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SUMMARY

In previous reports by the author, the method of operators has been
applied to the investigation of two—dimensional irrotational flow patterns
of an ideal compressible fluid, mostly in the subsonic case. Using a
similar approach in the present paper, the author defines two different
operators which generate supersonic two—dimensional flow patterns from
differentiable functions of one real variable. (An operator is any rule
by means of which one function is converted into another. This concept
is discussed in some detail in the body of this paper.) Since operators
of the type considered preserve many properties of the functions to which
they are applied and since the theory of functions of one real varisble
is more extensively developed than that of solutions of the compressi—
bility equations, the results obtained can be used as a basis for the
investigation of supersonic flow patterns.

INTRODUCTION

By following the line of approach developed in previous publications
for the study of two-dimensional subsonic flows (see references 1 to by,
the method of operators is applied in the present paper for generating
two—-dimensional steady supersonic flow patterns. Using the hodograph
method introduced by Chaplygin, the author .considers the stream functio
in the A,6-plane, where A :

A = ilarc tan [h(M2 - 1)1/2] — arc tan [(Mz _‘1)1/2]
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(see equations (5) and (6)), M being the local Mach number; 6, the
angle between the velocity vector and the x—exis; and h, a constant
characteristic of the fluid.l : :

The stream functions, considered as a function of A and 9,
satisfy a linear differential equation

Two operators which generate solutions of this equation are defined
in the present paper. The first operator 1s obtained by using Riemamn's
function. '(See section entitled "Operator Obtained by the Use of
Riemann's Function.") The second operator is derived by means of the
theory of integral operators. In the section dealing with the second

operator, a set of functions H(A), EA), n=1, 2,
determined such that

., are

m-—> o

P(f) = lim <EH(A)[f(t) + X Em(n)(A)f[F](é)

n=1

1pt every point (x,y) of a steady two—dimensional flow the
velocity vector, the Cartesian components of which are q cos @
and q sin 6, 1g defined. If V¥(x,y) denctes the stream function
and p(x,y), the density, the coordinates x and y can be expressed
as functions of q and 6 (and hence, using relations (5) and (6)
of A and 6) by solving the equations '

-1 oY
cos 6 = -
q P S
and
q sin @ =._p_l _B_\lr

Substituting these expressions'for x and y 1into 'w(x,y), the

function ¥(A,8) = ¥ [x(A,8), y(r,0)] 1s obtained, i.e., the stream function
in the A,6-plane. ‘ '
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where

4 .
e(]eey - f[n—lJ(é) at

a
f[O](E) = £(¢)
E=A+6 or E=A-0

(where f 1s an arbitrary differentiable function of one real variable ¢ )
represents a solution of the equation

Yap — Vg + B = O

so that P(f) can be interpreted as the stream function of a supersonic
flow. The equation of a streamline of the flow in the physical plane is
then given in parametric form:

_ 1 dA 1 >
X=.[(=V, cosg ——— V¥, sin 6) 40
f(o A dg pq ©

’ 2

v(M —l) daq 1

— -7 g =% _ — »

+ > we cos o3 Yo 8in 6 [ da

1 o aA | 1 '
y = =V, sin 8 &= + = cosg) dae
f(p A dq pq Ve :

(—Mi-l—)xpe sin 022 Ly cos ol an
0q° . 8A_pg A

where V(A,8) = ¢ = Constant. The re'presén-tation‘ P(f)- is investigated
in the present paper, and, in particular, methods for the actual
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determination of Em(n) are discussed as well as the domain in the

A,6-plane where the order of summation and passage to the 1limit can be
inverted.

The evaluation of the oOperators, that is, the determination of the
flow pattern when the function f is given, involves lengthy computa-—
tions. However, in a manner similar to that described in reference 4
for the subsonic case, it is possible to prepare, once and for all,
tables which greatly facilitate numerical computation of flow patterns.

The results obtained in the present paper can be used as a basis
for the investigation of supersonic flows.

The next problem which arises in this connection consists in deter—
mining for a desired flow the functions of one variable which have to be
inserted into the operator in order to obtain the desired boundary shape
or to decide that such a flow does not exist. The author expects to
treat these problems in subsequent publications. See also the SUMMARY
REMARKS presented at the end of the present paper. ’

This investigation was conducted at Brown University under the
sponsorship and with the financial arsistance of the National Advisory
Committee for Aeronautics,

The author would like to express his sincere appreciation for the
assistance and advice he received from Mr. Bernard Epstein and to thank
Mr., Maurice H. Slud for his interest and valuable help. in comnection with
the present investigation.

SYMBOLS
a velocity of sound in compressible fluid
8¢ velocity of sound at a stagnation point
h o= k-1
k+1
k ratio of specific heat at constant pressure to specific

heat at constant volume (kx = 1.4 for air)

q speed of a fluid particle (du2 + v2>

u x—component of velocity vector (q cos 6)
v y—component of velocity vector (q sin 6)

X,y CartesianlcoordinateS»in physical plane
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\’Mg—l for M> 1

B =

M Mach number (q/a)

R(t,n;t,,n,) Riemann's function for equation (15)

T = Jl-— M2 for M<1

B =T+ iB

1 =A+ 1A

E(n)(T) functions defined by recurrence relations (22)

Fy(20) see equation (16)

Fy(24) . see Theorem under section Integral Operator of Type Given
by Formula (11)

Fe(m)(QA') a sequence of functions converging to Fo(2A'); see equa—
tion (40)

ay coefficients of Taylor series expansion of FE(QA!); see
equation (39)

E=A+ 80

n=A-9

E'.—A"l'e

Rt = A' -8

1 1-T 1 LT
A == \|log + =1log — ] for M< 1; log = logg
X
A=%arctan(hB)—arcta.nB for M>1
A' = A — 1 n’(l - i)
2 "\n " 7,
6 angle between velocity vector and positive direction of

x—axis (arc tan v/u)

potential function
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¥ stream function
y* "reduced gtream function" (see equation (14))
W*(m) a sequence of functions converging to V¥*; see equation (37)
Ps density of fluld at a stagnation point
? density of fluid in motion
o "reduced density" (E/p >
0
N, see equation (9)

Note .— Frequently quantities are considered as functions of different
pairs of variables, so that different symbols should be used to designate
the functional dependence in the various planes. However, this is not
done herein, the same symbol being used in each plane. This should cause
no confusion, for the meaning is clear from the context.

ANATYSTS
The Mathematical Problem in Simplified Form in the Case
of a Supersonic Motion of a Compressible Fluid

In this report, operator methods are applied to the problem of
constructing two—dimensional, irrotational, steady flow patterns of a
compreasible fluid at supersonic velocities. '

Just as in the case of an incompressible fluid, the steady, irrota—
tional flow is completely described by either the velocity potential ¢(x,y)
or the stream function W(X,y). If it is assumed that the motion is adia—

batic and that the fluid is a polytropic gas, then the motion is governed
by the following system of nonlinear partial differential equations:

¢X =p ‘lry

By ==0 ¥y
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and

1
2 2\ | k1
k-1 (%5 + gy

2 2
a'O

= p(x,y) = |1 -

Here p = B/bo is the "reduced density" of the fluid, that is, the
density E divided by the density Po at rest; x,y are Cartesian

coordinates in the physical plane, that is, in the plane where the
motion takes place; k -1is the ratio of the specific heat at constant
pressure to the specific heat at constant volume; and a, is the
velo?itg §f sound in the fluild at rest. (See reference 1, equations (2k)
and (25).

A fluid motion satisfying equation (1) may show two easentially
distinct types of behavior, according as the speed of the fluid is
greater or less than the speed of sound in the fluid. The mathematical
reason 1is readily seen in the following mamner., If p and V¥ are
eliminated from equation (1) the result is a single, nonlinear, partial
differential equation of the second order for {:

(a'2 - ¢x2>¢xx - 2¢x¢y¢x& + (5'2 - ¢y2)¢yy =0 (2)

where

2 - a2 - 3 - (g2 + ¢°) NE

is the square of the local velocity of sound. (See equation (28) of
reference 1.) The discriminant of equation (2) is

7,50, - (a2 - )( - %°)

—-ae(a ¢y ) = ae<q - a > (L)

where q2 is the speed at the point x,y under consideration. In regions
vhere the velocity is subsonic, that is, q.< a, this equation ig of
elliptic type, whereas in reglons where the velocity is supersonic, that

is, q> a, equation (2) is of hyperbolic type. (See reference 5, pp. 1-4.)
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The solutions of these two types of differential equation have markedly
different functional character, and these differences are, of course,
reflected as the two different types of compressible fluid motion.

. In spite of these differences, however, the operators which have
been used for the solution of subsonic flow problems may be adapted to
the solution of supersonic problems after certain formal modifications.
Before this is done, however, it is necessary to make a few preliminary
remarks.

The differential equations (l), hoth for subsonic and supersonic
velocities, were derived under rather restrictive assumptions, namely,
that the flow is two—dimensional, that the fluid is inviscid, and that
the motion is irrotational and steady. By these assumptions the problem
is considerably idealized; but experience has shown that in a great many
important cases occurring in practice, when the speed is small, the
consgequences of the theory are in satisfactory agreement with observa-—
tions, Moreover, a physical Justification for the apparently drastic
agsumption that the motion is laminar is contained in the Von Mises
"hydraulic hypothesis." (See reference 6, p. 84.)

In many instances where the indicated idealization is not admissible,
the "idealized" theory can at least be used as a first approximation,
vhich can be improved by correction terms. So, for instance, the
boundary—-layer theory describes the motion near the boundary where
vigcogity effects cannot be neglected, whereas in the interior of the
flow pattern the theory of ideal, inviscid fluid can be successfully
used without any alteration in the case of a comparatively slow motion.

Unfortunately, when the speed increases considerably, the situation
changes completely, and the theory of an incompressible fluid can no
longer be used as a first approximation, Furthermore, at supersonic
velocities a completely new phenomenon appears, the influence of which
ig not easily assessed. When a compressible fluid flows around an
immersed body at supersonic velocities, a very characteristic phenomenon
is the appearance of a shock line. It appears as a curve (or curves)
which divides the physical plane into two (or more) unconnected infinite
regions. In the neighborhood of the shock line, the fluid may no longer |
in general be regarded as nonviscous; there 1s a discontinuity of
velocity along the shock line; and in the region of the physical plane
beyond the shock line (except in a few special cases) the flow is no
longer irrotational., For all these reasons, the differential equa—
tions (1) may no longer be supposed to represent the actual physical
situation. Exact equations can be derived, of course, but they are
extremely complicated nonlinear partial differential equations for which
no mathematical theory now exists; and the problem presented (which is
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neither an initial—value problem nor a boundary—value problem, because
the shock line is not prescribed) cannot be handled by any known mathe—
‘matical means.

Shock
‘line

An example of a supersonic flow pattern
around an obstacle with a shock line.

It can be expected that in the same manner as the idealized theory
of an incompressible fluid represents an excellent "first approximation"
in the sense Jjust explained for comparatively slow motions, the idealized.
theory of compressible fluid will represent a similar "first approximation”

for motions with considerable speed2 (if necessary, with certain addi-—
tional alterations).

In this and previous papers on the subject by the author, therefore,
no attempt is made to find exact solutions of the actual physical problem,
Instead it is assumed that the part of the flow around the obstacle
satisfies the conditions under which equations (1) were derived. The
method of operators is then used to find and investigate exact solutions
of this idealized problem. The results may be regarded as first approxi—
mations to the true facts in the sense Jjust explained. .

2It is clear that for many purposes it will be necesgsary to develop
a three-dimensional theory, This theory, even in the case of an incom—
pressible fluid, is only in the very first stages of development, The
theory of operators and some other modern mathematical means, as the
author expects to show in another paper, will make it possible to deal
with certain problems in the three—dimensional case. These methods,
besides yielding results for subsonic motions of a compressible fluid,
will also yield results of certain problems (as yet unsolved) for an
incompressible fluid.
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The question may also be regarded from another viewpoint, It would
often be possible to find a numerical solution of a specific problem, but
such a result has little theoretical value. A satisfactory theory must
be capable of doing much more. It must be able to give at least qualita—
tive information concerning how the motion of the fluid is affected by
variations in the form of the immersed body, the specific properties of
the fluid, or any other significant variables; and preferably it should
also be capable of providing quantitative predictions. The operator
method of solving differential equations has the advantage that it may
be used to investigate the functional properties of the solutions it
yields. (For details, see references 2 and 3. )

Remark.— From the purely mathematical point of view, an operator is
a rule which is applied to a function of an appropriate class (usually
denoted as class A) to obtain a function belonging to another class
(class C). A simple example of an operator is the process of obtainlng
a harmonic function of two real variables (class C) by taking the real
(or imaginary) part of an analytic function of a complex variable
(class A). This operator preserves many properties of analytic functions
and is often used as a tool for investigation of harmonic functioms.

A similar relationship may be seen in the operators employed in the
theory of compressible fluid. These operators appear in the form (equa-—
tion (11)) for subsonic flows and in a similar form for supersonic flows.
In the case of subsonic flows, equation (11) acts on analytic functions
of a complex variable (class A) and produces complex solutions of equa—
tion (10) (class C). In the supersonic case, the operator acts on a
differentiable function of a real variable (class A') and produces solu—
tions of equation (9) (class C'). These operators are special cases of
operators introduced by the author which convert analytic functions of a
complex variasble into complex solutions of a given linear differential
equation of elliptic type and differentiable functions of a real variable
into solutions of a given equation of hyperbolic type.

The theory of integral operators gives a deep insight into the property
of the solutions of the compressibility equation. As indicated in
references 1, 2, and 3, solutions of equation (10) can be written in the
form

1

o |
¥ = f+ E(M,e,t)f{%B(M) + 10](1 - tE)} dt/\’l ~ t2

(See equation (55) of reference 1.) Here A(M) is a function of the
Mach number M, which in the subsonic case is real, and in the supersonic

case purely imaginary. The expre551on E(M,0,t) = E(X 9,t) is a function
which, in the ' S1mp11fled cagse" (Tricomi case), when considered as a

function of u =1t (X + 186 /2k, satisfies the hypergeometric equation.,
In the case of the "exact" compressibility equation, behavior and proper—

ties of E(k 9,t) are completely analogous to those in the 51mpllf1ed
case. It is described in sections 4 and 5 of reference 3.
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The operator method3 has another advantage which is very important
from the practical point of view. All too frequently the only thing
vhich stands in the way of solving an engineering problem mathematically
is the difficulty of performing the incidental numerical computations.
Although the use of modern automatic computing machinery in many instances
‘reduces considerably the amount of labor needed, it still remains a
serious obstacle. Whenever possible, the ultimate numerical evaluation
should be kept in mind when the mathematical anslysis is carried out., It
is a definite advantage when the computations required by a theory may
be readily performed. It will be seen that when hydrodynamicel problems
are attacked by the operator method, the formmlas which occur contain a
number of standard functions which are the same in all problems of the
game type. Consequently these functions may be computed and tabulated
once and for all. When this has been done, the computations required
for any specific problem are much shorter and simpler.

The Method of Operators in the Théory
of Compressible Fluids
The idea of the method of operators is now explained briefly.

It has already been stated that the partial differential equations
of compressibility are nonlinear and that a mathematical theory of such
equations does not yet exist, Fortunately, it is possible to linearize
the equations of motion of a compressible fluid by a change of variables.
Therefore, hydrodynamical problems are not studied in the physical plane
vhere the flow occurs but must be investigated in some auxiliary plane
where the differential equations are easier to handle. This entails
considerable distortion of the flow pattern and a consequent loss of
intuitive appeal.

The process of linearization is conveniently performed in two stages.
In the first place it is noted that, in general, in a sufficiently small
portion of the flow region, a particle may be Just as unambiguously
specified by its velocity vector as by its position, although this will

3The main mathematical idea of the operator method consists in
employing certain integral operators which transform functions of one
complex (or real) variable into "classes" of complex solutions of given -
linear partial differential equations and preserves many properties of
the class of functions to which the operator is applied. . Thus, in the
case of equations of elliptic type, the application of the operators
results in the derivation of complex solutions of the given solution's
equation which in many respects behave like analytic functions of a
complex variable and help in the investigation of real solutions in a
manner which bears a close analogy to the role of analytic functions of
a complex variable for real harmonic functions in two variables. '

-
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not generally be true over the flow as a wholeh. The first change of
variables is, therefore, from the physical plane with coordinates x,y
to the so—called velocity or hodograph plane in which the polar coordi-
nates q,0 are used, gq being the speed of the particle, and 6, the
angle between the direction of motion of the particle and the positive
x—axis. This transformation obviously introduces distortion (see fol—
lowing figs.) and it is by no means bi—unique,

y
;1;
t
> > U
' .
» X
Motion in the physical ' The image in the hodograph
plane. plane of the flow indicated

in figure at left.

since it usually happens that the velocity vectors are equal at different
points of the flow region. A further distortion is now produced by

plotting log q and 6 as Cartesian coordinates (logarithmic plane).
Finally, the substitution

A =A(q) = % arc tan [h(Me - 1)1/2] — arc tan [(MQ - 1)1/2] (5)

(see fig. 1) where

=
1}
oo

(6)

- (552

In order to make the correspondence between the flow pattern in

L

the physical plane and its image in the hodograph plane 1l—to-l, it is

necessary in this case to.locate the hodograph on a Riemann surface with
the proper number of sheets.
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has the effect of changing the scale along the log g-exis (pseudo—
logarithmic plane). This introduces an additional distortion but - .
succeeds in reducing the differential equation for the potential func—

tion to the form .

Pan — Poo — WMy Py = O ‘ (75
where
Nl - k ; 1 Mu 3/2 (8)
- (M -1) ‘

The stream function satisfies the differential equation

In the subsonic case, a similar procedure leads to the differential
equation

¥ + Vg + 4y = 0 A (10)

(see equation (47) of reference 1), where = AMq) is a function of
the speed alone, the form of which is very similar to that of A(q) in
equation (5). The operator method of finding subsonic compressible flow
patterns is now easily described. It is based on making suitable use of
the following formula for generating solutions of equation (10):

¥(2,0) = In P(g)

P(g) = H(2r) [g(6)
S > (1)
= (on)! ¢ b1 |
+ E{: én : Q(n)(gx) . . . 8(6p)aty « . . aty
-0 2 n! 0 0

‘where { =\ — 16. (See reference 1, formila’ (66).) In this formila
g represents an arbitrary analytic function of a complex variable ¢(

Note that in formla (66) of reference 1, there is a mlsprint the

! 1
(Qn)f should be replaced by (en)t

on nt . 221 p1

factor
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which is regular at { = O; whereas H and the Q(n)'s are certain
functions of A only and are the same for all stream functions. They
may be computed once and for all and the results used in all future
hydrodynamical problems. (See reference 4.)

The foregoing formla is employed in the following manner., If any
analytic function g of a complex variable (regular at ¢ = 0) 1is
substituted into formula (1l), the result is a stream function of a
subsonic-flow pattern. On the other hand, it is well known that an
analytic function g(log q — 16) may be regarded as defining a flow
pattern of an incompressible fluid. Consequently formula (11) may be
interpreted as an operator which distorts an incompressible—flow pattern
into & compressible one. (It may be said that the operator acts as a
distorting mirror which reflects an incompressible—flow pattern as a
subsonic compressible—flow pattern.) The operator formula is of such a
form that a knowledge of the incompressible—flow pattern used leads
directly to both qualitative and quantitative knowledge of the behavior
of the stream function of the corresponding compressible flow.

An obvious obJection is that, whereas any incompressible flow will
lead to some compressible flow when a specific obstacle is prescribed,
there seems to be no indication of how to find precisely the g to be
substituted into the operator. A procedure to solve this problem
approximately can be developed (see reference T), but this is not con—
gsidered herein, However, it is easy to see why the same analytic
function g(¢) which solves the corresponding incompressible problem
can be expected to yield a first approximation to the compressible
problem in the case of low speeds (i.e., small Mach number); for in such
a case the solution (formula (11)) is easily shown to yield a flow, very
similar to the incompressible flow, which agrees with the physical state
of affajirs.

The operator method as Jjust described involves the following
elements:

(1) It is necessary to have considerable knowledge about
incompressible—flow patterns, in particular about their imsges in the
hodograph and logarithmic planes,

(2) The operator formula has to be derived, the functions H

and Q'™ Thave to be determined, and rules must be developed for
interpreting properties of incompressible—-fluid motions as properties
of the compressible flows given by the operator.

(3) After a solution of a problem on compressibility has been found
in terms of the variables (1,8) (i.e., in the so—called pseudo—
logarithmic plane), means must be furnished for determining the actual
flow in the physical plane,

It is obvious that one reason why this method can be so powerful
in the study of subsonic compressible flows is that the theory of
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incompressible flows (i.e., the theory of analytic functions of a complex
variable) is so well known.

The supersonic case is attacked by perfectly analogous means, As
has been indicated by the author, there exist various operators for
transforming solutions of one equation into solutions of another equa-
tion; and often for different purposes it is convenient to use different
operators or different forms of the same operator. In the present
report two operators which transform solutions of the relatively simple
hyperbolic equation

2 2
é_I - é_I = (12)
e 267
(i.e., a pair of differentiable functions
g(¢) and h(n)
(13)

where t = (A + 6) and n = (A -0)

of one variable) into solutions of the compressibility equations are
derived.

As soon as the function ¥(A,8) satisfying equation (9) is obtained,
the corresponding flow in the physical plane can be obtained exactly in
the same manner as in the subsonic case. (See reference 1, section 1k,)

In contrast to the subsonic case, flows which in the logarithmic
plane satisfy equation (12), A being some function of the speed, have

not, to the knowledge of the author of this report, been studied.
Relatively little is known concerning how to choose g and h in order
to obtain in the physical plane a flow around a prescribed obstacle,
although there is reason to expect that this investigation should be
gimpler than in the subsonic case, However, this question is not con—
sidered herein, but is postponed to a future publication. ‘

The following sections of this report are devoted exclusively to
the determination of two different operators which transform differ—
entiable functions of one real variable into solutions of equation (9).

6In reference 8 Coburn has indicated the extension of the Chaplygin—
Kérmin-Tsien method to the case of supersonic flows. The stream functions
of such flows satisfy equation (9). Coburn indicated one characterisgtic
property of these flows. On the other hand, the general properties and
the form of flows (in the physical plane) which are of interest for the
purpose of the present approach have not been investigated in Coburn's
paper.
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Operator Obtained by the Use of Riemann's Function

One method of generating stream functions of supersonic flows ffom
expression (13) is by the use of Riemann's function.

As indicated in the preceding section, the stream function V(A,6)
satisfies equation (9).' If, instead of A and 6, the variables ¢
and n defined in expression (13) are introduced, and, instead of V,
the "reduced stream function"

£+
V¥ = yexp | — Ny(T) ar (14)

a

(where a 1s an arbitrary constant) is considered, then a formal compu—
tation shows that {* satisfles the equation:

Vi Fo(E + ny* = 0 : | (15)
wheré
Ny x +1 [5(1{ +1) 12k 6k — 1k
F =-—N‘2 - = + +
S a(en) 6k % B B2
+ (bk + 8) — (3k — 1)32] (16)
where

Remark.— Obviously it is allowed to take for the lower limit a
of the integral in equation (1¥) an arbitrary point, since replacing a
by a¥*, a* # a, means only that * is mltiplied by a constant,
a¥* -
namely exp N, (7) dr. The most natural choice is to take for a

a
the same value as in the subsonic case. (Sese formula (111) of reference 1.)

| As is explained in more detail in appendix C, it is possible to
extend the variable A to the complex values 1 = A + iA, Then in the
subsonic case the variable 1 assumes values on the negative real

axis A and on the positive imaginary axis A 1in the supersonic case.
The integration can be then taken from T = —w, Since N(O) = o, the
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integration must be performed along a path which avoids 1 = 0, for
example, along the real axis from -« to A;, Ay < O; then along a

circle with radius |X1| and center at 1 = 0; and finally along a
segment of the positive imaginary axis from T = ilkll to T = 1A,

Let R(E,n;t £5sNg) be the Riemann's function of equation (15).

(See, e.g., PP. 311-317 of reference 9. ) Then, according to a classical
result (p. 316, formula (7') of reference 9),

v*(E,m) = ¥*(E,m,) R(E,m5E4,n,)

Ui
* 11’*Y(éo’y) R(go’Y;go’no) dY
. N
3
go
where W* = gi* and so forth.

Since for W*(Eo,no) can be chosen an arbitrarily prescribed
constant A and for y*(&,,Y) and - w*(X,no) can be chosen two arbi-—
trary continuous functions h(X) and g(Y)- (provided that h(go) = g(no))

the formula

n - ,
¥*(E,n) = AR(E,m38,,1,) + h(Y)R(k,,¥58,n,) dY
1’]O
3 . .
* | &®R(X,n5E ,n,) aX 2 (19)
£
(¢]

represents an integral operator which transforms tﬁo arbitrary continuous
functions of a real variable into & solution of equation (15).
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(EO,T]) (5,71)

(&5 M0) (€,15)

X

The rectangle within which the values of V¥*(&,n) are determined by
prescribing its values along the line segments: Y = 7., §O =Xest

and X = §,, My=Y=n.

As is well known, the Riemann function of equation {15) can be
written in the form - '

R(E,_n;go,ﬁo) = Z (-1)* R(rf)(é,nséo,no) (20)
n=0 '

where

2(9) (g, mse,m ) = 1 | -

g

- n
R(l)(ﬁ,nsé'b;no) = f f F1(X + Y) ax ay
€6 UNg L

| 3
2 . -
R,( )(E,méo,no) = f
£o

n
f Fy(X + 7)) X,Y;e ,n.) X aY - (21)
o ' :

' £ N
R(n)(E,;T]; go’no) = f Fl(x + Y)R(n—l)(x’y;go,no) dX 4y
Ut dng

-

(See reference 10.)
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Except for the fact that Fl(O) - ©, Wwhich causes certain complica—
tions, the evaluation of the foregoing integrals does not represent any
esgential difficulty. The tabulation of R = R(g,n;go,no) is rather

complicafed since R 1is a function of four variables.

In appendix A the second term gr(1) of the expansion (equation (20))
is computed and tabulated.

Remark.— In reference 1, formula (119)7, the expression for a funda—
mental solution of equation:  (121) has been derived. The coefficient a
of the logarithmic term is given by equation (123). It has exactly the
game structure as the expression for R(g,n;go,qo), except for the fact

that the arguments of a are complex quantities, whereas EsM3E45M

are real., In reference 11, Kraft has elaborated a working procedure for
the evaluation of a which can be used for actual computation of R.
It becomes in this case simpler since the arguments are real.

Integral Operator of Type'Given by Formula (11)

In analogy to the subsonic case, where formula (11) yields a repre—
sentation for solutions of equation (10) in terms of an arbitrary analytic
function of one complex variable, there is derived in this section a
representation distinct from the ons explained in the preceding section
for solutions of equation (9) (the equation for the stream function in
the supersonic case) in terms of two arbitrary dlfferentlable functions
of a real variable.

Obviously, instead of equation (9), equation (15) for the reduced
stream function * may be considered. The desired representation can
be obtained as a consequence of the following theoremn.

Theoremg.— Let E(n)(T) denote functions defined by the following

recurrence relations:

T. . . ' B
() == Fy7))ar,

> (22)
- .

gl 1y - _ [E(n)T'lTl(Tl) ngl(Tl)E(n)'(Tl)] ary

a8

."x'.‘ .

7Note that in equation (119) and llne 10 of page 46 of reference 1,
by a misprint, a capital A instead of a, lower case, is used.

8This theorem has been indicated in reference 3; see chapters b
and 5 of this reference. See also reference 12.
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Here Fl("r) is a given function, the derivatives of which satisfy the
inequalities '

anl('r )
n

(n + 1)!M

<
n+2’

=(To—€—1‘)

n=0,1,2,3, ... (23)

ar

where €(>0), M= M(¢), and T _ are conveniently chosen constants.
Then the series '

vt e n) = £(e) 4 z B (g + ey (24)
n=1
and
V@ (gn) =) + )y B e ()
n=1

where f and g are two a.r‘bitrary differentiable functions of a real
variable and :

-

£

eetdee) < | eP(ey agy
0

| ; (26)
n

gl () = | glI(ny) an

0 J

will converge in the intersection of the domains

To—g—'r]

l:—l<—-L—<{l and [—l<———q—<l] (27)

and will represent there solutions of the equation

BW) =%, + Fy(E s nve =0 (28)

&n
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The proof of this theorem is given in appendix B. As has been shown in
reference 13 (see equation (45)), F, is given by equation (16),

where M, B, and 2A are connected by relations (5) and (17). Thuse
the question of the representation of solutions of equation (15) is
reduced to the investigation of the behavior of the function Fl(T), in

particular to determining whether its derivatives satisfy the inequali-
ties (23). This investigation has been carried out in appendix C. If
in the A,6—plane the origin is shifted, thus introducing instead of 2A
the new variable '

YN =2A—(%—l>n (29)

and the variables are denoted by &' and 7' as follows,

E' = (A" + 6)
| | (30)
.nl - (Al - 9)
then equation (15) is transformed into an equation of the same form
Y eage + Fple! + ')y = 0 (31)
where FQ(T), T = &% 4+ ', satisfies the inequalities (23), for
FE[EA + 1((% - 1)] - F{(240) 1is an analytic function of A which is
regular in fhe strip ’
—oo<X<oo, O<A<Tf(h—l'— l) (32)

and therefore in particular in the circle of radius To— €=

-%JT(% - i) — ¢, €>0., (See fig. 2.) If M= M) deflotes the

maximim of Fl(2A) in this circle, then by classical results of the
theory of functions of a complex variable, F, satisfies the inequali-

ties (23), where 2A' 1is substituted for 7. Since ¢ can be chosen
arbitrarily small, the series (equations (24) and (25)) formed for eque—
tion (31) converge in the domain indicated in figure 3.

On the other hand, in many instances it is necessary to have repre—
sentations (equations (24) and (25)) of the solutions which are valid in
the whole strip,

—s<6<w,  0<2A< o~ 1) (33)
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One possibility of obtaining such formulas consists in approxi-
mating F,(2A') by a sequence of functions Fg(m)(EA'), each of which

ig an entire function of A and therefore (by a classical result of the
theory of analytic functions of a complex variable) satisfies the
inequalities (23) and which is chosen in such a manner that

l1im F,(m)(21) = Fy(2n") (34)
mn——>

in the interval
0<2A< 2(% - l>n (35)

(Concerning another method of representing V(k), k = 1,2, see (27), (25)

in the damain (33), and reference 2, section 5.) Let w*(m)(g',nr) denote
the solutions of the equation : '

v e m e L o, mee, (36)

where

(0) (0)

-£ <E'<E

such that W*(m)(g’,O) = ¥*(¢',0) and w*(m)(o;n') =¥*(0,q"),
;n(o) <n'< n(o). As is shown in appendix E,

1m (@ (e ) — (et nt) (37)

m-—> oo

in the interval

(0) (0) (0) (o)

-t <t <t 7, -1 <1 < (38)

A sequence of functions Fe(m)(QA') can be obtained in the following

manner, Let

FQ(Q[G) =ag + oA+ agAfe . (39)
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be the series development of F, around the point 2!9 =0

(1 e., 2A= <— - l) ) The series }i: a, A'™ obviously converges in
n=0
the circle indicated in figure 2. The series

(W) ppy S O |
Fem(zA)_ZomAn - o)
n= .

will be, for every finite positive number m an entire function of A!
and therefore the series (equations (24) and (25)) obtained for equa—

tion (36) with Fe(m) given by equation (40) will converge, for

any m< o, 1in the strip (33). On the other hand, according to a
classical theorem of the theory of functions (see reference 1k4), the
relation (equation (34)) holds in this case, so that for the functions

y*(m)(e1 ') obtained in the foregoing manner the relation (equation (37))
holds in the whole interval (38).

Naturally it is™“also possible to approximate F2(2A') by using

different procedures. Some of them are convenient for some special
purposes, 1n particular if a problem requires the representation of
solutions in certain subdomains of the strip (33).

SUMMARY REMARKS

The present paper employs the hodograph method for generating flow
patterns of supersonic flows, The essential feature of this method is
that the equations are linear and therefore the principle of superposition
of solutions holds. If, therefore, WV(A 9) v =1,2,3, .. ., repret

sents a set of particular solutions of equation (7), and Ay, arbitrary
constants, any linear combination

N
ZA v(4,6)

V=

'_.I

is also a solution of equation (7). By varying the constants A,

v =12, ..., flows around different shapes can be obtained. On the
other hand, it is often necessary to determine constants A, to yield
a flow which approximates that about a prescribed boundary curve, the
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equation of which is, say, F(x,y) = 0. In this case, the constants A,
can be determined in such a manner that

M(A) = f {F[x(A,e;Av),y(A,e;Av)“2 a6

under the condition
¥(A,0) =0

Here x = x(A,0;4y) and y = y(A,0; A,) represent functions of A and 6
defined in the INTRODUCTION and corresponding to the stream function
>- AWWA,0) in the A,6-planc.

As is well known, a solution of the problem does not always exist.
Under the assumption that WV(A,G), v=12, ..., represents a system
which is in a certain sense complete, M(A) represents a measure for
closeness of approximation. In this case the fact that M(A) approaches
zero when the number N of functions WV(X,Y) increases can be con—
gidered as a condition for the existence of a solution.

On the other hand, in many instances, only solutions of the problem
exist which possess shock lines, and therefore not only the usual condi-
tion that one of the streamlines coincides with the given boundary must
be considered but also the condition that these shock conditions are
satisfied along unknown characteristics.

Brown Uh¢verslty
. Providence, R. I., Novenber 18, 1946
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APPENDIX A

EVALUATION AND TABULATION OF THE FUNCTION

R (g,mie0,m)

The second term R<l)(§,n;§o,qo) in the series for the Riemann
function is evaluated in this section.

Fl is a function of the variable A =_éf%—ﬂ and therefore

g :
F(X+ ) aX = re 4 ) -1‘(1)(50 + )

n g n '
f ay f F(X + Y) aX =f [r‘(l)(g +Y) -r(l)(go + Y):I ay
n 3 n

o

—r@ (4 m) - ey B

+ P(E)(go_ + 1) (41)
where
t] .
Fy(T) a7 = r(l)(tl) - r(l)(fco) (42)
tO
and
31
rWr) ar = 1)y - P(2)(to)‘ (43)
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The fact that F(0) 1is infinite causes a certain amount of inconvenience

in the tabulation of the functions P(l) and P(Q). According to equa~—
tion (16), for %k = 1.k,

\

0.45 0,63 0.21 o |
F,(B) = + -~ - 0.51 — 0.12B (4k)
1 ® B
where
A=2\]€arctanB——25rcténB (45)

6

and . B° is glven by equation (17), M being the Mach number.

, In table I the values of M, B, and F; have been tabulated; in
figure 4, Fy; is given as a function of M, B, and 2A. For
DA = 0.3686 the function F, vanishes, that is, Fy[B(0.3686)] = 0;

this point has been chosen as the initial point for the integration,
since, as has been pointed out earlier, for the most natural choice
2A = 0, F; becomes infinite,. »

The values of I(1)(2a) ena r(2)(2a) for r(1) (0.3686) =
r(e)(0.3686) = 0 are given in table II. The interval of tabulation

of 2A is one four-hundredth. In order to obtain P(E)(QA) for inter—
mediate values, the interpolation formula :

r(2(zn = £ (2n,) + 20y + 20, (he)

can be used, where
r(®(2n) = r(D(2n, + 3n) = 1D(280) + g + 2 (p - 1)
= 1"(2)(2A0) + pD; + p2D2 (47)

The quantity h 1is the interval of tabulation at 2A,.
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APPENDIX B
PROOF OF THEOREM GIVEN BY EQUATIONS (22) TO (28)

The proof is carried out at first under the assumption that the

series? (oquations (24) and (25)) as well as those for their first
derivatives converge uniformly. (The validity of this assumption is
proved in this appendix.) A formal computation yields

o0

V(l)g'n' - f,E(l)n' +Z £ln] [E(n)g'n' + E(ml)n'] (48)

n=1

Fv(D) Ry 4 Z ¢(lrp(n) (§9) |
n=1 ‘

that is,
LACUITINERS SO f[E(l’)n: + Fl] + Z £ (0] [E_(Fl)ggn.
n=1

+ E(n’*l)n. + FlE(n)] | (50)

where Fl is a function of one variable T = 2A'.

Assuming that the E(n) functions are also functions of one
variable T,

E(n)ﬂ' = E(H)T

> (51)

E(n) giqt < E(n)TT

which yields the foregoing relations, if the assumption is made that

E(n)(a) = 0 (52)

9In this appendix A,E,n are replaced by A',t',n'.
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It remalns therefore to prove that the serles and both its formal
(i.e., term-by—term) derivatives converge uniformly.

Notation.— If in the interval I there hold for the functions A(T)
"and A(7) and all their derivatives the inequalities:

a®a(T)

arn

< a™k(7)

Ja(r)| < K(r) and
ar?

Tel (53)

X(t) "will be dengted as a dominant of A(T), which fact is symbolized
by writing A<< A or

A S>> A, TeI | (54)
If ']:3'(1)(1') is given by
r
'E\}‘(l)'(T) = | Fyry)am (55)
)
where
'1«\"1(1') >> Fy () (56)
then
T T o
0] = ||y an|s | R e 300, e on
a a
and also
anE(l)(T) < dnﬁ(l)(T), reT (58)
ard ar? _ ' '
Thus

(1) (1) «< ) (1), reT ‘ .(59) |
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Suppose now that
T ) ‘
E(n+l)(T) - L I:E(n)TlTl(Tl) + Fl(Tl)E(n)('rl)] dry + ﬁ(n)(T) (60)

where
B () < E@(r), 0 < H@)(r), rer (61)
Then it follows immediately that

,E(n+l) (T)I < ﬁ(n+i) (1)

(62)

'dE(n+l)(T) < dE(n+l)(.,.)
) SaT -

ar

and, by considering the corresponding derivatives of ['ﬁ(n)ﬁ + ’ﬁ-‘l'E"(n)]

in comparison with [E(n).m. + FlE(n):', it follows that

E(n+1)(7) << 'ﬁ:’(n+l)(—,—)’ Tel , (63)

which completes the proof by induction.

Now by expression (23),

F (1) << Fy(r) = M —, TeI (64)
' (T = €~ T)

If ﬁ(n)('l') is given by

~ C.MT 2 . K
e o (6)

(“ro—- € —a)n

'
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where the Cn's are some conveniently chosen positive constants (to be

determined later), then an explicit expression may be obtained for E(T) s
namely, v :

2
%(n)(r) - 0o | (66)

(To— € —‘r)n

In order to express C, ., in terms of C,, the right-hand side of
equation (66) is substituted into equation (60) to give

.2 2 2
F(+l) (1) < c_MT 2 n(n+ 1) + CpMrg 4T 4 Cn1MTo - CreiMTo -
o n+2 n (Ts — ¢ — T\BH
a (TO—G—T) | (To—e—a) ( o~ € T)
(67)
where
M7,2
Cae1 = O (B + —2 (68)
Thus for sufficiently iarge’ values of n
Cpy1 S Cp(m + 1) . (69)
and therefore for every value of M
Cpa1 S M¥(n + 1)1 (70)
where M¥ 1ig a conveniéntly chosen constant. The function f (¢) 1is
assumed to be differentiable and therefore there exists a constant,
say, My, such that
l2(en)| <M, for [&') S, (71)

Then

grr .
|etd(en)] éMﬁ_, for [&'] Sy (72)
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Consequently, from equation (24) it is seen that

n .
V(8,07 << 2MMA PM PP L1 - S [ ¢ W l)ri+_. o
(To—€—T) nl(T, —€~T)
o
which converges if
t
-1< 3 = Al + 6 <1 (74)

(To-—e—-T)—(To—e—EA')

Since ¢ can be chosen arbitrarily small the series (equation (24))
converges in the domain

A' + 6
-1 <— <1
70—2-’\' ’ (75)

(see fig. 3), where the domain (75) is bounded by solid lines.
Similarly, the series (equation (25)) converges in the domain

AY — 6
_l<'_r—_2A<l (76)
(o]

which is bounded by a dashed line so that both series (equations (24)
and (25)) converge in the shaded domain.
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APPENDIX C

INVESTIGATION OF THE FUNCTION F(2A)

This section is devoted to the investigation of the behavior of
the function Fy(2A) 1in order to determine where its derivatives satisfy

the inequalities (64).

’ ~ 1/2
If M varies from 1 to », B = (M? - 1)‘/ varies from O t0 o«
and -

A =32 arc tan (hB) — arc tan B (5)

S

from O to (% - l>g. Therefore it is necessary to investigate the
behavior of F(2A) on the interval

I=E|E)§2A§<%—l>ﬂ:| | (77)

Since F, (given by equation (16)) is & rational function of B, 1it is
sufficient to investigate the function B(2)).

In order to carry out this investigation it is convenient to continue
the functions to complex values, so that it will be possible to use
methods of the theory of analytic functions of a complex variable.

Instead of equation (5), the complex function

~, —~ 1 B
1(B) = A + iA=% logl———g-,+'l 1082'“‘+—E (78) -
1+8 B -3

of the complex variable B =T + iB will be considered <?3' =T, 0 T< 1).

When E is real it is seen that, if the principal values of the
logarithmic terms are chosen, then 1 1is also real and the foregoing
equation reduces to:
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1 1—-T7 1. nil,m '
A== 11o + - log ————m A =0
2<81+T o 8h—1-T>’ (79)

in agreement with the earlier definition of A. On the other hand, if
B=1B, B>0

B ié purely imaginary; then, if the principal values of the logarithmic
terms are taken once again, there results: '

A =0, 1A = i[— arc tan B i ¢ arc tan (hB)] ' (80)

wvhich is also in agreement with the previous definition. The question
which has to be investigated is to determine the domain,of regularity
of B(1), inverse to equation (77).

A classical theorem concerning the inversion of analytic functions
states that, if w(z) is a function of the complex varisble z which
is regular at 2z = z, and has a nonzero derivative there, then, in some

sufficiently small neighborhood of the point w = Wy = w(zo), it is

possible to invert the function w(z), that is, to express z as a

regular function of w. (See reference 15, p. 142,) At every point

except B = %1 and B = th, the function 1(B) is regular, so that
the zero points of the derivative d1/dB have to be determined.

A formal coﬁputation yields

. o\
- (ié— 1°)B — (81)
(1 - 3°)1 - v°3®) | '
- Obviously,
& _0 for ¥=0 ani F = (82)
ap

The discussion would becoms quite complicated if all the possible
branches of the function Z(%) and of the inverse B(1) were to be
considered, because ‘each summand of equation (81) is an infinitely
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~
many—valued function of B, having logarithmic singulerities at X1

and Ih— l respectively. It is therefore convenient to render Z(E)
single—valued by the artifice of starting at B 0 with the principal
values of log(l — B) log(l + B) log(k™1 + B) and log(h -1 _7F)

(i e., with the real values of the logarithms) and slitting the complex
B—plane from 1 to +» and from -1 to -« along the real axis.

Since nl > 1, it is clear that the slit plane contains no branch

points and therefore 1 1is uniquely defined by beginning with the
aforementioned determination of 1(0).

Now, a direct investigation shows that the E—plane, slit in the
manner Just described, is mapped into the band

o <A <o, (1 - 1)x <A < (0L - 1) (83)

However, the mapping is not bi—unique, for at the branch point B =

the mapping is easily seen to be 3 to 1. (See appendix D.) Thus, the
simply covered slit P—plane is mapped Into the simply covered band Just
defined. The only singularities of B(1) in the strip

—o < A< o, 0 £AL (h_l—l)yr ' (8Y4)

are the _points 1 = O where B() has a branch point and 1 = (h % — 1)xd
where B(1) has a pole.
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APPENDIX D
' THE DEVELOPMENT OF ?3'( 1) AT THE ORIGIN 1 = O

The simplest method of proving that 1 = O is a branch point of F(1)
. of third order is to determine the series development of this function
at 1 =0, In order to obtain this development, the principal branch
of 1(B), namely,

%[log (%g) + % log <%"’—E>jl = il:— arc tan (?3‘/1) +% arc tan (Eh/i):l' (85)

has to be developed in a power series to give

~3 ) T
B o) B () B (6
1 3(1 n2) = n*) 7(1 nf) . .. (86)
or
— 3 Z=B3 _3.—.—.——.(1 Ah %5 é—-——l h B e o o 8
1 -1 5w "Thow) (&7

Introducing a new variable s,

83 = ——3 1, that 1s, s=<—-——3——— z>l/3 (88)
1- 12 - 1—h?

yields the development
8 =B + cgB + B’ 4 L L. (89)

Since c¢q, as is easily seen, is not zero, it follows from the
general theory of analytic functions that this series can be inverted:

'E = dlS + d283 + d355 + e e . . (90)
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In particular, for h = 1/\]5,

6y =1, c3=0.2333, ... 4 =1, d3=-0.2333 . ..10 (1)

107hs values of ¢p and dp, n=1, 3, . . ., 25 have been com—
puted by the author and will be published elsewhere.
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APPENDIX E
APPROXIMATIONS OF SOLUTIONS

In the present report, solutions of equation (15) have been approxi—
mated at several places by solutions of an equation in which the coeffi-—-
cient F; 1s replaced by another coefficient which approximates it. The

1egitimacy of such a procedure is established by the following theorem.

Theorem.— Let w(k)(g,n), k = 1,2, be solutions of the equations

wgn(k) + f(k)‘l’(k)":' 0 . (92)

where the f(k)'s are given functions of €& and 1 which satisfy
throughout the rectangle O <t <a, 0<n <b the inequalities

|21 _¢(® |< ¢ ama |f<k>|_<_m | 93

¢ and m being positive constants. The functions W(k)» are also to
gatisfy the conditions:

v e,0) = v (e, 0)

Xl(g) for 05 &< a (ok)

and

WD (0,m) = WD (0,n) = Xy(n) far 0<nSH - (95)

where X; and X, - are continuous functions prescribed on the closed

intervals (0,a) and (0 b), respectively, subject only to the condi-—
tion that Xl(O) X5(0). Let a be a positive number such that

IXll Sa, IXQ' X a. Then there exists a positive number M, depending
only on €, a, m, and ab (the area of the given rectangle) such that
for fixed values of «, m, and ab, M approaches a finite (positive)

limit as ¢ approaches zero, and such that, throughout the given rectangle,
the following inequality holds:

e ) - ¥ e,y | < en  (96)
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and it is clear how a similar reduction can be effected in all the
succeeding terms, so that no sums appear in any of the integrands.

Now, if each term in the series on the right—hand side is replaced
by its absolute value, an upper bound is obtained for the absolute value
of the left—hand side of equation (100); and this inequality continues

to hold if the functions p, 6, and f(2) are replaced by their respec—
tive upper bounds 3a, €, and m. (The upper bound for p follows
directly from equation (98) and the definition of a.) Therefare, from
equation (100) there is obtained the inequality:

3a = 2€m>§2q2 N 3@(63 + 352m+ 3em2)§33§ .

(1) (2) 1<
s -V < 3aekn+ : =
(e1)® (31)2

. (102)

_ It is not difficult to see that the nth term of the right-hand side
of equation (102) is simply:

3Q'B€,+ m)? - @]Ennn

2 (103)

(n?

The inequality (102) holds a fortiori if ¢ and 1 are replaced
by their respective upper bounds a and b. Thus, there is finally
obtained for all points in the given rectangle, the inequality

\lf(l) ;\v(2) |S Z.o 3(:(,[(’5 + m? - n](ab)n (io[,,)

n=1 (nt)®

This series is easily shown, by elementary tests, to converge. Further—
more, it is clear that the quantity ¢ can be factored out of the

expression [ie +m) - mp], so that the series may be written as the
product of ¢ by a new series, which is again easily shown to converge
for all values of €. Designating this new series by M, the conclusion
of the theorem is obtained.

In less precise language than that used in the formulation of the

theorem, the result obtained may be expressed by saying that, if the
coefficients f (k) of the two differential equations (equation (92))
approximate each other very closely in a certain region and if the
respective solutions satisfy the same side conditions (equations (94)
and (95)), then the solutions approximate each other very closely
throughout the given region.
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In particular it follows from this theorem that, if the sequence of
coefficients of the given hyperbolic equation converges uniformly, the
corresponding sequence of solutions also converges uniformly to the
solution of the limiting equation.
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TABLE I.~ F; AS A FUNCTION OF M, B, AND 2A

M. B 2A . By
1.00 0.0000 0.0000 o
1.04 .2857 .0120
1.08 4079 .0338
1.12 - 50Uk . 0606 ‘
1.16 .5879 . .0910 15.0172
1.20 .6633 Jd242 7.4967
1.24 .7332 .1595 k.1109
1.28 . 7990 L1964 2.3598
1.32 .8616 .2346 1.3609 -
1.36 : .9217 .2738 LTHT5
1.ko 9798 .3137 .3483
1.k4 1.0361 .3542 .0758
1.8 - 1.0911 .3950 o =1179
1.52 1.1447 . 4362 —.2606
1.56 . 1.1973 LerTh —.3692
1.60 1.2490 .5187 =454
1.64 1.2998 .5600 -.5231
1.68 1.3500 : 6012 —.5799
1.72 1.3994 L6hoo —.6281
1.76 1.4483 .6829 —.6699
1.80 1.4967 .7234 —.7070
1.84 1.5445 L7637 —. 7405
1.88 1.5920 .8035 -.T713
1.92 - 1.6390 .8430 —-.8000
1.96 1.6857 .8821 -.8273
2,00 1.7321 .9208 -.8533

“_NACA ~
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2A M B ¥ r(1) r(2)
0.00 | 1,0000 0 o —o —
.0k | 1.0899 433k | 84,018 | —2.6449 | —-0.1211
.08 | 1.1k60 5597 | 19.833 —~.9974 | —.0561
12 1.1951 L6544 8.1146 -.4859 | —-.0279
16 | 1.2406 | 73wl | ko787 | -.2537 | —.0136
.20 1.'2838 .8051 2.2408 -.1315 —-.0061
24 1.3255 .8701 1.2579 -.0634 | —.,0024
.28 | 1.3663 .9310 6737 -.0257 | -.0007
.32 1.4063 .9887 .2989 -.0067 | .—.0001
.36 1.4457 1.0441 L0441 ;.oooe .0000
40 | 1,488 | 1.0976 | -.1375 | -.0022 | —.0000
45 | 1.533% | 1,1625 | ~.,3003 ~.013% | —.0004
.50 1.5819 1.2257 -.4182 -.0315 | —.0015
.55 | 1.6303 | 1.2876 | -.5077 | =-.0548 | —.0036
.60 | 1.6780 | 1.3486 |  —.5784 | —.0820 | —.0070
.65 1.7277 1.4089 —.6365 -.1124 | —. 0119
70 | 1.7768 | 1.4687 | —.6860 | —.1bs5 | —.o183
.5 1.8264 1.5283 —. 729k -.1809 | —.0265
.80 1.8765 1.5878 -. 7686 —.2184k | —.0364
.85 | 1.9271 1.6kTh -.8050 -.2577 | —.0483
.90 | 1.9784% | 1.7071 —.839k4 —.2988 | -.0622

L5



NACA TN No. 1875

L6

‘W WM VZ JOo UOTIElIBA -'T aandig

81 9’1 i

21 01

»

Ve ¢




L7

NACA TN No. 1875

- wmjef= v o=y
jutod ey} punode LJ jo JUSWdOT8ASD 89U} JO 9OUSSIDAUOD JO S[DIID
Ui puE [T - (W/T)]>V >0 ‘@ >\> w- dus oyl -'g eandig




48 - NACA TN No. 1875

Figure 3.- The domain of convergénce of the series (equations (24)
and (25)).
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Figure 4.- F, asafunctionof M, B, and 2a.
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