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NATIONAL ADVISQRY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1864

EXTENDED APPLICATIONS OF THE HOT-WIRE ANEMOMETER

By Stanley Corrsin
SUMMARY

Two new fields of application of the hot-wire anemcmeter are
proposed, and the appropriate response equations and measuring procedures.
are developed.

The first analysis leads to a method for the measurement of
physically significant statistical quantities in a turbulent flow with
heat transfer; for example, the turbulence levels, the temperature
fluctuation level, the turbulent heat-transfer coefficient, the velocity
scale, the temperature scale, and some spectrums.

The second analysis involves the use of the hot-wire in the turbulent
isothermal mixing of two appropriately different gases. If the thermal
conductivity of the mixture is known and is a monotonic function of the
relative concentration, it 1s possible to measure the mean velocity and
mean concentration at any point. If no data are available on the thermal
conductivity of the mixture, this additional unknown can be determined by
an additional measurement. Furthermore, it is also possible to measure
the various statistical functions of the fluctuating velocities and the
local concentration fluctuation, provided, again, that the thermal
conductivity 1s a known monotonic function of the concentration.

Although the details of the present analysis are dependent upon
the accuracy of King's equation for the rate of heat loss from fine wires,
the general approach is equally valid for any possibly more &accurate
equation that may be deduced.

\

INTRODUCTION

The hot-wire anemameter has been used for many years in the
measurement of the mean velocities of flowing gases (reference 1) and,
more recently, in the measurement of various statistical quantities
associated with the random velocity fluctuations occurring in turbulent
flow (references 2 to 7 and others). It has also been used as a micro-
phone (reference 8). This anemcmeter consists essentially of an
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electrically heated wire of extremely small mass, the temperature of
which varies in response to rapid changes in the instantaneous flow
(cooling) velocity. If the heating current is maintained constant, the
resulting voltage fluctuations, the intensity of which is expressible

as a function of the velocity fluctuations, may be amplified and measured.
Attenuation and phase lag, due to the nonzero heat capacity of the wire
and the finite rate of electrical heating, may be compensated by a
suitable network between two of the amplifier stages. The essentials

of the technique are described in reference 2.

In a detailed consideration of turbulent fluid flow, there are
several statistical functions of the randomly fluctuating velocities
that are of importance. The simplest of these are the following:

u'
=

(a) The three camponents of the turbulence level or intensity =—

1 1 U

2:, and = whlch, squared and added, give the ratlo of kinetic energy of
U U

random fluctuation to directed kinetic energy.

(b) The double correlation functions, that is, the statistical
correlation between two components at separate pointsy for

i 2!

example, R, = Von Kdrmén (reference 9) and Von Kdrmdn and

ul

1% |

Howarth (reference 10) have shown that only two of these functions are
independent for isotropic turbulence.

(c) The energy spectrum of the turbulent fluctuations. Taylor
(reference 11) has demonstrated that this is the Fourier transform of
one of the two principal components of the correlation tensor.l

(d) The scale of turbulence, defined by Taylor (reference 12) for

isotropic turbulence as the integral of one of the double correlation

00
functions; for example, L = Ro(y)dy-
0

(e) The microscale of turbulence, identified with the rate of
dissipation of turbulent energy into heat, the size of the smallest
eddies, was also defined by Taylor (reference 12), who showed this to
be the abscissa intercept of the vertex-tangent parabola of the Rg(y

curve in isotropic turbulence.

lIn low-intensity isotropic turbulence.
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(f) The turbulent shear stress T = -puv was first identified by
Osborne Reynolds in his classic formulation of the equations of motion
for turbulent flow (reference 13). This stress is, of course, a measure
of the lateral rate of momentum transfer or diffusion.

All the foregoing functions have been measured for various turbulent
flows (references 6, T, 1%, 15, 16, 17, 18, 19, and others), principally
with the hot-wire technique, although the most detailed measurements have
of necessity been confined to investigations of the "isotropic" turbulence
" far behind grids placed in a uniform air stream.

There are other kinematic quantities of considerable interest:

(g) Batchelor and Townsend (reference 20) have recently measured
three statistical functions of the time derivatives of the velocity

2 2. \2 S\3 .
fluctuation <§%> 5 u , and <r$> . These enter into terms
ot, 32 ot

describing the_time rate of change of vorticity in isotropic turbulence.

(h) The rate of lateral kinematic diffusion of turbulent energy

in a turbulent shear flow Q‘ pu2v> has apparently not been measured

yet, although suitable techniques are fairly well known.

(1) The pressure fluctuation diffusion term (~ pv) in the
turbulent energy equation has not been measured, principally because of
the difficulty of.obtaining an instrument that responds to static-pressure
fluctuations independently of velocity fluctuations.

In a detalled consideration of turbulent motion, it is of interest
to obtain information on the heat and material diffusion coefficients as
well as the momentum and energy diffusion already mentioned. In fact,
this information should be useful both as an end in itself and as
additional evidence to be applied in obtaining a better understanding of
the nature of turbulence. Consequently, 1t seemed worthwhile to investi-
gate the possibilities of exploliting the hot-wire beyond the simple
anemometric applications.

The rate of cooling of a body immersed in a fluid stream clearly
depends upon: (a) The stream velocity, (b) the temperature difference,
(c) the physical constants of the fluid, and (d) the physical constants
of the wire. For the simple hot-wire anemometer, conditiomns (b), (c),
and (d) are effectively fixed, and the instrument response measures
condition (a). Changes in stream temperature certainly involve changes
in condition (b) and possibly in condition (c). Thus the instrument
responds to temperature changes or fluctuations. Changes in the
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relative concentration of a flowing mixture of two fluids with different
physical constants lead to variations in condition (c). In principle,
the hot-wire instrument responds to concentration changes or fluctuations.

Considerations of algebraic and experimental complication have
restricted the present treatment to cases in which fluctuations in
velocity and only one of the aforementioned two gquantities coexist,
although this limitation is not dictated by principle.

With this experimental technique; the new quantities which it may

. 1
be of interest to measure are the temperature fluctuation level <%§),

the spectrum of temperature fluctuation, the heat diffusion (~ §v), the
9192
correlation coefficient _:E— , and the thermal scale and microscale,
: 5 :

analogous to Taylor's kinematic scales, as well as the corresponding
statistical functions of the concentratlion fluctuation in the turbulent
mixing of two gases.

The fact that direct measurement of ®v should be possible with a
hot-wire instrument has been known for many years (see, for example,
remarks in reference 21), but no actual work appears to have been
carried out.

Distributions “of momentum, heat, and material transport coefficients
in a shear flow are directly calculable from measurements of the mean
velocity, temperature, and concentration profiles, respectively. However,
it hdas been found that the mean profile 1s relatively insensitive to
phenamenological assumptions on the transfer coefficient (references 16
and 19), so that direct experimental determination of the transfer is

~ desirable. . .
SYMBOLS
U instantaneous total velocity
i mean velocity " .
u instantaneous velocity.giuctuation in direction of

mean velocity (U - U)
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el

normal. components of velocity fluctuation
root-mean-square values of wu, v, and w

instantaneocus absolute temperature of gas

mean absolute temperature
instantaneous temperature fluctuation <?a - T%)
root-mean*square value of §

absolute temperature of reference medium (e.g.,
the air at rest, for a free Jet)

instantaneous concentration of secondary gas; in
present applications, .

r= Mols per unit‘VOlume of the secondary gas
Total mols, of air and gas, per unit volume

mean T
instantaneous concentration fluctuation (r -T)

root-mean-square value of 7

instantaneous resistance of electrically heated
hot~wire (unless otherwise noted)

mean R

instantaneous resistance of unheated hot-wire

mean Ry (fesistance at i;)
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instantaneous 'equilibrium" hot-wire resistance;
that 1s, resistance hot-wire would have at any
moment if it.had zero lag

mean Rg

resistance of wire at Ty,
resistance of wire at 0° ¢

heating current

voltage fluctuation across hot-wire
hot-wire length

hot-wire diameter

specific resistivity of wire material

thermal coefficient of change of resistance of
wire material

v sensiti#ity of directional meter

coefficients in assumed parabola relating thermal
conductivity to concentration in a gas
mixture

7 sensitivity of a simple hot-wire

ohms (electrical resistance)

density of wire material

mass of wire

specific heat of wire material

thermal conductivity of fluid at Tg
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bl

thermal conductivity of fluld at T,

thermal conductivity of air

thermal conductivity of secondary gas

constant-pressure specific heat

constant-pressure specific heat

constant-pressure

constant-pressure

specific heat

gpecific heat

density of fluld at Tq

density of fluid at T,

density of air

density of secondary gas

fluctuations

heat energy in hot-wire

wire température

time

of fluid at Ty
of fluid at T,

of air

of secondary gas
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CONVENTIONAL HOT-WIRE-ANEMOMETER RESPONSE EQUATIONS

Following the approach of Dryden and Kuethe (reference. 2), King's
. semiempirical form is assumed for the rate of heat loss from a wire
~ immersed. in a flowing fluid. For the time rate of increase of heat
energy in the wire this gives

‘;{: 1%R - (A' + B'NO)(T - Ty) | (1)

where the physical make-up of A' and B' as deduced by King is

A' = alk

Bl

bl dcppk

Here a and b are regarded as numerical constants, although they are
dimensional, and should show same variation 1f a wide enough temperature
range is considered.

The term A'(T - T,) presumably represents heat loss due to free

convection and radiation. Therefore, it 1s clear that the constant a
must include such physical quantities as the acceleration of gravity,
the thermal expansion coefflcient of the fluld, the specific heat of the
fluld, a temperature function, a radiation constant, and so forth. The

term B' YU(T - T,) represents forced convection, and, after k has been

factored out, the term can be written as proportional to the product of
2 Reynolds number and a Prandtl number..

Equation (1) can be written as

4-2ms 4R _ 42p _ (A + Bﬁ)(R' - Ry) - (1a)

and if equilibrium conditions are considered such that g% = 0, writing
the equilibrium value of R as Ry, the following equation 1s obtalned:

iRe

vRB a

= A + B\U : (2)
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where

o
i}
o
o)
©
123

In considerations of averaged or steady-state operatioh5 Rg 1in

equation (2) may be replaced by R, and this equation is the usual mean
velocity calibration of the hot-wire.

King deduced his equation for steady-state operation, and a
primary assumption of the hot-wire-anemometer theory is that this rate
of heat loss is independent of acceleration.

A convenient alternative form of équation (2) is

2 h '
1™Rq e
=A-1" + B\U 2a
TR U | (2a)

- For the measurement of turbulence, interest 1is centered in the
voltage fluctuation set up across the hot-wire due to a small fluctuation
in velocity. The analysis for large fluctuations has proved intractable,
but, as 1llustrated in appendix A of reference 22, the error committed in
applying the small perturbation results in the measurement of rather large
fluctuation levels is not necessarily excessive.

Letting
U=U+u
R=R+r
e = ir
where
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and substituting these into equation (2) ylelds

12(§+r) '=A+B\j§ l+..3.-‘l/2
& - a)(l R;Ra) ( U>

Keeplng only the linear terms of the appropriate binomial expansions,
otherwise neglecting the squares of small quantities, and substituting
fram equation (2) for (A + B Jﬁ), there 1is finally obtained

_SR - Ra 2= _ .= . 'Y _
™y [13 AR Ra)] U | (3)

Thus, the coefficlent of %% 18 the sensitivity of a single hot-wire to

ve%ocity fluctuations along the main stream direction.

Since the wire has a nonzero heat capacity and only a finite rate of
electrical heating, there is a time lag in the response which normally
leads to an appreclable drop in the curve of hot-wire response against
frequency above same particular frequency. The characteristic "time
constant’ M can be computed approximately by substituting from equation (2)
into equation (la) to obtain

4.2ms dR j-2Ra(Re - R) - _ (W)
Rpe dt =~ Ry - R, . -

Dryden and Kuethe (reference 2) transform this further but f£ind no
useful general solution. Therefore, they use the -assumption of small
perturbations to Justify the replacement of (Ry - Rq) by (R - Ry) in

the denominator of the right side, which leads to the simple form -
R, L L | (5)
dt M M
or
%(R-§)+§(Rf36) =0
where the time copstant

_ )4.21!18(§ - Ra)

2
i RaRoa
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is the time required for (R - R) to become equal to % times an

original step-function difference, say, (Ri - R). The definition of M
is, of course, not dependent upon the assumption of small perturbation.
Further details are discussed in reference 2.

Physically, the time constant can be considered as proportional to -
the product of three factors, functions of the wire material, size, and
operating conditions, respectively:

oS\ 7 /R - R, \
I C oy *

The attenuation and phase lag in the hot-wire response are compensated
up to appropriate frequencies by a suitable network between two of the
amplifier stages.

The technique fbr the measurement of specific statistical kinematic
quantities in a turbulent flow need not be discussed in detail here.
Adequate descriptions are given in other papers (references 2, 7, 18, and

!

others). It is sufficient to point out that %— is computed directly from

R 1
a8 measurement of e° as given in equation (3). The components , X,
U U

and uv are measured with directionally sensitive hot-wire instruments,
customarily in the-form of an X, with the polar axis perpendicular to the
mean velocity direction. Each of the two wires in such an instrument,
belng inclined to the mean flow, responds to both longitudinal and lateral
fluctuations, so that, instead of equation (3), there results

u v
e = &= g—
1,275 %

for the two wires. Thus, for example,

u' 2
ﬁ? (e + eg
v' 5
= ~ (el - ep)
w 2
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The correlation between u fluctuations at two different points is
obtained in the same way as the shear. Integration of the correlation
curve gives the scale of turbulence.

The energy spectrum of turbulence is obtained conventionally with
a narrow band-pass filter.

Some corrections for the effect of wire length have been worked out
in reference 7, but further detailed analysis along that line is necessary,
particularly for the measurement of correlation functions and shear and
turbulence spectrums. K. Zebb (reference 32) has made some approximate
computations for the length correction of X meters in v' measurements.

MEASUREMENT OF MEAN VELOCITY AND TEMPERATURE

In applications of King's equation for thermal equilibrium

12K =
I W N
where
- al —
= —k
Roa
—_ bl —
B=— dc..ok
R.@ P

to the measurement of mean velocity and temperature in flow with a
temperature gradient, the only change from the first part of the preceding
section is that A and B now vary from point to point in the flow.
These variations are determined from the changes in the physical constants
of the fluid. The present investigation is restricted to atmospheric air.

Since air 1s very nearly a perfect gas,

(1)

where the subscript r corresponds to an appropriate reference temperature.
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Fram the International Critical Tables (reference 23), the thermal
conductivity of air can be approximated for temperatures up to a few
hundred degrees centigrade by the empirical equation

k _Tp+ 125 Ta 3/2 (8)
kr Tg + 125

This can be approximated by a straight line over a falrly wide temperature
range, and, in fact, the linear approximation is used in the next section.

The variation in cP with témperature can be neglected in the

present discussion, from 0° C to about 300° C. Thus,

or

and | $ (9)
T, + 125 /T,\1/2
T\ Ty * 125(&"1'.

In practice, 1t 1s convenient to have these expressions in terms of
wire resistances. With

3w
i

/

a = Ro [1 + al1, - 273)]
(10)
Ry = Ry [1+ a(Ty - 273)]
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1k

(21)

(TT)

/T

&

-5q8 €62 = I 40F T oMITJ U pequosead oxs eSSy

.
o Gt + g
A . X Ty
Iy GaT + Bd.l.mlm ) -H<
m\mAmmv cer+ /) ¥

£q peyvurxoadds eq uwd eseyy puw ‘Qlg = W. pus  )€00°0 =0 ‘earma mmuiseTd B J047

.Hm - J .6 I
.H_H. : A_” - mﬂﬁVﬁA«NN - _H_v + .M.“— + 63T+ L

;!
1 q I = m
AH - %V_..Sm - Tg) + m“_ + | ST + L -
g g/t :
3 ?@m- ) +ﬂ+mma+na
Iz By T Xy
X . ; , I Y
A_....almv_wmwmunav+wg+h_a Ger + "L =
g T
2/€ = ,

‘WLIOJ 6U} U} Uej3[JM 6q UBd (6) uotgenbe
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With these values of A and 'ﬁ} the mean velocity is determined_
Just as in the case of the simple anemameter. The mean temperature T,

is, of course, obtained directly from equation (10) which can be combined

to give ,
= 1 ﬁa
Ta = TI‘ + [E + (TI‘ - 273)]<§— - ) (13)

T

which, for a platinum wire becomes approximately

R
( a
Tqg = Tyl Rr>

It should be emphasized that the accuracy of these results, as well
ag all those in the followlng sections, depends upon the accuracy of the
physical form of the cooling terms in King's equations. The linear

1°R /2 |
~ variation of F- % with has been checked with considerable

a
accuracy by many experimenters; figure 2 is a typical isothermal mean-
velocity calibration of a hot-wire anemometer. However, there has
apparently been no attempt to check the exponents of the other physical
gquantities as derived by King. Appendix A contailns a discussion of this
problem, as well as some preliminary experimental results.

RESPONSE OF A HOT-WIRE IN AN AIR STREAM WITH
VELOCITY AND TEMPERATURE. FLUCTUATIONS
Voltage Fluctuation

In order to deduce an equation analogous to equation (3), start
with King's equation for thermal equilibrlung

iR _a, . <d PkaD 1/2



16 _ ' NACA TN No.

With amall fluctuations in velocity ‘and air temperature, there are
introduced '

R=R+r U=TU+u
Ry = Ry + ry p=p+p'

ko k! ==
k=k+k cp Cp

bl dey .
go that King's equation becomes, writing éﬂ- =P and -—ﬁyg:g =4,
a

: 0 0~

iz(i +r)

(R - Ra) + (r - rg)

Using a binomlal expansion for the denominator of the left side
and neglecting products of small quantities on both sides,

1°R
R - ﬁa (R - Ra)2

(Rra R)—P(k+k)

S 2
+ Q(okT + p'kU + pk'U + pku) /

Keeping the linear terms of the binamial expansion of the last part,

2

i
R - Ry (ﬁ'_ Ra)

o o e )

5 (Bre - Fad) = 2(E 4 k)

=P(k + k') +Q [(5 +0')(k + k") (T + u):[l/2

1864

In order to get the fluctuation equation, subtract the averaged King's

equation,
QR 1/2
= = Pk + Q(pk0)
- By
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which leaves

_ R V-
<—Ri" -R.r) = Pk' + g(pkU) <°= + £ +—‘_l—\ : (1k)
2 . P 2 U

and the next step is to express r,, k', and p' in terms of the small
temperature fluctuation 9.

Obviously,
r, = Roaﬂ (15)

As mentioned in the previous section, the rather complicated empirical
expression for the temperature dependence of the thermal conductivity of
air (equation (8)) can be well approximated over a large temperature, range
by a single straight line. Hence, with considerable accuracy, there can
be written

' = n A | (16)

where n is sensibly constant over a range of a few hundred degrees
centigrade.

For the density fluctuation, again air is considered as a perfect -
-gas and the p(T) hyperbola in the vicinity of T, 1s approximated by
its tangent. Thus, :

T,
=5 2_354+ 0!
p P Ty p 0

Therefore,
p+p'=p Ta P = I
p =p = =
Tg * 9 1+ éi
Tq
0]
and for = << 1, there results
a
_ 19
p! = -p =~ (17)
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Substituting equations (15), (16), and (17) and introducing the
hot-wire voltage fluctuation e = ir, as well as the expressions
for P and Q, '

izﬁRoa, s iﬁa
- e
= = 2 — = \2
(R = Ra) (R - Ra)
b .
= Elgﬂ + ﬁl— dcppkﬁbl/é<e %i +.%? + §> _ (18)
o* o~ a

Calculation with typical numerical values (see appendix B) shows that,
for most practical purposes, the sum of the two ®d-terms.in the final
parenthesis of equation (18) can be neglected in comparison with the first
term in the equation, so they will be omitted in the rest of the discussion.

Collecting the remaining terms,

o N -
iR, 1"RR @
a 1 D
prumee-Cl i L ——‘@CppkU /2
(R - Ry) (R - Rq)® Roo o® U

)
The functional form desired i1s e = e<s, %). Since

U,
R, - R
— —-— a r
0 =T, - T, = -
o
: ‘ ﬁ8..-:RI'J_
the J-term is multiplied by -—§———- =]. It 1s also convenient to
o* 6

1 - .

replace §¥— dcppkg)l/g by its equivalent as given in King's equation.
: o

Then, finally,

, .

1

R, - R -R,)? R - R
6 = — T 1°R - azns—,%z 8 % Ra[i R - AR - I—Qail = ()
iRa <IQO(1‘>L o

which obviously reduces to equation (3) when the temperature fluctuation
level becomes much smaller than the velocity fluctuation level. The value
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of A is determined from the mean-8peed callbration of the hot wire,

A
and, of course, 1.?21; =%
0

Time Constant

The general equétion is given under CONVENTIONAL HOT-WIRE-ANEMOMETER
RESPONSE EQUATIONS as follows:

%§=12R-(A+BW)(R-R8) (1a)
0

Equation (2) describes a hypothetical equilibrium reached at the
instantaneous flow conditions. Substituting for (A + B \U) from equation (2),
there 1s obtained ' .

4.2mg @® _ 1°Ra(Ro - R) (20)
Roe dt Rg - Ry

which is the equivalent of equation (4) of reference 2, with the essential
difference that here Rg 1s a fluctuating function of time.

Since, as for the simple anemometer, the general solution of equation (20)
is apparently not expressible in any applicable form, possible simplifica-
tions are now considered for the restriction of small fluctuations, that 1s,

R-R R'a - §a
R

<1 and, <1

Hence Rg may be replaced by R in the numerator of the right side
of equation (20). The denominator may be examined in somewhat the same
way as Dryden and Kuethe obtained their equation (15), that is, there may

be written
=(R-Ra>+<Re-R),+(§a-Ra>

Then it is seen that the last two parentheses are small campared with the
first if appreciable heating current is used. In some cases, when only
the temperature fluctuation level is being measured, relatively little
heating current is used. With negligible sensitivity to velocity, it is
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apparent that R, - Ry = Constant and, therefore, may be repiaced by the

average R, - R,- However, for small fluctuations, ﬁe : R, so that
Rg - Ry may be replaced by R - Ry. Equation (20) becomes approximately,

b.2ns v _ 1%Ra(Re - B) (21)
or
dRrR
v @& - '
M frd Ry - R (21a)
_ where
M - h.QmsER - Ra) (22)
1°RgRa

so that equation (2la) is identical with Dryden and Kuethe's equation (15),
and M' = M, the simple anemometric time constant. Clearly, from the
foregoing analysis, this will not be true for large fluctuations.
With negligible heating current, equation (la) becames
li’—ig‘”—’—s‘i—R=-(A+B‘/t‘f)(R - Rq)
Ry dt
From equilibrium, Rg = Ry- Therefore,
4.2ms 4R |
2 E (A + BV, - R

or ~

Mt B _r -g ' (21a)
at

where
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But

o %% . IR
(A+B\ﬁj)=§_ﬁ z

for the case of extremely small current, so that equation (23) is
effectively the same as equation (22)
if equation (22) is written as

A more direct connection appears

M = L. 2mg

1
—= (22a)
Ro® (R - 19) + B\’-I_I
(see appendix C.)
MEASUREMENT PROCEDURES FOR VELOCITY

AND TEMPERATURE FLUCTUATIONS

Single Normal Wire

It has been seen that the response of a hot-wire to simultaneous
veloclity and temperature fluctuations is given approximately by

: = =42 = = "
Rqg - R _ (R -Ry)fs R -Ry
e—ij‘EzRfaln——g— :--——I}R-A(R-Rﬂ (19)
This can be written simply as
9 u
- + 3=
e B; f 5 ‘ (19a)
where B and d are functions of the mean-velocity calibration constants
and of the hot-wire operating conditions

First consider the quantities that can be obtained from the root-mean-
square output of single wires set perpendicular to the mean flow:

7 - o) -3 G

(24)

21
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Since B and 6 do not increase in the- same proportion for a given
increase in hot-wire temperature, readings of e< at three different
currents at the same point in the flow will give simultaneous linear
algebraic equations from which the three unknown quantities can be obtained:

————
——

. D 2/9\2 Ty 2/ u
ok = #1%(5) + emnG) < oS

N
2
+ B ) _
2 2/9 2 u S e
65" = Bp <5> + 2P0, Sﬁs + 5 )‘ < (25)
+ B )

4

g(u

T
2 _ g 2(3)° 54

oy = B5(5) * 2% 3< '> 32(

It lmmediately follows that

-2 2
ey EﬁlSl ‘ 61

2 epp, B

./\
Q)”c'o
~N
i
ol I
o
N

B32 7 632
2 e
— Bi” 2Bid e
u\- _ 1 2 T2
i
By® 2838y of
§ where
1 ‘ .0 ol
| I L T
‘ A= B, 2Byd, 8,7
By®  2Bgp, 55
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In general ‘because of the rather complicated forms.of B and 5,
these dsterminants will be tedious to evaluate. However, the procedure

may be made a blt more convenient by fixing the ratio Ry: R 3 and setting
up appropriate_calculation charts.
Possible Short Cuts
In order to measure either <-N <§> directly, it is necessary

to make either & or B negligible; that 1is,

2
_ R-F)|> 1 - — Fp = 7
®a - R |1°R - aln(—Ro-m)—2 or Z (R _-Ra)[:iR - AR -Raﬂ

The meaning of this can be found in terms of operating conditions at a
glven point in the flow by replacing the electrical quantities with fluid
mechanical quantities as far as possible. Then the inequality can be
written, after same algebra, as -

_  _ =\ Rp _E|=>> B =
(A+Bﬁ)(§_§a) -k 922 2 \U (26)

For the entire range of practicable operation, the first term in
the parenthesis in equation (26) 1s larger than the second. Therefore, 1t
is evident that, for a given flow, P 18 maximized relative to & by
minimizing R - Fa, and the converse 1s also true. Whether either of

these extremes can, in practice, meke B >> 8 or B << 8 can be checked
muwerically from a typical hot-wire calibration. It will be noted that
the first term in the parenthesis is the only one of the three that can
be varied by changing the hot-wire current. It turns out that, when
both & and U are large, the only feasible inequality is that obtained
by reducing the heating current so that B >> 3; this ordinarily leads to
the additional simplification,

ERORES
for the sensitivity of the simple resistance thermcmeter.

Equation (26) also gives the obvious result that reducing 8 toward
zero will eventually make B << 3, and then the wire is a simple anemometer.
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Another possibility for direct measurement is the use of two close
parallel wires of different diameter, the voltage difference being the
signal to the amplifier. Then, if By = Bp, the difference will

2 2
measure <F—_> » while, if B; = ®,, the difference will measure <%) .
U .

Of course, they must be far enough apart to be insensitive to lateral
velocity fluctuations..

The general requirements for PB; = B2 are extremely complicated if

the general expression for B 1s used. However, for fairly small currents,
the second term in B 1s negligible compared with the first. In cases
where this is true, Bl = Bo means

N 2R -R)
lg \a1 "m 2Ry 82 T2

ay 8o
But - : - :
Ral - er _ Rao -_Rre
f2‘31 ﬁﬁe
8o that ‘
LR = 1R, . (27)

This relation can be satisfied physically, but the problem of correct
compensation for the two wires of different diameters would probably
require that the fluctuwating voltages be subtracted after leaving matched
amplifiers, before entering the output circuit.

The requirement for ©, = O 1s rather complicated and this case
will not ordinarily be necessary, since it i1s usually possible to make
b << B.

Directionally Sensitive Meters (e-g., X andll)

In an ideal meter, the two wires are identical, so that the voltage

fluctuations will be
61 = P+ 52+ €L
1 9 0] 1]

LA S, &
6 U U

(28)

€2
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Subtracting the voltages before amplification and measuring the mean

square leads to 5
e (e1 - ep)
(5F - 2 )

thus giving the lateral turbulence level.

Taking the mean square output of each wire separately, there results

- 2 2 2 — — —
2 ,
912 = g° 35 + 5 2> + € <§> + 2po2 4 2peY 28 =
\o /- U U 6T 60 e
— 2 . .2 2 —_ = —
R AN \ N X) + 28522 - 20T - ppelY
%" = P <é/ + oo 7 T e
After subtraction,
_—_ 5= —
312 - 622 = hBE‘% + )-J»BGH (30)
1] ,

The turbulent momentum and heat transfer are determined by repeating
equation (30) at a different current and solving the resulting pair of
simultaneous linear equations. Of course, the two terms in equation (30)
are proportional to the turbulent shear and heat transfer only if the
density fluctuations can be neglected (appendix D).

If the hot-wire Instrument is unsymmetrical, the analysis-is more
complicated but essentially the same. For purely kinematic measurements,
the generalization is given in reference 19.

5=
Just as in the case of the single wire, direct measurement of —
— 8u
or ég- 1s possible 1f 8<< B or ©>> B, respectively. Agaln it is

to be expected that in a fairly‘hot Jet only the former condition is
obtainable.

In the general case, corresponding to equation (30),.and in all other
correlation measurements involving thermal and kinematic variables
simultaneously, the direct measurement of correlation coefficients
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G.g., —L ,—v', etc) is apparently not usually possible. Such

direct determination is common practice in purely kinematic measurements.

Correlations between Different Points

For two single wires set parallel to each other and perpendicular
to the flow, assuming the ideal case of identical wires at the same
sensitivity, the following equations apply:

3 u N\
1 1
e = = + d=—
e =83 U
> (31)
3
32 =B’:‘? + 8%
9. J

Adding and subtracting the fluctuating voltages’gives

5

_ 2
97 + 9 ., + 3
;32(1—_—2> ¥ 255( 1 2)<ul _ uQ) ¥ se(ll:—u—e)
E 5 U T

—_— 9, = 9o\° 3 - O - - uy©
G A ) )
8 6 T U

Expanding the foregoing expressions and subtracting gives

A~ A p—
(el + 62>2 G e2>2. . uf(%) . uea(%% %) . uzsg(‘*_l?‘@) (32)

2

and the three quantities in parentheses on the right side can be obtained
by making readings at three different hot-wire currents. The physical
- slgnificance of the cross-product term is not immediately evident.

Of course, with B >> 5, the thermal correlation function, and hence
the thermal scale, is measurable directly.
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The correlation between v fluctuations at different points can be
determined by using two double wire meters, measuring the mean square of
the sum of the differences of the individual meter differences. It can
also be measured with symmetrically inclined single wires.

Spectrum

!
Ifiand‘-‘_-
)

U
appreciable velocity and temperature differences, it may be possible to
measure only the 9' spectrum directly. This is true for cases in which
it 18 not feasible to make & >>B Dbecause of wire témperature limitations.
Then it may be necessary to obtain the u' spectrum with a meter made up

of two wires of differing diameter as described previously.

are the same order of magnitude in a flow with

For temperature differences up to perhaps 100° C, however, it does
not seem likely that the nature of the turbulence will be changed essentially
in a'flow of moderate velocity. Therefore, to & good approximation, it "
would seem satisfactory to determine the u' spectrum at reduced 8.

It should be noted that the v spectrum is directly measurable
in all cases.
MEASUREMENT OF MEAN VELOCITY AND CONCENTRATION
IN AN ISOTHERMAL FLOWING MIXTURE OF TWO GASES

As in the sectlion dealing with the measurement of mean velocity and
temperature, start with King's equation for thermal equilibrium,

P= .
1R - = =
= = A+ B\,U
R - R,

where
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Again, A and B are not constants but depend upon the local physical
constants of the flow and, therefore, are a function of the relative
concentration.

As indicated in the symbols, the concentration used in this analjsis
is the molel concentration. Further remarks on this are included in
appendix E.

-The expressions for the mean physical constants of the mixture are
written as

P =py +T 0o
<°p = cpa + T A@p (33)

k = kg + £(T)2k

. The thermal conductivity of gas mixtures 1s generally not a simple
weighted average (reference 24) and varies-considerably for different
pairs of gases. If k(I') 1s a known function, the procedure is relatively
simple, and, for most pairs of gases for which data are available (refer-
ence 25), f(I') can be well approximated by a quadratic or cubic poly-
nomial. If k(I') is unknown, which is still the case for many pairs
of common gases, 1t can be determined as one of the unknowns by an extra
measurement at each point in the flow. Both cases are treated here.

k(') a Known Function

For the discussion of k(I') as a known function, assume that f£(I)
can be approximated by a parabola:

4

¥ =k, + (eF + (FP)ok ' (33a)

Equation (2) can be written as

=—1€E- = 7o)k * (EF + Cfg) J

R-Ra

Roa

1/2 ‘
o 2 \E<cpa +T Acél/g(pa +T Ap)l/g':ka + (Ef + §f2) J Ul/2 (34)



29

NACA TN No. 186k

o0y
i "
0
Rulle = z
'
By - g _ &
&h
sI8YM
— wl. \, . A mnH _ ] )
i V(T EE) ¢ g em\%oﬁ » o) 7@ ) v A=
-
e/t .
, . o )
LI e G IR ) IR B i va:?é ¢ ST s T«@h O m_ W=

2/T
2] Pus [ J0J suoplsnbe snosuslTNWIS PTOTL S0ITM-30Y OM] eyl Jo sBurpsSI oyl Uyl

MOme qQUeJI9IITP ©q op o uamy Afrensn Leyz ‘ArTeyuswradxs fang
‘I8TJI99BW SWBS 9Y] JO SJIB SS8ITM 9y JT oWws oy} 9q TTTM WIS} 38ITJ 9UY} JO SRUSTOTII000 oyz ‘uorasube

& 2% \ T/ w04
§,3ury 04 BuTpaoody - fmaﬂmm # R va 98Yq OS ‘IeqemeTp UT FUTISIITD mmhﬁkuuoﬂ oMy yasTM jqutod

B
euBs oY% 1B g-4 PJIOOSI 0% ST POYISW USTUSAUOD 3sow oy3 sdeysed +J Pus [ SUMOUNUM OM] 8U1 JO

. B .
g- ¥
senTeA ojur qutod v q® |MIMIH Jo sButprax o9sladoxdds mrogsueaq 03 pesn oq 0% ST (f£) uotyenbyg
' 22



30 | ' NACA TN No. 186k

Multiplying the first equation by No and the second by N, and

subtracting, a solution can be obtained for [%a + (gf‘+ ngDA%], and the

resulting quadratic equation can be solved for T. Provided that k(I)
is a monotonic function, only one of the two solutions of this quadratic
will have any physical meaning. This value of T can then be substituted
into either equation to obtain U. This latter step can be done graphically
1f a mean-velocity calibration is drawn up of either hot wirej that
. 1°R = =
1s, == R against \’U with straight lines of constant T'. The two

a
limiting lines T

L

O and T = 1.0 can be determined experimentally.

For research in turbulent material diffusion it will be of particular
interest to use a gas such that pg = Pg (e.g., ethylene). In that case,

a samewhat shorter technique can be used: A pitot tube will give U
directly and then I' can be determined from a single hot-wire reading
and the family of calibration curves Just described. ' .

k(I') “an Unknown Function
In the case of k(I') as an unknown function, it is convenlent to
work with the readings of two different hot-wires and a pitot tube at

each ‘point.

The two hot-wires give

S
|

- = 1/2 .' = \1 . - 1/2
= Mll:ka + ,f(P)Ak:l + Ny (cpa + T Acp) (pa + PA;) /EE‘a,“‘ f(l")Ak] g1/2

- . ' 1/2 '
#o = MgEga + f(f‘)Ak] + Np (cPa + T Acp>l/2(pa' + pr)l/QEca + f(f‘)Ak] gl/2 \

where
g - 1°R
R - Rqg
B al
- Roa
. viNJd

(35
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Multiplying the first equation by N, and the second by N; and

subtracting yields

Ny - BNy )

k, + £(T)ak =
* Mo - MpNy ®

Substituting equation (36) into the expression for ¢l,

- 2 = /2 1/e1/2
g1 = Myk, + Nl<cp +T Ac@l/ (pg + T 290 /na /2t

or

- 1/2 = 1/2_1/2 ¢ - Mikg _
(Sau  Pomy " (par Ted DT L B e,
Nlna

A reading at the same point with a pitot tube gives
1 = "
a = 5(pg + T 2p)0°

Thus,

(oa + T A@l/e _ (2q%1/2

which is substituted into equation (37) to give I(U):

5 .
— Ky
I' = -£—<%?—U -cC >
Hep\2g Py

However, equation (38) also gives T(U) directly:

- 1 2q'
-l - e

(36)

(37)

(38)

(39)

(38a)
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And these two expressions are equated to glve a cubic for U:

. . )
ﬁ3+,§_ﬁ>%'_&ﬁz-&‘i€9=o (40)
AN K’be Ap .

With the value of U at a point, I is obtained from equation (38a)
or equation (39). The last unknown is the function k(T).

The values of Ky at several polnts immediately permit solution

for f(T). For example, suppose it is assumed that f can be approximated

by a cublec f = a; T + a2P + a3F3 From readings at three different points

in the flow, equation (36) ylelds three simultaneous equations for the
unknown  coefficlents,

- Ka, - kg N
T T2 3, = 2
18 + I1%a, + r a3 ~
K -k
-0 as
Toa, + Fo%ay + Tp7eg = o ? (b1)
: ka, -k
id F e 73 3 8
r r =
38 * 3 8 + ] a3 % .

Of course, the three points should be rather widely spaced, and errors
can be reduced by choosing several sets of three points at random.
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RESPONSE OF A HOT-WIRE IN AN ISOTHERMAL FLOWING MIXTURE
WITH VELOCITY AND CONCENTRATION FLUCTUATIONS

Voltage Fluctuation

Start again with King's equation

2
e N LA
R Ra Roa, Oa ,

and introduce small fluctuations in velocity and concentration:

R:ﬁ-f-r p=6+p
k= + k' U=T+u (42)
- ' =T
cp =Ty + Cp r=T+7
From equation (33),
p' =7 Lo
Cp"—'?,ACP ()4’3)
af(F)

r
S T

Substituting equation (38) into King's equation, using appropriate
binomial expansions, neglecting products of small qu&ntities, and sub-
tracting the averaged form of King's equation yields

- iaRar A—' + —UJ'/E(

L2 LK L u
(ﬁ _Ra)2 6 +‘E-+I_J_) | (’+’+)

Cp
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But, e = ir; B can be replaced according to the averaged equation;
and p', cp', and k' are given in equation (43). Thus,

= 2 _ .
(R~ Rl carqc 1/ 1% A% e arMdily
1Rg dl k¥  2\R - R, S p dl k T

(R - By)® 1°R R
- ~(— -5 (45)
2Ra  \R - Ra v

A more convenient form 1s obtained by substituting

e = -

>

F .
Cpr_ . p -
c. - + T Ac,.
. P Cpq L Cpq
I‘Acp
E-3 -
P l+__9a-
g
%kf=f lk
=+:—a—
' 7

Also, the -E-terms can be combined. Then the final form of the equation

giving the instantaneous voltage fluctuation due to concentration and
" velocity fluctuations.is

— ——
— )2 o af
e—-(R Rg ( iR +1§ ar +< 1°) _> 1 . 1 7
~ 21R; R - £k R - c < r
: , I' &k r Acp |
- 2 _ '
(R - Ra) 12R PRR
- 3 = - Al= (46)
1R, \R - Rq 7.

For T =0 or

R

0, equation (46) reduces to equation (3), the

response equation for the simple anemometer. In general, for concentration
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and velocity fluctuations of the same order of magnitude, none of the
terms in equation (46) is negligible. Typical values are given in
appendix B.

As mentioned in the previous section, investigations on material
diffusion in turbulent flow will first be concerned with the mixing of
two gases of equal densities, in which case Ap =

Time Constant

From the section CONVENTIONAL HOT-WIRE-ANEMOME%ER RESPONSE EQUATIONS,

4.2mg 4R o5 . _
R dt'_‘iR (A +B\U)(R - Ry) (1a)

With equation (2), this again gives

4.2ms dR i‘?Ra(Re - R) (4)
Roa dt - Re = Ra

which is equivalent to equation (4) of reference 2. Hence, with the usual
restriction of small fluctuations, the same approximation 1s used in the
denomlnator of the right side:

Ry - By = (R -Ry) + (Rg -R) =R - Ry

so that equation (4) becomes approximately

h.2ms g _ 1°Ra(Re - R)
Roa dt R - R,

or

—(R—§)+%(R-R
M

where
L.2ms(R - Ry)-

. 2
i RaRoa )
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Just as for the simple anemometer. Of course, the numerical value of the
time constant in this case is a function of both local mean velocity and
mean concentration.

MEASUREMENT PROCEDURES FOR VELOCITY AND

CONCENTRATION FLUCTUATIONS

Single Normal Wire

The voltage fluctuation for a simple hot-wire set normel to the mean
flow direction (equation (46)) may be written as

e =Au% + 6% (46a)

The general procedure to be followed in using equation (46) to

2 2 —
u
determine <%) s <%—> , and ( .Z—_- 1s similar to that for the temperature-
fluctuation problem, with an essential difference; namely, in this case

the three readings of 92 taken at a given polnt in the flow cannot:
ordinarly be made simply with the same hot-wire operating at different
temperatures. -This 1s due, of course, to the fact that u and & vary
proportionally with changes in wire current (or temperature) at a given point
in the flow. Instead, three wires with nonproportional mean calibration
constants must be used. According to King's equation, this 1s possible

only with three wires of differing diameter. However, in actual practice,
the ordinary differences in A and B Dbetween two wires of the same

nominal diameter may provide sufficient variation for this method.

It should also be pointed out that, since A 1is a function of the
radiation loss, it may be possible to make at least two of the three
necessary readings by using one hot-wire at widely differing temperatures.

Thus, the equations to be solved are campletely analogous to
equation (25) and need not be written out.
Possible Short Cuts
In general, it is not possible tomeke p > 8 or u << d for

ordinary ranges of concentration and velocity. However, it may be possible
to use two close parallel wires, the voltage of which is subtracted before
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entering the amplifier. Then, if M) = Hp, the difference will

> 2
measure <—%—> » while, if &; = ®p, the difference will measure <-IZ;> .
As pointed out under MEASUREMENT PROCEDURES FOR VELOCITY AND TEMPERATURE
FLUCTUATIONS, the wires must, of course, be far enough apart to have
negligible sensitlvity to v'

The conditions necessary for making u; = pp without simultaneously

making ©) = & are so complex as to seem impracticable. The inverse
condition is a bit simpler:

(ﬁl - R&]_) (RQ - Rag) (47)

1.R
1 1R ae

1a

But even this is extremely difficult to employ. In fact, perhaps the
simplest conceivable assumptions which may still be satisfied by a pair
of wires may be considered: Let By = Bp and Ry a) = Ra2 with the
specific condition that Ay 4 A5, since equal A's together with the
other conditions would also meke 3 = po.  Now equation (47) becomes
1, (R - Ry)®
..l.=tl__9_2. (48)
12 (Ro - Ra)

In order to predict the necessary currents, R; and R, must be
eliminated. This leads to

(o125 gTf

YA ==Y

which should be solved explicitly for 15(ij). This is not generally

possible. Therefore, if this approach is to be used for direct measure-

2
. 7
ment of (%> » perhaps a feasible technique would be to satisfy equation (48)
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by trial and error. Also, it should be noted that, since this assumes
nearly identical wires operating at different temperatures, the time
constants will be different, and separate matched amplifiers will be
necessary. ’

Directionally Sensitive Meters

The general approach and procedure 1s completely analogous to that
described for simultaneous temperature and velocity fluctuations.

Assuming a symmetrical meter,

!
0~
+
afs
+
i<

el v
\ | (49)

€2

it
T
TR
+
a Vs
1
aff<

These give J— :
2
(1) _leg - ep) |
i 2 (50) .

and
2 > 7V uv .
- = - O€l —
el . 92 !HJ FU> + )4' G( ) (51)

Thus the turbulent shear and laterael diffusion of materiel are obtained

by repeating equation (51) with an appropriately different instrument

and solving the resulting pair of simultaneous equations. Of course, the
terms in equation (51) are proportional to the turbulent shear and material
transfer only if the density fluctuations can be neglected (appendix D).

Correlations between Different Points

An approach identical with that for the temperature and, velocity
fluctuations gives, instead of equation (32),

2%2; YU You
(el + e2>2 ) @1 . 692 - hpe(#@) + 11-;18(?1—-;2 + ?ﬁ—l) 45 (U2 (52)
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and the three quantities in parentheses on the right side can be obtained
by repeating the readings with two other appropriately different pairs of
hot wires.

Again, unlike the case in the section MEASUREMENT PROCEDURES FOR

N7 . ujup
VELOCITY AND TEMPERATURE FLUCTUATIONS, nelther -5~ nor -=5- can be
y U

measured directly.

The correléfion between v fluctuatlons at two different points
is determinable as outlined in the aforementioned section.

Spectrum

‘Since, in general, the value of u cannot be made either very large
or very small compared to the value of 5, no direct measurement of either

the 7' spectrum or the u' spectrum can be made.

In the case of gases whose densities and viscoslties are not too
widely different, the u' spectrum in the mixing gases is probably
quite close to that in a similar flow of either component alone, for
which case it is easily measurable- A camparison of this u' spectrum
in the pure gas with an e' spectrum measured in the mixture may, at
least, give a rough idea of the direction in which the 7' spectrum

varies as compared with u'.
Again it should be noted that the v' spectrum is measurable
directly in a flowing gas mixture with concentration fluctuations.

CONCLUDING DISCUSSION

In general, the errors lnherent in these new applications of the
hot-wire anemometer are the same as for the simple anemometer (references 2
26, 27, and others) and hence need not be discussed here.

Perhaps the only additional source of error arises simply from the
added complication of many of these measurements. This influences the
result in two ways: (a) The final numerical result is obtained from
more separate readings of fluctuating quantities than is the case in
ordinary anemometric applications and (b) the appreciably greater time
required for measurement at each point in the flow results in greater
difficulty in maintaining the steady-state condition of the apparatus,
both aerodynamic and electrical.
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It should also be noted that the hot-wire length corrections will
be different for the different quantities, since each case must be
computed fram the correlation function of the physical quantity in
question.

The details of the present analysls assume the validity of King's
equation in its conventional form. The accuracy with which this equation
predicts the influence of velocity changes has been verified countless
times; preliminary attempts to verify or disprove the rest of thias
equation (appendix A) have been indecisive. Considerably more careful
measurements must be made, both in different pure gases and in a pure
gas at various temperatures. However, the general method presented here
is equally applicable to a possibly more accurate heat-transfer equation
that may be found in the future

The possible usefulness of a method for such detailed 1nvestigation
of nonkinematic quantities in a turbulent flow 1s clear. For basgic research,
most of the measurable statistical quantities should be of interest; for
some practical ‘problems, perhaps the direct measurement of mean distri-
butions and of turbulent transfer will be paramount.

In principle, there appears to be no necessity for restriction of
the method to measurement in a flow with only two simultaneous fluctuating
quantities. However, the camplication that arises upon consideration of
simultaneous fluctuations in velocity, temperature, and concentration
would appear to render this generalization impracticable. The idea of
being able to make such meagurements in & turbulent combustion zone -is
naturally of interest. However, this extremely important problem presents
at least two certain major difficulties: (a) In reasonable density ranges,
the flame temperatures are excessive and (b) the intermediate stages of
most chemical reactions would involve dealing with-a mixture of several
components instead of Just two. In addition to these difficultles, the
possible catalytic action of the instrument in the reaction zone might
also be noted as well as the probability that the hot-wire might act as
an igniter. .

In casting about for possible methods of meking direct measurement
of the various kinematic quantities in a flowing gas mixture, the
possibllity should not be ignored of finding a pair of gases whose
densitles, specific heats, and thermal conductivities are so related that
the net response to a concentration fluctuation is negligible. It can
be seen from the numerical values in appendix B that such a gituation is
not beyond the realm of possibility.

California Institute of Technology
‘Pasadena, Calif., June 10, 1947
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APPENDIX A

REMARKS. ON KING 'S EQUATION

General

. As pointed out by McAdams (reference 28), the forced-convection term
in King's equation can be written in terms of the product of a Reynolds
nunber and a Prandtl number, so that the rate of heat loss from the wire
is

= k(T - Ta)(a' + b' \Ro) | (A1)
where R under the radical is Reynolds number.

Inserting an extra d and introducing & heat-transfer coefficient h

and the Nusselt number 1 = %g, McAdams writes this in the form

n =% + rky\Ro - (r2)
where R 1s Reynolds number.

Conventionally, the first term in King's equation is described as
including rediation and free convection, while the second term is due to
forced convection. The latter appears to be qulte reasonable, but it is
apparent that free-convection effects, if appreciable, cannot enter the
heat-transfer equation simply additively, the free-convection phenomenon
is complex, and in most current applications the direction of buoyancy-
induced veloclty 1s perpendiculer to the maln flow. The form of A, as
given by King, gives no clue as to 1ts physical origin, although it 1s
physically obvious that radiation must be included. The question is

“perhaps further clouded by the fact that measurements of the zero-velocity
point in constant-resistance hot-wire calibrations seem to agree rather
~well with the A obtdined by the extrapolation of the points measured at
relatively large flow velocities. .

- It would seem that, in view of the extended possibilities of the
hot-wire anemometer as described in the present report, a complete
reexamination of the fundamental heat-transfer equation for the flow
past a heated cylinder at small Reynolds numbers is in order, with par-
ticular emphasis on explicit inclusion of all the significant physical
quantities. For example, if A actually does represent a free-convection
term, it should include a Grashof number, which generally has a rather
complicated variation with temperature.

For the purposes of the present work, preliminary attempts have been
mede to check the validity of King's equation. These are described
briefly in the following paragraphs.
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Mean Calibration of Hot Wire in Air at Various Temperatures

Because of the difficulty of obtaining a series of velocities
at each of several temperatures with the present equipment, single
measurements were made at various velocities and temperatures,
keeping R - R = Constant. Since King's B 1is relatively insensitive
to temperature changes and since this forced-convection term seems
physically sound, the measured points were used to compute the inter-
cept A on the assumption that the theoretical variation of B(Ty) is
correct. Thus, an A was computed from each measured point instead
of from a complete faired calibration curve at each temperature. In
this computation, the data of Taylor and Johnston (reference 29) for the
thermal conductivity of dry alr were used. The air was, in fact, fairly
humid, but here only the relative values are important, and an error in
absolute magnitude of k would have no effect. The specific heat was
assumed constant (c, = 0.24) over the temperature range, in accordance
with the International Critical Tables (reference 23). For the density
variation, the air was assumed to be a perfect gas. ‘

The results (fig. 3) show considerable scatter because this form
of presentation involves small differences between two relatively large
quantities, one of which has appreciable scatter itself. From the figure
it appears that A(Ta) probably varies more slowly then k(Tg); however,
the large amount of scatter precludes the deduction of an alternative,
empirical expression. The agreement appears to be sufficiently good to

Justify the use of King's equation in the present, fairly rough measure-

ments of velocity and temperature fluctuations in a free jet.

Comparison of Mean Calibrations in Air and Carbon Dioxide

In a further attempt to check King's equation, & hot-wire was
calibrated in both air and carbon dioxide. Then, with the assumption
that the forms of King's A and B are correct, the carbon dioxide
calibratlion was computed from the air calibration. The curves are given
in figure k.

o

For the computation of Aco2 and 3002 from Agq. and Baip, the

thermal conductivities, which correspond to those of pure gases, were
taken from references 29 arnd 30. The specific heats and densities were
taken from reference 23, and both gases were assumed to be perfect gases.

From figure 4 it can be seen that, although the agreement between
measured and computed Bco2 is good, the two values of A002 are

~relatively far apart.

The principal possible source of error in the determination of Aco2

and BCop, from the air calibration is the use of thermal conductivities
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measured in relatively. pure gases. The laboratory air undoubtedly con-
tained appreciable amounts of carbon dioxide and water vapor (the measure-
ments were made on a cloudy day); the Jjet carbon dioxide was a commercial

fype, stated as 99% verceént pure, probably containing air, water, and

other impurities. Small amounts of impurities may have an appreciable
effect upon thermal conductivity, much larger, for example, than the
effect upon density and specific heat. Unfortunately, insufficient
experimental data exist on the thermal conductivity of gas mixtures, and
the theoretical approach has proved to be tremendously complicated, even
the first approximation for monatomic gases (reference 24). Thus, it
would be extremely difficult to estimate the error due to impurities,
even if a quantitative analysis were available. It is comncluded that
the measurements should be repeated with pure gases or that the actual
thermal conductivities should be measured.



LYy NACA TN No. 1864

APPENDIX B

TYPICAL NUMERICAL VAIUES OF TERMS IN RESPONSE EQUATIONS

Temperature and Veloclty Fluctuations

The complete equation (18) can be written in the form

iﬁa ‘_ (—- —f:) Rpa A
_—_9—A+BU-(—5- d -ngEd
(R-Ra)2 . WR-RaJ u_;k;_._)
(a) (b)
B & 1 B
-3 G (_ - TB)S 2 Fg (B1)

It is of interest to compare the relative magnitudes of the four terms
as indicated.

Assume the following typlcal numerical values:

U = 1000 cm/sec d = 0.000611 cm
g = 100° ¢ Ry = 11.00
= 290° abs. 1 =0.30 cm

W8 om0 i = 0.040 amp

[UR @ = 0.0037 (for platinum wire)
A = 0.0035
B = 0.00010
k= 7.5 X 1072 (reference 29)
B = 7.00 x 1074
T, = 0.25

= 1.62 x 10”7 (reference 29)
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These values give

11.699

Br = Bo[L + a(Ty - 273)]

Ra

]
I

Rofl + a(Ta - 273)] = 15.760

and, fraom the equation for thermal equilibrium,

2_
_ 1R,

ﬁ:R + = — =
® E-12+8\T

20.740

The following numerical values are now obtained for the terms in
equation (Bl):

(a) = 10.90 x 1074
(b) = 1.22 x 1074
(¢) = -0.13 x 107%
(d) = 3.16 x 1074

Term (c) is only a little more than 1 percent of term (a) and is
apparently negligible for all anticipated operating conditions.

Concentration and Velocity Fluctuations in
Mixtures of Alr and Carbon Dioxide

Since there is no information available on precise measurements of
the thermal conductivity of mixtures of air and carbon dioxide, it is
assumed for the purposes of this calculation that the variation is
linear; that 1s, £f(T) = . Then equation (46) can be written in the
form S

21R, e=(zx+§\}§)(%)+ i\h‘x-‘ (z)

(ﬁ. - R&)e Cpa f
1 + - 1l + =
( : I' Ak ) r ACP ‘)
V- —V
(a) (b)

i <_z> s L (82)
T

P
1 4= a U
( ' &p

— .
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Assume the following typical numerical values:

T = 1000 cm/sec 1=0.30 cm ' g = 1.165 x 1073
F=0.50 | i = 0.040 amp Pg = 1785 X 1073
T, = Ty = 290° abs. a = 0.0037 Cpy = 0425
%%::ﬁé = 0.20 A = 0.0020 cp, = 0+199
d = 0.000611 cm B = 0.00010 Ak = -2.13 X 1072
Ry = 11.09 k, = 5.93 X 1075 Mo = 0.620 x 10°3
kg = 3.80 X 1077 Ac, = -0.051

‘These give

(a) = -3.14 x 1074

(b) = -0.72 x 1074

(¢) = 1.33 x io'LL

(d) = 3.16 x 107¥

and none of the terms is negligible.
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APPENDIX C
COMPENSATION RESISTANCE FOR SIMPLE RESISTANCE THERMOMETER

With appreciable heating current, the ordinary anemometric expression
for the time constant can be used:

4 .2ms (R - Rg)

a
which is more convenient than the equivalent form
4 .2ms 1
M' = — —= (c2)
Roa (X - 42 +3\T) |
The compensation resistance is then given by
A L |
_RQ = (€3)

where L 1is the inductance of the coil in the compensation network.

However, in order to measure temperature fluctuation level directly,
it is convenient to operate with negligible heating current. Then (R - Ry)
becomes too difficult to measure in a turbulent flow, and the limit must
be reached with equation (C2) rather than with equation (Cl). Then

1 _ 4.2ms 1 - (Ck)
Roa (K + §‘J%?) oo
where, as in equation (C2), the values of A _and B to be used are the

average values corresponding to temperature Tg.

In the actual process of measurement, perhaps the shortest method
is to determine (A + B\J—>'by a measurement of =1—B=— with the wire
R-Ra

appreciably heated, since this reading is also necessary for the determi-
nation of mean velocity
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APPENDIX D
TRANSFER IN TURBULENT SHEAR FLOW WITH DENSITY FLUCTUATIONS

In the sections on measurement procedures, methods are given for
the determination of shear, heat transfer, and material transfer by
measurement with a directionally sensitive hot-wire meter. The procedures
given actually lead to the quantities wuv, Iv, and 7v. These, of course,
are proportional to the respective transfer rates only in cases for which
the density and specific heat fluctuations are sufficiently small, in
which cases thé¢ local mean density can be used to give

Shear: T = -puv
Heat transfer: Q= -pCsv (D1)
Material transfer: D = J‘7?

Since the density fluctuations have been taken into account for the
camputation of the hot-wire response, 1t may be well to investigate the
limitations introduced by the use of equation (p1) .

Temperature and Veloclty Fluctuations

The general expression for turbulent shear is

B

T=-pUV (me)
but
- '\,
p=p+top
U=10+ u !
(D3)
V=v
0 =6+ 9
v

For turbulent shear flow with temperature gradient, it may reasonably be

assumed that %% %% and ,%_ are the same order of magnitude; in fact, in

<

the previous discussion they are assumed small. It is of interest to
find the restriction on 6 such that equation (D1) may be applied with
at least the same accuracy as may be expected from the measuring
technique.
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With equation (D3), equation (DR) becomes

and the third term is clearly negligible.

Since the density fluctuation is due to temperature fluctuation,
from equation (17)

S}
p B T,
Therefore,
T = -puv + &Y 3y (Dk)
Tq
Hence, for equation (D1) to be valid,
w>» U Sy
Ty
or,
v .37 6
== > == =~
e $0 T (25)

If X and ¥ are the same order of magnitude, this requires that

® o0

<« (D6)

ml%||®|
'—l

If this condition is not satisfled with sufficlent accuracy, t. the turbu-
lent shear is calculable from equation (D4) after uv and Jv have
been obtained in accordance with equation (30).

The turbulent heat transfer is

Q= -cppfV - (D7)
but, with equation (D3) and with ¢y = Constant,
. .

Q= -cp&s—; - cpép'v - cpp'ev
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where the third term can be neglected. Substituting for p' yilelds

Q = -cppdv + Cpp TR ' (18)

Saqm;

so that, for equation (Dl) to be valid, it 1s required that
0 1 D6
-1 (D6)
T

‘as before. If equation (D6) is not satisfied, the turbulent heat
transfer is easily calculable from

- 6 \— ,
Q- -cpo( - Vo (£9)
after 9v has been obtained from equation (30).

Concentration and Velocity Fluctuations

With equation (IR2), equation (D3), and the expression for the -
den51ty fluctuation,

-p'=7Ap

where T =T + 7, there is obtained for the turbulent shear stress,
approximately Y

T = -puv - U Apyv ’ (p10)-
If equation (D1) is to be reasonably accurate and if % is roughly

equal to ¥ the following inequality must be satisfied:
ru

(p11)

H||~

AP
6 <<

If equation (Dl1) is not satisfied, uv and 7V can be obtained fram
equation (51) and equation (D10) gives the shearing stress.

The turbulent material transfer is

D = -pfV - (n12)
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Introducing the mean values and fluctuations and neglecting the triple
product of the small fluctuating quantities as before, equation (D12)
becomes

D=-pyv - Tp'v (D13)
But p' =7 Ap, so that
D=-(p+T ap)yv (D1k)

and the condition for D in equation (Dl) to be valid is again

20 <= (p11)

P r

As Dbefore, equation (Dlh) may be used after 7? has been obtained from
equation (51).
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APPENDIX E
MIXTURES OF PERFECT GASES

In view of the sections discussing measurements in gas mixtures, it
seems appropriate to include a brief review of pertinent relations
occurring in the: theory of mixtures of perfect gases. Extensive treat-
ment is to be found, for example, in reference 3l.

The following notation is used:"

v total volume (for most problems in fluid mechanics, unit
volume is considered)

My molecular weight of ith component

Ny number of moles of ith coﬁponent

Py partial pressure of 1ith component

o1} : density of ith component at presgsure Py

Pi* density of .ith component at pressure p

R universal gas constant

T absolute teﬁperature

P, p, M characteristics of mixture (M, apparent molecular weight)

There follows immediately,

P=3_ P (£1)
1 .
NsM '
Py = % . ' ‘ (E2)
P .
Pi* = Py oo (E3)

Py
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Also, the equation of

the mixture:

or

and .

Since p = E P,
i

so that

23

state 1s satisfied for each camponent and for

p;V = NyRT (E4)
v = ? N4RT (E5)
Py = % RT ' (E6)
p=¥%m}=ﬁm (£7)
Py
Zﬂ =

T M M

Z:: b3
M=2 (88)

I,

Relative concentrations are of particular interest. Define the
molal concentration of the 1th component by

N; -

71 =
)M
K

(E9)




s

But, from equations (Ek) and (ES),

Pi_ M
T
K
so that
Py
7i = —
1 P

The following relation 1s of interest:
D(pi*, 71}
From equation (E3), ,
. .
0= pi = E(m* ;)
1 1
or
p = Di* 4
L (e1"73)
For a mixture of two gases, 7, = 1 - 7, and

p = po* + (91* - 02*) 71

A mass concentration can be defined as

Py
0

Ay = =k
1 ZKQK_

NACA TN No. 1864

(E10)

(E11)

(E12)

(E13)

A general expression for p(pi*, Xi) is rather camplex. But

equation (E13) can be transformed to

py ¥

71

Ay =

Specializing at once to a two-component mixture s

pl*
el

(E14)

(E15)
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but, from equation (E12),

Substituting this into equation (E15) and golving for p yilelds

P *po*
o = 1 . (E16)
p1% + (pe* - p1¥)A1

which may be compared with equation (E12).

A relatlon between these two definitions of concentration is obtained
by equating equations (E12) and (E16):

P1%71
Mo=— . . (E17)
Pp™ * (’:’1 T P )71
T or
P ¥*A
7y = 2 1 (£18)

pp* + <°2* - p1*)’”1

The relative significance of these two concentrations in the field
of fluld mechanics merits consideration. In investigations of mass
transfer 1n gas flow, the mass concentration would eppear to be the more
significant parameter. For example, in a comparison of lateral rates of
diffusion of momentum, heat, and material in a particular turbulent shear
flow, the A distribution is to be compared with the velocity and
temperature distributions.

On the other hend, a treatment of materlal diffusion prior to chemical
reaction would obviously be more concerned with the molal concentration.

For hot-wire measurements, the simplicity of equation (F12) relative
to equation (E16) recommends the determination of molal concentration
and fluctuations first, and, if necessary, the use of equation (E17) to
obtain mass concentration.

Of course, if p1¥ = po*, a case of particular interest in the

investigation of material diffusion in turbulent flow the distinction
vanishes.
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Figure 1.- Variation of hot-wire constants with air temperature. Physical
constants from reference 23. R,, resistance at reference temperature;

Ry, resistance at local temperature.
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Figure 3.- Hot-wire calibration in heated air. Physical constants from
references 23, 25, and 29. 20° C <Tgy 58'70_ C.
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