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SUMMARY 

• With the assumption that Berthelot t s equation of state accounts 
for molecular size and. intermolecular force effects, and. that changes 
In the vibrational heat capacities are given by a Planck terni, 
expressions are d.eveloped. for analyzing one—dimensional flows of a 
diatonic gas. 

The special cases of flow through normal and. oblique shocks 
In free air at sea level are investigated.. It is found. that up to 
Mach numbers of 10 the pressure ratio across a normal shock differs 
little from its ideal gas value; whereas at Mach numbers above Iê. 
the temperature rise Is considerably below and hence the density 
rise Is well above that predicted. assuming ideal gas behavior. 
The effects of gaseous imperfections on oblique shock flows are 
studied from the standpoint of their imfluence on the lift and 
pressure drag of a flat plate operating at Mach ninibers of 10 and 
20. The Influence is found to besnall. 

INTRODUCTION 

A wide variety of problems In compressible flow has been 
solved on the assumption that air behaves as an Ideal diatoniic gas. 
This assumption is justified, provided the pressure and temperature 
range of Interest Is small and near atmospheric. It is an experi-
mental fact, however, that when air is subjected to large changes 
in state at pressures and temperatures far removed from atmospheric, 
it ceases to obey the simple gas law and. exhibits other properties 
not characteristic of an ideal gas. Consequently, flow processes 
in which air is subjected. to theøe extreme conditions can be 
expected to depart from perfect gas behavior. It Is known that 
such flows will be encountered by aircraft flying at high supersonic
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speeds and in hypersonic wind tunnels; hence, the nature and extent 
of this departure have become Important considerations in aerody-
namics. 

Classical theories and experiments have shown that three 
properties of a real gas first cause it to exhibit characteristics 
unlike those of an ideal gas. These properties may be classified 
as thermal and caloric imperfections. Thermal imperfections in 
the form of intermolecular forces and molecular size effects are 
significantly manifest at low temperatures and. high pressures. 
Changes in the vibrational heat capacities become an important 
caloric imperfection at relatively high temperatures. Circumstances 
under whicheffects of molecular dissociation and electronic excit-
ation becçme important (e.g., temperatures appreciably above 50000 fl) 
may be neglected for the. present. Insofar as gases in equilibrium 
are concerned, it is usually sufficient to account for intermolec-
ular force and. molecular size effects with additional terms in the 
equation of state. Similarly, changes in the vibrational heat 
capacities of the molecules may be accounted for with a function 
of temperature in the expressions for the specific heats. 

Tsien (reference 1) Investigated the effects of gaseous 
inperfections on air flows using Van dar Waals state equation. 
Approximate solutions to the one-dimensional isentropic and normal 
shock equations were obtained. (He points out two very early 
papers of limited, scope on the subject by A. Busemarin and 
W. J. Walker.) The Joule-Thison effect was neglected in TsIents 
analysis', however, thus introducing qome error. Donaldson 
(reference 2) observed this error and found. that the differential 
equations of motion could be inteated to yield one-dimensional 
Isentropic flow equations, exact to the accuracy of Van der Waals 
equation. A comparison of results obtained with these equations 
and the flow equations for a perfect gas indicated that appreci-
able error would be made If the latter expressions were used to 
predict aerodynamic phenomena involving high temperatures or high 
pressures. 

A matter considered by Kantrowitz (reference 3) Is the 
Inability of a gas composed of po1yatnic molecules to instan-
taneously adjust its Internal ener r to temperature changes at high 

1ThIs error is reported to have been subsequently corrected; however, 
the author Is unaware of the publication.
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temperatures. This time lag in equilibrium partition of energy 
occurs primarily in the vibrational energies of the molecules 
which, unlike the translational and. rotational energies, require 
many collisions per molecule to become fully adjusted to a new 
temperature. As pointed out by Kantrowit; for rapidly acceler-
ating flows the resulting heat-capacity lag causes an entropy 
increase and hence a total-head decrease in a gas. The net effect 
may be made negligible, however, by decreasing the rate of change 
of temperature of the fluid with time. In the special case of flow 
through a normal shock wave, Bethe and Teller (reference 14.) found 
that heat-capacity-lag effects caused the thicimess of the shock 
to increase. (The wave is considered to extend over that portion of 
the fluid in which equilibrium partition of energy does not prevail.) 
As the Mach number upstream of the wave increases, however, the 
shock tends rapidly toward a sharp discontinuity. It may also be 
observed that, although heat-capacity lag influences flow within 
the shock, it does not alter the magnitude of the entropy increase 
across the shock, as this is independent of the mechanism by which 
available energy is dissipated within the wave. These observa-
tions are important for they lend support to the simplifying 
assumptions that moderately accelerating flows may be treated as 
isentropic except in the presence of a shock wave, in which case 
the wave may be treated as a discontinuity and the properties on 
both sides calculated as if there were no heat-capacity lag. 

In the present paper, one-dimensional flow equations are 
obtained with the aid of Berthelot's equation of state. This equa-
tion, rather than Van der Waals, is employed in order that somewhat 
better estimates of inthrmolecular force effects may be obtained. 
It is assumed that caloric imperfections may be accounted for with 
a Planck term in the expressions for the specific heats. The 
analysis covers both isentropic and plane-shock flows. Within the 
limitations of the assumptions, both exact and approximate flow 
equations are developed. The approximate expressions provide 
explicit solutions for all the important flow parameters, and are 
designed to utilize data available on the theoretical behavior of 
an ideal diatcmiic gas. (See, e.g., reference 5.) 

SYMBOLS 

a	 local speed of sound, fet per second 

A	 nozzle cross-sectional area, square feet
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b	 molecular size constant, cubic feet per slug 

c	 intermolecular force constant, °R, feet to the fifth per slug, 
second squared. 

c	 specific heat at constant pressure, foot—pounds per slu€, °R 

0	 specific heat at constant volume, foot—pounds per slug, °R 

e	 baae of natural logarithms, 2. 718, . 

in logarithm to base e 

M	 Mach number (ratio of local velocity to local velocity of 
sound) 

P	 absolute pressure, pounds per square foot 

R gas constant (1115 slug 'R for air) , foot—pounds per slug °R 

T	 absolute temperature, °R 

u	 internal energy, foot—pounds per slug 

V	 local velocity, feet per second. 

v	 specific volume (i), cubic feet per slug 

w	 external work performed, foot—pounds per slug 

y	 ratio of specific heats (cp/cy) 

p	 mass density, slugs per cubic foot 

0 molecular vibrational energy constant, °R 

Subscripts 

o	 stagnation conditions 

1	 conditions upstream of shock wave 

2	 conditions downstream of shock wave 

I ideal gas quantities
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Superscripts 

*	 quantities at the nozzle throat 

quantum-mechanical functions 

ANALYS IS 

It will be assumed throughout the analysis that the gas exhibits 
no heat-capacity lag. Shock-free flows are considered isentropic, 
andflow through plane shock waves Is assumed to be adiabatic. Justif-
ication for the fIrst two assumptions is discussed In the Introduction. 
The extent to which plane shock processes, particularly at high Mach 
numbers, deviate from adiabatic behavior Is left for future investiga-
tion.

Berthelot's equation of state Is employed In two forms, depend-
ing upon the desired range of applicability. Ir the development of 
equations for Investigating flows over a wide range of Mach numbers, 
temperatures, and pressures, the state equation is used in its exact 
form,

_PRT	 cp2 
- l-bp -	 (1) 

where b is the molecular size constant and c is the inter-
molecular force constant. It will be noted that equation (1) differs 
from Van der Waals equation by a factor of	 In the intermolecular 

force term. The Introduction of this factor yields a variation of 
intermolecular force with temperature which Is In accordance with 
experiment. (See, e.g., reference 6.) Thus, as pointed out in 
reference 7, close areenient between theoretical and experimental 
values of compressibility of gases is obtained. 

In the derivation of approximate flow equations an expression 
of the form

P = pBT (l+bp - cP)	 (2) 

Is employed. This equation Is, of course, a first-order approxi-
rnation to equation (1). 

Flow of a Diatomlc Gas Obeying Berthelot's Equation of State 

Isentropic flow of a Berthelot gas may be studied with the aid 
of the differential Isentropic expansion equation,



du + dv =	 d	 + 

v)T 'p)	 T)
V

dT + Pd () = 0 (3) 
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where

T) = 

and the Joule-Thomson effect is given by 

	

(.\ -T"1-"	 2c2 

T -	 T)	
T


p 

Combining these expressions and substituting the value of P from 
equation (i) yields

CvdT-dp -	
- p(l-4p) dp = 0	 (5) 

Now the differential expression for

(2P'\ 
= T 

which, upon substituting from equation (i), may be integrated to give 

2c p 
CV = CV' + 

-i -

where Cv t is a function which describes the quantum-.mecbanical 
variations of CV with temperature. The second term on the right 
of equation (6) represents the effects of gaseous imperfections on 
Cv.

The function chosen for CV' is determined by the molecular 
structure of the gas under consideration and the temperature range 
over which accurate predictions of CV' are desired. For aerody-
namic purposes, diatomic gases are of primary interest. The 
important temperatuie range extends from liquefaction temperatures 
to several thousand degrees Rankine. A relatively simple function 
may be written for c' in this case, as the number of trans-
lational and rotational degrees of freedom is constant, and only the 
variation with temperature of the vibrational heat capacity need be 
considered. This function is

(1.) 

(6)
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Cv? = Cvi {i^(_i) 
()2	 (e/T)	

(7) r	 (o/T)12 [1-a	
j 

The second. terni in the brackets, essentially a Planck term, accounts 
f or the vibrational contribution to the specific heat at constant 
volume. 2 The assumption is that the molecules of the gas behave like 
linear harmonic oscillators insofar as the vibrational de'ees of 
freedom are concerned. (See reference 8.) 

An expression governing isentropic expansion of an imperfect 
diatomic gas may now be obtained. by substituting equations (6) and. 
(7) into equation (5) and. inte'ating from staation to static 
states. Since

	

d"-	 Tdp-2pdT 

there results the relation 

CvZfl () +R	
p(1p.) -
	

-	
+ R 

Zn [e(T0)_i] 

p(1-bp0 )	 \T2	 T02	 r(e/T)	 -j 
[e	

-lJ 

e +R	
(e/T) iT 

(e/)	
=0	 (8) 

e	 -1JT0 

In order to determine the Mach number of a stream, it is neces-
sary to fiM the velocity of flow and speed of sound in the stream. 
These quantities may be found by employing the one-dimensional 
energy equation, 

du + d(Pv) + VdV 
= ()T d. () + () 

dT + d() + ITdV = 0 (9) 

This is a conon method of accounting for the variation with temper-
attire of the vibrational heat capacities. It . has been adopted by 
Donaldson and others for imperfect gas studies.



8
	

NPLCA TN No. 1861 

Substituting equations (1), (li.), (6), and. (7) into equatIon (9) and. 
integrating from stagnation to static temperature and. density yields 
for the velocity 

v2 = [C1(T0_T) Re	 I 
iT 

+	 (e/Tfl	 +2c 'T T0) \po P,li 
[1_e	

-I tT

(10) 

The corresponding speed of sound. is determined by substituting equa-
tIons (1), (5), (6),and (7) into the general equation 

2 dP (
p \\	 (p\\ 

d.T 
a	 dp.)T)PdP 

The resulting expression is

-.2 0

2m ________ P .'-____	 [ +	 (II) a2=	 RT
e \2	 e (e/T)	 2cp1 1 (1-bp)2 	 T	 [1 7i_1){(j r	 (e/T)]2 +p2j 

Ll—e 

Combining equatIons (10) and (ii) yields the following equation for 
the Mach number,

Iuj 
Ii	 ____ __	 [ 1 	

] 

^2C(E_aQ'\('?Q_ 

	

(e/T)	 L	 T T	 pI] l-e	 T0 

(y1) (	 _____ 

M2=21

1	 cp 
l-bp +	 1	 2cp 

+ 

	

e (9/T)	 2op' 1	 (1-bp)2	 RT [1+(Y_l) {() 
2	

(e/T)12 + 
l-e	 J

(12) 

The specific heats and the ratio of specific heats are readily 
obtainable for a diatoinic gas obeying Berthelot's state equation. 
The specific heat at constant volume c.- is found by substituting 
equation (7) into equation (6), thus yielding
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Cv = CVI {1+(Yi_1) [(e)2
e (e/T) 

[1_e 
(e/T)1 2

f]}	 (13) 

The specific heat at constant pressure Cp Is obtained, by substi -
tuting equations (1) and. (13) Into the reciprocity relation 

2 
(P/T) 

c = c —T (/) 

and setting

c =c —R vi	 pi 

The resulting expression for Cp is

(i).i.) 

Cp = Cp1 1 + (i 

i I (\2 e°1 2cp r
+ 

[ie(e/T)]2

(2—bp 1 cp'\ 
1—bp 2)


1,	 2cp 
(1—bp)2 RT2 

(i) 

The ratio of specific heats y follows directly, of course, from 


	

equations (13) and (15) and nay be written	 - 

	

-	 (2—bp 1 cp 
1+711 (9'\\	

e(0/'T)	 +-l^ \l—bp2R 

7i	 T) r1 ( 9/Tfl2 RT2	 ______ - 

=	 _________	

L	 J	 (1—bp)2 RT2'	 (16) I	
2	 (e/T) 

1+(	 1)I('Q.'\	 e 

-	
[i.(e/T)]2 RT2	 - 

A matter of special Interest in the study of channel flows is the 
variation of Mach number with cross—sectional area of the channel.. 
The relation between these two quantities is most conveniently deter-
mined from the ratio of cross—sectional area at the sonic velocity 
station (the station of minimum area for any gas, as pointed out by 
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Tsien) to cross-sectional area at a station of arbitrary Mach number. 
The continuity equation yields this ratio in the form 

A* M ( p\\ (a'\ 

	

r	 %.%a*)	 (17) 

With the aid. of this eq.uation and equations (1), (8), (ii), and. (12), 
the area ratio corresponding to a particular Mach number may be 
determined, from a knowledge of the ideal gas specific heats, character-
istic constants of the gas (i.e., b, c, and. 0), and, for example', the 
stagnation conditions. In general, however, this computation cannot 
be carried out entirely analytically. For example, it is seen from 
equation (8) that none of the variables can be explicitly determined; 
hence, a final solution f Or any single variable must be obtained 
graphically or by euivalent means. 

In order to relate the fluid properties on the twO sides of a 
normal shock wave, it is convenient to integrate equation (9), the 
energy equation, across the wave. The resulting expression is 

2	 2	 - (2cP2 .2cp1'\ •( - 

-	
+ cvi (T2-T1)	

T2	 T1 )	 p2 2 

Re	
T2 

+ 5(0/T)_1	
= 0 ,	 ',	 (18) 

Continuity of flow and conservation of momentum must also be satisfied. 
across the wave. These requirements may be expressed analytically in 
the familiar forms, respectively, 

p1V1=p2V2 

and

p1V12-p2V22=P2--P1 

Equations (18) through (20) provide the additional information 
necessary to determine the 'flow through a normal shock wave. Here 
again, however, final solutions for certain of the unknown flow 
parameters are most conveniently obtained graphically. 

Approximate Flows of an Imperfect Diatomic Gas 

This part of the study is concerned with first-order deviations 
of one-dimensional gas flows from the behavior of an ideal gas. With

(19)

(20)
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this restriction, explicit solutions can be obtained for all the 
important flow parameters. Equation (2) will, of course, be employed 
as the equation of state. A simplification Is also allowed, in the 
temperature function for the vibrational contribution to the 
specific heats, since the specific heats are restricted to vary only 
in the first order from their ideal gas values. In this case only 
large values of e/T are considered and the Planck term may be 

approximated by

2	 e (e/T)	

() 
2 e 

e/T) 

\.T) U 

	

[l	 (e/T)] 
2 

Equation (8) may now be reduced to the form 
1 

Zn [(T) 71' ('1 = bPo ( - l ^ C 0 _____ - i]


	

P)J	 p0	 J RTo2 L(T[To)2 

+	 +	 e(0/To) 
_( 

+	 e_(WT)	 (21) 

This equation can be readily solved for p/p0 in terms of T/TQ, 
retaining only terms of the proper order, thus yielding 

3_27 j 1	 1	 ___ 
p	 ___ - {l_bPO[(fY1'_ll_cPo [(T'\7r1 

1 .


	

T0)	 1 RT L T0) 

-	 +	 e—(e/To) +	
(T0\ 

+11 
e_(e/To)(To/T)}	 (22) 

By solving for T/T0 in a similar manner, there is obtained 

T ( \ Y i—'	 ____ 

1 
.CPo r (p \37i

l] 

)[/'e VEQ"Y i ' + i) e/To	 + i] e_(9/To)(Po/P)71_1}1

(23)
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A relation between the pressure and. density ratios for isentropic 
expansion is obtained by combining equation (2) with eqmt1on (23). 
The resulting expression is 

7 1 r	 ___
-1 

	

= (.2...)	

L1 + 
yjbp0 ( -	 + (71_2)jr2 [(--: 

3-271	

] L \o) 

+ (y-1 ){ ( + i) e/To) - [( ( Y' 1 () ( 

LToAP)	
+1] e 

T0 •o)

(211.) 

EquatIons (22) through (211) are useful for d.eterialning the nature and 
extent of small departures from ideal gas behavior of a d.Iatomic gas 
undergoing isentroplo changes In state. 

Isentrop1c relations will now be obtained between pressure, 
temperature and density ratios, and the stream Mach number. In order 
to do this, it Is convenient to reduce equation (12) to a form 
consistent with the first-order approximations. Performing thia 
operation yields 

M2 =
	

[1_2b /p\
	 r1 cp0 /p\\ 5-27j 

Po)_2 71RT02cPO)

T\	 P0 (1 P/P_ + ()'i 1)2	 \2/m \2
1--	 e	 O ' e_(e/To)(To/T)]	

1j pRr	 P7) (	 )

/ 

- 2co i -	 + - [e8/To)_e_(0/To)(To/T)] }
	

(25) 

	

RT02	 T7T0) T0 

where

rj = 

An expression for the temperature ratio in terms of Mach number, 
stagnation temperature arid, density, and gas constants is obtained by 
substituting equations (2),(22), and. (211 . ) into equation (25) and. 
solving; hence
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( 
p2 \('Pi /Po1 \	 () 

\ P1 1 \,P2 /P02 ,/ 

P0	 /P 
=	 ! 

S\(P1/PO \\
	 (70) 

P01 \. p1 ,I'\P2/P02) 

and

-	 (Vri/4ro1	
(51) 

	

T 0	 T1 )T2/IO2 I 
in which all terms of the right-and members are given in previously 
developed expressions. 

It is important to note that the normal shock expressions are 
applicable to the study of oblique shock flows. For example, 
equations (39) through (14.6) may be employed directly by substituting 
M1 sin 3 for M1 wherever it occurs. In order to determine M.2, 
however, it is convenient to have a relation between the wave angle 
and. the stream deflection angle 8. This relation may be obtained by 
combining the momentum, energy, and continuity equations for flow 
through an oblique shock (reference 9) to yield the expression 

p21p1V12 (	 1	
) pi	 P1 \.cot cot 6 ^ 1 

which may be written

(P2/P1)—1 - 1
	 (52) 

	

cot 8 = tan	 yiMi2 (l—) 

M2 can then be calculated from the expression 

- 

-

T 1 \* 

(i

P 

()j

(1 - ep +	 a)
(53) 

sin ()

which is obtained from the continuity equation. In this equation 
the ideal gas values for the temperature and density ratios are 
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those corresponding to the initial Mach number M 1 and the wave 
angle . Knowing M2 from equation (53), the remaining normal 
shock expresgion.s, equations (11.9) through (51), can also be applied 
to oblique shock flows. 

It is observed that, in general, all expressions obtained in 
the preceding approximate analysis differ from the corresponding 
ideal gas equations only by small correction factors containing the 
Mach number, temperature and density, and. constants of the gas. As 
pointed out in the introduction, this simplifies the investigation 
of one-dimensional imperfect gas flows, provided effects of the 
imperfections are not large. 

DISCUSSION AND CONCLUSIONS 

The complex manner in which gaseous imperfections influence 
general one—dimensional—flow processes precludes the detailed.. consid-
eration, here, of more than two flows of aerodynamic Interest. 
Before discussing these flows, it may be worthwhile to establish more 
definitely the conditions under which imperfections in air can alter 
its dynamical behavior from that predicted on the assumption that 
ideal gas laws are obeyed. These conditions are easilydeduced frci 
the equations employed in the analysis and. a knowledge of the char-
acteristic gas constants. They may be summarized as follows: 

1. The occurrence of temperatures in excess of 8000 R, in which 
case the specific heats change appreciably. 

2. The occurrence of densities In excess of 10 times sea level 
atmospheric, In which case the molecules occupy an appreciable 
fraction of the available volume. 

3. The occurrence of sufficiently high, pressures and. low 
temperatures to cause the intermolecular forces to be appreciable. 

One additional observmtion should be made concerning the inte-
grated effect of these phenomena on a particular flow process. This 
is that the several imperfections frequently counteract each other 
(note, e.g., the state equation and equations (211. ), (26), and (27)), 
3The values chosen for the characteristic gas constants, and. the 

method by which they were determined, are included in Appendix B.
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and. thus alter certain flow parameters only slightly from their ideal 
gas values. 

The special cases of flow through normal and. oblique shocks in 
free air (NkCA standard atmospheric conditions at sea level) will 
now be considered. The pressure and. temperature ratios across a 
normal shock have been calculated for Mach nunibers from 1 to 10 
using equations (1), (ii), (18), (19), and (20). In this case the 
terms containing b and c are extremely small (they could, in 
fact, be neglected), and it iè sufficiently accurate to use the 
values for these constants given in Appendix B. 

The pressure rise so determined is shown In fIgure 1 as a func-
tion of' Mach number, and it is seen that it differs by less than 
6 percent from the ideal gas value up to the maximum Mach number of' 
10. This behavior might be anticipated from the ideal gas equation 
for the pressure ratio (Appendix A) which is relatively insensitive 
to variations in y at high Mach numbers. The corresponding temper-
ature rise across a normal shock is illustrated in figure 2. Here 
it Is observed that the effect of increase in specific heats appreci-
ably reduces the temperature ratio below the ideal gas values at the 
higher Mach numbers 5 . It may be deduced from figures 1 and 2, that 
the density rise will be considerably above the ideal gas value at 
the higher Mach numbers. These results must be qualified at Mach 
numbers in excess of 7, for under these circumstances the temper-
atures downstream of the wave appreciably exceed 5000° R which is 
sufficiently high to cause molecular dissociation and thus possibly 
to alter the flow. 

In view of the fact that the changes with temperature of the 
specific heats of air do not strongly influence the pressure rise 
across a normal shock, up to Mach numbers of 10, it follows that 
corresponding pressure effects in flow through oblique shocks will 
also be small, provided the Mach number of the component of velocity 
normal to the wave is below 10. This suggests, within the limita-
tions observed, that the effect of variable specific heats on those 
aerodynamic characteristics essentially independent of' viscosity may 
be small for some shapes. (Epstein t s findings in reference 11, 
concerning hypersonic flows about bodies, pertain to much higher 
Mach numbers that those considered here.) The extent to which this 

ideal gas data are obtained from the tables of referenôe 5. 
5Th1s result is consistent with Wood's findings concerning surface 
temperatures at high Mach numbers. (See reference 10.)
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is correct has been investigated for the s:iinplest shape, a flat 
plate. Pressures on the upper surface of the plate were detennined, 
assuming Prandtl-Meyer flow about the leading edge, and pressures 
on the lower surface were found with equations (1l5) (replacing M1 
with N1 sin ) and. (52). These data and the corresponding lift and 
pressure drag coefficients of the plate were calculated for Mach 
numbers of 10 and 20, and for angles of attack from 00 to 2 1.° and 
130, respectively. A comparison of the coefficients with those 
obtained assuming ideal gas flow over both the lower and upper 
surfaces showed that the effect of variable specific heats is very 
small. (E.g., the force coefficients are smaller in the case of the 
imperfect gas but never by more than 3 percent, even at the highest 
angles of attack.) This result is not justification for assuming 
ideal gas behavior to calculate the high Mach number aerodynamic 
characteristics of arbitrary shapes, other effects such as specific 
heat lag being neglected.; but it does indicate that the assumption 
is justifiable for certain shapes on which the important pressure 
forces are obtained through oblique or normal shock compression. 

Ames Aeronautical Laboratory, 
National Advisory Coirunittee for Aeronautics, 

Moffett Field, Calif.
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Aj'±'ja'wIX A 

IDEAL GAS EQUATIONS 

The fo11oiii are ideal gas equations used in th analysis of 
approximate flows of an imperfect dlatomlc gas: 

Isentropic Flow Equations

7i 
7j 

( ) 
= () = (i + 7j1 M2) 

:1.	 _1 
fT \7j1 /

2 M2) 

•(p'\7i 
= (1+7iM2r 

7j+1 

2

)2(71_1) 

()i M( 7j+l - = ________ 
2 

Normal Shock Equations 

N2 2 - ( yj—l) M12 + 2 

-. 2yjM12 - ( 7j—l) 

= 2yjM12 - ( 71-1) 
7j+1
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= (7j+1) N12 

\PiJj (71-1) M12 + 2 

= [2yj14 2 - ( 71-1)] [(yj-l) M12 + 2] 
\T1 ) 1	 (:71+1)2 2 

7j 

	

7j-1	 .	 yjii 
(P02 '\ 	 (Po2 ' - [_( ,+i) M12	 1	 127iMl2 - (71_i)] 

	

Po1 ,) - Poi ) - [(vt-i) N12 + 2 J	 L	 y+i 

=1 

APPENDIX B 

DETERNINkTION OF CHARACTERISTIC GAS CONSTA1TS FOR AIR 

Numerical values for the characteristic gas constants b and. c 
may be d.eterniined from a knowledge of the critical pressure and tem-
perature of a gas. Values determined in this niner are,. however, 
generally .less accurate In a particular range of temperatures and. 
pressures than Is desired. Consequently, it is often advantageous to 
fix b and. c such that theoretical and experimental values of the 
primary parameters or,, y and, compressibility (i.e., Pfp) are in 
good agreement in the range of interest. This method is the more 
suitable of the two for most aerod.ynainlc studies as the variations 
in pressure and temperature are limited; hence, it has been employed 
in this paper to determine b and c, as well as 9, for air. 
It is sufficient for the illustrative applications presented here 
to determine the former constants only for the approximate flow 
equations. Separate values of 9 are found for the exact and. apprci-
mate Planck terms. 

As pointed out previously (note the development of approximate 
expressions for Cp, cv, and y), it is a Bimple matter to obtain the 
characteristic gas constants appearing in the approximate flow equa-
tions. In this example, c and 9 were chosen first to give 
agreement between experimental and theoretical values of Cp and 7
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the latter values being calculated from equations (33) arid. (311.), 
respectively. Data on the variation of these quantities with 
pressure and temperature at high temperatures were obtained from 
references 12 through 19. 8 A comparison of these data with theory, 
setting c = 2.25 x 10 8 °R,ft/s1ug,sec2 and. e = 58000 B, is shown 

in figures 3 and 11. for pressures of 0 and. 111.1 x i0 pounds per 
square foot absolute. The agreement is observed to be good up to 
temperatures of 3000° B. Using equations (15) and (16) to calculate 
Cp and 7, respectively, and. a value of 6 = 5500° B, it is seen that 
at zero pressure excellent agreement with the correlated data is 
obtained up to 50009 B. The approximate theory was then checked at 
low temperatures with experimental values of 7 given In reference 
20. At temperatures above liquefaction and. pressures up to 25 
atmospheres, the difference between theoretical and. experimental 
values of y was found not to exceed 3 percent. 

The molecular size constant b was chosen to yield good agree-
ment between theoretical and. experimental values of compressibility 
of air. The theoretical values were calculated from equation (2), 
and the experimental data were obtained from reference 21. In 
general, it was found that using b = 0.11.85 ft 3/slug and the previ-
ously determined value of c equation (2) predicts the compressi-
bility of air to within 2—percent error at pressures from 0 to 150 
atmospheres, and temperatures from liquefaction to 8500 B. (The 
deviation from ideal gas behavior is small above this temperature 
at the pressures indicated.)
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