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SUMMARY

_ A method has been derived by which a boundary can be obtalned that
defines a region in which there exlsts a satisfactory relationship
between the period and damping of the lateral oscillatory mode of motion,
according to any given criterion for this relationship. In addition,

a method is discussed by which curves representing a constant rate of
spiral divergence may be constructed.

The methods as presented are applicable to both lateral-stability
and longltudinal-stablility analyses.

INTRODUCTION

In lateral-stability analyses it 1s the usual practice to calculate
a neutral-oscillatory-stability boundary that is plotted as a function
of the directional-stabillty derivative Cnﬂ and the effective-dihedral

derivative 'CIB' This boundery has a special significance, since for a

particular airplans it indicates the combinations of CnB and ClB
necesgsary for oscillatory stability. Although this boundary is definitely
an aid in a stability analysis, its value 1s somewhat restricted in that

it affords no information about the variation of the period-damping
relationship throughout the stable region. That is, that region of

~ the CnB’CIB plane in which a given criterion for satisfactory relationship

of the period and damping of the oscillatory mode will be satisfied

cannot be determined from this boundary. This information can be obtained
by using the methods described in reference 1 to calculate curves of
constant period and constant damping, but because of the complexity of

the calculations involved, a more direct approach to the problem is
desirable. In the present paper a method is derived by which 1t is possible
to obtain directly a boundary, plotted as a function of an and Clﬁ’.
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that will define a region in which there exists a satisfactory relation-
ship between the period and damping of the oscillatory mode of motion,
according to a prescribed criterion for this relationship..

For the combinations of CnB and Clﬂ necessary to satisfy various

criterions for the period and damping of the oscillatory mode, undesirable
gpiral instability may be present. In view of this fact a method is also
presented by which curves representing & constant rate of spiral divergence
may be constructed. ’

SYMBOLS AND COEFFICIENTS

i
|

¢ angle of roll, radians

¥ anglerf yaw,'rédians

B angle of sideslip, radians (v/v)

v sideslip velocity along the Y-axis, feet per second

\'i . airspeed, feet per seéond

o} mass density of air, slugs per cubic foot

q dynamic pressure, pounds per square foot <%pV§>

‘b  wing span, feet

S wing area, square feet

W weight of airplane, pouﬁdé

m mass of airplane, slugs (W/g)

g accelération due to gravity, feet per second per second
Ky ‘ relative-density factor (m/pSb)

1 inclination of principal longitudinal axis of airplane with respsct

to flight path, positive when principal axis 1s above flight
path at the nose, degrees

7 angle of flight path to horizontal axis, positive in a climb, degrees
%Xd radius of gyration in roll about principal longitudinal axis, feet

k radius of gyration in yaw about principal vertical axis, feet
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Kk nondimensional radius of gyration in roll about principal
o longitudinal axis (kx Q/b)
KZ nondimensional radius of gyration in yaw about principal
o vertical axis (kz O/b)
KX nondimensional radius of gyration in roll about longitudinal
stability axis <\/KX ,200321] + K, 2sine'q
(o] 20
KZ nondimensional radius of gyration in yaw about vertical
2 2,92
stability axis <\/KZ02cos¢q + Ky _“sinn
Kxz nondimensional product-of-inertia parameter
2 _ 2
((KZO KXo > sin n cos q>
Cr,  trim 1ift coefficient <E_c§_ss_1)
: q
C rolling-moment coefficient <Rolling mpment)
1 qSb
Cn yawing-moment coefficient <Yawing moment)
. qShb
Cy lateral-force coefficient <Latera.;_ for ce)
. q .
CZ effective-dihedral derivative, rate of change of rolling-moment
B ~ coefficient with angle of sideslip, per radian (BCL/BB)
Ch directional-stability derivative, rate of change of yawingFmoment
B coefficient with angle of sideslip, per radian (BCn/Bﬁ)
CYﬁ  lateral-force derivative, rate of change of lateral-force _
coefficient with angle of sideslip, per radian (BCY/Bﬁ)
Cnr damping-in-yaw derivative, rate of change of yawing-moment

coefficient with yawing-angular-velocity factor, per
rb
radian (Bcn / 82—V>

Cn rate of change of yawing-moment coefficient with rolling-angular-

p .
velocity factor, per radian (BCn/a£$>
Cy damping-in-roll derivative, rate of change of rolling-moment
p coefficient with rolling-angular-velocity factor, per

radian (acz /%)
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C . rate of change of rolling-moment coefficient with yawing-angular-
‘velocity factor, per radian <écl B§$>

CY rate of change of lateral-force coefficient with rolling-angular-
P velocity factor, per radian (BC%/BEE> )

Cy rate of change of lateral-force coefficient with yawing angular-
T . :

velocity factor, per radian ( Y )

Cl rate of change of rolling-moment coefficient with angle of roll,

g ‘per radian ( 801/6 )

t time, seconds )

8y nondimensional time parameter based on span (Vt/b)

Dy differential operator <—-..>

Rl Routh's discriminant

M complex root of stability equation

b B3+ 4D +E=0 <_Xl-= a + iw = Re16>

en,¢n factors used in calculation of boundary of satisfactory period-

_.da.mping relationship (ey = 99;-n—n§, o = s;;i_ne for 0 Sn <k
x2 -, spiral stability root of stability equation
| Mt A B3+ 02 4Dh +E = '
P period of oscillation, seconds

Tl/2 time for amplitude of oscillatory or spiral mode to decrease to
one-half its original value

T time for amplitude of oscillatory or spiral mode to increase to
double its original value

B,C,D,E coefficients of lateral-stability equation
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EQUATIONS OF MOTION

The nondimensional linearized equations of motlon, referred to the
stability axes, used to calculate the spiral-stability and oscillatory-
stability boundaries for any flight condition, are:

Rolling

- 2 2y )= 1 1

2#D<Kx29b~¢ + KxzDb w)- Cgh + 500, D0¥ + 501 Df
Yawing

2 (K2D,2Y + Kz = Cogp + Ain Doy + 30 Dug
Sideslipping |

2“b<PbB + wa) - CYBQ.+ %CYPD£¢ + Cr ¢ +V%CYrwa + <éL tan 7)W

When ¢oexsb is substituted for ¢, Woeksb for V¥, and. Boexsb. for B
in the equations written in determinant form, A must be a root of the
stability equation

i3+l + D +E=0 (1)

where

A= 8“'b3(KX2K22 - KXZ2>

s

o
1]

2 2,2 2. 2 2 ;
-2y, <2KX KZ CYB + KX Cnr + KZ Czp - 2KXZ CYB - KXZC ZI‘ - szcnp>

2 2 2n. . 1
“b(KX Cn,Cyp * MupEx Cng + Kz°Cy Cyg *+ 5Cn,Copy - KxzC1,Cyyg

. Q
1l

- B KenCy - C Kyolyv = 2C. Cy + KyoC. Cv < Ko2Cw C
v¥xzt1, - %A fxzlyg T 50, T Baetngly, T K2 Yp¢lg

- KXQCYrCnB + KXZCYrCZé>
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1 o - ,.
D= 1% C1p0vp ~ #Ciplnp + 1%np%2,0rp * MCnpCrg * 21pC1KxzCng

- 2upCrRgPCy, - 2upKyPCn Cr, ten 7 + 2upkyzCygCr ten 7

1. _1 1
150000~ 10000 T 500,00y, * 1%, OOy

+

e

Lofo o ¢y e ek i |
E = QCL<CanzB czrcna> + 20p, tan 7<Clpcn3 CanzB>

The damping and period of the lateral oscillation 1n seconds are given
by the equations ' . : I '

<T'l/2 = '_0__523%

p - 0:693Db
2" a V

628 b
P="0 v

. where a and w are the real and imaginary parts of the complex root.
of stability equation (1). The damping of the spiral mode of motion in
geconds is given by the equations

_-0.693 b
Tipp = oV
0.693 b
S ,
ANALYSIS

Method for constructing a boundary that defines a region of satisfactory
period-damping relationship.- For the derivation of a method by which the
period-damping relstionship of the lateral oscillatory mode may be expressed
as a function of CnB and CZB, the following assumptions are made:

1. The stability equation is given in the conventional
form MY+ B3+ 2 + DL+ E =0
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2. The coefficients A, B, C, D, and E are functions of the
stability derivatives, all of which have prescribed values with the
exception of CnB and Clﬁ’

3. The stability equation has for one of its roots

A =a+ in = Relb

where
6 = tan’1 2
a
and o
., R = Ja? + of
This root A3 represents an oscillatory mode of motion, the period of
which is given by P = %g % and the time required for the amplitude of

.the oscillation to damp to one-half 1ts original value is given
by Typp -——230 :6 b. Substituting Rel® for A 1in the stability equation,

in6

and noting that = cos nf + 1 sin nB, results in the expression

ARu(cos 46 + 1 sin 46) + BR3(cos 36 + 1 sin 30)
+ CR2(cos 26 + 1 sin 26) + IR(cos @ + 1 sin 6) + E = 0 (2)

Equating to zero real and imaginary parts in equation (2) gives the
equations

ARucos LG + BR3cos 36 + CR2cos 26 + DRcogs 8§ +E =0

AR*sin 46 + BR7sin 36 + CR°sin 26 + IR sin 6 = O

Multiplying the first equation of equations (3) by cos he the second
by sin 46, and adding the two resulting equations give the expression

where

€_ _ cos nb
n =
R
Similarly, multiplying the first equation of equations (3) by sin 46, the

second by -cos 40, and adding the two resulting equations give the
expression

Agy + B@ + COy + D¢3 +E¢), =0 (5)
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where

gin nb
¢n = Rn'l

Since 6 and R are functions of the terms a and w of the root A4,
the values of the factors € of equation (4) and @, of equation (5)
will be fixed for specified conditions of period and damping. Therefore,
golving equations (4) and (5) simultaneously results in the Cnﬁ,clB

combination that satisfies any desired period and damping relationship
of the oscillatory mode.

If a suitable criterion exists for the damping of the lateral oscillatic
expressed as a function of the period, for example,

Ty /p = £(P)

this criterion will be expressible in terms of a and @ by an equatim
of the form

z0.693b _'pf2n D
a V w V

' Thus, for any given period, there exists & corresponding value of the
damping term & necessary to satisfy the criterion. The terms ¢,
of equation (4) and terms @, of equation (5) are expressed in terms

of R and 6, which are functions of & and o (? = a2 + o°

and 6 = tan™l @Y, fherefore, curves showing the variation of €,
a.

and ¢n with the period of the oscillation that will satisfy the given
criterion can bs constructed. For any value of the perlod P the
values of €, &and ¢n may be taken from these curves and substituted

in equations (4) and (5). The corresponding Cnﬁ’ClB values may then

be determined from a simultaneous solution of these equations.

It is important to note that the method described 1s applicable
to any criterion for satisfactory damping of the oscillatory mode
expressed as a function of the period. If the criterion 1s expressed
in terms of the number of cycles required to damp to half amplitude,
that 1is, Cy/p = f(P), the preceding method can still be applied

T1/2
since Cl/2'= __é_.

General procedure for use of the method.- In the analysis of a
glven airplane the coefficients A, B, C, D, and E of equation (1) are
evaluated in terms of the known or prescribed values of all the
stability derivatives except two /usually CnB and ClB which are left in

gymbolic form. A point on a curve, plotted as a function of the two
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derivatives chosen to be varlables, defilning the region of satisfactory
period-damping relationship is obtalned in the following manner: For an
arbitrary value of the period 7P, values of € and ¢n are taken from
previously constructed curves that satisfy the desired criterion for
period-damping relationship of the oscillation. These values are substi-
tuted in equations (4) and (5), together with the expressions for the
coefficients A, B, C, D, and E. The two equations are then solved
simultaneously for the variable derivatives. By repeating the process
for successive values of P +the desired boundary will be obtained. In
order that the significance of the boundary thus obtained be clearly
understood it is necessary to know on which side of this boundary there
exists a satisfactory perlod-damping relationship according to the pre-
scribed criterion. A method for obtaining this information is discussed
in appendix A.

Application of the method presented to longitudinal-stabillity analyses.-
It should be pointed out that the methods presented herein are not limited
to an analysis of lateral stability but can be readily employed in the
longitudinal-stability analysis as well. If a suitable criterlion exists
for the period-dsmping relatlionship of the longitudinal oscillatory mode
of motion, curves of @p and €n plotted against P cen be constructed
and points on a boundary defining the region in which this satisfactory
relatlionship exlsts between the period and demping of the longitudinal
oscillation can be calculated. The coefficients A, B, C, D, and E +to
be used in the simultaneous solution of equations (4) end (55 for the
longitudinal case must, of course, be the coefficlents of the longitudinal-
stability biquadratic. The variables of Interest become, instead of CnB

and CzB, any two appropriate parameters for longitudinal stability.

Method for constructing curves of constant rate of spiral divergence.-
For the combinations of CnB and CzB necessary to satisfy various cri-

terions for the period and damping of the osclillatory mode, undesirable
spiral instability may be present. In vliew of this fact it 1s desirable
to know something about the divergence gradient throughout the CnB,-CzB

plane.

The usual method of obtaining this information involves the solutlon
of a series of stability biquadratics, often a rather laborious procedure.
The following method 1s presented which gives the desired information with
a minimum of calculations. '

Assume that the lateral-stability bilguadratic (equetion (1)) has as
one of its roots A = Ao. This substitution for A 1in equation (1)
resulis in the expression

AAQM

where the coefficients A, B, C, D, and E are functions of Cpn, &nd ClB
as before. If Ao = 0, equation (6) is reduced to the equation 'E = 0,
which defines the boundary of neutral spiral stability. However, if A, 1is

+BhyS + Chp2 + Dy + E = 0 (6)
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agssigned a finite value representing a given rate of divergence, equa-
tion (6) becomes a definite function of CnB and CZB. The solution of this

resulting equation for a sequence of values of CnB gives the corresponding

values of Cz on a curve representing a constant rate of divergence of

the spiral mode of motion. These curves can be constructed for as many
values of Xe as may be necessary for an adequate analysis of the

spiral instability of a particular airplane.
JLLUSTRATIVE EXAMPLES AND DISCUSSION

In order to meet the present Navy-Air Force flying-qualities requirement
(references 2 and 3) the period and damping of the lateral oscillation
must satisfy the following criterion:

T, =1.5 (0<Pg2)

1/2 =
. . (1)
T

lm‘ejP—}5 (2§P§M

This criterion is illustrated in figure 1.

"As an example of the methods presented, calculations were made for the
hypothetical high-speed airplane described in table I by using equation (7
as the criterion for satisfactory damping of the lateral oscillation.

€n o n
n and n-1
(v/p) (V/p)
of the period P are presented in table IT and the variations of these
factors with P are shown in figure 2. Note that the ordinates in figure 2

The values of the factors for a sequence of values

are —2— and —2_ rather then ¢, and f_ 1in order that the
(V/p) (v/v)

curves 1n figure 2 will apply for any airplane at any flight condiﬁion if
the criterion described in equation (7) is used.- For a number of values
of P, the values of € and ¢n were ‘determined from these curves -and

were then substituted in equations (4) and (5), and the corresponding
Cnﬁ’czp values were obtained from a simultaneous solution for these

equations.

The boundary, plotted as a function of Cn and CZ >
’ B B
region that satisfies the period-damping relationship given by equation (7)
is presented in figure 3. For purpose of comparison the neutral-oscillatory-
stability boundary (Ry = 0) for this airplane is also plotted in figure 3.

defining the
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From inspection of the R, =0 boundary this airplane is seen to be

1

oscillatorily stable for almost any combination of C, and CZB shown

. B
in the figure. This boundary, however, gives no indication of the degree
of stability present at any point in the quadrant. The curve defining
the Navy-Air Force criterion for satisfactory damping of the lateral
oscillation clearly shows that the criterion is satisfied in only a
relatively small part of the stable region of the CnB,CZB plane.

Figure 3, therefore, clearly illustrates that the stability of a given
airplane cannot be accurately evaluated by merely constructing the Rl =0

boundary and noting on which side of this boundary stability exists.

Additional calculations were made in order to obtain curves of

- constant rate of spiral divergence for this airplane, and the results are
presented in figure 4. Should a criterion for the rate of spiral diver-
gence be established, it will then be sufficient in a given spiral-
stability analysis to plot only the curve representing that rate of -
divergence. '

The roots of the lateral-stability biquadratic usually indicate the
presence of one periodic and two aperiodic modes of motion. If this be
true, only one curve defininglthe regibn-of satisfactory period-damping
relationship of the periodic mode would exist. If, however, the roots
indicate the presence of two periodic modes of motion, two or more branches
of this curve may exist. '

Thus, reference 4 shows that for an airplane equipped with an
automatic pilot that applies aileron control proportional to the dis-

placement in roll, the roots of the stability equation will represent two
oscillatory modes of motion. Calculations were made for this configuration
by using the stability derivatives and mass characteristics presented in
table I of reference 4. Points on the boundary .of satisfactory period-
damping relationship were calculated for CZ = -0.10 Dy using as

variables the directional-stability derivative CnB and the deriva-
tive CZ¢ due to the automatic pilot. The equations and coefficients

presented in the section .entitled "Equations of Motion" were modified to
take into account the derivative CZ in the same manner as was done in

reference 4.

The results of these calculations are presented in figure 5. For a
number of points in the CnB’CZp plane, roots of the stability equation
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were calculated in an effort to understand more clearly the significance
of each of the branches of the boundary presented in this figure. The
results of these calculations are given in table III. ‘At point A the
.roots represent two periodic modes, neither satisfying the Navy-Air Force
criterion. Upon passing through the branch of the boundary in the upper
quadrant to point B, the period-damping relationship of one of the
periodic modes becomes satisfactory while the other remains unsatisfactory.
At polnt C the relationship of the unsatisfactory modes has improved some-
what and the other mode remains satisfactory. At point D the previously
satisfactory periodic mode has become two aperiodic modes, one of which

is unstable. The period-damping relationship of the. periodic mode is now
satisfactory. At point E the periodic mode has again become unsatisfactory
and the two aperiodic modes are stable. Thus, the only part of

the CnB’Clp plane that completely satisfies the Navy-Air Force criterion

is that area on the unhatched side of the branch of the boundary appearing
in the lower quadrant. It should be pointed out that although the
oscillatory mode satisfles the Navy-Air Force criterion within this area,
the instability of one of the aperiodic modes is such that the region '
may be of little practical value.

CONCLUSIORS

The following conclusions were made from a theoretical investigation
to develop a method of calculating & stability boundary that defines a
region of satisfactory period-damping relationship of the oscillatery-
mode of motion:

1. Through use of the methods presented a boundary can be obtained
that defines a region in which there exists a satisfactory relationship
between the period and damping of the lateral oscillatory mode of motion,
according to any given criterion for this relationship.

2. A method is also presented by which curves representing a constant
rate of spiral divergence may be constructed.

3. These methods, which are developed in detail herein for the
analysis of lateral stability, are adaptable as well to the analysis of
longitudinal stability.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., February 23, 1949
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APPENDIX A

A METHOD FOR DETERMINING ON WHICE SIDE OF THE BOUNDARY
OF SATISFACTORY PERIOD-DAMPING RELATIONSHIP
A GIVEN CRITERION IS SATISFIED
If the stability biquadratic has for one of its roots A = & + Lo,

it can be shown from reference 1 that the following parametric equations
are satisfied '

£ - Qf3=oA | | (A1)
f;ufz + u2f), =0 - (A2)
wherse
b= o
£ = Aal + Ba3 + Ce® + Da + E
Afl = 4Aa3 + 3Be® + 2Ca + D |
fp = 6Aa® + 3Ba + C
f3 = hpaa + B
£, = A

The coefficients A, B, C, D, and E appearing in the expressions for f,
f1, fp, f3, and f); are those of the characteristic stability equation.

These coefficients are functions of the stability derivatives, two of
which are assumed to be varlable.

If the parsmeter u 1s eliminated between equations (Al) and (A2),
the expression obtained is

(fpf3 - f1£4)1 - £3°F = O o (a3)

This equation represents a curve of constant damping a, and the frequency
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of the oscillation at any point on the curve can be calculated by using
equation (Al). If a = O, equation (A3) reduces to the familiar expres-
sion for the neutral-oscillatory-stability boundary (BC - AD)D - B°E = 0.

Now, for every point on the boundary of satisfactory period and
demping, plotted as a functlon of any two arbitrary derivatives x and y,
a root A} =a + iw will exist that exactly satisfies the prescribed

criterion. Assume that at a particular point on the boundary (xl,yl) the
root is A} =&y +iw}. If a=4a) and x =3 = x] + AX be substi-
tuted in equation (A3), the value y = yo, which 1s located on a curve

of constant demping, can be calculated. By substituting aj, xp, and yo
for a, x, and y, respectively, in equation (Al) the value of u, and
hence uwp, 18 determined at the point (xp,yp). If the root &; + iw, at
point (xg,yE) satisfies the prescribed criterion, the region in which
this point is located is the satisfactory region with respect to the
boundary defining the criterion. :

An imaginary value of up» at point (xp,yp) indicates that.no com-
plex root with the real part equal to a; exists at this point, since >
must be real if the root aj; + iwp 18 to represent an oscillation.

That 1s, aj + 1wy will represent two real roots and before the

point (3‘2:3'2) can be established as satisfactory or unsatisfactory, the
other two roots of the stability equation must be determined. However,
if Ax 1s chosen small enough, wo will be real.

In general, the satisfactory region may also be readily identified
1f roots of the stability biguadratic are calculated at several points
of interest. A method of evaluating the roots of a quartic equation is
presented In appendix B.
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APPENDIX B
METHODS FOR EVALUATING  THE ROOTS OF A QUARTIC EQUATION

Various methods exist for evaluating the roots of high-order poly-
nomials (references 5 and 6). Many of these methods, although highly
accurate, become rather laborious in actual application.

A method developed by Lin (reference 5) and independently by Doris
Cohen of the NACA (unpublished) affords a means of evaluating roots of
high-order equations with a minimum of computation. This method is
basically one of synthetic division and under certain conditions, which
are discussed subseguently, the desired roots can be obtained very

rapidly.

In order to illustrate the method consider the quartic equation

VimdioZsmrE=0

As a first approximation, assume that the equation has the quadratic

factor A + A + k whé;é J = g and k = %- Division may then be
performed as follows: .

A2+ (B-gh+C-k- B -
A2+ Pk A+ B3O+ DN+ E

[C-x-3B-02+[D-xB-Hr+E
[ -x-JB- I +3[-%x-3B-9*r+k[C-k-JB-J)]

Remainder

If the remainder is equal to zero or negligible, the two quadratics
obtalned are good approximetions to the factors of the quartic equation.
If the remainder 1s not negligible, the procedure is repeated by using
as the second approximation the factor A2 + J™ + k' where

v __D-Xk(B- 1)
R e - R )
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and

E
C-k-JB-1J),

k' =

This operation is continued until the remainder is negligible. The results
usually converge rapidly if the frequencies of the two modes are of differ-
ent orders of magnitude or if the. quartic equation has small real roots.

The usefulness of the method is greatly reduced in cases where the results
converge slowly. .

A substitute method has been derived by the authors to be used as a
means of obtaining the roots of. the quartic equation if the method of
reference 5 converges slowly. .

It can be seen from the division performed previously that
if A2 + JA + k 18 a factor of the quartic equation, two parametric equa-
tions must be satisfied namely : :

D- k(B -3 =3[ - k- 3B~ )

kfc - x- 3(8-3)]

The method consists in solving these two equations simultaneously for J
and k. A convenient procedure 1is as follows:

(B1)
E

Equations (Bl) are rearranged in.the form

B-PB+-D
23 - B ’

X - =0

, (B2)
¥ - (J -JB+C)k+E 0

The first of equations (B2) is readily solved for k for any given

values of J. A serles of corresponding values of J and k are computed
in this way. For each corresponding- J and k . the value of the left-
hand side of the second equation of equations (B2) is evaluated. This
value is plotted as ordinate against § as abscissa.- The intersection

of the curve with the j-axis evidently determines the solution for J.

The solution for k is obtained upon substitution of this value of J

back into the upper equation. The values of J and k thus obtained

may be substlituted back into the. lower egquation to check the solution.

The methods presented are readily adeptable to equations of any even
order. In the case where an uneven-order equation should appéar, the
logical procedure is to obtain a real root by synthetic division and there-
by reduce the equation to an even order.
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TABLE III

NACA TN No. 1859

NATURE OF ROOTS OF STABILITY EQUATION

IN Cng,Cry PLANE

Point
(see fig. 5) T e T P
10.65 _——— 4.95
A
3.08 -—— 1.19
9.95 ---- T-05
B
3.16 ———— 1.53
T 072 s=e= 30 2
c
3.50 ---- - 2.16
1.02 1.65 Aperiodic
D ) .
1+ 20 =T=- 3 '15
. ezggﬂ | ---- | Aperiodic
--=- 2.39 793
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with P for the Navy-Air Force damping-period criterion. The values
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