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SUMMARY 

In previous reports by the author, the method of operators has been 
applied to the investigation of two-dimensional irrotational flow patterns 
of an ideal compressible fluid, mostly in the subsonic case. Using a 
similar approach in the present paper, the author defines two different 
operators which generate supersonic two-dimensional flow patterns from 
differentiable functions of one real variable. (n operator is any rule 
by means of which one function is converted into another. This concept; 
is discussed in some detail in the body of this paper.) Since operators 
of the type considered preserve many properties of the functions to which 
they are applied and since the theory of functions of one real variable 
is more extensively developed than that of solutions of the compressi-
bility equations, the results obtained can be used as a basis for the 
investigation of supersonic flow patterns. 

INTRODUCTION 

By following the line of approach developed in previous publications 
for the study of two-dimensional subsonic flows (see references 1 to 4), 
the method of operators is applied in the present paper for generating 
two-dimensional steady supersonic flow patterns. Using the hodograph 
method introduced by Chaplygin, the author considers the stream function 
in the A,O—plane, where 

A = harc tan [h(M2 - 1)1/2] - arc tan [(M2 _'i)l/2]
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(see equations (5) and. (6)), M being the 
an€le between the velocity vector and the 
characteristic of the fluid.1

local Mach number; 0, the 
i—axis; and h, a constant 

The stream functions, considered as a function of A and 0, 
satisfy a linear differential equation 

-	 +	 = 0 

Two operators which generate solutions of this equation are defined 
in the present aper. The first operator Is obtained by using RIemann's 
function. (See section entitled "Operator Obtained by the Use of 
Rlemann's Function.") The second operator Is derived by means of the 
theory of integral operators. In the section dealing with the second 

operator, a set of functions H(A), ç'(A), n = 1, 2, . . ., are 

determined such that 

P(f) = lin {E(A)[r() +

n=l 

i-At every point (x,y) of a steady two—dimensional flow the 
velocity vector, the Cartesian components of which are q cos 0 
and q sin 0, is defined. If *(x ,y) denotes the stream function 
and. p(x,y), the density, the coordinates x and y can be expressed 
as functions of q and 9 (and. hence, using relations (5) and (6) 
of A and e) by solving the equations 

q cos 6 = 

and

q. sin 0 =_ p 1-	 , 

Substituting these expressions for x and y into p(x,y), the 
function r(i ,e) = ii! [x(A,e), y(A,6)] is obtained, i.e., the stream function 
In the A,O—plane.
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where

f[fll() = ía f[l) d 

f[O]() = f() 

or 

(where f is an arbitrary differentiable function of one real variable ) 
represents a solution of the equation 

- 'O9 + II.NlA = 0 

so that P(f) can be interpreted, as the stream function of a supersonic 
flow. The equation of a streamline of the flow in the physical plane is 
then given in parametric form: 

-

r(M2_1)	 dq +1	 eco5e_A81n6]dA 
[ pq2 

y	 cose uo 
J \P	 dq pq, 6 

+ [(;1	
sin 0	 COS oJ 

where jt(A,e) = C = Constant. The representation P(f)' is investigated. 
in the present paper, and, in particular, methods for -the actual
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determination of	 (n) are discussed as well as the domain in the 

A,9—plane where the order of summation and passage to the limit can be 
inverted. 

The evaluation of the Operators, that Is, the determination of the 
flow pattern when the function f is given, involves lengthy computa-
tions. However, in a manner similar to that described in reference Ii. 
for the subsonic case, it is possible to prepare, once and. for all, 
tables which greatly facilitate numerical computation of flow patterns. 

The results obtained in the present paper can be used as a basis 
for the investigation of supersonic flows. 

The next problem which arises in this connection consists in deter-
mining for a desired flow the functions of one variable which have to be 
inserted into the operator In order to obtain the desired boundary shape 
or to decide that such a flow does not exist. The author expects to 
treat these problems In subsequent publications. See also the SUMMARY 
PEMARKS presented at the end of the present paper. 

This investigation was conducted atown University under the 
sponsorship and with the financial assistance of the National Advisory 
Connnittee for Aeronautics. 

The author would like to express his sincere appreciation for the 
assistance and advice he received from Mr. Bernard Epstein and to thank 
Mr. !vurice Fl. Slud for his interest and. valuable help.in connection with 
the present investigation.

SYI4BOLS 

a	 velocity of sound In compressible fluid 

a0	 velocity of sound at a stagnation point 

h = Jk - 1 
k+ 1 

k	 ratio of specific heat at constant pressure to specific 
heat at constant volume (k = 14 for air) 

q	 speed of a fluid particle ( 2 + 2) 

u	 x—component of velocity vector (q cos e) 

v	 y—component of velocity vector (q sin 0)

x,y	 Cartesian coordinates in physical plane 
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B = \JM2 _1 for M>1 

M	 Mach number (qja) 

Riemann's function for equation (15) 

T = \Jl_M2 for M<l 

= T + lB 

2 = X + IA 

E'(T)	 functions defined by recurrence relations (22) 

F1 (2A)	 see equation (16) 

F'2 (2A)	 see Theorem under section Intea1 0erator of rpe Given 
by Formula (U) 

F2 (m)(2At )	 a sequence of functions converging to F 2 (2A'); see equa-

tion (40) 

coefficients of Taylor series expansion of F 2(2A); see 

equation (39) 

=A + e 

=A—e 

= A' + e 

= At - 9

1 - T 1	 h + T for M < 1; log = loge 
l+T h	 h—TJ. 

og	 +—log 

A = arc tan (hB) - arc tan B for M> 1 

A' = A -	 it ( - i') 

e	 angle between velocity vector and positive direction of 
x—axis (arc tan v/u) 

potential function
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stream function 

"reduced stream function" (Bee equation (14)) 

a sequence of functions converging to 4r*; see equation (37) 

p0	 density of fluid at a stagnation point 

density of fluid in motion 

p	 "reduced density" ('/0) 

see equation (9) 

Note.— Frequently quantities are considered as functions of different 
pairs of variables, so that different symbols should be used to designate 
the functional dependence in the various planes. However, this is not 
done herein, the same symbol being used in each plane. This should cause 
no confusion, for the meaning is clear from the context. 

ANALYSIS 

The hthematical Problem in Simplified Form in the Case 


of a Supersonic Motion of a Compressible Fluid 

In this report, operator methods are applied to the problem of 
constructing two-dimensional, irrotational, steady flow patterns of' a 
compressible fluid at supersonic velocities. 

Just as in the case of an incompressible fluid, the steady, irrota-
tional flow is completely described by either the velocity potential Ø(x,y) 
or the stream function *(x,y). If it is assumed that the motion is adia-
batic and that the fluid is a polytropic gas, then the motion is governed 
by the following system of nonlinear partial differential equations: 

= Pi1y 

—1 
øy =P

(i)
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p p(x,y) =	
- k - (2 + 02\1 k—i 

[	
2	 ao2 

Here p = /p0 is the "reduced. density" of the fluid, that is, the 

density p divided by the density p0 at rest; x,y are Cartesian 

coordinates in the physical plane, that is, in the plane where the 
motion takes place; k is the ratio of the specific heat at constant 
pressure to the specific heat at constant volume; and a 0 is the 
velocity of sound In the fluid. at rest. (See reference 1, equations (211.) 
and (25).) 

A fluid motion satisfying equation (1) may show two essentially 
distinct types of behavior, according as the speed of the fluid Is 
greater or less than the speed of sound in the fluid. The mathematical 
reason is readily seen in the following manner. If p and r are 
eliminated from equation (1) the result is a single, nonlinear, partial 
differential equation of the second. order for 0: 

	

(a2 - O 2)O - 2OOO + (a2 - o 2)o = 0	 (2) 

where

2	 2\ 

	

a2 = ao2 1(k - l)(O + Oy )	 (3) 

is the square of the local velocity of sound. (See equation (28) of 
reference 1.) The discriminant of equation (2) is 

22 
Ox Oy - (a2 - 0x2)(a2 - Øy2)

2(2	 2" 

	

=a2(a_Ox2_Oy2)=a \q —a)	 (4) 

where q2 is the speed at the point x,y under consideration. In regions 
where the velocity is subsonic, that is, q< a, this equation is of 
elliptic type, whereas in regions where the velocity is supersonic, that 
is, q> a, equation (2) is of hyperbolic type. (See reference 5, pp. i-4.)
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The solutions of these two types of differential equation have markedly 
different functional character, and these differences are, of course, 
reflected as the two different types of compressible fluid motion. 

In spite of these differences, however, the operators which have 
been used for the solution of subsonic flow problems may be adapted to 
the solution of supersonic problems after certain formal modifications. 
Before this is done, however, it is necessary to make a few preliminary 
remarks. 

The differential equations (1), both for subsonic and supersonic 
velocities, were derived under rather restrictive assumptions, namely, 
that the flow is two—dimensional, that the fluid is inviscid, and. that 
the motion is irrotational and steady. By these assumptions the problem 
is considerably idealized; but experience has shown that in a great many 
important cases occurring in practice, when the speed is small, the 
consequences of the theory are in satisfactory agreement with observa-
tions. Moreover, a physical justification for the apparently drastic 
assumption that the motion is laminar is contained in the Von Mises 
"hydraulic hypothesis." (See reference 6, p. 814.) 

In many instances where the indicated idealization is not admissible, 
the "idealized" theory can at least be used as a first approximation, 
which can be improved by correction terms. So, for instance, the 
boundary—layer theory describes the motion near the boundary where 
viscosity effects cannot be neglected, whereas in the interior of the 
flow pattern the theory of id.eal, inviscid fluid can be successfully 
used without any alteration in the case of a comparatively slow motion. 

Unfortunately, when the speed increases considerably, the situation 
changes completely, and the theory of an incompressible fluid can no 
longer be used as a first approximation. Furthermore, at supersonic 
velocities a completely new phenomenon appears, the influence of which 
is not easily assessed. When a compressible fluid flows around an 
immersed body at supersonic velocities, a very characteristic phenomenon 
is the appearance of a shock line. It appears as a curve (or curves) 
which divides the physical plane into two (or more) unconnected infinite 
regions. In the neighborhood of the shock line, the fluid may no longer 
in general be regarded as nonviscous; there is a discontinuity of 
velocity along the shock line; and in the region of the physical plane 
beyond the shock line (except in a few special cases) the flow is -no 
longer irrotational. For all these reasons, the differential equa-
tions (1) may no longer be supposed to represent the actual physical 
situation. Exact equations can be derived, of course, but they are 
extremely complicated nonlinear partial differential equations for which 
no mathematical theory now exists; and the problem presented (which is
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neither an initial—value problem nor a boundary—value problem, because 
the shock line is not prescribed) cannot be handled by any known mathe-
matical means.

Shock 
line 

An example of a supersonic flow pattern 
around an obstacle with a shock line. 

It can be expected that in the same manner as the idealized theory 
of an incompressible fluid represents an excellent "first approximation" 
in the sense just explained for comparatively slow motions, the idealized. 
theory of compressible fluid will represent a similar "first approximation" 
for motions with considerable speed2 (if necessary, with certain acidi-
tional alterations). 

In this and previous papers on the subject by the author, therefore, 
no attempt is made to find exact solutions of the actual physical problem. 
Instead It is assumed that the part of the flow around the obstacle 
satisfies the conditions under which equations (1) were derived. The 
method of operators is then used to find and investigate exact solutions 
of this idealized problem. The results may be regarded as first approxi-
mations to the true facts in the sense just explained. 

is clear that for many purposes it will be necessary to develop 
a three—dimensional theory. This theory, even in the cathe of an Incom-
pressible fluid, Is only in the very first stages of development. The 
theory of operators and some other modern mathematical means, as the 
author expects to show in another paper, will make it possible to deal 
with certain problems in the three—dimensional case. These methods, 
besides yielding results for subsonic motions of a compressible fluid, 
will also yield results of certain problems (as yet unsolved) for an 
Incompressible fluid.
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The question may also be regarded from another viewpoint. It would 
often be possible to find a numerical solution of a specific problem, but 
such a result has little theoretical value. A satisfactory theory must 
be capable of doing much more. It must be able to give at least qualita-
tive information concerning how the motion of the fluid is affected by 
variations in the form of the immersed body, the specific properties of 
the fluid, or any other significant variables; and preferably it should 
also be capable of providing quantitative predictions. The operator 
method of solving differential equations has the advantage that it may 
be used to investigate the functional properties of the solutions it 
yields. (For details, see references 2 and 3.) 

Remark.— From the purely mathematical point of view, an operator is 
a rule which is applied to a function of an appropriate class (usually 
denoted as class A) to obtain a function belonging to another class 
(class C). A simple example of an operator is the process of obtaining 
a harmonic function of two real vriables (class C) by taking the real 
(or imaginary) part of an analytic function of a complex variable 
(class A). This operator preserves many properties of analytic functions 
and is often used as a tool for investigation of harmonic functions. 

A similar relationship may be seen in the operators employed in the 
theory of compressible fluid. These operators appear in the form (eq .ua-
tion (ii)) for subsonic flows and in a similar form for supersonic flows. 
In the case of subsonic flows, equation (11) acts on analytic functions 
of a complex variable (class A) arid produces complex solutions of equa-
tion (10) (class C). In the supersonic case, the operator acts on a 
differentiable function of a real variable (class A') and. produces solu-
tions of equation (9) (class C'). These operators are special cases of 
operators introduced by the author which convert analytic functions of a 
complex variable into complex solutions of a given linear differential 
equation of elliptic type and differentiable functions of a real variable 
into solutions of a given equation of hyperbolic type. 

The theory of integral operators gives a deep insight into the property 
of the solutions of the compressibility equation. As indicated, in 
references 1, 2, and 3, solutions of equation (10) can be written in the 
form

=j
 '+1	 _____ 

E(Me,t)fj[x(M) + i(l_t2)} dt/l_t2 

(See equation (55) of reference 1.) }tere ?.(M) is a function of the 
Mach number M, vhich in the subsonic case is real, and in the supersonic 

case purely imaginary. The expression E(M,9,t) = (X,e,t) is a function 
which, in the "simplified case" (Tricomi case), when considered. as a 

function of u t2 (x + iO)/2X, satisfies the hypergeometric equation. 
In the case of the "exact" compressibility equation, behavior and proper -
ties of '(?e,t) are completely analogous to those in the simplified 
case. It is described in sections 14. and 5 of reference 3.
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The operator method 3 has another advantage which is very important 
from the practical point of view. All too frequently the only thing 
which stands in the way of solving an engineering problem mathematically 
is the difficulty of performing the incidental numerical computations. - 
Although the use of modern automatic computing machinery in many instances 
reduces considerably the amount of labor needed, it still remains a 
serious obstacle. Whenever possible, the ultimate numerical evaluation 
should be kept in mind when the mathematical analysis is carried out. It 
is a definite advantage when the computations required by a theory may 
be readily performed. It will be seen that when hydrodynamical problems 
are attacked by the operator method, the formulas which occur contain a 
number of standard functions which are the same in all problems of the 
same type. Consequently these functions may be computed and tabulated 
once and for all. When this has been done, the computations required 
for any specific problem are much shorter and simpler. 

The Method of Operators in the Theory 

of Compressible Fluids 

The idea of the method of operators is now explained briefly. 

It has already been stated that the partial differential equations 
of compressibility are nonlinear and that a mathematical theory of such 
equations does not yet exist. Fortunately, it is possible to linearize 
the equations of motion of a compressible fluid by a change of variables. 
Therefore, hydrodynaiuical problems are not studied in the physical plane 
where the flow occurs but must be investigated in some auxiliary plane 
where the differential equations are easier to handle. This entails 
considerable distortion of the flow pattern and a consequent loss of 
intuitive appeal. 

The process of linearization is conveniently performed in two stages. 
In the first place it is noted that, in general, in a sufficiently small 
portion of the flow region, a particle may be just as unambiguously 
specified by its 'velocity vector as by its position, although this will 

3The main mathematical idea of the operator method consists in 
employing certain integral operators which transform functions of one 
complex (or real) variable into "classes" of complex solutions of given 
linear partial differential equations and preserves many properties of 
the class of functions to which the operator is applied. Thus, in the 
case of equations of ellipti .c type, the application of the operators 
results in the derivation of complex solutions of the given solution's 
equation which in many respects behave like analytic functions of a 
complex variable and help in the investigation of real solutions in a 
manner which bears a close analogy to the role of analytic functions of 
a complex variable for real harmonic functions in two variables.
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not generally be true over the flow as a whole. The first change of 
variables is, therefore, from the physical plane with coordinates x,y 
to the so—called velocity or hodo'aph plane in which the polar coordi-
nates q,9 are used., q. being the speed. of the particle, and e, the 
angle between the direction of motion of the particle and the positive 
x—axis. This transformation obviously introduces distortion (see fol-
lowing figs.) and. it is by no means bi—unique, 

y

-X1 

Motion in the physical 

plane.

The image in the hodograph 
plane of the flow indicated 
in figure at left. 

since it usually happens that the velocity vectors are equal at different 
points of the flow region. A further distortion is now produced. by 
plotting log q and e as Cartesian coordinates (logarithmic plane). 
Finally, the substitution 

1	 [h(M2	 1/21	 [(M2 - 1 )1/2 1 	 () A = A(q) = arc	 - 1) j - arc tan 

(see fig. 1) where

a -	
(6) 

+ 11 

Th order to make the correspondence between the flow pattern in 
the physical plane and its image in the hod.ograph plane l—to--1, it is 
necessary in this case to locate the hodograph on a Riemann surface with 
the proper number of sheets.
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has the effect of changing the scale along the log q—axis (pseudo-
logaritiumic plane). This introduces an additional distortion but 
succeeds in reducing the differential equation for the potential func-
tion to the form

	

øee4løA=	 (7) 

where

k+1

	

I	 (8) 

M—l) 

The stream function satisfies the differential equation

(9) 

In the subsonic case, a similar procedure leads to the differential 
equation

	

xx+1ee+N1Tx=0	 (10) 

(see equation (17) of reference 1), where X = X(q) is a function of 
the speed alone, the form of which is very similar to that of A(q) in 
equation (5). The operator method of finding subsonic compressible flow 
patterns is now easily described. It is based on making suitable use of 
the following formula for generating solutions of equation (10): 

= Im P(g) 

P(g) =

+	

n! Q(n)(2x)	 fl	 . . d1] 
where	 = X - ie. (See reference 1, formula5 (66).) In this formula 
g represents an arbitrary analytic function of a complex variable 

5Note that in formula (66) of reference 1, there is a misprint: the 
(2n)	 (2n)! factor	 should be replaced by 
2"n	 2nn!

(U)
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which is regular at	 = 0; whereas H and the Q(1)t are certain 
functions of X only and are the same for all stream functions. They 
may be computed once and for all and the results used in all future 
hydrodynamical problema. (See reference ii.) 

The foregoing formula is employed in the following manner. If any 
analytic function g of a complex variable (regular at 	 = 0) is 
substituted into formula (11), the result is a stream function of a 
subsonic flow pattern. On the other hand, it is well known that an 
analytic function g(log q - iO) may be regarded as defining a flow 
pattern of an incompressible fluid. Consequently formula (11) may be 
interpreted as an operator which distorts an incompressible—flow pattern 
into a compressible one. (It may be said that the operator acts as a 
distorting mirror which reflects an incompressible—flow pattern as a 
subsonic compressible—flow pattern.) The operator formula is of such a 
form that a knowledge of the incompressible—flow pattern used leads 
directly to both qualitative and quantitative knowledge of the behavior 
of the stream function of the corresponding compressible flow. 

An obvious objection is that, whereas any incompressible flow will 
lead to some compressible flow when a specific obstacle is prescribed, 
there seems to be no indication of how to find precisely the g to be 
substituted into the operator. A procedure to solve this problem 
approximately can be developed (see reference 7), but this is not con-
sidered herein. However, it is easy to see why the same analytic 
function g() which solves the corresponding incompressible problem 
can be expected to yield a first approximation to the compressible 
problem in the case of low speeds (i.e., small ch number); for in such 
a case the solution (formula (ii)) is easily shown to yield a flow, very 
similar to the incompressible flow, which agrees with the physical state 
of affairs. 

The operator method as just described involves the following 
elements:

(1) It is necessary to have considerable knowledge about 
incompressible—flow patterns, in particular about their ima€es in the 
hodograph and logarithmic planes. 

(2) The operator formula has to be derived, the functions H 

and	 have' to be determined, and rules must be developed for 
interpreting properties of incompressible—fluid motions as properties 
of the compressible flows given by the operator. 

(3) After a solution of a problem on compressibility has been found 
in terms of the variables (x,e) (i.e., in the so—called pseudo—
logarithmic plane), means must be furnished for determining the actual 
flow in the physical plane. 

it is obvious that one reason why this method can be so powerful 
in the study of subsonic compressible flows is that the theory of
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incompressible flows (i.e., the theory of analytic functions of a complex 
variable) is so well known. 

The supersonic case is attacked by perfectly analogous means. As 
has been indicated, by the author, there exist various operators for 
transforming solutions of one equation into solutions of another equa-
tion; and often for different purposes it is convenient to use different 
operators or different forms of the seine operator. In the present 
report two operators which transform solutions of the relatively simple 
hyperbolic equation

(12) 
A2	 e2 

(i.e., a pair of differentiable functions 

g() and. h()	 1
('3) 

where	 = (A + e) and. r = (A —e) j 

of one variable) into solutions of the compressibility equations are 
derived. 

As soon as the function 'i(A,9) satisfying equation (9) is obtained, 
the corresponding flow in the physical plane can be obtained exactly In 
the sane manner as in the subsonic case. (See reference 1, section l)-.) 

In contrast to the subsonic case, flows which in the logarithmic 
plane satisfy equation (12), A being some function of the speed, have 

not, to the knowledge of the author of this report, been studied.6 
IRelatively little is known concerning how to choose g and. h in order 
to obtain in the physical plane a flow around a prescribed obstacle, 
although there is reason to expect that this investigation should be 
simpler than in the subsonic case. However, this question is not con-
sidered herein, but is postponed to a future publication. 

The following sections of this report are devoted exclusively to 
the determination of two different operators which transform differ-
entiable functions of one real ariable into solutions of equation (9). 

reference 8 Coburn has indicated. the extension of the Chaplygin-
Krin.n—Tsien method to the case of supersonic flows. The stream functions 
of such flows satisfy equation (9). Coburn Indicated one characteristic 
property of these flows. On the other hand, the general properties and 
the form of flows (in the physical plane) which are of interest for the 
purpose of the present approach have not been investigated in Coburn's 
paper.
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Operator Obtained by the Use of Riemann's Function 

One method of generating stream functions of supersonic flows from 
expression (13) is by the use of BielnarinTs function. 

As Indicated in the preceding sectin, the stream function 4r(A,e) 
satisfies equation (9).' If, instead of A and e, the variables 
and i defined in expression (13). are introduced, azil, instead of c, 
the "reduced stream function"

F	 (1+r	 -1• 

LJ	
N1(T) dTj	 (14) 

a 

(where a is an arbitrary constant) is considered, then a formal coinpu-
tation shows that r* satisfies the equation 

+ F( + ri )** = 0	 (i) 

where

F1 =	 N12	
dN1 

- -	
-

- k + 1 F5(k + 1) 

-

12k 
+

6k - 14 

+ d(2A) 64 L	 B6 B2

+ (4k + 8) - (3k - 1)B21	 (16) 

where

B2=1v12—1	 (17) 

Remark.— Obviously it is allowed to take for the lower limit a 
of the integral in equation (i4) an arbitrary point, since replacing a 
by a*, a* a, means only that	 is multiplied by a constant, 

EPa* 

namely exp jj	 N1(T) dTj. The most natural choice is to take for a 

Lila	 J 
the same value as in the subsonic case. (See formula (111) of reference 1.) 

As is explained in more detail in appendix C, it is possible to 
extend the variable A to the complex values 2 = X + IA. Thn in the 
subsonic case the variable 2 assumes values on the negative real 
axis X and on the positive imaginary axis A in the supersonic case. 
The integration can be then taken from T = -. Since N(0) = co , the 
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integration must be performed along a path which avoids 2 = 0, for 
example, along the real axis from - to X 1, ?i< 0; then along a 

circle with radius	 and center at 2 = 0; and finally along a 

segment of the positive imaginary axis from T = iX1 J to T = IA. 

	

Let R(	 ; 0 , r 0 ) be the Riemann's function of equation (15). 

(See, e.g., pp . 311-317 of reference 9.) Then, according to a classical 
result (p. 316, formula (7') of reference 9), 

=	
(,T1;0,10) 

'ill 

+ I *y(,Y ) R( 0 ,Y; 0 , 0) dY 

(ill0 

(1 
1

	

*x(X, ll 	 R (X ,ll0 ; 0 ,r(0) dx	 (18) 

0 

where	 =	 and so forth. 

Since for r*( 0 , i10 ) can be chosen an arbitrarily prescribed 

constant A and for **( 0,Y) and **(X,flo) can be chosen two arbi-

trary continuous functions h(X) and. g(Y)- (Provided that h(0) = 

the formula

= R ( , ll0,ll0) + I	
ii(Y)R( 0 ,Y; 0 ,ri0 ) dY 

tJ'ri 

+ I	 g(X)R(X,ll;, Tl0 ) dX	 (19) 

(Jo 

represents an Integral operator which transforms two arbitrary continuous 
functions of a real variable into a solution of equation (i).



(,T) 

18
	

NACA TN No. 1875 

1	 o' x 

The rectangle within which the values of	 are determined by 
prescribing its values along the line segments: Y = 
and .X = 

As is well known, the Riemann function of equation (15) can be 
written in the form

Co = >1 (-1)" E(r)(,i1;0,i0)	 (20) 

n=0 

where

= 1 

= 

Jfl11 

I F1 (X + Y) dX Y 

oJo 

Ill-I 

=	
F1(X + Y)R(1)(x Y;	 i) d.X dY 

JllfD 

J

'1 
F1(x + Y)R(1)(X Y;	 i) X 

ri0

(21) 

(See reference 10.)
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Except for the fact that F1(0) = , which causes certain complica-
tions, the evaluation of the foregoing integrals does not represent any 
essential difficulty. The tabulation of R = R(, 0 , i 0) is rather 
complicated since R is a function of four variables. 

In appendix A the second term 	 of the expansion (equation (20)) 

is computed and tabulated. 

Remark.— In reference 1, formula (119)7, the expression for a funda-
mental solution of equation (121) has been derived. The coefficient a 
of the logarithmic term is given by equation (123). It has exactly the 
same structure as the expression for R(,ii;0,0), except for the fact 

that the arguments of a are complex quantities, whereas 

are real. In reference 11, Kraft has elaborated a working procedure for 
the evaluation of a which can be used for actual computation of R. 
It becomes in this case simpler since the arguments are real. 

Integral Operator of rpe Given by Formula (11) 

In analogy to the subsonic case, where formula (11) yields a repre-
sentation for solutions of equation (10) in terms of an arbitrary analytic 
function of one complex variable, tIere is derived in this section a 
representation distinct from the one' explained in the preceding section 
for solutions of equation (9) (the equation for the stream function in 
the supersonic case) in terms of two arbitrary differentiable functions 
of a real variable. 

• Obviously, instead of equation (9), equation (15) for the reduced 
stream function	 may be considered. The desired representation can 
be obtained as a 'consequence of the following theorem. 

Theorem8.— Let E ('( T) denote functions defined by the' following 
recurrence relations:

E(l)(T) 
= 

fT 
F1( T1 ) dT1	 ' 

E(n+1)(T) = I T [E()TT(Tl) + Fl(Tl)E(Tl)] dT l}

	

(22) 

7Note that in equation (119) an'line 10 of page 1i6 of reference 1, 
by a misprint, a capital . A instead of a, 'lower case, is used. 

8This theorem has been indicated in reference 3; see chapters Ii. 
and 7 of this reference. See also reference 12.



20
	

NACA TN No. 1875 

Here F1 (T) is a given function, the derivatives of which satisfy the 

inequalities

d"F1(T) <
	 (n + 1)!M	 n = 0,1,2,3, . . .	 (23) n+2' n dT 

where €(>0), M = M(€), and T0 are conveniently chosen constants. 

Then the series

vc) = f() +	 E(n)( + )f(fl))	 () 
n=1 

and

= g() +
	

E(")( + )g(n)()	 (25) 

n=1 

where f and g are two arbitrary differentiable functions of a real 
variable and

f[fl+l]() = j f[fl]() d1

(26) 

	

g[n+1l() = j g[]	 d11 

will converge in the intersection of the domains 

- <lj and r_1 <	 < 11	 () 
IT—	 T)	 I	 T-
L	 0	 L	 0	 —n ] 

and will represent there solutions of the equation 

H(41*) 	 *	 + F1( + n)*	 0	 (28)
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The proof of this theorem is given in appendix B. As has been shown in 
reference 13 (see equation (5)), F is given by equation (16), 

where M, B, and 2t are connected by relations (5) and. (17). Thus 
the question of the representation of solutions of equation (15) is 
reduced to the investigation of the behavior of the fi.mction F 1 (T), in 

particular to determining whether its derivatives satisfy the inequali-
ties (23). This investigation has been carried out in appendix C. If 
in the A,O-plane the origin is shifted, thus introducing instead of 2A 
the new variable

2A' =a_(_i)	 (29) 

and the variables are denoted by ' and r' as follows, 

= (Y + e) 1
(30) 

ii' = (' - e) J 

then equation (15) is transformed into an equation of the same form 

+ F2(' +•	 = 0	 (31) 

where F2(T), T =	 + ', satisfies the inequalities (23), for 

F 2 [2A +	 - i)] = F1 (2A is an analytic function of A which is 

regular in the strip

-<X<,	 O<A<(h-l)	 (32) 

and therefore in particular in the circle of radius T - E 

- i) - ,	 > 0. (See fig. 2.) If M = M(€) denotes the


maximum of F1 (2A) in this circle, then by classical results of the 

•theory of functions of a complex variable, F2 satisfies the inequali-

ties (23), where 2A' is substituted for T • Since E can be chosen 
arbitrarily small, the series (equations (24) and (25)) formed for equa-
tion (31) converge in the domain indicated in figure 3. 

On the other hand, in many instances it is necessary to have repre-
sentations (equations (24) and (25)) of the solutions which are valid in 
the whole strip,

O<2A<2_l)	 ()
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One possibility of obtaining such formulas consists in approxi-

mating F2(2A') by a sequence of functions F 2 (m)(2A t ) , each of which 

is an entire function of A arid, therefore (by a classical result of the 
theory of analytic functions of a complex variable) satisfies the 
inequalities (23) and. which is chosen in such a manner that 

urn F2 (m)(2A? ) = F2 (2A')	 (34) 

in the interval

	

O<2A<2(—l)ir	 (35) 

(Concerning another method of representing	 k = 1,2, see (27), (25) 


in the domain (3), and reference 2, section 5.) Let *(")(t,1t) denote 
the solutions of the equation 

	

+ p2(m)t i t)*(m) = 0,	 m = 1,2, . . .	 (36) 

where

(o) < 

such that	 *(rn)(t , 0)	 * (? , o) ani	 *(n1)(O,t)	 **(oT) 
o) <	 < (0)•	 is shown In appendix E, 

lim	 * (rn)( , .)	 *(T,t)	 () 
rn--

in the Interval	 - 

(0)	 (0)	 (0)	 (0)-

	

-	 <	 ,	 -	 < ' <	 (38) 

A sequence of functions F2(m)(2At) can be obtained in the following 

manner. Let

F2(2A') =	 + 1A' + a2At2 + . . .	 (39)
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be the series development of F2 around the point 2At = 0 

(i.e., 2A= ( - i)n'). The series	 obviously converges in 

the circle indicated in figure 2. The series 

F2(m)(2At) =

	

	
Am	 (40) 

r(i + n/rn) 
n=0 

will be, for every finite positive number rn, an entire function of At 
and therefore the series (equations (24) and (25)) obtained for equa-

tion (36) with F2(m) given by equation (40) will converge, for 

any m < , in the strip (33). On the other hand, according to a 
classical theorem of the theory of functions (see reference i4), the 
relation (equation (34)) holds in this case, so that for the functions 

obtained in the foregoing manner the relation (equation (37)) 
holds in the whole interval (38). 

Naturally it is'a1so possible to approximate F 2(2A T ) by using 
different procedures. Some of them are convenient for some special 
purposes, in particular if a problem requires the representation of 
solutions in certain subdomains of the strip (33). 

STJTvIIVIkRY REMAcS 

The present paper employs the hodograph method for generating flow 
patterns of supersonic flows. The essential feature of this method is 
that the equations are linear and therefore the principle of superposition 
of solutions holds. If, therefore, r (A, O ), V = 1,2,3, . • ., repre4-

sents a set of particular solutions of equation (7'), and A, arbitrary 

constants, any linear combination 

N
A I	 I 

L_ J•VwVIl, 

V =1 

is also a solution of equation (7). By varying the constants Av, 

v 1,2, . . ., flows around different shapes can be obtained.I On the 
other hand, it is often necessary to determine constants Av to yield 
a flow which approximates that about a prescribed boundary curve, the
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equation of which is, say, F(x,y) = 0. In this case, the constants Av 

can be determined in such a manner that 

M(A)	
j1 k[x(A,8;Av),y(A,e;Av)112 

under the condition

= 0 

Here x = x(A,e; Av) and y = y(A, e ; Av) represent functions of A and 8 

defined in the IWPRODUCTION and corresponding to the stream function 

= >_ Ar(A,O) in the A,&—plane. 

As is well known, a solution of the problem does not always exist. 
Under the assumption that 'V(A,e), V = 1,2, . . ., represents a system 
which is in a certain sense complete, M(A) represents a measure for 
closeness of approximation. In this case the fact that M(A) approaches 
zero when the number N of functions ir(x,y) increases can be con-
sidered as a condition for the.existence of a solution. 

On the other hand, in many instances, only solutions of the problem 
exist which possess shock lines, and therefore not only the usual condi-
tion that one of the streamlines coincides with the given boundary .ist 
be considered but also the condition that these shock conditions are 
satisfied along unknown characteristics. 

frown University 
Providence, P.1., November 18, 1946
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APPEI1DIX A 

EVALUATION AND TABULA.TION OF TUE FUNCTION 


R(1) (, ii;	 i) 

	

The secondterin	 in the series for the Piemann 

function is evaluated in this section. 

	

F1 is a function of the variable A = 	 and. therefore 

	

F1(x + ) dX = r'( ±	 -	 + 

pr	 nil 
I dY	 F(X + Y) dX = I [r ( '	 + y )	 + Y)] dY 

Jr10	 h0	 (JT10 

	

= r(2)( +	 - r ()	 +	
- (2)(	

+ 

+ rC20 +
	 (1) 

where

p t 

	

J	
F1(T) dT = r ( ' ) (t1 ) - r ( - ) (t 0 )	 (42) 

Jt0 

and

r1T dT = r( 2) ( t1) - f(2)(t)	 (43)
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The fact that F(0) is infinite causes a certain amount of inconvenience 

in the tabulation of the functions r (1) and. (2)• According to equa-
tion (16), for k = 1.1i, 

____ 0.63 0.21 
F1(B) = 

05 +	

- ____ - 

0.51 - 0.12B2 

where

A=2 6arctan--2arctanB	 (11.5) 

and B2 is given by equation (17), M being the 1vch number. 

In table I the values of M, B, and. F1 have been tabulated; in 

figure 4, F1 is given as a function of M, B, and 2A. For 

2A= 0.3686 the function F1 vanishes, that is, F 1 [B(0.3686)] = 0; 

this point has been chosen as the initial point for the integration, 
since, as has been pointed out earlier, for the most natural choice 
2A = 0, F.1 becomes infinite. 

The values of r(1)(2A) and r( 2)(2I) for	 (0.3686) =

r( 2) (o . 3686) = 0 are given in table II. The interv1 of tabulation 

of 2A is one four—hundredth. In order to obtain p(2)(2A) for inter-
mediate values, the interpolation formula 

r( 2)(2A) = r( 2 )(2i) + pD1 + p2D2	 (46) 

can be used, where

1 r( 2)(2A) = r( 2 )(2A0 + ph) = r(2)(2A0) + ph + p (p - l)h2 

= r( 2 )(aA0 ) + pD1 + p2D2	 (4) 

The quantity h is the interval of tabulation at 2A0,
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APPENDIX B 

PROOF OF TOREM GIVTEIN BY EQUATIONS (22) TO (28) 

The proof is carried out at first under the assumption that the 

series9 (ivations (24) and (25)) as well as those for their first 
derivatives converge uniformly. (The validity of this assumption is 
proved in this appendix.) A formal computation yields 

03 

=	 (l)	 f[n][E(n)	 + E(1)]	 (48) 

n=l 

F1V( 1 ) = fF1 +

	

f[1F1E()	 (49) 

that Is,

03 

+ F1V( 1 ) = f[E (J- ) ,11 + F1] + :ii f[][E(r),TI, 

n=l 

+	 + F1E (n)]	 (50) 

where F1 is a function of one variable T = 2A'. 

Assuiming that the E(n1) functions are also functions of one 
variable T,

=

(51) 

= E()
TT 

which yields the foregoing relations, if the assumption is made that 

= 0	 (52) 

9 1n this appendix	 are replaced by A',t,'q'.
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It remains therefore to prove that the series aM both its formal 
(i.e., term-by—term) derivatives converge uniformly. 

Notation.— If in the interval I there hold. for the functions A(T) 
and. A(T) ansi afl their derivatives the Inequalities: 

I A(T )I 
<(T) arid. I d"A(T)	 d'(T) TEl	 (53) 

d.Tn 

(T) will be dented. as a dominant of ACT), which fact is syntholized 
by writing A << A or

A>>A, Tel
	

(54) 

If	 (1)(T) is given by

fl'r 

= I.	 i() dT1	 (55) 
Uo 

where

>>
	

(6) 

then

=	

F(T1) dT1	 dT ^(')(+), Tel	 (57) 

and also

dnE(l)(T) 1 < d"E()(T)
TEl	 (8) 

dT	 I 
Thus

E(1(T).<<(1)(T),TeI	 (59)
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Suppose now that 

(iT 

	

= 
J [(n)	

(T) + i(T1))(Tl)] dT 1 + (n)(T)	 (60) T 1T 1 1 
a 

where

E(")(T) << () T,	 0 << () (T), TI	 (6i) 

Then it follows innnediately that 

	

IE 1) (T)I <(n+l)(T)	 1
(62) 

dT	 -	 dT 

and, by conBiderin the correspon1ing derivatives of 	 + 

in comparison with [E() TT + F1E (n)], it follows that 

E( 1 )( T ) <<(n+1)(T), TEl	 (63) 

which completes the proof by IMuction. 

Now by expression (23), 

F1 (-r) <<1(T) = (T

0 - E	 T)2	
Tel	 (6) 

If	 (")(T) is given by

(n) =	 T	

(65) 
(T0 - E - a11
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where the Cs are some conveniently chosen positive constants (to be 

determined, later), then an explicit expression may be obtained for 
namely,

(n)(T) 
=	 CMT02	

(66) 
"T —E—T

) 

In order to express C ,1 in terms of C, the right—hand, side of 

equation (66) ie substituted into equatIon (60) to give

2 fl T 
r ( + 1) + CMt02l	 Cn+lMTo2	 C^1MT0 

=C MT 2
	 ____________	 _________ ____________ 

T —E	

IdT^	 = 

a	 o	
- T) '2J	 (T0—E_a)'' (To - E - T)12

(67)  

where

	

(	 M'r\
(68)  

	

\	 n+1/ 

Thus for sufficiently large values of n 

	

0n+l C(n + 1)	 (69) 

and therefore for every value of M 

Cn+l ^ M3 (n + 1)!	 (70) 

where W is a conveniently chosen constant. The function f() is 
assumed. to be differentiable and. therefore there exists a constant, 
say, N2, such that

	

I()I <N2 for k'P	 (71) 

Then

If[nl(t)I	
?n

for	 'J <	 (72) a!
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Consequently, from equation (2 1i-) it is seen that 

JtI2!	 k'I'(n + 1)! 1+	 . .	 +. .	 I	 () 

	

v1(',') <<2M*02M[ (T0-E-T)
	 n(T0-E-T)	

] 

which converges if

	

______________ -	 A' 
—1<	

=	 +0	
<	 (71k) 

(T0 -E-T)	 (-r0--€.-2A') 

Since € can be chosen arbitrarily small, the series (equation (2!.)) 
converges in the domain

—1 < A' +	 <1	 (75) 

(see fig. 3), where the domain (75) is bounded. by solid lines. 
Similarly, the series (equation (25)) converges in the domain 

T0 - 
2A <1
	

(76) 

which Is bouMed by a dashed line so that both series (equations (21) 
and (25)) converge in the shaded. domain.
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APPENDIX C 

INVESTIGATION OF THE FUNCTION F1(2A) 

This section is devoted to the investigation of the behavior of 

the function F1(2A) in order to determine where its derivatives satisfy 

the inequalities (61i.). 

If M varies from 1 to , B = (M2 -	 varies from 0 to 
and

	

A = arc ten (hB) - arc tan B	 (5) 

from 0 to ( - i). Therefore it is necessary to investigate the 

behavior of F1 (2A) on the interval 

I=E[O^2A^Q_l)ir]	 () 

Since F1 (given by equatIon (16)) is a rational function of B, It is 

sufficient to investigate the function B(2X). 

In order to carry out this Investigation it is convenient to continue 
the functions to complex values, so that It will be possible to use 
methods of the theory of analytic functions of a complex variable. 

Instead of equation (5), the complex function 

/	 l—	 1	 h'+(3 i() =X+IA=1log	 ,+-1og	 1	 (78) \	 l+(3 h	 h' (3' 

of the complex variable (3 = T + iB will be considered	 = T, O T < i). 

When f3 is real It is seen that, if the principal values of the 
logarithmic terms are chosen, then 1 is also'real and the foregoing 
equation reduces to: 

32
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( 1—T i. ____ = - log	 + - log	 ), A = 0	 ('j9) 
l+T h	 h--TJ 

in a'eement with the earlier definition of ?. On the other hand, if 

= IB, B> 0 

B is purely imaginary; then, if the principal values of the logarithai.c 
terms are taken once again, there results: 

	

X = 0,	 IA = i[_ arc tan B -	 arc tan (hB)]	 (80) 

which is also in a'eeinent with the previous definition. The question 
which has to be investigated is to determine the domain.of regularity 
of 13(l), inverse to equation (rt7) 

A classical theorem concerning the inversion of analytic functions 
states that, if w(z) Is a function of the complex variable z which 
is regular at z = z0 and has a nonzero derivative there, then, in some 

sufficiently small neighborhood of the point w = w0 .= w(z0), it is 

possible to invert the function w(z), that is, to express z as a 
regular function of w. (See reference 15, p._142.) At every point 
except )3 ±1 and J3 = ±h, the function 1 (13 ) is regular, so that 
the zero points of the derivative dl/dJ3 have to be determined. 

A formal computation yields 

	

dl l[	 i	 i	 1	 +	 1 
h h1+13 h1-13JJ 

(l_h2) 

(l—)(l—h)	
(81) 

Obviously,

for j =o and.	 =C0	 (82) 

The discussion would become 9,uite complicated if all,,the possible 
branches of the function 1(13) and. of the inverse 13(l) were to be 
considered, because each suinmand of equation (81) Is an infinitely
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many-valued function of f3, having logarithmic singularities at ±1 

and ±h, respectively. It is therefore conenient to renxier i) 
single-valued by the artifice of starting at f3 = 0 with the principal 

values of log(l - ), log(l + ), 1og(h- +	 end log(h1 - 
(i.e., with the real values of the logarithms) and. slitting the complex 
-plane from 1 to oo and. from -1 to -00 along the real axis. 
Since h 1- > 1, it is clear that the slit plane contains no branch 
points and therefore 1 is uniquely defined by beginning with the 
aforementioned determination of i(o). 

Now, a direct investigation shows that the 3-plane, slit in the 
manner just described, is mapped into the band 

-00 <X <00, (h-1 -	 <A <(h-1 - l)
	

(83) 

However, the mapping is not bi-unique, for at the branch point 	 = 0 
the mapping is easily seen to be 3 to 1. (See appendix D.) Thus, the 
simply covered slit J-plane is mapped into the simply covered band just 
defined. The only singularities of (i) in the strip 

-co <X< co,	 0A^ (h-1),t	 (81 

are the,,points 2 = 0 where (i) has a branch point ani1 2 = (h- - l)iti 
where	 (i) has a pole.
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APPEI1DD D


TEE DEVELOPNEISIT OF	 i) AT E ORIGIN 1 = 0 

The sliriplest method of proving that 1 = 0 is a branch point of '(2) 
of third order is to determine the series development of this function 
at 1 0. In order to obtain this development, the principal branch 
of i(), namely, 

1 r	 (1	 ^ log 
(h—i +	

= i[_ arc tan (i/i) ^ arc tan (h/i] (85) h 

has to be developed in a power series to give 

i	 (i-2) —(1—h)	
7	 6)	

•	 (86) --(1—h 
3	 5	 7 

or

- 3	 233(1—h)5	 3(1—h6 )7	 . . .
	 (87) 

1—h2	 S(l_h2)	 7(l_h2) 

Introducing a new variable s, 

1 - h2	 1 - h 1)1/3

	
(88) 

3	 1, thatis, s=(— 3 

yields the development

s=c1 +c3' +c5 5 +. . .	 (89) 

Since c1, as is easily seen, is not zero, it follows from the 

general theory of' analytic functions that this series can be inverted: 

d1s + d2s 3 + d3s 5 + . . .	 (90)
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In particular, for h = 

c1 = 1, c3 = 0.2333, . . .	 = 1, d.3 = —0.2333 • •	 o 
(91) 

10The values of c and. dn, n = 1, 3, . . ., 25 have been corn-
puted. by the author aM will be published.elsewhere.
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APPENDIX E 

APPROXIMATIONS OF SOLUTIONS 

In the present report, solutions of equation (i) have been approxi-
mated. at several places by solutions of an equation in which the coeffi-
dent F1 is replaced by another coefficient whichapproxinates it. The 

legitiiiiacy of such a procedure is established by the following theorem. 

Theorem.— Let 4r( (	 k = 1,2, be solutions of the e4uations 

(k) + f(k)(k)_ 0	 (92) 

where the f(k)?5 are given functions of	 and	 which satisfy 
throughout the rectangle 0 ^ ^a, 0 ^r lb the inequalities 

If' _f(2) 
^ E and If	 (93) 

€ and in being positive constants. The functions	 are also to

satisfy the conditions:

	

=
	

for O^.a	 (911.) 

and

	

= (2)(o,) =	 for Oli1.b	 (95) 

where X1 and. X2 are continuous functions prescribed on the closed 

intervals (O,a) and. (O,b), respectively, subject only to the condi-
tion tliat x1 (o) = x2(o). Let a. be a positive number such that 
X1 ^ a., X2 ^ a.. Then there exists a positive number M, depending 

only on €, a., in, and. ab (the area of the given rectangle) such that 
for fixed values of a., in, and. ab, M approaches a finite (positive) 
liin.it as € approaches zero, arid such that, throughout the given rectangle, 
the following inequality holds:

- *(2)() f€M	 (96)
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and it Is clear how a similar reduction can be effected In all the 
succeeding terms, so that no sums appear in any of the integrands. 

Now, if each term in the series on the right—hand. side is replaced 
by its absolute value, an upper bound is obtained for the absolute value 
of the left—hand side of equation (100); and. this inequality continues 

to hold if the functions p, , 	 f(2) are replaced by their respeo-




tive upper bounds 3a., E, and. in. (The upper bound. for p follows 
directly from equation (98) and. the definition of .) Therefore, from 
equation (100) there is obtained the insquality: 

(i) - (2) k 3+3+ 2Em) + 3+3+36m )__3 ___________	 Ti ^	 . (102) 
(2!) 2	 (3!)2 

It is not difficult to see that the nth term of the right—hand side 
of equation (102) is simply: 

3a. [(E + 
)n	 -j n n

(103) 
(n!)2 

The inequality (102 .) holds a fortiori if	 and i are replaced 
by their respective upper bounds a and. •b. Thus, there is finally 
obtained for all points in the given rectangle, the inequality 

[ (l)	 ,(2) <	 3a Ce + m)"—m"Il(ab)' (104)

 n=l	 (n!)2 

This series is easily shown, by elementary tests, to converge. Further-
more, it is clear that the quantity e can be factored out of the 

expression [(e ^ in)" - m"j, so that the series may be written as the 
product of e by a new series, which is again easily shown to converge 
for all values of e. Designating this new series by M, the conclusion 
of the theorem is obtained. 

In less precise language than that used in the formulation of the 

theorem, the result obtained may be expressed by saying that, if the 
coefficients	 (k) of the two differential equations (equation (92)) 
approximate each other very closely in a certain region and. if the 
respective solutions satisfy the same side conditions (equations (94) 
and (95)), then the solutions approximate each other very closely 
throughout the given region.
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In particular it follows from this theorem that, if the sequence of 
coefficients of the given hyperbolic equation converges uniformly, the 
corresponding sequence of solutions also converges uniformly to the 
solution of the limiting equation.
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TABLE I.- F1 AS A FUNCTION OF M, B, A]D 2A 

M. B 2A F1 

1.00 0.0000 0.0000 
1.04 .2857 .0120 
1.08 .4079 .0338 
1.12 .5044 .0606 
1.16 .5879 .0910 15.0172 

1.20 .6633 .1242 7.4967 
1.24 .7332 .1595 4.1109 
1.28 .7990 .1964 2.3598 
1.32 .8616 .2346 1.3609 
1.36 .9217 .2738 .7475 

1.40 .9798 .3137 .3483 
1.44 1.0361 .3542 .0758 
1.48 1.0911 .3950 -.1179 
1.52 1.1447 .4362 -.2606 
1.56 1.1973 .4774 -.3692 

1.60 1.2490 .5187 -.4544 
1.64 1.2998 .5600 -.5231 
1.68 1.3500 .6012 -.5799 
1.72 1.3994 .6422 -.6281 
1.76 1.14483 .6829 -.6699 

1.80 1.4967 .7234 -.7070 
1.814. 1.5445 .7637 -.7405 
1.88 1.5920 .8035 -.7713 
1.92 1.6390 .8430 -.8000 
1.96 1.6857 .8821 -.8273 

2.00 1.7321 .9208 -.8533
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14.5 

TABLE II.- 	 MiD r (2) AS FUNCTIONS OF 2A, M, MiD B 

2A M B F1 ç(1) r(2) 

0.00 1.0000 0 - - 

• Oli. 1.0899 .11.334 84.078 -2.611.49 -0.1211 

.08 1.1460 .5597 19.833 -.9974 -.0561 

.12 1.1951 .651i.4 8.111i.6 -.4859 -.0279 

.16 1.2406 .7341 4.0787 -.2537 -.0136 

.20 1.2838 .8051 2.2408 -.1315 -.006i 

.24 1.3255 .8701 1.2579 -.0634 -.0024 

.28 1.3663 .9310 .6737 -.0257 -.0007 

.32 1.4063 .9887 .2989 -.0067 -.0001 

.36 1.4457 1.0441 .01441 -.0002 .0000 

.40 1.4848 1.0976 -.1375 -.0022 -.0000 

.45 1.53311 1.1625 -.3003 -.0134 -.0004 

.50 1.5819 1.2257 -.4182 -.0315 -.0015 

. 1.6303 1.2876 -.5077 -.0548 -.0036 

.60 1.6'1'89 1.3486 . -.784 -.082o -.0070 

.65 1.7277 1.11089 -.6365 -.11211. -.0119 

.70 1.7768 1.4687 -.6860 -.i45 -.0183. 

.75 1.8264 1.5283 -.7294 -.1809 -.0265 

.80 1.8765 1.5878 -.7686 -.21811. . -.0364 

.85 1.9271 1.6474 -.8050 -.2577 -.0483 

.90 1.97811. 1.7071 -.8394 -.2988 -.0622
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Figure 3.- The domain of convergence of the series (equations (24)

and (25)).
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Figure 4.- F 1 as a function of M, B, and 2A.
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