than at other 
points. The shape of the subsonic part in front of the body is stabilized 
by the accumulation of masses which enlarges this regior until the outlet 
sections on both sides of the body become sufficiently wide. The region 
of accumulation corresponds to the bag in the hodograph plane at small 
velocities. The bottleneck at the outlet around the shock polar corresponds 
to the shoulders" of the profile where the streamlines of the physical 
plane finally get through. 

An easy way to find the most important parts of profiles at 
different angles of attack and at different Mach numbers is to put an 
acute-angle protractor adjusted to twice the maximum angle of deflection 
for the given Mach number over the front of the , profile. (See fig. 13.) 
The touching arcs on both sides are those shoulders which represent the 
bottleneck of the stream. Their relative positions and their curvatures 
fix the principal shape of the bow wave relative to them. (The curvature 
corresponding to the transonic similarity gets the invarient form yy/(yr)2 
rather than 

ytt.) The distance between shock and nose is an irrelevant 
length given by the relative position of the nose connected with the 
shoulders and the bow wave produced by the shoulders. An appreciable 
interaction between the nose itself and the shape of the bow wave occurs 
only when this irrelevant distance turns out to be near zero or negative 
(compare the strong shock in fig. 2). The normal case is one with a 
negligible effect of the nose, and the shape . of the bow wave is determined 
entirely by the shoulders of the body. 

The proposed use of the protractor is not just the result of the 
pure theory; it may not satisfy in every aspect but it places the emphasis 
on the actually interesting points better than anything previously proposed. 
It is devised especially to show a means for getting rid of the irrelevant 
nose distance which is misleading in the analysis of wind-tunnel results 
on different shapes at different Mach numbers. There is no doubt about the 
fact that schlieren photographs or interferograms taken from wind-tunnel 
tests at supersonic speeds are able to furnish the practical quantities 
and the theoretical solutions more easily and. correctly than even G . Kron's 
electrical analogy. They can solve the three-dimensional problem too. 
The use of the two-dimensional and axisyimnetrical tra.nsonic similarity 
corresponds to such a scientific approach. 

One thing that is always puzzling at transonic bottlenecks appears 
clearly in figure 13 - namely, that those parts which definitely are 
important for the passage turn out to be situated completely in the purely
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supersonic range where the body contour is known to be more or less 
arbitrary. The sonic line and the last characteristic which leads back 
to the subsonic range are ahead of the points of contact of the protractor. 
It is obvious, however, that the body slope must decrease to smaller 
angles than that of the maximum deflection to be sure of a closed subsonic 
portion behind the shock. 

The analogous situation at the Laval nozzle, the simplest traneonic 
bottleneck, may help to make clear this somewhat involved problem. Figure hi. 
shows that the two-dimensional Laval nozzle with curved walls throughout also 
has its sonic line and its last sensitive characteristic ahead of the 
minimum section. The arbitrary part of the shape starts before the 
minimum section is reached and still has an inwardly directed tangent. 
It is not necessary to explain that here a certain minimum of convexity 
at the walls is required to prevent interference with the settled part of 
the subsonic flow and to be free of a second subsonic portion behind a 
shock wave. The compression waves which always start at the sonic 
line require such attention. For this reason, the unavoidable compression 
lines are drawn in figure 13 also. Considerations of this type are used to 
propose the maximum angle of deflection as the simplest and most reliable 
determination of the body shoulders. 

CONCLUDING REMriRKS 

The present paper reviews the analytical methods for the treatment.of 
two-dimensional flow with detached shock waves. The emphasis is placed on 
the supersonic speed range close to Mach number 1.0 where the detached 
shock waves cannot be avoided but where, on the other hand, 'the deviations 
of the potential flow are negligible. The simplificatione brought about 
by the two-dimension1 potential flow are very desirable with respect to a 
rigorous combination of the elliptical and hyperbolical flow character in 
the subsonic and supersonic regions. With the results obtained in this way 
it is easy to see that the connection between body shape and shock-wave 
shape is far from a simple analytical one which can be represented by a 
few terms of a power-series development. Between two very sensitive arcs 
of the body front is the nose of the body with an unimportant contribution 
to the shock-wave shape. This situation is a significant detail of the 
transonic problem of detached shock waves and. should be considered in 
choosing an appropriate method of approach. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., February 1, l919
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V itO 

(a) Incompressible.

V2< Vi 

V2 > V1

(b) Supersonic. 

Figure 1.— Flow at corners. 

Figure 2.— Weak and strong shocks on a wed.ge.
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Figure 3.- Dia'ai of shock polar. (Subscripts: a, weak shock; b, strong shock.) 

Figure 4.- Shock polars for perfect gases (strophoiclès).
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C 
N NORMAL SHOCK 

M MAX. DEFLECTION 

C GROCCO CONDITION 
S SONIC POINT 

s.1. SONIC LINE

M-

C 

Figure 5.— Detach9d shock (bow wave). 

SUBSONIC	 SUPERSONIC

Figure 6.— Shock polar with streamlines (hedgehog or porcupine). 

(M.apted. from reference 7.) 
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SONIC LINE 

ENTRANCE
- 3I\	 EXIT 

,, 

Figure 7.— Subsonic flow with supersonic portion. (From reference 7.,) 

•1 

SONIC LINE-

SHOCK 

Figure 8.— Traneonic flow around a corner. (Adapted from reference 7)
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Fire 9.,— Flow past a wed.ge. (Ad.apted. from reference 7.)
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ch Characteristic 
s.l. Sonic line

2	 3 

4	 5 

Figu.re 10.— Wedge near inaxinxwn angle with transit from attached to 

detached shock shown. (Adapted. from reference 7.)
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Figure U.— Hod.og'aph traxieforination. 

lA(iNAIIQN	 SUBSONIC	 SUPERSONIC 
POINT	 HODOGRAPH 

71 1t61 IT5 It4 It3L 1t2J Itti	 Jo 

POWER SUPPLY 

Figure 3.2.— The electrical hod.ograph of G. Kron (reference 8).
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Figure 13.— Hodoaph of detached shocks. 
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Figure 14.— Two-dimensional laval nozzle.
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