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SUMMARY

With the assumption that Berthelot®s equation of state accounts
for molecular size and intermolecular force effects, and that changes
- in the vibrational heat capacities are given by a Planck term,
expressions are developed for analyzing one—dimensional flows of a
diatomic gas. '

The speclal cases of flow through normal and oblique shocks
in free air at sea level are investigated. It is found that up to
Mach numbers of 10 the pressure ratio across a normal shock differs
little from its ideal gas value; whereas at Mach numbers above 4
the temperature rise is considerably below and hence the density
rise is well above that predicted assuming ideal gas behavior.
The effects of gaseous imperfections on oblique shock flows are
studied from the standpoint of their influence on the 1ift and
pressure drag of a flat plate operating at Mach mumbers of 10 and
20. The influence is found to be-small.

IRTRODUCTION

A wide variety of problems in compressible flow has been
solved on the assumption that air behaves as an ideal diatomic gas.
This assumption 1s Justified, provided the pressure and temperature
range of interest i1s small and near atmospheric. It is an experi-
mental fact, however, that when alr is subjected to large changes
in state at pressures and temperatures far removed from atmospheric,
it ceases to obey the simple gas law and exhibits other properties
not characteristic of an ideal gas. Consequently, flow processes
in which air is subjected to these extreme conditions can be
expected to depart from perfect gas behavior. It is known that
such flows will be encountered by aircraft flying at high supersonic
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speeds and in hypersonic wind tunnels; hence, the nature and extent
of this departure have become important considerations in aerody-
namics.

Classical theories and experiments have shown that three
properties of a real gas first cause it to exhibit characteristics
unlike those of an ideal gas. These properties may be classified
as thermal and caloric imperfections. Thermal imperfections in
the form of intermolecular forces and molecular size effects are
significantly manifest at low temperatures and high pressures.
Changes in the vibrational heat capacities become an important

. caloric imperfection at relatively high temperatures. Circumstances
under which-effects of molecular dissociation and electronic excit-
ation become important (e.g., temperatures appreciably above 5000° R)
may be neglected for the present. Insofar as gases in equilibrium
are,doncerned, it is usually sufficient to account for intermolec—

rular force and molecular size effects with additional terms in the
equation of state. Similarly, changes in the vibrational heat
capacities of the molecules may be accounted for with a function

of temperature in the expressions for the specific heats.

Tsien (referénce“l) investigated the effects of gaseous
inperfections on air flows using Van der Waals state equation.
Approximate solutions to the one—dimensional isentropic and normal
shock equations were obtained. (He points out two very early
papers of limited scope on the subjJect by A. Busemann and
W. J. Walker.) The Joule-Thomson effect was neglected in Tsien's
analysisl, however, thus introducing gome srror. Donaldson
(reference 2) observed this error and found that the differential
equations of motion could be integrated to yield one—dimensional
isentropic flow equations, exact to the accuracy of Van der Waals
equation. A comparison of results obtained with these equations
and the flow equations for a perfect gas indicated that appreci-
able error would be made if the latter expressions were used to
predict aerodynamic phenomena involving high temperatures or high’
pressures,

A matter considered by Kantrowitz"(reference 3) is the
inability of a gas composed of polyatamic molecules to instan—
taneously adjust its internal energy to temperature changes at high

 This error is reported to have been subsequently corrected; however,
the author is unaware of the publication.
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temperatures, This time lag in equilibrium partition of energy
occurs primarily in the vibrational energies of the molecules
which, unlike the translational and rotational energies, require
many collisions per molecule to became fully adjusted to a new
temperature. As pointed out by Khntrowitg for rapidly acceler—
ating flows the resulting heat-capacity lag causes an entropy
increase and hence a total-head decrease in a gas. The net effect
may be made negligible, however, by decreasing the rate of change
of temperature of the fluild with time. In the special case of flow
through a normal shock wave, Bethe and Teller (reference 4) found
that heat—-capacity-lag effects caused the thickness of the shock

to increase, (The wave is considered to extend over that portion of
the fluid in which equilibrium partition of energy does not prevail,)
As the Mach number upstream of the wave increases, however, the
shock tends rapidly toward a sharp discontinmuity. It may also be
observed that, although heat—capacity lag influences flow within
the shock, 1t does not alter the magnitude of the entropy increase
across the shock, as this is independent of the mechanism by which
available energy 1s dissipated within the wave, These observa—
tions are important for they lend support to the simplifying
assumptions that moderately accelerating flows may be treated as
isentropic except in the presence of a shock wave, in which case
the wave may be treated as a discontimuity and the properties on
both sides calculated as if there were no heat-capacity lag.

In the present paper, one—dimensional flow equations are
obtained with the ald of Berthelot's equation of state. This equa—
tion, rather than Van der Waals, is employed in order that scmewhat
better estimates of intermolecular force effects may be obtained.

It 1s assumed that caloric lmperfections may be accounted for with
a Planck term in the expressions for the specific heats. The
analysis covers both isentropic and plane—shock flows. Within the
limitations of the assumptions, both exact and approximate flow
equations are developed. The approximate expressions provide
explicit solutions for all the important flow parameters, and are
designed to utilize data available on the theoretical behavior of
an ideal diatomic gas., (See, e.g., reference 5.)

SYMBOLS

a local speed of sound, féet per second

A nozzle cross—sectional area, aquare feet
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b molecular size constant, cubic feet per slug

c Intermolecular force constant, oR, feet to the fifth per slug,
second squared

cp specific heat at constant pressure; foot—pounds per slug, °r

¢y specific heat at constant volume, foot—pounds per slug, °r

e base of natural logarithms, 2.718, ', .
Iln logarithm to base e

M Mach number (ratio of local valocity to local velocity of

sound )
P absolute préssure, pounds per square foot
R gas constant <l715.-£ut;—13§ for air> s foot—pounds pér slug °r
T absolute temperature, °r
u internal energy, foét—founds per slug
v local velocity, feet per second

v specific volume <Ei>, cubic feet per slug

w external work performed, foot-—pounds per slug
7  ratlo of specific heats (cp/cy)

o] mass density, slugs per cubic foot

6 molecular vibrational energy constant, °R

Subscripts
e} stagnation conditions
1 conditions upstream of shock wave
2 conditions downstream of shoék wave

i 1deal gas quantities
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Superscripts
* quantities at the nozzle throat
! quantum—-mechanical functions
ANALYSIS

It will be assumed throughout the analysis that the gas exhibits
no heat-capacity lag. Shock-free flows are considered isentropic,
and -flow through plane shock waves 1s assumed to be adiabatic. Justif—
ication for the first two assumptions 1s discussed i1n the introduction.
The extent to which plane shock processes, particularly at high Mach
numbers, deviate from adiabatic behavior is left for future investiga—
tion.

Berthelot's equation of state is employed in two forms, depend—
ing upon the desired range of applicability. In the development of
equations for investigating flows over a wide range of Mach numbers,
temperatures, and pressures, the state equation is used in its exact
form,

p - PRT__ cp? ,
Tp T , (1)

where b 18 the molecular size constant and ¢ is the inter—
molecular force constant. It will be noted that equation (1) differs
from Van der Waals equation by a factor of T in the intermolecular

force term. The introduction of this factor ylelds a variation of
intermolecular force with temperature which is in accordance with
experiment. (See, e.g., reference 6.) Thus, as pointed out in
reference T, close agreement between theoretical and experimental
values of compressibility of gases is obtained.

In the derivation of approximate flow equations an expression
of the form -

P = pRT (1l+bp — RT2) (2)

is employed. This equation is, of course, & first-order approxi-
mation to equation (1).

Flow of a Diatomic Gas Obeying Berthelot's Equation of State

Isentropic flow of a Berthelot gas may be studied with the aid

- of the differential 1sentropic expansion equation,
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(3 (&) (éz) @
dp+dw-av>po+aTvdT+Pdp-O (3)

8é> o
— = ¢y
3/
and the Joule-Thomson effect is given by
, 2
91) =T -33> —p- 2P (&)
ov oT T
T P

Combining these expressions and substituting the value of P from
equation (1) yields ‘

where

i

) c RT
cvdT—po—mdp-O (5)

Now the differential expression for cy 1s

Ov) g (2
v /g T\,

which, upon substituting from equation (1), méy be integrated to give
Cy = cv' + '—T—z— (6)

where dv' is a function which describes the quantum-mechanical
variations of cy with temperature. The second term on the right
of equation (6) represents the effects of gaseous imperfections on
Cvy.

The function chosen for cy'! 1s determined by the molecular
structure of the gas under consideration and the temperature range .
over which accurate predictions of cy' are desired. For aerody-
namic purposes, dlatomic gases are of Primary interest., The
Important temperature range extends from liquefaction temperatures
to several thousand degrees Rankine. A relatively simple function
may be written for cy' in this case, as the number of trans—
lational and rotational degrees of freedom is constant, and only the
variation with temperature of the vibrational heat capaclty need be -
considered. This function is
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cy' = cyy {l+(7i—-l) <%>2 [ l—: éz;$§]2 } | (7)

The second term in the brackets, essentially a Planck term, accounts
for the vibrational contribution to the specific heat at constant
volume. 2 The assumption is that the molecules of the gas behave like
linear harmonic oscillators insofar as the vibrational degrees of
freedom are concerned. (See reference 8.)

An expression governing isentropic expansion of an imperfect
diatomic gas may now be obtained by substituting equations (6) and
(7) into equation (5) and integrating from stagnation to static

states. Since
/e - T dp — 2pdT
T2 T3

there results the relation -

. -, [e(e/TO)_l]
cviln<-T-lTL>+R ZnM—c<%—&— + R in

o p(1-bp,) To? [e(e/ﬂ?)_l ]
ol Jo/m ° &
+ o -y =0
T e 9/T)--l T, '

In order to determine the Mach number of a stream, i1t is neces—
sary to find the velocity of flow and speed of sound in the stream.
These quantities may be found by employing the one—dimensional
energy equation, ’

du + d(Pv) + Vv =\%>Td<%>+<§%>v aT + d<§>+VdV =0 (9)

2‘I‘his i1s a common method of accounting for the variation with temper—
ature of the vibrational heat capacities. It has been adopted by
Donaldson and others for imperfect gas studies.
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Substituting equations (1), (%), (6), and (7) into equation (9) and
integrating from stagnation to static temperature and density yields
for the velocity

V2 = 2 [cvi(To-T)'+ [l—_el(?%ﬁq ! +2¢ <%- %g>+(%§ -%)] ‘(10)
TO

The corresponding speed of sound 1s -determined by substituting equa-—
tions (1), (5), (6),.and (7) into the general equation

o = 5 - (3“) <BT>

The resulting expression is

. R 2
e
2 RT 2cp | p(1-bp)

EE R (0 feoimy=)
:

Combining equations (10) and (11) ylelds the following equation for
the Mach number,

.y 1—1< )(%)[ﬁg]jé[g(%_%{i__%”w&

(74-1 <1lbp ) s L _2cp
| Oy R

(12)

(11)

The specific heats and the ratio of specific heats are readily
obtainable for a diatomic gas obeying Berthelot's state equation.
The specific heat at constant volume c¢; 18 found by substituting
equation (7) into equation (6), thus yielding
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T R e |

-

The specific heat at constant pressure ¢ is obtained by substi-
tuting equations (1) and (13) into the reciprocity relation

(3 /1),
% = v~ Ffov)g

and setting
C = C —R \(lh)

The resulting expression for cp is
—

' (2—bp L Lo
=c 14241y AN e(G/T) + 2ep 1+ 1-bp 2 RT%
°p = °py 71 T [i__e(e/fr)]z RTZ 1 2cp

(1-bp)2 RT2 _J

o ’ ' - (15)
The ratio of specific heats 7y follows directly, of course, from
equations (13) and (15) and may be written ‘ —
~ : 2=bp . 1 cp
-1 {rey (/TN <l—bp 2 R
1+ 4 <—> + 2801
71 T [1_6(67'1')]2 RT2 1 _ 2¢cp
_ - (1-bp)®  RT=" (16)
7 =74
: 5 2 e(9/‘.'[') o6
1+ (74-1) (}i) + =2
1 T [l_e(G/T):]g RT2 »

A matter of special interest in the study of channel flows igs the
variation of Mach number with cross—sectional area of the channel.
The relation between these two quantities is most conveniently deter—
mined from the ratio of cross—sectional area at the sonic velocity
station (the station of minimum area for any gas, as pointed out by
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Tsien) to cross—sectional area at a station of arbitrary Mach number.
The continuity equation yields this ratio in the form

T- M<Bp?> G?) (17)

With the aid of this equation and equations (1), (8), (11), and (12),
the area ratio corresponding to a particular Mach number may be
determined from a knowledge of the ideal gas specific heats, character—
istic constants of the gas (i.e., b, ¢, and 6), and, for example, the -
stagnation conditions. In general, however, this computation cannot

be carried out entirely analytically. For example, it 18 seen from
equation (8) that none.of the variables can be explicitly determined ;
hence, a final solution for any single variable must be obtained
graphically or by equivalent means.

In order to relate the fluld properties on the two sides of a
normal shock wave, it is convenlient to integrate equation (9), the
energy equation, across the wave. The resulting expression is

v.2 v.2 - 2co, -2¢p P, P
<.._2__ —_ L) + cvi (T2_Tl) _( 2 _ —"1 + 2 _ -1
2 2 N T2 Tl Po Py
. Tz

N R6
e(e/T)—l Tl

=0 (18)

Continuity of flow and conservation of momentum must also be satisfied
across the wave. These requirements may be expressed anmalytically in
the familiar forms, respectively,

P V=PV, (19)
and

P,V ZpV%=P P, (20)
Equations (18) through (20) provide the additional information

necessary to determine the flow through a normal shock wave. Here
again, however, final solutions for certain of the unknown flow

~ parameters are most convenlently obtained graphically.

Approximate Flows of an Imperfect Diatomic Gas

This part of the study is concerned with first—order deviations
of one—dimensional gas flows from the behavlior of an i1deal gas. With
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this restriction, explicit solutions can be obtained for all the
important flow parameters. Equation (2) will, of course, be employed
as the equation of state. A simplification is also allowed in the
temperature function for the vibrational contribution to the

specific heats, since the specific heats are restricted to vary only
in the first order from their ideal gas values. In this case only

large values of 6/T are comid.ered and the Planck term may be
approximated by

@ m @
Equation (8) may now be reduced to the form :
- (T @) G b

+ <-'J:’; + 1> e—(e/To).—<% + l) e—kB/T) (21)

This -equation can be readily solved for p/p, in terms of T/T,
retaining only terms of the proper order, thus yielding

3—271

2@ [ @) @ ]
@) [(@) () wleemmm)

By solving for T/T, in a similar manner, there 1s obtained

£ (1o (@) B (5™
+<T% + 1> e—(G/To)_[G%\)(%Q) 717, 1} e—(e/'l‘o)(po/p)71—1}

(23)
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.

A relation between the pressure and density ratlos for isentropic
expansion is obtained by combining equation (2) with equation (23)
The resulting expresslon 1s

=<b% TR (-— - 1) + (122 K%) o ]
. (?1—1){ (i% R 1> ~(6/T,) _K%ng)"i‘ﬂl] <To>< > 1-1}

, (2k)
Equations (22) through (24) are useful for determining the nature and

extent of small departures from ideal gas behavior of a diatomic gas
undergoing isentropic changes 1in state.

Isentropic relations will now be obtained between pressure,
temperature and denslty ratios, and the stream Mach number. In order
to do this, it is convenient to reduce equation (12) to a form
consistent with the first—order approximations. Performing this
operation ylelds

A0 ) RS
() (3 oo -

_ 2¢p _o/e 8 | —(e/7.)_.~(6/T.)(T./T) | L
ﬁ‘-o—g(l Wﬁ>+To [e o/—e /TN (To/ ):l} (25)

. where

= (718371+3)

An expression for the temperature ratio in terms of Mach number,
stagnation temperature and density, and gas constants is obtained by
substituting equations (2), (22), and (24) into equation (25) and
solving; hence
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w-(3)GEm) o

and

in which all terms of the right-hand members are glven 1n previously

developed expressions.

It 1s important to note that the normasl shock expressions are
applicable to the study of oblique shock flows. For example,
equations (39) through (46) may be employed directly by substituting
M; s8in B for M; wherever 1t occurs. In order to determine Mg,
however, 1t is convenlent to have a relation between the wave angle 8
and the stream deflection angle 8. This relation may be obtained by
combining the momentum, energy, and continuity equations for flow
through an oblique shock (reference 9) to yleld the expression

P _ =°1V12(- 1 )
" Py Py cot Bcot d+1

which may be written

cot & = tan B‘l 71M1® (l—n)(g-%gq -1 } (52)

Mz can then be calculated from the expression

My _ <T_:>é ("1\ (1 — € + Sa) (53)
1 Tz/3 P/ sin (8-3)
which is obtalned from the cbntinuity equation, In this equation
the ideal gas values for the temperature and density ratios are
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those corresponding to the initial Mach number M1 and the wave
angle B. Knowing Mz from equation (53), the remaining normal
shock expressions, equations (49) through (51), can also be applied
to oblique shock flows.

It is observed that, in general, all expressions obtained in
‘the preceding approximate analysis differ from the corresponding
ideal gas equations only by small correction factors containing the
Mach number, temperature and density, and constants of the gas. As
pointed out in the introduction, this simplifies the investigation
of one-dimensional imperfect gas flows, provided effects of the
imperfections are not large. '

DISCUSSION AND CONCLUSIONS

The complex manner in which gaseous imperfections influence
general one—dimensional—flow processes precludes the detailed consid-—
eration, here, of more than two flows of aerodynamic interest.

Before discussing these flows, it may be worthwhile to establish more
definitely the conditions under which imperfections in air can alter
its dynamical behavior from that predicted on the assumption that
ideal gas laws are obeyed. These conditions are easily deduced fram
the equations employed in the analysis and a knowledge of the char—
acteristic gas constants. 3 They may be summarized as follows:

1. The occurrence of temperatures in excess of 800° R, in which
case the specific heats change appreciably. )

2. The occurrence of densities in excess of 10 times sea level
atmospheric, in which case the molecules occupy an appreciable
fraction of the available volume.

3. The occurrence of sufficiently high pressures and low
temperatures to cause the intermolecular forces to be appreciable.

One additional observation should be made concerning the inte—
grated effect of these phenomena on a particular flow process. This
is that the several imperfections frequently counteract each other
(note, e.g., the state equation and equations (24), (26), and (27)),

SThe values chosen for the characteristic gas constants, and the
method by which they were determined; are included in Appendix B.
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and thus alter certain flow parameters only slightly from their ideal
gas values.

The special cases of flow through normal and oblique shocks in
free air (NACA standard atmospheric conditions at sea level) will
now be considered. The pressure and temperature ratios across a
normal shock have been calculated for Mach numbers from 1 to 10
using equations (1), (11), (18), (19), and (20). In this case the
terms containing b and c¢ are extremely small (they could, in
fact, be neglected), and it is sufficiently accurate to use the
values for these constants given in Appendix B.

The pressure rise so determined is shown in figure 1 as a func-
tion of Mach number, and it is seen that it differs by less than
6 percent from the ideal gas value up to the maximum Mach number of
10. This behavior might be anticipated from the ideal gas equation
for the pressure ratio (Appendix A) which is relatively insensitive
to variations in 7 at high Mach numbers. The corresponding temper—
ature rise across a normal shock is illustrated in figure 2. Here
it is observed that the effect of increase in specific heats appreci-—
ably reduces the temperature ratio below the ideal gas values at the
higher Mach numbers®. It may be deduced from figures 1 and 2, that
the density rise will be considerably above the ideal gas value at
the higher Mach numbers. These results must be qualified at Mach
numbers in excess of 7, for under these circumstances the temper—
atures downstream of the wave appreciably exceed 5000° R which is
sufficiently high to cause molecular dissociation and thus possibly
to alter the flow.

In view of the fact that the changes with temperature of the
specific heats of air do not strongly influence the pressure rise
across a normal shock, up to Mach numbers of 10, it follows that
corresponding pressure effects in flow through oblique shocks will
also be small, provided the Mach number of the component of velocity
normal to the wave is below 10. This suggests, within the limita—
tions observed, that the effect of variable specific heats on those
aerodynamic characteristics essentially independent of viscosity may
be small for some shapes. (Epstein's findings in reference 11,
concerning hypersonic flows about bodies, pertain to much higher
Mach numbers that those considered here.) The extent to which this

*A11 ideal gas data are obtained from the tables of reference 5.
°This result is consistent. with Wood!'s findings concerning surface
temperatures at high Mach numbers. (See reference 10)
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is correct has been investigated for the simplest shape, a flat
plate. Pressures on the upper surface of the plate were determined,
assuming Prandtl-Meyer flow about the leading edge, and pressures
on the lower surface were found with equations (145) (replacing M,
with My sin B) and (52). These data and the corresponding lift and
Pressure drag coefficients of the plate were calculated for Mach
numbers of 10 and 20, and for angles of attack from 0° to 24° and
l3°, respectively. A comparison of the coefficients with those
obtained assuming ideal gas flow over both the lower and upper
surfaces showed that the effect of variable specific heats is very
small, (E.g., the force coefficients are smaller in the case of the
imperfect gas but never by more than 3 percent, even at the highest
angles of attack.) This result is not Justification for assuming
ideal gas behavior to calculate the high Mach number asrodynamic
characteristics of arbitrary shapes, other effects such as specific
heat lag being neglected; but it does indicate that the assumption
is Jjustifiable for certain shapes on which the important Pressure
forces are obtained through oblique or normal shock compression,

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif,
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APPENDIX A
IDEAL GAS EQUATIONS
The following are ideal gas equations used in the analysis of
approximate flows of an imperfect diatomic gas:

Isentropic Flow Equations

45
74 = 7i—1
(£) = @)= (+22e)
Po o] 2
i
1 __7_1T
(2.) =<z>’i“=<l+n_-l,42> !
Po 1 To _ 2 ,

7i—1

@), ()" - (e

1+1
7341 +1 2(y5-1)
> < 71 ~-1 >

Normal Shock Equations

2 _ (r1-1) M® + 2
. 271M® - (71-1)

i

< P2 > _ 2 ® — (71-1)
P]_ i 71+1
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< P2 _ __(y3#1) M2
Pr/ 3 (74-1) M2 + 2

<&> _ (2732 = (y4-1)] [(y4-1) M2 + 2)
Ta/y (71+1)2 M2

71 1
i1 741

(Poz\ (=) =[ (7441) e J’ [27114'12 - )

—_— = —_— = =S .
P / \ pol i (71 l) Ml +2 7i+1

" APPERDIX B
DETERMINATION OF CHARACTERISTIC GAS CONSTANTS FOR AIR

Numerical values for the characteristic gas constants b and ¢
may be determined from a knowledge of the critical pressure afd tem—
perature of a gas. Values determined in this manner are, however,
generally less accurate in a particular range of temperatures and
pressures than is desired. Consequently, it is often advantageous to
fix b and c¢ such that theoretical and experimentdl values of the
primary parameters ops 7 and compressibility (i.e., P/b) are in
good agreement in the range of interest. This method is the more
suitable of the two for most aerodynamic studies as the variations
in pressure and temperature are limited; hence, it has been employed

"in this paper to determine b and c¢, as well as 9, for air.

It 1s sufficient for the illustrative applications presented here

to determine the former constants only for the approximate flow
equations, Separate values of 6 are found for the exact and approxi-
mate Planck terms.

: As pointed out previously (note the development of approximate
expressions for cp, cy, and y), 1t is a simple matter to obtain the
characteristic gas constants appearing in the approximate flow equa—
tions. In this example, c¢ and 6 were chosen first to give:
agreement between experimental and theoretical values of cp and 7,
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the latter values being calculated from equations (33) and (34),
respectively. Data on the variation of these quantities with
pressure and temperature at high temperatures were obtained from
references 12 through 19.8 A comparison of these data with theory,
setting ¢ = 2.25 x 10® OR,ft5/slug,sec® and 6 = 5800° R, is shown
in figures 3 and 4 for pressures of O and 14k x 102 pounds per
square foot absolute. The agreement is observed to be good up to
temperatures of 3000° R. Using equations (15) and (16) to calculate
cp and 7, respectively, and a value of 6 = 5500° R, it 1is seen that
at zero pressure excellent agreement with the correlated data 1is
obtained up to 5000° R, The approximate theory was then checked at
low temperatures with experimental values of 7 glven in reference
20, At temperatures above liquefaction and pressures up to 25
atmospheres, the difference between theoretical and experimental
values of 7 was found not to exceed 3 percent.

The molecular size constant b was chosen to yileld good agree—
ment between theoretical and experimental values of compressibllity
of air. The theoretical values were calculated from equation (2),
and the experimental date were obtained from reference 21. In
general, 1t was found that using b = 0.185 £t3/slug and the previ—
ously determined value of" ¢ equation (2) predicts the compressi—
bility of air to within 2—percent error at pressures from O to 150
atmospheres, and temperatures from liguefactilon to 850° R, (The
deviation from 1deal gas behavior is small above this temperature
at the pressures indicated.) '
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