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SUMMARY

The theory is given for calculating the free-space oscillating
pressures associated with a rotating propeller, at any point in space.
Because of its complexity this analysis 1s convenient only for use in
the critical region near the propeller tips where the agsumptions used
by Gutin to simplify his final equations are not valid. Good agrsement
was found between analytical and experimental results in the tip Mach
number range 0.45 to 1.00 where static tests were conducted.

Charts based on experimental date are included for the funda-
mental frequencies of two-, three-, four-, five-, six-, and eight-
blade propellers and for a range of tip clearances from 0.04 to 0.30 times
the propeller diameter. If the power coefficient, tip Mach number, and
the tip clearance are known for a given propeller, the designer may,deter-
mine from these charts the average maximum free-space oscillating pressure
in the critical region near the plane of rotation.

As the tip clearance is decreased, pressures in a region about as
wide as one propeller radius are greatly increased. At a constant power
the pressure amplitudes of the lower harmonics tend to decrease and the
higher harmonics tend to increase with an increase in tip Mach number.
The fundamental frequency of pressure produced by a four-blade propeller
is essentially independent of tip Mach number in the useful tip Mach
number range. At tip Mach numbers near 1.00 so much energy appears in
the higher harmonics that the total pressures produced by a two-blade
propeller are only slightly greater than those produced by a four-blade
propeller at the same tip Mach number and power coefficient.

‘ Blade plan form is shown not to be a significant parameter; however,
the nondimensional parameter, tip clearance divided by propeller diameter,
is shown to be significant. Pressures in the region ahead of the plane
of rotation tend to be out of phase with those behind it. A reflector

in the pressure field increases pressures in the plene of its surface by
an amount which depends on its shapej; a flat surface caused a doubling

of the free-space values.
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A section of the present paper is devoted to the fuselage response
to these oscillating pressures and indicates some of the factors to be
considered in solving the problems of fuselage vibration and noise.

INTRODUCTION

Large-amplitude fuselage-wall vibrations in the region near the
propeller plane have been experienced recently in several experimental
airplanes. Fuselage-panel failures have occurred and great discomfort
to the crew has resulted from the noise and vibration inside the airplane-
These vibrations are known to result from the oscillating pressures
assoclated with the rotating propeller. Up to the present time, however,
very little information has been published that would enable a designer
to predict these pressures in the critical region near the propeller tips.

In reference 1 Gutin has developed a theory by means of which the
sound of a propeller may be predicted. By making several simplifying
agsumptions Gutin simplified the final equations, which were then

“useful only at a large distance from the propeller. The analysis
presented herein is based on Gutin's fundamental equations without some
of the simplifying assumptions of the originsl paper. The solution
obtained then makes possible the prediction of oscillating pressures
at any point in space. Its practical usefulness, however, is limited
to the area close to the propeller tips, where Gutin's simplified
solution is not valid. At a larger distance away the Gutin solution
is much more convenlent to use.

Static tests were made in which several different propeller models
were used for comparison with analytical results. These tests evaluated
the effects on the free-space ogcillating-pressure distributions of such
parameters as propeller diameter, blade plan form, number of blades,
blade loading, tip clearance, and tip Mach number. Charts based ,
on experimental date were calculated to enable a designer to estimate
the average maximum free-space oscillating pressures in the critical
region near the plane of rotation. Comparative data wers obtained at
the surface of two different simulated fuselage wall shapes to determine
their effects on the free-space pressures. The fuselage response to
these pressures is treated herein and indicates some of the factors
to be considered in solving fuselage vibration and noise problems.

SYMBOLS

Rs effective propeller radius

S distance between doublet and observer
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distance from observer to doublets at effective propeller
radius

Cartesian system of coordiﬁates, propeller axis along x-axis
axes with origin at doublet and parallel to x-, y-, and z-axes
tip clearsnce

propeller diameter

gtation radius

blade width

meximim thickness of blade section

number of blades

density of air

gpeed of sound

tip Mach number (rotation only)
“tip radius of propeller
torgque

thrust

power

ot

free-space oscillating pressure for a given harmonic, root
megn square

instantaneous pressurs for a glven harmonic (?i = p§Q>

total free-space oscillating pressure, root mean square

P for sny nB value



e NACA TN No. 1870

Pg pressure at panel surface
m ‘rotational speed, radians per second
®, undamped natural angular frequency of vibration of panel,
radians per second
ay angular frequency of sound or vibration, radians per second
t time, seconds
n -’ propeller rotational speéd, revolutions per second
Cp thrust coefficient T
pngﬁﬁ
: 8
W= (C+2K)+i<ml-wl>
c torque coefficient 9 >
Q o
/
P
Cp power coefficlent
pn3‘
C§ total free-space oscillating pressure coefficient (}—g;é)
Cp free-space oscillating pressure coefficient {—P—
pnpR
m order of the harmonic
1 dt
Alr) = B dr
1 49
F(r) = Br dr
€m phase angle between Fourier harmonic of impulse and torque
component of impulse
Tm phase angle between Fourier harmonic of impulse and thrust
component of impulse
B blade angle, degrees
5] angle of doublet from observer with respect to x' axis
X angle of doublet from observer with respect to y' axis

) angle of doublet from observer with respect to z' axis
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)] velocity potential.

o angle between y-axis and radius of doublet circle
§01 amplitude of impinging free‘wave

éOl veloclity of impinging free wave

€0 amplitude of panel vibration

Eoo velocity of panel Tibration

C structural demping of wall

Co critical structural damping (amn>

K acoustical radiation resistance (pc)

M mass of panel per unit area

8 effective stiffness of panel per unit area (Mbne)
T, transmission coefficient (502/{;01)2

Aq absorption coefficiént

.fl freéuency of sound br vibration, cycles per second
fo natural frequency of panel, cycles per second

A dot over a quantity indicates the first derivative with respect
to time of that quantity.

THEORY

The theory for the generation of sound by a propeller is given by
Gutin in reference 1. His basic assumptions are that the propeller is
replaced by concentrated forces or acoustic doublets distributed over the
propeller disk, the strength of the doublets being a function of the
torque and thrust of the propeller. By considering only the sound at a
great distance from the propeller, Gutin could make further simplifying
agsumptions which permitted a solution in terms of Bessel functions. In the
present analysis, which considers the osbillating pressures near the
propeller tips, the assumptions of great distance camnnot be made. The
analysis therefore follows closely that of Gutin, with the exception that
no simplifying assumption as to distance is made.
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Certain geometric relations used in the analysis are shown in
figure 1. The propeller lies in the zy-plane and the cbserver is in
the xy-plane. The radius of a doublet circle is r. The doublet under
consideration is located at the origin of the primed coordinates with
angles to observer indicated by . 8, X, and V. The distance between
the observer and the doublet is S. The coordinates of the observer
in the primed coordinate system are

Therefore,

S=\/x2+y2+r2-2rycose

and.

cos B =

ol K

Yy ~rcos @

cog X =
X S
_ ~r gin 8
cos V = —s

Reference 1 shows that the velocity potential for a glven harmonic
due to concentrated forces distributed over the propeller disk is given
by the following expression:

2n
- __1B [A(I‘)ei (kCt_mBe_Gm)cos &)
4n2pck
) ) -ikS
. F(r)ei(kCt mBO "lm)cos X sin 6 - cos V cos 9]6%(6 S >dr a6
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-1kS
Making the substitution for the direction cosines, evaluating gL(% ,
and dropping the small phase angles ¢p and 71, gives 5

- lu@pck FL[ A(r) 1 (kct-mB6- kS)x

Q.‘jo
+ F(x)ol (ket-nBO-kS)g sén e] (%k -+ é%)dr a6

When the concept of an effective radius at which the thrust and torque
are assumed to act as in reference 1 is used, and when the following
substitutions are also made as in reference 1

dt
A(r)ir = ==
(x) B
and
_ 49
F(r)dr = Br
then

ikct Qy sin 8\/ikS, + 1
=zile 7 (Tx + ) e [cos (mBO + kSe)
hn2pck Re 863

- 1 sin(mBo- + kSe]dG

where R, 1is an effective radius of the propeller.

The instantaneous pressure for a given harmonic at any polnt is

3
given by py = 95%'

Hence,

27

iket ,
Py = &—rn Tx + F sin 6)(1kSe + 1 [;os(mBQ + kSg)
Lx2 Re Se3

- i sin(uBe + kseﬂ ae (1)
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The absolute value of root mean square pressure p 18 given by the
following expression:

on 12
P = __l;é Tx + sin 6 -3;-Eos(mBe + kSe) + kSg sin(mBo + ksei]de
N o Ry /S
%
A L/2
ont
+ Tx + WL 8in @ —-1—3E:Se cos (mB6 + kSe¢) - sin(mBO + kSe)] a6
4]
where
K o ZBe
c
and
Seg = x2 + y2 + Re2 - 2Rgy cos 6

which is the distance from the observer to the doublets of the effective
propeller circle.
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APPARATUS AND METHODS

Static tests were conducted for the measurement and analysis of the
free-gpace pressures near the tips of five different propeller models. -
Tests were made in the tip Mach number range 0.45 to 1.00 for two two-
blade 48-inch-diameter round-tip propellers, a four-blade 48-inch-diemster
round-tip propeller, a two-blade 47-inch-diameter square-tip propeller,
and a two-blade 85-inch-diameter round-tip propeller and for various
blade angles. Comparative studies were also made to determine the effects
on free-space pressures of a flat vertical wall and a curved surface
which simulate the fuselage position in the pressure field.

Propeller models used are shown in figure 2. These were mounted in
ad Justable hubs to allow the blade angles to be changed manually. The
85-inch-diameter Clark Y propeller, the NACA 4-(3)(06.3)-06 propeller,
the NACA 4-(5)(08)-03 propeller, and the square-tip propeller were all
tested as two-blade configurations. The NACA L-(5)(08)-03 propeller
was algo tested as a four-blade configuration. The square-tip propeller
blade shown has a (5)(08)-03 airfoil section and its diameter is 47 inches.
The NACA designations are descriptive of the propeller. Numbers in the
first group represent the propeller diameter in feet. Numbers in the
first parentheses represent the design lift coefficient in tenths at
the 0.7 radiug. Numbers in the second parentheses give the blade
thickness at the 0.7 radius in percent chord. The last group of numbers
gives the blade solidity which is defined as the ratio of a single blade
width at the 0.7 radius to the circumference of a circle with the same
radius. Blade-form curves for the above models are given in figure 3.

The test propellers were driven by a 200 horsepower water-codled
variable-speed electric motor. Power to the motor was measured by means
of a wattmeter, and motor-efficlency charts were used to determine power
to the propellers.

Root mean square oscillating pressures were measured by a Masgsa
Laboratories sound pressure measuremsnt system callbrated to read
directly in dynes per square centimeter. Figure 4 shows the test
arrangement for measuring free-gpace pressures. Because ground reflection
is considered negligible for this particular setup, the pressures
measured are essentially free-gpace pressures except in the cases where
reflecting surfaces were purposely placed in the pressure field. All
pressure gquantities in this paper are considered to be free-space
oscillating pressures unless otherwise stated.

Measurements were made at several known distances from the propeller
on lines parallel to the axis of rotation and at the same height above
ground. At all times the microphone was doubly shock mounted and when
reflecting surfaces were used the microphone was mounted separately to
keep vibrations reaching it at a minimum.
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Pressure amplitudes (rms) of the first four harmonice were measured
with a Hewlitt-Packard harmonic wave analyzer ad Justed to a band width
of 100 cycles pexr second.

Flat vertical and circular fuselage walls were simulated and their
effects on the magnitudes of pressures in the plane of the walls were
evaluated. Figures 5(a) and 5(b) show construction of the flat vertical
wall and figure 5(c) shows corresponding details of the circular wall.
These walls were supported in such a way that the natural frequency of
"each structure as a unit was below the frequency range of the ocsclllating
pregsures to be measured. As first designed the surfaces of both walls
vibrated locally when excited by the propeller frequencles. These local
(penel) vibrations were reduced in both cases to a low value by heavy
longitudinal reinforcement. By this method panel resonances were removed
from the frequency range where measurements were to be taken.

The vertical dimension of both walls was 3 feet which was assumed
sufficient to approximate an actual fuselage for use with a 4-foot

propeller. The reinforced wooden (two thicknesses of %—in- plywood)
wall was 6 feet long and welghed approximately 145 pounds whereas the
reinforced steel (ii—in- boiler plate> wall was 4 feet long and weighed

32
approximately 100 pounds.

EFFECTS OF VARIOUS PARAMETERS ON

TOTAL OSCILLATING FPRESSURES

Tip clearance.- Figure 6 illustrates the effect of tip clearance on
the free-space oscillating pressure distribution. As clearance is reduced
for a given tip Mach number, pressures all along a line parallel to the
propeller axis tend to lncrease but the important change seems to occur
in a region approximately one propeller radius wide in the vicinity of
the plane of rotation. In this figure and in geveral succeeding ones

nces from the plane of
rotation; positive values denote gps;tionqmmmwad of the propeller plane
and negative values denote positions behind 1t.

Blade loading.- Figure 7 shows the extent to which the free-space
pressure distribution may be changed, at a constant tip Mach number and
clearance, by changing the blade loading. When the pressure ordinate
is plotted as the ratio Cp/CP all data at a given tip Mach number can
be compared on an equal power basis. Three different operating
conditions are represented since at Bo.75 = 8° the propeller is

lightly loaded, at 50,75 = 150 1t is heavily loaded but unstalled
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at the tips, whereas at Bg 4 = 209 it is stalled. For the
condition BO°75 = 200, the thrust component of pressure becomes of

small importance relative to the torque component, and the pressure
distribution tends to peak in the plane of rotation. For the unstalled
condition where Cp is relatively large, the free-space pressures are

a maximm at approximately 1/8 of a diameter ahead of and behind the
plane of rotation.

Power coefficient.- In figure 8 some experimental free-space pressure
coefficients Cp are plotted against power coefficlent Cp for four

different propellers and at two different tip Mach numbers. At a given
tip Mach number the relation between Cp and Cp 18 seen to be approxi-
mately linear. A comparison between the total pressures produced by a
two-blade and a four-blade propeller at equal power coefficients is
given. As is indicated {n figure 8, less pressure is produced by the
four-blade propeller than for the two-blade propeller at the same power
coefficient, although at tip Mach number 1.00 the differences are
relatively small Figure 8 shows that comparable data for the

NACA 4-(5)(08)-03, the NACA 4-(3)(06.3)-06, and the Clark Y propeller
are in good agreement. Blade plan form.and golidity are thus not
considered to be significant parameters. . In addition for a given M,
Cp, and d/D, pressure coefficlents for propellers of different diamester
are shown to be approximately equal.

Tip shape.- The three two-blade propellers for which data are
given -in figure 8 differ in plan-form shape and in the shank sections
but all have rounded tips. Thus it is seen that the pressures produced
are not affected very much by small differences at the inboard stations.
Two-blade configurations of the NACA L-(5)(08)-03 propeller and the square-
tip propeller were tested to determine the effect of tip shape. These
propellers have identical alrfoil section, and the only essential
difference in plan form 1s at the tips. Both propellers were tested
at the same blade angle and tip speed and at approximately the same
power to get comparable data. Results shown in figure 9 indicate that
blade tip shape is not a significant parameter

Effect of reflecting surfaces.- In order to determlne the effect
that a reflecting surface has on the impinging pressures, tests were
made with a flat vertical wall and a circular-shaped wall. These
results are compared to corresponding free-space data in figure 10.
Pregsures measured in the plane of a flat vertical wall are seen to be
approximately double the free-space values. Corresponding data for a
circular wall indicate an increase over the free-space values, but
this increase is somewhat less than that for the flat wall.

Comparison with full-scale data.- In order to compare these
measurements with full-scale data some check points for the static
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condition were obtained from a test airplane.

than the model propellers, no direct comparison could be made.

13

Since the full-scale
propeller had 3 blades and operated at much larger power coefficients

The

model data have been extrapolated to the larger power coefficients,
however, and interpolations were made at the corresponding tip Mach

numbers. The estimates thus obtained are plotted in the following
table along with pertinent data from the full-scale tests for
comparisons
- P, extrapolated|
Fropeller Number of| Horse- p, measured from model data
M, |diameter Cp | 4/D | (dynes per |
blades | power 2 (dynes per
(ft) centimeter<) 5
: centimeters)
0.49| 12.92 3 466 10.12910.083 350 k2o
49l 12.92 3 466 | .129| .167 240 280
.70]  12.92 3 1500 | -135| .083 1500 1440
.80l 12.92 3 1500 | .135| .167 1150 975

Thus it is seen that model data may be extrapolated to higher wvalues
of Cp with a falr amount of accuracy.

HARMONIC ANALYSES OF OSCIILATING PRESSURES

Amplitudes

Experiment.- Data presented thus far have shown the behavior of
total oscillating pressures as meagured in free space. The subsequent
discussion illustrates the behavior of each of the first four harmonics
of pressure for a two-blade propeller.

The effect of power coefficient on the relative amplitudes of the
first four harmonics at three different tip Mach numbers in the plane

of rotation (%::(9 is shown in figure 11. All harmonics are seen to
follow the straight-line relationship between Cp and pressure amplitude

predicted by equation (2) at <% = 0. Figure 11(a) shows that for the

NACA L4-(5) (08)-03 two-blade propeller the fundamental frequency is
predominant at Mt = 0.75 and each higher harmonic is smaller in
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amplitude. This order is completely reversed at M, = 1.00 asg indicated

in figure 11(c). At this speed the fundamental has the smallest amplitude,
and the higher-order harmonics are progressively larger. At & tip Mach
number of 0.90, which is shown in figure 11(b), the amplitudes are more
nearly equal which fact indicates that at this particular speed there is
a transition between the two extremes shown in figures 1l(a) and 11l(c)-

The "cross over' phenomenon shown in figure 11 for pressures in
the plane of rotation does not seem to occur in the tip Mach number

range of the tests where .% # 0. At all points invegtigated outside

of the plane of rotation the amplitude was found to decrease as the
order of the harmonic increased. This is shown in figure 12 where

the harmonic amplitude variations for three different tip Mach numbers
at several points in the pressure field are given.

Comparison of theory with experiment.- In the development of the
theory the pressures at a point in space due to the forces distributed
over the propeller disk are given by a double Integration. The first
integration is around the blade path from 6 = 0 to 6 = 2n and the
second integration is along the blade radius from r =0 to r = R.
For gimplification the second integration is eliminated and all forces
on the propsller disk are assumed to be concentrated at an effective
radius. This effective radius Rg is a function of the blade thrust

distribution and toraque distribution and the manner in which the forces
at- each blade element contribute to the free~space pressures at a
point in space for a given harmonic. Thus Ry, may differ for the

various harmonics and may be différent for the thrust and torque terms
of equation (2).

The effective radius for a given harmonic was evaluated herein by
comparing the calculations with corresponding experimental values.
Calculations in figure 13(a) for Rg = 0.8R give good agreement with
experiment for the propeller operating at Bo.75 = 15° and Mg = 0.75.
Similar calculations for this propeller at 30.75 = 10° and My = 1.00

and for Rg = 0.8R overestimate the maximum oscillating pressures.’
(See fig. 12(b).)

In figure 14 the experimental and calculated pressures at = = -L

are compared for the first three harmonics of the NACA L4-(5)(08)-03 two-
blade propeller at 60.75 = 100. The calculated points were obtained by

using equation.(2) and the force coefficients listed in the figure.
Equation (2) predicts pressures over the entire test range of tip Mach
numbers with the same amount of accuracy. The deviation then appears
to be essentially due to blade loading and not due to tip Mach number.
The use of Ry = 0.8R 1in this case resulted in overestimating all

pressures by about 40 percent.



NACA TN No. 1870 15

For conditions of figure 14 a variation in equation (2) of Rg
resulted in a nearly uniform change in pressure amplitude for the
fundamental frequency of a two-blade propeller throughout the given
tip Mach number range. Figure 15 shows the amount of this variation

for three values of Rg at '% =‘”%o For these conditions calculations
using Rg = 0.TR most nearly duplicated the experimental results.

Thus it may be seen that the maximum pressures which usually occur

1l

at =—3 may be predicted by using an effective radius varying

X
D
from 0.7R to 0.8R for the propeller in these tests. This propeller is
believed to be representative of high-speed propellers. Since propellers
are normally operated through a wide range of loading conditions, a value
of Ry which will be valid for the extreme case is considered most
ugeful. For this particular propeller Ry = 0.8R 1is recommended to

glve conservative calculated pressures.

Figure 7 shows that the ratio of pressure coefficient to power
coefficient is lower for the lightly loaded and the stalled propeller:
than for the heavily loaded propeller. Thus, since the value of Rg = 0.8R
will adequately predict the pressures for a heavily loaded propeller, it
will tend to overestimate the pressures at other operating conditions.

Doming in reference 2 shows that for a propeller at a given blade
angle the sound pressures at a distance vary approximately as the powers
of the tip speed of 5, 6.5, and 8 for mB values of 2, 4, and 6, respec-
tively. Since the power varies approximately as the cube of the tip
speed, the sound pressure at constant power may be seen to vary as the
powers of the tip speed of 2, 3.5, and 5 for mB = 2, 4, and 6, respectively.
At a distance then, an increase in tip speed at constant power results in
an increase of sound pressure for all harmonics. This does not apply for
all harmonics, however, in the region near the propeller. Figure lhi(a)
shows that for a given blade angle the pressures varied considerably less
with tip speed than was observed in reference 2. In figure 16 the experi-
mental data of figure 14(a) is replotted to show the effect of tip Mach
number at constant power on the free-space pressures of each harmonic.

For these conditions the pressure per unit power is decreased as the tip
Mech number is increased for mB = 2 whereas for mB = 6 the trend seems
to reverse. The pressure amplitude of mB = 4 seems to be essentially
independent of tip Mach number.

Calculations in the plane of rotation for the pressure amplitude of
the fundamental of a two-blade propeller have been made by means of Gutin's
simplified equation and also by equation (2) of the present paper. The
results obtained by using the two methods are plotted as a ratio
against d4/D 1in figure 17 for tip Mach numbers of 0.75 and 1.00. The
Gutin equation is seen to underestimate the pressures at low 4/D values.
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At a given 4/D value the order of agreement of the two methods is seen
to change with tip Mach number and also may be different for each harmonic
and at other points in space. This would preclude the use of Gutin's
simplified equation with a convenient adjustment factor since the

ad justment factor would probably be different in every case

Phase Relations

The fuselage-wall designer should know not only the relative
amplitudes of the harmonics of pressure produced by the propeller but
also something of the phase relations. Equation (1) will predict the
phase between the impinging pressures of any given harmonic at two
different points in space. The phase may also be predicted by use of
equation (2). For given conditions equation (2) gives the pressure at a
point in space as the product of a constant term and  the sdquare root of”
the sum of the squares of the real and imaginary components which are,
respectively, the first and last terms within the large parentheses.

If the algebraic values of each of these terms are known, the phase
relations may be easily determined.

By this method calculations of the pressures produced simulta-
neocusly by the fundamental frequency at two points in space, equidistant
ahead of and behind the propeller plane and for a tip Mach number of 0.75,
gave a phase difference of 165°. Comparative measurements at these same
operating conditions gave-a corresponding value of 1559; thus the validity
of equation (2) is further verified. Similar calculations for the same
propeller at the same tip speed but for a larger blade-angle setting gave
a phase difference of 1259. A comparison of these results indicates that
the phase angle between the pressures shead of and behind the propeller
plane tends to decrease in magnitude as CQ increases with respect to Crgp-

Figure 18 shows the total pressure wave forms as recorded at three
different points in space for five different tip Mach numbers. These are
Du Mont dual-beam cathode-ray oscilllograph pictures of the microphone
voltage output, which is the upper trace, and a timing line of 300 cycles
per second. The small vertical line on the timing line indicates the
time at which the propeller blade passes through the xy-plane and is
closest to the microphone. The line tracing the pressure indicates .
positive pressure when it moves downward and negative pressure when it
moves upward, and time increases from left to right. The photographs
taken at a tip Mach number of 1.00 indicate a relatively large contri-
bution by the higher harmonics, whereas at the lower tip Mach numbers
the low harmonics are clearly predominant. Figure 18 is included
primarily for information in case a more detailed analysis of these
wave forms is desired.
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CHARTS FOR ESTIMATING FREE-SPACE PRESSURES

The theory given in this paper is adequate for predicting free-space
oscillating pressures for any static condition. The complexity of the
mothod, however, makes it desirable to provide a more convenient means
of estimating these pressures. Therefore the charts of figure 19 are
presented. In contrast to the analytical method these charts do not .
predict the pressures at a given point but instead give a first approxi-
mation of the maximum free-space pressure coefficients of a given harmonic
near the plane of rotation of the propeller. This information may be
determined easily from the appropriate chart, provided that the power
coefficient, tip Mach number, and tip clearance are known for a given
propeller.

The charts are baged on data for unstalled conditions and the pres-
sures involved wore determined by averaging the maximum values measured
in front of and behind the plane of rotation at sach test condition. These

maximim values usually occurred at .% = i%o The free-space'pressure

coefficients thus obtained were found to vary approximately linearly with
power coefficient as do those measured in the plane of rotation. (See
fig. 11.) Thus the thrust terms are neglected and the charts are based
on power coefficlents of the tests. The charts may be used, however,
Tor power coefficients larger than those for which data were taken. The

charts are based primarily on experimental measurements at '% = 0.083

and on a sufficient number of measurements at other d/D values to
establish the attenuation curve in figure 20. This curve was falred
from a composite plot of data which were adjusted to equal magnitudes

d
at = 0.083.

Charts for mB values of 2, 3, 4, 5, 6, and 8 were all determined
by faired data from two-blade and four-blade propellers. In equation (2)
where m and B always appear as a product, the second harmonic of a
two-blade propeller has the same strength ag the fundamental of a four-
blade propeller for the same operating conditions. Because of this
fact, which has also been confirmed experimentally, and because the
fundamental frequency has been found to be predominant in this critical
region of maximum pressures, the charts are useful for estimating pres-
gures produced by .the fundamental fregquencies of propellers which have
from 2 to 8 bladesj they may also be used to predict the pressures of
harmonics in the range of values of mB from 2 to 8.

As first illustrated in figure 12, the charts -show in general that
~at tip Mach number 1.00 all harmonics have very nearly the same maximum
;:Plitude for comparable operating conditions whereas at the lower tip

¥ch numbers the lower-order harmonics are predominant.
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The effect of tip Mach number on the oscillating pressures for a-
propeller operating at constant power may be estimated from the relation

of CP’ Cp, and Mg in the following manner. Since Cp = g 59
P D pn D
C = and o — *
P oon3p’ Mo =g 7
C
2. I __D
P cCpMIP

oxr

Thus in the charts of figure 19, lines of constant oscillating
pressure per unit propeller power are straight radial lines through the
origin. If the slope of the Cp/CP curve at a given poilnt is greater
than the slope of a straight line from that point to the origin as
at point B in figure l9(c), the oscillating pressure will increase with
an increase in tip Mach number for a constant power. If on the other
hand the slope of the Cp/CP curve at a given point is less than the ,

the slope of the straight line to the origin as at point A in figure 19(c),
the free-gspace pressure will decrease with increasing tip Mach number.

In general the éharts of figure 19 show that at the low values
of mB, the CP Cp curves are relatively flat and the oscillating

pressures will decrease with increasing tip Mach number at constant
power. For the higher mB values the reverse is true. This effect

has already been. indicatéd in figure 16 and is further shown in figure 21
where the ratio CR/CPMﬁ, which is proportional to the oscillating
pregsures per unit propeller power, is plotted for varlous values

of mB as a function of tip Mach number. Data in figure 21 is faired
data taken from the charts of figure 19.

Figure 21 shows that for values of mB less than 4 the oscillating
pressure per unit power decreases with increased tip Mach number. The
conclusion may be drawn that the pressure due to the fundamental mode
of excitation for a four-blade propeller is essentially independent of
tip Mach number when the power is held constant. Hence changing the
tip Mach number’will not materially affect the primary modes of fuselage
vibration. It may be noted, however, that the large increase in pressure
amplitude of the higher harmonics with increase in tip Mach number will
greatly increase the noise levels in the fuselage.
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FUSELAGE RESPONSE TO OSCILLATING PRESSURES

Vibration

Theory and experiments have been discussed which make possible the
prediction of the oscillating pressures acting on the fuselage. The
present discussion deals with the fuselage response to these pressures
and indicates some of the factors to be considered in solving the
problem of fuselage vibration and noise. Since references 2 and 3
congider in detail the acoustical treatment for aircraft fuselages,
no experiments were made on soundproofing. Some amplitude and frequency
measurements, however, were made on vibration of these panels which were
subjected to pressure impulses from propellers.

Experimental data.- The test panels were designed primarily as
reflectors and were not intended for use in vibration studies. Thus,
heavy construction was used in order to minimize the effect of panel
vibration on the pressure measurements. The panel weights were approxi-
mately 8 pounds per square foot for the flat wall and approximately
5.5 pounds per square foot for the circular wall. This is appreciably
greater than the normal fuselage weight of about 1 pound per square foot.
Despite these welght differences the vibration data taken during the
courge of these tests are of interest in that they indicate the way in.
which the vibration amplitudes are affected by panel resonances.

Figure 22(a) gives the vibration response of the flat wooden pansel
at position of greatest vibration amplitude both before and after
reinforcing. As a result of excitation by a two-blade propeller a
resonance peak occurred at 130 cycles per second. Reinforcing the
panel removed the resonant condition from the operating range. The
response curve for the circular steel panel figure 22(b) shows a
narrow resonance peak at 107 cycles per second. The steel shell has
8 more narrow frequency response than the wooden panel and thus indicates
less damping. The peak amplitude of the circular wall 1s less than that
for the flat wall even though the flat wall had more damping. Thus it
is indicated that pressures on the circular wall are less_than those on

the flat wall. This is further indicated by the curves for the reinforced

walls, because the flat wall has about twice the amplitude of the circular
shell. Figures 22(a) and 22(b) indicate the necessity of removing any

large wall resonances from the operating range. They also indicate that
a curved wall has less vibration amplitude than a flat wall for comparable
tip clearance and operating conditions.

Response of the reinforced flat wooden panel to excitation by a
four-blade propeller, which absorbs slightly less power than the two-blade
propeller of figures 22(a) and 22(b), is shown in figure 22(c). A number
of small resonance peaks appear in this figure; however, the over-all
value of the amplitude is considerably less than for the two-blade
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propeller. Even though the pressures associated with the four-blade
propeller at high tip Mach numbers will be nearly equal in amplitude to
those for a two-blade propeller, the corresponding wall vibration ampli-
tudes may be much smaller. This reduction is attributable to the greater
wall inertia at the higher frequencies produced by the four-blade propeller.

Comparison of experimental data with theory.- A body such as a
fuselage has an infinite number of vibration modes. The determination of
the recLponse to a forced vibration load such as a sound wave would require
the vector summation of all the responses to the particular sound wave-.
Such a procedure is difficult, if not impossible. It has been found
experimentally that at a particular exciting frequency the response of
a body is predominately determined by the vibration mode which is near
the exciting frequencies. 1If the excitation is far from a resonant
condition the amplitude of vibration may be estimated by considering
only the inertia or mass of the panel. (See p. 219, reference 4.)

As a first approximation, the natural frequency of the panel may be
agsumed to be zero and the materlal damping and radiation resistance
may be neglected. Under such assumptions, the response of a panel to
an oscillating force may be simply calculated as (p. 62, reference k)

Pg

o2 = Moy 2

where €0o 1s the displacemsnt each side of the neutral position, pg is

the pressure measured at the panel surface, M 1s the mass of panel per
unit area, and wj; 18 the angular frequency of sound in radians per
second. Calculations of the vibration amplitudes of the test panels

for the fundamental propeller frequencies have been made by equation (3)
and are plotted in figure 22. The maximum pressures measured for the
first harmonic near the plane of rotation and corrected for wall reflection
were used in Lhese calculations. Wall pressures used were 2 times free-
space values for the flat surface and 1.5 times free-space values for the
curved surface, as indicated by results given in figure 10. Total ampli-
tude is 2§02. The calculated values are seen to be in good agreement
with the vibration amplitudes measured for the reinforced panel except
where resonant peaks occur (fig. 22). Since the calculations were made
for an assumed natural frequency of zero, the calculated curve does not
indicate the response at resonance. A simple calculation such as this
may be useful for predicting vibration amplitudes for heavy walls far
from resonance. '

(3)

For conventional fuselage walls, which weigh much less than those
tested, the acoustical radiation resistance and damping cannot be neglected.
A more refined method for calculating the response of an idealized panel
and which gives the effect of rigidity, panel demping, and acoustical
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radiation resistance is given by equation T(b) of the appendix. This
equation gives the vibration amplitude if the structural damping, mass,
and natural frequency of the panel are known. <Calculations for a resonant
condition using equation 7(b) have been made for comparison with experi-
mental results and these values are shown in figure 22(a). For these

calculations, f, = 130 cycles per second,-él = 0.02 (estimated from shape
C -

of resonance peak), and the weight of the panel was 7 pounds per s@uare
foot. Equation T7(b) shows that for lower values of the mass and
frequency the acoustical radiation resistance becomes of greater
importance. A conventional fuselage will therefore have greater damping
and the resonances will not be so sharply peaked as in figures 22(a)

and 22(b)-

Effect of fuselage parameters on fuselage vibration.- The appendix
shows that the panel vibration amplitude of the fuselags is a function
of .oscillating pressure and frequency as well as the mass, rigidity,
and damping of the structure. Rigidity is effective 1n reducing low-
frequency vibrations, mass is the most effective In reducing high-
frequency vibrations, and wall damping is the most effectlive in reducing
the amplitude of the resonant peaks.

The preseat tests showed that the panel vibrated predominantly at
the fundamental or lowest excitatiocn frequency of the propeller. This
fact has also been found to be the case for an airplane fuselage. Since
rigidity is the most effective at the low frequencies, wall vibration
may be reduced by increasing wall rigidity, provided, of course, that
"the resonant condition is far enough removed from the range in which the
propeller operates. This increase in wall rigldity was accomplished for
the test panels by means of reinforcments which raised the panel resonance
frequency to a value higher than the fundamental excitation frequency.
This procedure necessarily increases the possibility that the panel may
be in resonance with the higher harmonics of the propeller. An inspection
of figure 22(c) shows that when the reinforced wooden panel was excited
by the four-blade propeller several small resonances occurred at higher
frequenciesj however, these small resonances seemed to be of little
importance.

Since the propeller has numerous exciting harmonics and the walls
have numerous modes of vibration, eliminating all®'resonant conditions is
impractical. It is therefore desirable to apply a damping material to
the walls to reduce the amplitude of the resonant peaks.

The first section of the present paper shows that as the tip Mach
number is increased, more of the pressure energy goes into the higher
harmonics. As indicated in the appendix, the mass of the wall becomes
. most effective in reducing wall vibration at the higher frequencies.
The wall must therefore have sufficient mass to prevent excessive
vibration at the high frequencies which predominate at high tip speeds.
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Sound Levels in Fuselage

The difference in pressure level of sound as it passes into an
enclosure such as a Tuselage ds given by reference 3 as

Attenuation in decibels = 10 logloé + %

where A 1s the absorption coefficlent in the enclosure and T, is
the transmission coefficient of sound through the walls. The transmission
is given by the square of the ratio of wall vibration amplitude to the
amplitude of the external sound wave. (See appendix.) The lower the
wall vibration for a given external excitation, the lower the trans-
mission, and, hence, the greater the sound reduction. Such reduction is
possible only if A, is greater than zeroj that is, only if sound-
absorbing material 1s present in the fuselags can the sound intensity
inside be less than the intensity outside. It may also be noted from
the equation for attenuation that even though A, be unity (its
maximum value), the sound reduction will not be appreciable unless Tg
is quite small. In the interest of crew comfort, a nominal value of
abgorption and a low value of transmission are therefore necessary.

The designer may reduce sound pressures in the fuselage: (1) vy »
moving the engines outboard to increase tip clearance, (2) by increasing
the number of blades, (3) by choosing the optimum fuselage shape, (4) by
increasing fuselage rigidity, mess, and damping, and (5) by applying
gound-absorbing material. HEach of these variables is most effective over
a certain range of conditions.

CONCLUSIONS

Free~space oscillating-pressure measurements for static condltlions
near the propeller tips (tip Mach number range 0.45 to 1.00) for five
different propellers indicate the following conclusions:

1. Pressures measured on a line parallel to the propeller axis
are increased as tip clearance is decreased; however, only the pressures
in a region one-half radius ahead of the plane of rotation to one-half
radius behind it are greatly Ilncreased. .
2. At a constant power the pressure amplitudes of the lower harmonics
tend to decrease and the higher harmonics tend to increase with an
increase in tip Mach number. The fundamental frequency of pressure
produced by a four-blade propeller is essentlally independent of +ip
Mach number in the useful tip Mach number range.
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3. Blade plan form and solidity do not seem to be significant
parameters. Tip clearance divided by propeller diameter is shown to
be significant.

4. At all tip Mach numbers the four-blade propeller produced smaller
pressures than the two-blade propeller for the same power coefficient.
At low tip Mach numbers these differences are large, whereas at tip Mach
nunber 1.00, where a large amount of energy appears in the higher‘hafmonics,
they are relatively small.

5. A flat vertical wall in the pressure field approximately doubles
the free-space pressures in the plane of the wallj a circular wall also
increages the pressures but by a lesser amount.

6. Pressures of the fundamental frequency which impinge on the
fuselage wall in front of the propeller plane tend to be out of phase
with those behind the propeller plane. .

T. Oscillating pressures and thelr phase relations at any point
in space may be predicted satisfactorily by the theory in this paper.
Thig analysis is primarily for use in the reglon near the propeller
tips where the Gutin simplified solution is not valid.

Langley Aeronautical Laboratory )
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., February 18, 1949
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APPENDIX

The response of an idealized panel to a plane sound wave is given
in reference 5, page 220. The panel is assumed to move as an infinite,
thin, but rigid piston that can vibrate as a whole under the action
of elastic and damping restraints. The equations are reproduced here
in somewhat modified form to show the effect of rigidity, mass, and
damping on the response of a panel.

The vibration velocity of the panel is given by the following
equation:

.. i(l) t
; : KE e "L
W
Substituting KéOl =p and 502 = iaiéog gives
imt
gozeiwlt = _%Pe____ (5)
1w1w
where
g
W= (C+2K)fi<Mnl—ml>
The absolute value is given by
o2 = Zp
—= (6)

w1\ /(C + 2K)2 + Qﬁpl - EE

Utilizing the value of the critical damping for single-degree gystems
gives (p. 50, reference 4)

2p
e g T
c @3
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Wnen s = Mop® is substituted equation (7a) may be written as

o2 = . 2 |
52 (o)
C 2 2 dn
2] + X7 + ME 1-—
@y (Ccan ) ~ @ ai)
For the case of zero damping, radiation resistance, and stiffness,
equation (7a) reduces to
__2® 8
Eop = Wi (8)

This is the same equation as equation (3) in text with the
exception of the factor 2. The pressure used in the text is the
pressure at the panel surface which for a large plane panel is double
the free-space pressure.because of reflection. The above equations
are based on the free-space pressure of the incident wave.

The rescnant condition of the panel is given by wi = w,. For
this condition the amplitude of vibration is given by

' P

Eop == (9)
Q_Mnne + Kon
Ce

The relation of the panel vibration amplitude to air amplitude at
resonance may be written as

4@:—————@]‘ (10)
oL 1R
(¢}

Equation (10) shows that if the structural damping <él is zero,

. (6]
the panel amplitude at resonance is equal to the amplitude of the impinging

gound. wave. The term él-g;g must be greater than unity for the damping
c

to make an appreciable difference 1n the amplitude. The value of this
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quantity for a typical fuselage having Lo 0.10, M = 0.8 grams per

Ce
centimeterg, w% = 2160 = 376 radians per second, and k = pc = 42 grams
per centimeter~-second is

C Moy (0.10) (0.80) (376) _ o.

Ce X . ho

T0

Equation 10 shows that the damping is effective in reducing
resonant peaks for high values of wp (high rigidity), mass, and
damping coefficlents. This explains why damping reduces the amplitude
of the higher responses but 1s not very effective in reducing the low-
frequency peaks.

The transmission coefficient T, of sound energy through a wall

is given by the square of the ratio of wall amplitude to the amplitude
of the impinging wave. The reciprocal of the transmission is given for

8\2
| L
the case of zero structural damping in reference 5 a8 — =22 _ . 1
Te hp2c2

where M 1is the mass of the wall per unit area, s 1s the stiffness

(s =

frequency of impinging sound, and ¢ 1is velocity of sound in air.

where w, Is natural frequency of panel), wy 1is angular

Thig equation may be written for air at standard conditions (15° C
and 760 mm of Hg) as

»

7056
TC = f02 2 (ll)
7056 + bnerioM2(1 - 715

where f; 18 the frequency of the'impinging sound, f, the natural
frequency of the fuselage, and M the mass per unit area of the fuselage.
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setup for free—space pressure measurements.

Figure 4.— Test
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(¢) Circular steel wall (side view with end stiffener removed) showing

reinforcement and microphone supports.

Figure 5.~ Concluded.,
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X _ .1 X._1
D"*g p~78

Figure 18.— Effect of tip Mach number on the pressure wave forms at
three different points in space for NACA 4—(5)(08)-03 propeller.

B = 2; Bp,75 = 120; % = 0.167. (Bottom trace in each photograph
is 300 cps timing line.)
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Figure 21.— Effect of tip Mach number at constant power on the pressure
amplitudes of the fundamental frequencles of various propellers.
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(a) Flat vertical wooden wall with two-blade propeller.

Flgure 22.— Panel frequency—-response curves,



NACA TN No. 1870 63

. 006 " - ' | I A ‘
0t
© ————— Experiment (without reinforcement) T
g —--——— Experiment (with reinforcement)
00 —— —— Calculated by equation(3)
O

.00l
o
L.
¢ .003
3
s
=y
pa
= g
| §
g .002
o
)
A
2
= [0

", 001} ‘ j;y

) (i)?% “JF.-'B“/
; /’\12_655 'i‘ngﬂrr
0 ko 80 120 160 200

Fundamental frequency of panel exclitation, cps

(b) Circular steel wall with two-blade propeller.

Figure 22,~ Continued.
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