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STUDY OF UNSTEADY FLCM DISTURBANCES OF LARGE MID SMALL

AMPLITUDES MOVING THROUGH SUPERSONIC OP SUBSONIC 

STEADY FLO'1S 

By Robert V. Hess 

A study of unsteady flow d.isturbances of large and. small amplitudes 
moving through supersonic or subsonic steady flows is presented in three 
parts. 

In part I a point—by—point method is developed for the calculation 
of unsteady flows through tubes with variable cross section under the 
assumption of constant flow velocity at a given cross section. The 
paper extends the work done previously by giving a detailed treatment 
of the interaction of strong shocks and large temperature contact 
discontinuities and by presenting the shock calculations and the calcu-
lations of flows with initial entropy gradients in a form convenient 
for computation by use of computing machines. Under certain asèumptions 
the formulas established may also be used for the calculation of flows 
with continuous heat addition over a large space. 

In part II calculations are made of the flow pattern created by 
the bursting into a vacuum of a diaphragm at the minimum section of a 
supersonic nozzle without a second throat. The transition time from 
the starting of the flow to the attainment of approximately steady 
flow conditions is sufficiently short to permit the use of very—short-
duration tests. The transition time for the specific nozzle is 
presented in such a form that a "similarity rule" can be estbl1shed 
concerning the transition time for nozzles of different size hut of the 
same or affine shape. 

In part III integral relationships invariant with respect to time 
are developed which describe as a whole the behavior of unsteady flow 
disturbances of large and small amplitudes. The invariant integrals 
are the conservation laws for the mass, energy, potential, and pulse 
area. For the special case of disturbances of small amplitude and 
small length traveling through tubes with small cross—sectional 
gradient (short diturbances), growth and reflection of mass, 
energy, and pulse area of a dis€urbance traveling through a steady 
flow in variable cross section can be separated. and presented as a 
function of the steady—flow ch number. The calculations show the 
interesting result that the conditions for zero reflection of mass,
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enery, and. pulse area exist at a steady—flow Naph number 

=	 1 (which equals 	 fdr air), where 7 is the ratio of 

specific heats, rather than at M0 = 1; they also show that for practi-
cal purposes for the ran€e of Mach number from 1 to 5 (for air) the 
reflections are small enough so that the mass, enery, and. pulse 
area of the original disturbance may be considered constant. At 
low subsonic and at high supersonic Mach numbers, however, the 
reflections may not be neglected. 

INTRODUCTION 

The study of unsteady—flow problems has recently achieved new 
significance in aeronautics, partly because of the possibilities of 
using unsteady—flow phenomena for the improvement of the performance 
of high—speed internal—flow systems and wind tunnels and partly because 
of the greater understanding of the basic nature of flow phenomena 
such a study has to offer. 

A few of the unsteady—flow problems that are useful to the 
aeronautical engineer are indicated. The study of the stability of 
shocks In diffusers involves a whole series of problems. One such 
problem is concerned with the stability of a normal shock with respect 
to disturbances moving upstream; such disturbances may be produced, 
for example, by the fluctuations in a burner of a jet airplane or by 
other types of fluctuations occurring in the operation of a jet airplane 
or of a wind tunnel. Still another type of stability problem deals with 
the two possible equilibrium positions of a shock In front or Inside of 
a diffuser; the possible "jumping" of .the shock from one equilibrium 
position to the other in steady—flow termino1oy is actually an unsteady—
flow phenomenon. 

Aside from these stability problems a series of problems involving 
flow dlscontinuities other than shock waves are of Interest. One type 
of discontinuity is the temperature contact discontinuity created by 
the sudden pressure increase in a fluid such as occurs, for example, by 
bursting a diaphragm, detonation, or the crossing of two unequally strong 
shocks. Other types of discontinuitles are the flame front moving through 
a combustible gas or the condensation front produced In a wind tunnel. 
Aside from the problems of discontinuous heat addition, there also ecist 
problems of continuous heat addition over a large space (for example, 
those due to combustion), Nati?rally, both cases, the discontinuous flame 
front and the continuous heat addition over a large space, are only 
idealized models of the combustion process (though often very useful). 
Finally, for stability problems and related problems the study of small 
or infinitesimal disturbances moving through the su,bsonic or supersonic 
portion of a wind tunnel or through the Internal—flow system of a jet 
airplane is of importance.
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The present paper is presented in three parts. Part I may be 
considered a manual in the procedure for the construction of unsteady—
flow patterns involving strong shocks and large temperature contact 
discontinuities under the assumption of constant flow velocity at a 
given cross section (one—dimensional flow). The flow variables are 
given in simple expressions in a form convenient for computation by use 
of computing machines. The emphasis in part I is on the method of 
performing the calculations, rather than on the elucidation of all their 
physical and mathematical meanings. The method is an extension of the 
methods developed in references 1 to li. 

In part II an example is calculated for the motion of a disturbance 
of large amplitude through a tube with variable cross section. The 
large—amplitude disturbance is produced by the bursting into a vacuum 
of a diaphragm at the minimum section of a supersonic nozzle without a 
second throat. ThO unsteady—flow pattern thus created Is calculated up 
to the time that conditions very close to steady flow are approached in 
the nozzle (the actual approach Is asymptotic). The transition time 
from the starting of the flow to the attainment of approximately steady—
flow conditions for the specific nozzle is presented in such a form that 
a "similarity rule" can be established concerning the transition time 
for nozzles of different size but, of the same or affine shape. 

In part III integral relationships are developed to describe as a 
whole the behavior of unsteady flow disturbances of large and small 
amplitudes traveling in steady subsonic or supersonic flows through ' tubes 
with variable cross section 0 The development of such relationships is 
possible, in spite of the fact that, because of the ' inclined walls, a 
very complicated pattern of deformations, reflections, and re—reflections 
may occur within the disturbance, since integrals over the whole distur -
bance exist which are independent of time. First, one such integral 
relation is derived that represents the conservation of the velocity 
potential of an isentropic disturbance. Since the expression for the 
potential contains the first power of the velocity, it is obvionsly 
related to the momentum, which, in contrast to the tube with constant 
cross section, is not conserved because of unknown pressures at the 
inclined walls. The other two conservation laws for mass and energy 
can be used directly. The value of such invariant Integrals is doubtful 
as long as the original disturbance, its reflections, and re—reflections. 
still belong to the IntegraM. Therefore, as a first step for the sepa-
rating of the original disturbances and their reflections, the concept of 
pulse area is introduced. The reason for the usefulness of the pulse 
areas Is that they have as amplitudes certain linear combinations of 
the flow variables, that is, the parameters of the families of character-
istics, which are associated with disturbances traveling, with the speed 
of sound to the right and to the left relative to the fluid. The final 
step in separating the original disturbance and is reflection is 
achieved by restricting the length àndth&arnplitude of the original 
disturbance and the inclination of the tube walls to snii'tl 1 values 
(short disturbance). The Investigations in part III are an
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extension and an elucidation of the studies made in references 5 and 6. 
In reference 5, the concept of pulse area for short disturbances is 
introduced without relating it to the potential and the momentum of 
disturbances of large and small amplitudes. The calculations are 
restricted to a short disturbance moving upstream in a subsonic diffuser 
in the proximity of a steady—flow Mach number of 1.0, and the result is 
obtained that, although the shape of the original pulse degenerates, 
its area is constant within the accuracy of the approximation used in 
reference 5. When the disappearing inclination of the walls is 
considered, this result can be misinterpreted to signify that the area 
of the short original pulse has a constant value near the minimum cross 
section of the nozzle. In part III, however, the area of the original 
pulse is shown to have finite and unique values as a function of the 
steady—flow Mach numbers with a finite derivative of the Mach number 
function at the Mach number of 1.0. Reference 6 presents the laws for 
the conservation of mass and energy (but not of the potential and the 
pulse area) for disturbances of large and small amplitudes in terms 
of the parameters of the characteristic families but is not extended 
to the case of short disturbances. The present analysis has the 
advantage of offering a clearer idea of the principal effects occurring 
in the motion of small disturbances. 

SYMBOLS 

a	 velocity of sound 

t	 time 

T	 temperature 

y	 distance along tube axis; in example of part II y is 
referred to 

F	 cross—sectional area of tube; in example of part II 
F is referred to min 

M	 Mach number 

v	 flow velocity 

speed of shock wave relative to flow 

u	 absolute speed of shock wave 

velocity increment through shock 

S	 entropy 

p	 pressure
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U	 total pressure recovery ratio 

p	 density 

stream function 

0 -	 potential 

ratio of specific heats 

parameters of characteristic families; used. as 
quantities for nleasuring amplitudes of 
disturbances of large and. small amplitudes 
moving in steady flow or in gas at rest. 	 Also 

p	 Q I used. as mere labels for distinction between 
two groups of characteristic disturbances. 
The expressions "disturbance" and. "pulse" are used. 
interchangeably in present paper. 

dP, dQ amplitudes of growth and reflection of email-
amplitude disturbances 

in, n slopes 

D constant 

d diameter

Subscripts: 

0	 reference conditions 

1	 condition ahead of shock 

2	 condition behind shock 

o	 steady—flow values 

A,B,C	 at points A,B,C 

I.— A 1€TIIOD OF CALCULATING. UNSTEADY FL(MS COWTAINING STRONG SHOCKS 

AND LPRGE TEMERATUPE DISCONTThUITIES IN TUBES OF 

VARIPLBLE CROSS SECTION 

GENERAL CONSIDERATIONS 

A point—by—point method is developed for the calculation of unsteady 
flow disturbances of large amplitudes moving through tubes with variable 
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cross section under the assumption of constant flow velocity at a given 
cross section. The method used in this part is based on themethod of 
characteristics for steady rotational supersonic three-dimensional flows 
with axial symmetry developed in reference 1 and modified in refer-
ences 2 and 3. The steady-flow method was applied to unsteady flow 
through tubes with variable cross section in reference 4. 

The present paper extends the work reported in reference 4 by 
giving a detailed treatment of the interaction of strong shocks and 
large temperature contact discontinuities and. by presenting the shock 
calculations in a form convenient for computation by use of computing 
machines. In the course, of the analysis, expressions are also given 
for the effect of the entropy gradient behind a shock created by the 
varying energy losses in the motion of the shock with varying speed 
on disturbances traveling through this entropy gradient. 

In the literature, problems of. discontinuous heat addition in a 
flame front and. problems of continuous heat addition over a large space 
have also been treated. The problem of discontinuous heat addition 
in the flame front (or condensation front) which has a nature similar 
to other discontinuity problems as, for example, the motion of a 
temperature discontinuity discussed in case C of part I has been 
treated, for example, in references 7 and 8. The problem of continuous 
heat addition over a large space has been treated in reference 9. The 
calculations in the present paper may be easily modified to include the 
caEe of continuous heat addition over a large space by treating the 
effects of heat addition and. the compressibility effects separately. 
Since the energy equation (see, for example, equation (3)of reference 9) 
indicates that the effects of heat addition are independent of the 
compressibility effects for the case of small amounts of heat added 
at constant volume, the continuous heat addition over a large space 
may be substituted by the distribution in space of small amounts of 
heat added suddenly (at constant volume). During the time intervals 
between these sudden heat additions, the entropy along the time 
histories of the fluid particles is assumed furthermore to be constant. 
The scheme of sudden heat additions also permits a simple inclusion 
of further additions like those of fuel mass., 

A few remarks seem pertinent at this point concerning the 
applicability to practical cases of the two previously mentioned 
combustion models, that of discontinuous heat addition In a flame 
front and. that of continuous heat addition over a large space. The 
first model applies to problems of combustion for which one or several 
separate flame fronts exist or w1ere the length of the burner is small 
enough relative to the entire length of the internal flow s rstem to 
permit the continuous heat addition being averaged by a single flame 
front without essentially changing the unsteady-flow pattern as a 
whole. The . choice of proper combustion model or. models for the 
analysis of the cycle of a pulse jet or of the Instabilities of a 
steady-flow ram jet depends on the merits of the individual case.



NACA TN No. 1878	 7 

The method of calculation given in part I is mainly based on the 
presentation 'in the form of difference equations of the variation in 
convenient linear combinations of the flow variables along the time 
history of disturbances traveling with the speed of sound relative to 
the fluid (compression and expansion waves). In mathematics, the time 
histories of the disturbances which do not exceed the order of magnitude 
of discontinuitles in the velocity gradient across the time histories 
are called the families of characteristics.,. The characteristics have 
furthermore the significance that they also exist when no disturbances 
are moving along them. The characteristics represent thus, In effect, 
the "characteristics" of the flow structure. The families of charac-
teristics are hereinafter called for brevity the "time histories of the 
disturbances" in contrast to "the time history of the shock" (or strong 
shock) for which the discontinuity occurs in the velocity itself. The 
linear combinations of the flow variables are called "the parameters of 
the characteristics ." They are used as quantities for measuring amplitudes 
of disturbances of large and small amplitudes moving In steady flow or in 
a gas at rest. They represent also mere labels for distinction between 
the two groups of characteristic disturbances. The labels of the charac-
teristic disturbances refer to two different reference systems, one for 
the subsonic case and one for the supersonic case. The reason for the 
difference in reference systems for the characteristic parameters In the 
subsonic and supersonic cases lies in the following: For the subsonic 
case (v <a) the fluid velocity may change between down—tube or up—tube 
direction; whereas for the suDersonic case (v > a) the fluid velocity 
may have only one direction. (The down—tube and. up—tube directions or 
positive and. negative y—dlrections may be arbitrarily designated in the 
upstream or downstream directions.) Thus, for the subsonic case the 
proper reference system for the distinction between the two groups of 
characteristic disturbances is one at rest with respect to the tube; 
whereas for the Bupersonic case the proper reference system is one 
moving with the fluid velocity v. In most literature on the subject 
of unsteady flow these parameters are represented, with the use of 
different signs, by the pair of symbols X and p., P and Q, or r 
and s. In part I the symbols X and p. are used in agreement with 
reference li. . As well as being identified, with the motion of a small 
disturbance, the characteristic parameters have the significance that 
they remain constant along the time histories of the disturbances frr 
Isentropic flow through áonstant cross section. For the general case of 
unsteady flow through variable cross'section with entropy gradientand. with 
or without gradual heat addition, the time histories of the disturbances 
moving relative to the fluid (compression and expansion waves) are not the 
only characteristic families of the flow. Since the entropy is integrable 
or constant along the time histories of the fluid particles, these time 
histories form a third family of characteristics. 

4ETEODS OF CALCULATIONS 

General Remarks 

• Unsteady—flow problems through a tube deal with the variation of 
the flow variables (for exinp1e ., the velocity of flow v and the velocity 
of sound a) along the length of the tube with time. In order that the 
unsteady—flow phenomena 'nay be determined as a function of time, the
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flow conditions along the tube must be known for a given time (initial 
conditions). In addition, the changes in flow boundaries, including 
flow changes at ends of the tube (boundary conditions), must also be 
known as a function of time. In most problems considered, the cross 
section does not vary with time and, thus, the boundary conditions 
apply only to the ends of the tube. 

The calculations are applied to the problem of one-dimensional 
unsteady flows through tubes of variable cross section. The assumption 
of one-dimensional flow is made on the basis that the rate of change 
of cross-sectional area with respect to distance is small and that the 
flow velocity at a given cross section can be assumed constant. The 
tube cross section is assumed not to vary with time. As in previously 
developed methods, the effects of friction and heat transfer have been 
neglected. (The physical nature of these effects does not permit 
treatment with the theories dealing with wave propagation.) 

By application of the method of characteristics to the three basic 
flow .equations, the equations of the characteristic families and of the 
variation of the most significant combination of the flow variables 
along them are established. For the case under consideration, the 
characteristic families consist of the two families of the possible 
time histories of the disturbances propagated with the speed of sound 
relative to the fluid and the single family of time histories of 
convective variations in entropy transported with the velocity of the 
fluid particles. Since the purpose of the calculations is partly to 
determine the equations of the time histories of the disturbances and 
the convective entropy variations, naturally these equations cannot 
be given in advance. The slopes of the unknown time histories, at any 
point of the flow field, are the velocities of the disturbances and of 
the convective variations in entropy (or of the fluid particles). The 
particle velocity at a given time t expressed in the convenient 
y,aOt coordinate system is given by

(1) 
a0 dt a0 

The velocity of a downstream--moving disturbance at a given time t is 
given by

(2) 
aOjt	 a 

The velocity of an upstream-moving disturbance at a given time t is 
given by

1 dyv-a 
aodt	 a0	

3 

The variation of the most significant combination of flow variables 
along the three families of characteristics is given next. For the 
single family of time histories of convective variations in entropy, 
the entropy itself is naturally the significant combination of the flow 
variables. For the families of the time histories of the disturbances 

roi 
L']
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traveling relative to the fluid, the most significant combination of the 
flow variables is represented by the parameters ). and t, where

(1) 

and

2	 (5) 

	

y—l(a0	 ) a0 

The method of calculation Is developed and. applied to the following 
three cases: 

Case A - Unsteady flow with an entropy adIent in a tube of 
variable cross section 

Case B - Unsteady flow containing a strong shock through a tube 
of variable cross section 

Case C - Unsteady flow containing a strong shock and a large 
entropy or temperature contact discontinuity through a tube of varIable 
cross section

General Formulas 

Guderley (reference Ii. ) resolves the problems of unsteady flow into 
one of Inte'ation of a system of three partial-differential equations 
by means of the method of characteristics. The three equations are: 
the equation of motion

Py	 y	 t. 

the continuity equation

^d1oF0 

and the energy equation

V	 +	 = 0 
y	 t
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Since Guderley only calculates the cases f Or which an entropy gradient 
exists behind a shock due to varying energy lossee in the shock, the. 
energy equation states that the entropy is constant during the time 
history of a fluid particle. 

By application of the method of characteristics to the three basic 
flow equations, the variation of the parameters X and .t along the 
time histories of disturbances moving in an entropy gradient produced 
behind a shock because of varying ener- losses in the shock is obtained 
as (see references li. and 10)

d.logF	 a ds 
a0 dt	 a0 a0 dy	 +	 (6a) 

-	 v d log F a de 
a0 dt	 a0 a0	 +	 (6b) 

or In terms of the stream function 	 and. the totalpressure 
recovery II

2y 

-	 d. log F 1 a	 F dli	 (7a) a0 dt - a0 a0 dy	 - 

and

- -	 v d log F 11 a y--1 dli 
a0 t	 a0a0 dy	 F—	 (7b) 

From equations (6) and (7), the parameters X and . i can be seen 
to have the added significance that they remain constant along the time 
histories of disturbances for isentropic flow through tubes with constant 
cross section. (See also reference , 8.) The physical significance of 
this constancy is that If one óhoosee the characteristic parameters 
as the amplitudes of the disturbances, the amplitudes of disturbances 
moving downstream and upstream through tubes with constant cross section 
do not interfere with each other.
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The stream. function f is defined at each point C of the 
diaam of y against a0t by the line integral 

*= 

fC() 

PC 

=	 (F..adY_F..aVd	 (8) 

Jo

p0	 p0	 j 

Equations (6) and. (7) dtt'fer by the factor F0 from the 
corresponding equations of reference 4. This difference Is due to 
the fact that Gud.erley uses for the stream function the dimension of 
a length as Is frequently done for the calculation of steady supersonic 
flaws. For the present calculations, using a volume as the dimension of 
the stream function seemed more convenient; the factor F 0 was thus 
eliminated. The parameters II and V are both constant along the time 
history of a particle between the shocks. The parameter II for the 
total presure recovery of the shock is given by 

2 

ii = (a 7—]. p 
p1 

The quantity p/p0 appearing in the expression for 4r (equation (8)) 
is consequently related to II by 

	

p =	
7-1 

(as)	 ('0) 

For the purpose of setting up the computational equations, the 

quantities	 v + a v - a,	 ..L a. log F and 	 F a() ' a0 a0 ' a0	 a0 a0 &y '	 7a0j	 d'1 
may be expressed In terms of the parameters X and .i as follows: 

v ___ 
j=	 2	 .	 (11)
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(12) 

(13) 

va a =_1_ 7l + 37 X	 (14) 

(15) 
a v dlogF	 [l+71(x+M)j 2 

dy

7-1 
_____	 dli	 (16) 

7(aO)	 - L 

+	 1(X + )]	 F 

In order to calculate the flow field, equations (7 a ) and (7b) are 
evaluated in difference form; this evaluation permits the construction 
of the unsteady flow field by means of a point—by—point method in the 
following manner: 

The flow variables v/a 0 and. a/a0 are imown for two locations 

in the tube A	 B at two known times aQtA and aOtB (Bee
fig. 1). From this information, the flow variables are calculated at 
a third location in the tube Yc at a corresponding time aot. The 

location y0 , the corresponding time a0t, and the values of the flow 

variables at C are determined by the intersection of the time—history 
curves of the waves through A arid B and the knowledge of the variation 
of the flow variables along these time—history curves. Since the 
curvature of the time histories, however, depends on the variation of 
the flow variablesalong them, an iteration process was used in 
references 4 and 10 for the simultaneous determination of 	 a0t,
and. the flow variables vC/aO and aC/aQ. 

In reference 4 the known time—history curves of disturbances 
traveling through constant, cross section were used as a first approxi-
mation. (The curvature is due to interference of the two families of 
time histories of disturbances.) Since, however, the curvature of 
time histories of the waves traveling through a tube of variable cross 

12 

and
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section is still unknown, the use of the curvature for constant cross 
section as a first approximation introduces unnecessary complications. 

The method of the present study is based on the substitution of 
the very slightly curved time histories through the points A and B 
by the tangents at these points as a first approximation. In this 
first approximation, the point C obtained by the intersection of 
the tangents is used for the calculation of the flow variables. Within 
the order of accuracy of the calculations, the point C obtained by 
intersection of the tangents is Identical with the point obtained by 
the intersection of the time—history curves in the first approximation 
of reference Ii.. The second approximation consists in using the 
arithmetic mean between aA/aO and ac/a0, vA/ao and vC/ao, aB/ao 
and aC/aO, and vB/aO and VC/aO for determining new time histories 
between A and C' and. B and. C', respectively. The values aC'/aQ 

and vC'/aO for the second approximation are found. by integrating along 

the newly found time-4iistory curves. 

It should be emphasized at this point that the use of a second 
approximation does not imply the use of very large steps in the 
construction of the net of time histories, since, for the success of 
the second. iteration, terms of the second order must be small. If 
small steps are used Initially, however, the use of a second. approximation 
may be unimportant by engineering standards. Also, for the use of more 
elaborate computing machines such as the Bell Telephone labora-
tories X._66741i. relay computer in use at the Langley Laboratory, the 
first approximation used with many very small steps may prove more 
advantageous. 

In developing the present method, the possibility of directly 
obtaining more exact values at C was also considered. These values 
could be obtained by intersecting lines AC and. BC (fig. 1) given 
by the average directions between A and C and B and C, 
respectively. Furthermore, the average conditions between the flow 
variables at A and C and. B and C, respectively, could also 
be taken into account. The use of average conditions, however, 
results in cubic or quartic equations for the unknowns instead of the 
linear equations. The solution of these higher—order equations would 
itself requirean iteration process. 

Case A - Unsteady Flow with Entropy Gradient in a 

Tube with Variable Cross Section 

The purpose of the following calculations Is to determine the 
effect of unsteady flow disturbances produced isentropically by 
compression or expansion on the'change of the flow variables with 
time as the disturbance travels In a tube with variable cross section
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through the entropy 'adient behind a shock. With the aid of assumptions 
stated in the section entitled. "General Considerations," the expressions 
lend themselves also to the calculation of problems of continuous heat 
addition over a large space. The calculations are presented conveniently 
in the following manner (see fig. 1): 

o points in a tube with given variation of cross section F = f'(y) 

A VA . aA 
A(aOtA A' FA, ã'	 ,	 ' A' *A) 

B(aot

B VB a 
B' YB, FB,	 ,	 ,	 , 

are given. The point

F dF
0 vC 

C' Iy' a0' a0 '	 C' 

is to be determined. 

The intersection of the tangents to the time—history curves 
through points A and B results in

e—d 
aOC 

= 2 - 

and

YC=laOtC^d 

where the constants in terms of X and .i (equations (4) and (5)) are 

2 = (v + a\ 
\ao 'A 

= 1 +	 - _____
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k = (v - 

ao 'B 

7+1	 3-7 =.••l_	
4	

p+	
4 

d = —laOtA + 

e = —kaOtB + 

The quantity y determines C and dFC/dyC since the shape of the 
tube is given. The next step is to express equations (7a) and. (7 b ) in 
difference form. Based on the first approxinmation of tangency, XC 
and	 are given in the foflcwing forni: 

1 VA aA/1 dFA	 dF\ XC =

27 

1fA\	 Fc + FA IIC - 
-	 2	 - A 

atCA	 (17) 

1 VB aB I1 &FB 1 dFC 

27 

+ C)7' Fc + F'B n c - "B 
2	 - B 

atCB	 (18) 

The flow variables vc/ao and. ac/a0 are determined, from X and ic 
by means of equations (4) and (5).
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All quantities on the right—hand side of equations (17) and. (18)
are now known, except fl	 which may be obtained by assuming a 

linear variation of the values of II and. li from A to B. Since II 
and ' are constant along the time—history curve of a particle, and. 
because the time—history curve of the particle is here substituted for 
the tangent, the condition of linear variation of II and i along AB 
yields

T1B-IIC*B—,C 

- C - 

c1 
C2 

The fact that II aiid 'V are subtracted in the numerator is 

necessitated by the physical condition that the velocities of particles 
flowing through . BC have to be of the same sign as the velocities of 
the particles flowing through CA. Since the tangent to the time—history 
curve of the particle bisects the angle formed by the tangents to the time—
history curves of the disturbances at C, the ratio c 1/c2 is equivalent 
to the ratio b/a. (See fig. 1.) The quantities "C and. 'C are 
then given by th following formulas: 

II +IIb 
C	 a+b 

'iTBa + 
a+b 

where

I	 2	 2 a = V(aotC - aOtA) + (Y - YA) 

b = \f(a0t - aOtB)	 (YC -
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Finally, a brief note is made concerning the scheme of sudden heat 
additions (at constant volume) distributed over a large space. The 
sudden additions of heat are made at the intersections of the net of 
time histories of the disturbances. During the time intervals between 
these sudden heat additions, the entropy of the fluid along the time 
histories of the fluid particles is assumed furthermore to be constant. 
As is shown in figure 1, the time interval between the sudden additions 
of heat is the time it takes a particle to move along its time history 
from the connecting line of the two former net points to bhe new point. 
The variations of X and t along the time histories of the downstream 
and upstream moving disturbances are calculated by the use of 
equations (6a) and (6b) in difference form. 

Case B - Unsteady Flow Containing a Strong Shock through 

a Tube with Variable Cross Section 

The purpose of the calculations in this section is to determine the 
effect of a strong shock on the change of the flow variables with time 
as the shock travels in a tube with variable cross section through a 
steady isentropic flow or through a gas at rest. The more complicated 
case of a shock crossing an unsteady isentropic flow is not developed 
herein. A method very similar to that used for the "interweaving" into 
the flow of a temperature contact discontinuity (see case C) can, 
however, be used in that case. 

The expressions for the flow variables are developed for the case 
of a shock moving upstream through a steady isentropic flow in a tube 
with variable cross section. The presentation of the flow problem is 
given in figure 2. A steady flow is assumed to exist in the direction 
of the negative y—axis and. a shock ia assumed to be produced traveling 
in the direction of the postive y—xis (through decreasing cross section). 
The production of a shock of given strength is identical with the 
condition that the following values are known: 	 A/aA1, ivA/aA1, 

and aA2 /aA1 . These values in turn are used to determine the absolute 

speed of the shock uA/aO and the conditions behind the shock v/aO 

and aA2/aO by the following fundamental relationships: 

	

a0 a0	 a0 

where vA1/ao is negative and tA/aO is positive 

VA2 VA1 + VA 
a0	 a0	 a0
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where AvA/aO is positive, and, finally, 

aA2 - a aA1 
a,-	 aA a 

'-I 

The quantities LuA/aO and LvAiao are	 obtained by multiplying	 A/aAl 
and L\VA/aA1, respectively, by aA1/ao. 

In order to find the changes in the behavior of the shock as it 
travels in the positive y—direction, a tangent to the time—history 
curve at B is drawn and. brought to an intersection with uA/ao at 
point C. The position of the point B in the diagram of y 
against a0t is known, as well as the flow variables vB/ao and aB/ao 
at B. The point B may, generally, be assumed to lie on the tiin&-
history curve of a disturbance of previous construction. In this 
particular case, which presents the initial calculations for the shock 
movement in a diffuser, the point B is assumed to lie on the time—
history curve of the particle vA2/aO. 

The calculations of the flow variables at the point C are based 
on the knowledge of their variation during the time history AC of the 
shock and the time history BC of the disturbance. The variation of 
the flow variables during the time history BC of the disturbance is 
given by equation (17) since the small disturbance Is moving down tube, 
the flow is subsonic, and. the parameter X is chosen to be associated 
with the down—tube direction. The variation of the flow variables 
during the time history of the shock is developed as foflows: 

Two points

A VA1 VA2 ap1 ap UA 
A (a0tA yA, FA, 3'	 '	 '	 ' A' A) 

and

B(aot
B' y , FB,	 '	 '	 '	 B' B) 

dFB VB a 

are given. The point

dFC VC VC aC a0 uC 
C (aOtC	 FC	 '	 '	 ' ' flC C)
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is to be deterin.ined. In the present method, the location of point C In 
the at,y plane is given by

aOtC = = 

and.

= ba0t + d 

where

U 
b

a0 

= (v + a 

\ ao 'B 

= 1 + ± 1 XB - 3 

e = —baQtA + YA 

and

f = —d.a0t + 

The location of point C, given by	 determines Fc	 d1c/dyc 
from the shape of the tube; furthermore, if y 0 is known, the quanti-
ties v01/a0 and aC1 /aO are determined since a given steady flow 

exists In the tube. Only the d.eterxn.in.ation of v02 1 a0 , aC2/aO, 

and. uc/ao thus remains.



20
	

NACA TN No. 1878 

In order to relate the values of the flow variables at A and C, 
a relation is set up between the shock parameters tw/ai and a2/al; 
the relation is obtained with the aid of the shock equations (refer -
ence ii). Thus,

tv	 2 fu af\ 
-7 +
	

(19) 

and

____	 • (20) al	 ( + )2 L() 

A plot of a2/a1 against Av/a1 is given for air (' = 1)1) in 

figure 3 and. more extensive values are presented in table I. 

For the determination of the change of the flow variables along 
the time—history curve of the shock, the variation of the shock 
parameters zv/a1 and a/a1 (where ta =	 - a) is assumed. to be 

linear. Thus,

taC	 A - (CwC AVA\
(21) 

Since

'-A	
ap 

----1 a 1 - ap1 

and

taCaC2 
ac1 ac1 - 

equation (21) may be written as

(22) 
aC	 aA	 \aC	 aA)
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The change of the flow variables during the time history of the shock 
may be conveniently expressed in the form 

ac2	 VC2 
= mp	 + Constant 

This expression is obtained by multiplying equation (22) by aCl/aO. The 

following equation results:

aC2

	

	
(23) = mA a0 

where

v1	 1/	 ap 
= m - + —ImA - - - a	 a0 \ a 1 ap1 

For the special case of a shock moving through variable cross section 
/	 VA	 VC 

with air at rest in front of it (aA1 = ac1 = a0 ansi	 =	 = 

equation (23) becomes

ac2	 vC
(24) 

where

vp2 ap 
R1 A" 

The linearization In the shock equations is equivalent to substituting 
for the curve in figure 3 a tangent with the direction m for a point 
with the coordinates tw/a1 anxi. a2 /a1. For the purpose of determining 

accurate values for in, an analytic expression for in which was 
developed from equations (19) and (20) is given in appendix A. 

A plot of in against Lv/a1 for air (y =1.4) is presented In 
figure 4 with more extensive values given in table II. The error
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involved in the linearization can be seen from table II to be small for 
small steps. The lower limit of m is identical with the value of m 
obtained from the laws for isentropic disturbances 

= 7 - 1 y + a1	 2 a1 

____ -7
2 

for air (7 = i.li)

\ ai
= 0.2 

d1' 

whereas the upper limit is reached aeymtotically as Lw/a 1 approaches 

infinity. The upper limit given in reference U is	 (0.52915 for 

air). This upper limit, however, is reached asymtotically only for a few 
practical cases, since 7 may vary greatly across the shock. 

The variation of the flow variables during the time history BC of 
the disturbance can be expressed in terms of the same two unknowns vC/aO 

and a02 /aO . From equation (17) and equation ( 1k ) , the following expression 

is obtained: 

2	 02^02	 2 aBVB	 B 1 
7 - 1 a0	 a0	 7 - 1 a0 a0	 2 a0 a0	 a + 

2y 

1 FB+FC B1IC11B 
7	 2	 - B 

atCB (25)
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Finally, c -'	 have to be expressed. in terms of known 

quantities. For the purpose of expressing 	 — B is Jr1tten 
in the form	 - A + (*A	 frB) In accordance with equation (8) 

1IfC *	
FA + F PA1 + PC1 (	 VA1 + vC1 O

AtAC)	 (26) - A=	 2	 2p0	 AC	 2a0	
a 

azid. *A	 *B are Imown from previous calculations. For the specie]. 
case of a shock moving into a gas at rest 

= FA +
4AC 2 

The only value which still must be expressed. in teris of known 
quantities is 11c. If a linear relation is assumed, therefore, 
between 11A Slid a/aA1, and 11c and ac2 / ac1, then 

hIC=T )+IIA	 (27) 

where n is the slope of the curve II = f(a2/al) for a/aA1 

and 11Am The derivation of the formula for the slope n is given 
in appendixB. A plot of II = f(a2/ai) is given in figure 5 aM the 

values are given in table I. A plot of the slope	 = n is d. ( a2 /al) 
given in figure 6, and the variation of n with a2/al for a shock 
is given more completely in table III.
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and

a0	 mAaO	 'A 

Case C - Unsteady Flow Containing a Strong Shock and a Large 

Entropy or Temperature Contact Discontinuity 

through a Tube with Variable Cross Section 

The purpose of the calculations is to determine the interaction of 
a strong shock and a large entropy contact discontinuity or temperature 
contact discontinuity as they travel through a tube with variable cross 
section. Such temperature contact diacontinuitles are, for example, 
produced by bursting of a diaphragm in a tube. The bursting causes 
a shock and "centered" expansion disturbances, due to instantaneous 
expansion, to travel in the tube. The strength of the shock and the 
extent of the expansion are determined by the condition that equal 
pressures and velocities establish themselves in the flow between 
the shock and the expansion. A temperature contact discontinuity 
occurs because the expansion lowers the temperature; whereas the shock 
raises the temperature and, thus, causes two flow fields of different 
temperatures to be in contact. In figure 7 the results of bursting a 
diaphragm are presented in a diaam of y against ant. 

In the calculations presented for case A, relations had to be 
established for the variation of the flow variables along the time—
history curves of the disturbances moving upstream and downstream. In the 
calculation of the temperature discontinuity, the variation of the flow 
variables along the time history of the discontinuity must also be 
known. For this purpose the condition that the entropy is constant 
during the time history of a fluid particle must be considered. 

As a result of this condition, the ratio of the sound velocltiQs 
on both sides (1 and l; see fig. 7) of the temperature contact 
discontinuity is constant along the time—history curve. The variation 
of the flow variables along the time—history curve of the temperature 
contact discontinuity is, thus, given by: 

25 

ao - ao	 (29)
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and

a1'/a0 = D
	 (30)al/ao 

where D is a constant. The ratio al?/ao	 dete	 by the shockal/ao 
strength and. the extent of the centered expansion disturbances. The 
relations may also be conveniently expressed in terms of X and. ji 
(equations	 ) and (5)):

-	 -	 (3') 

1 +	 ;;: 1(X1' + iit) 
D=	 (32) 

1 +	 + 1) 

The flow variables along the time—history curve of the temperature 
contact discontinuity can now be calculated. (See fig. 8 in which the 
shock and the centered expansion waves at t = 0 are shown by dashed 
lines.) The following points are Imown from previous construction: 

11 •'Ir Point 1 (a0ti , y1 , F1, d.y
1 a0' a0 '	 1' 1) is situated somewhere 

along the time history of the temperature discontinuity (also indicated. 

in fig. 7). Point 2 (a0t2, y F	 2) is situated either 2' 2' dy2' a0'	
' rI2, 

on the shock (see fig. 8) or along a disturbance traveling in the direction 
d.F7 v7 a7 

of the positive y—axis. Points 7 (aQt7 y7, F7,	 ••, -, 117, .4(7) 

d.F9 V9 89 
and. 9 (aOt9 y9 , F9, -, , , 119 , *9) are situated on the time—

history curve of a disturbance traveling in the direction of the negative 

y—is. Points 4 (aOt4 y4, F4, dy' 
80' a0' 

d.F	 v 
and 5 (aOtS y5 , F7 ,	 ,	 , 

time—history curve of the temp 
The values of a0t, y, and F 

point 5.

, fl, *5) lying on either side of the 

erature discontinuity, are to be calculated. 
for point 4 are identical to those of
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The first operation in the calculation is concerned with the inter-. 
section of the tangent of the time-history curve of the disturbance at 
point 2 (traveling In the negative y-dIrection) with the tangent of the 
time-history curve of the temperature, discontinuity at point 1. The 
Intersection results in

at11. = 

= pa0ti + r 

where

= xl - 

2 

(v-a\ _1_7+lP2+3:7x2 
2	 4 

r = pa0t + 

and

S = -qa0t2 + 

The values of a0t4 and y4 are identical with the values of a0t5 

and y7 , respectively. 

Use is then made of the fact that the tangent to the time-history 
curve of a disturbance moving in the direction of the positive y-axis must 
satisfy the following conditions:

dY 
The quantities a0t3, y3 , F3 , -a, X3 , and p3 must assume values 

dy3 

such that the tangent to the time-history curve of the disturbance in the
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positive y-direction at point 3 will pass through the previously determined. 
point 5; thus,

(v+a\ =1 
ao )3 	 + 4	 3	 4	

113 

- y5—y3 

- 'a0t5 - a0t3
	

(33) 

Equation (33) contains four unlcnowns. Three additional equations for the 
quantities a0t3 , y3, X3 , and 113 are obtained by assuimin linear 

relationships between the quantities y, X, 11, arid. a0t at the 

points 7, 9, and 3. Thus,

= ma0t3 + b 

ka0t3 + d	 (34) 

113=2aOt3+e 

where

y9 - y7 
= a0t9 - a0t7 

k--
a0t9 a0t7 

2- 
P9117 

- a0t9 - a0t7 

b = -nia0t7 + 

d = -ka0t7 + 

and

e = -1a0t7 + 1.17
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Substituting the values for	 X3, and. L3 froni equations (34) into 
equation (33) yields the following expression for a0t3 

-E ± ju2 - a0t3= 

where

G=3	 -7k 
4	 4 

7+1	 7^1	 3	 ___ = -1 +	 ka0t5 -	 d. -	 2a0t5 +	 e + m 

and.

K = a0t5 +	 1 a
0t5d -y7 + b -	 at5e 

The quantities X4, P4, X 5 , and	 can now be obtained with the aid of 
the relations for the changes of the flow variables along the time history 
of the waves 3,5,	 and. the temperature contact discontinuity 1,4. 

The variations of the flow variables along the time-history curves 
of the downstream and upstream waves are given by equations (17) aM (18). 
Equations (31) and. (32), that is, the variation along the time-history 
curve of the temperature contact discontinuity, are written more 
conveniently as

P5	 - 114 

1 + - l(x 
+ P5). = D[l + 7	

+ 114)]	 -
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The following equations are thus obtained for the two remaining unknowns: 

_____	 D - l( 4 

	

_D^1 x5_D +1 y_ 1 ^4)	 (35a) 

D-1( 1i 	 ___ t5	
2 y—1	 2	

L4	 (35b) 

The quantity 117 18 on the expansion side of the temperature contact 
discontinuity and, hence, is equal to one; in this case 	 = 0. The 

quantity 114 Is constant during the time history of the temperature 

contact discontinuity (particle) and, hence, has the value corresponding 
to the shock which was initially produced by the bursting of the diaphragm; 
in this case -1(4 = 0. 

II..— STUDY OF THE FLG PRODUCHD BY TEE BURSTING INTO A 

VACUUM OF A DIAPHRAGM AT THE MINIMUM CROSS

SECTION OF A SUPERSONIC NOZZLE 

GENERAL CONS IDERATIONS 

As an introduction to the case of the bursting of a diaphragm in 
a nozzle, that Is, a tube with variable cross section, the nature of 
the simpler problem of bursting a diaphragm in a tube with constant 
cross section is briefly discussed. A thorough account of this problem is 
given in reference 12; a statement is also made therein that seems a 
good. introduction to the problem of bursting: 

On first thought, one might be led to believe that at the instance 
of bursting the diaphragm the total pressure jump across the diaphragm 
would be propagated toward the low-pressure side as shock wave. However, 
this is not possible, for then the entire air mass on the high-pressure 
side of the diaphragm would have to be suddenly accelerated to the speed 
of the mass of air behind the shock. 

The gradual acceleration of the mass of air on the high—pressure 
side Is accomplished by the fact that the total—pressure jump across 
the diaphragm produces not only a shock traveling into the low—pressure 
side but also a sudden expansion spreading gradually into the high .-
pressure side.
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In setting up the calculations for the present investigation of a 
nozzle for high supersonic Ivch numbers, an infinite pressure ratio 
across the diaphragm was chosen. This ía equivalent to having a vacuum 
on the low-pressure side of the diaphragm. Furthermore, the assumption 
was made that the high-pressure tank is sufficiently large to keep the 
pressure constant in it. The choice of a vacuum appears to be of 
considerable advantage since conditions for the existence of a shock are 
not fulfilled for that case, and thus, only the effect of the spreading 
of an isentropic sudden expansion of large amplitude into a tube with 
variable cross section must be calculated. 

Figure 9 gives a presentation in the plot of y (distance along the 
•tube) against a0t of the sudden expansion into a vacuum for a tube with 

constant cross section. The plot of y against at Is a modification 
of the length-against--time diagram which Is convenient because it 
presents the velocities of the disturbances and the fluid elements in non-
dimensional form. The lines radiating from the coordinate origin 

(v - a lines) in figure 9 and the curved line, substituting for a group 

lines, (Vat a lines) represent the two groups of 

Istics. Since Ini 'tially the sudden expansion has the nature of a flow 
through constant cross section, only the radiating characteristics are 
carriers of disturbances. The group of curved parallel characteristics 
are not carriers of disturbances; however, they are necessary for the 
analysis of the flow structure. Since this problem is one of unsteady 
flow through constant cross section, one of the parameters X arid 
of the characteristic families has to be constant. In this particular 
case X will be constant since it is the down-tube characteristic which 
cuts across the infinity of radiating characteristics carrying the small 
disturbances which build up the finite-amplitude disturbance. Thus, 
X indicates the variation of the flow variables In the finite-amplitude 
disturbance. If the expansion starts from air at rest and the Increase 
of fluid velocities in the plot of y against a0t is assumed to be 
positive, the slope of the time histories of fluid particles Increases 
as indicated by the v/aO line in figure 9; furthermore, for the case 
of the expansion starting from air at rest X is equal to zero through .-
out the expansion. The flow variables are then related as follows (see 
equation (Ii.)):

2 
7-l\aO	 I ao 

or

a	 7-lv 
2	 (36)
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The speed of the disturbances traveling along the radiating 
characteristics, and therewith the elope of these time histories, 
is given by

v-a 
a0 dt - a0	 (37) 

it may be seen from equations (36) and (37) that the slope of the 
radiating time histories of disturbances varies from -1 to 	

2 1 
(which equals 5 for air); for v = a the slope of the time history is 
zero. (Fig. 9, representing the initial flow conditions, is drawn in 
the scale of 2:5 in agreement with the final steady-flow pattern, 
fig. 13; the final flow pattern had. to be drawn in that scale to avoid 
crowding the characteristic lines.) Aside from giving the limits 
indicated, equations (36) and (37) show that, in the subsonic domain 
of the expansion, the disturbances travel "up-tube" and in the supersonic 
domain they travel "down-tube"; whereas relative to the fluid they always 
travel upstream. The difference in behavior between the subsonic and 
the supersonic domain of the unsteady expansion can also be brought out 
well by observing its variation with time for two cross sections, one 
located at a negative y-value and the other at a positive y-value. At 
the negative y-value (subsonic domain) the expansion will cause a/a0 
(and thus the pressure) to decrease; whereas at the positive y-values 
(supersonic domain) the expansion will cause the pressure to. increase. 

The group of Va a characteristics carries zerp disturbances for the 

case of a single large-amplitude expansion through constant cross 
section. (The same is true for the analogous problem of a single 
expansion - Prandtl-Meyer - for two-dimensional steady supersonic flow.) 
For the case of flow through variable cross section, however, 

the 
•
v± a lines represent time histories of disturbances participating 

in the flow development due to the inclination of tube walls; these 
disturbances are often called reflected disturbances. 

Since It is desirable to anticipate at least some of the results, 
a discussion of the physical nature of the problem precedes-the detailed 
investigation of the calculations for the unsteady flow through variable 
cross section (nozzle). So far in this paper the behavior of the 
disturbance of large amplitude has been discussed from a consideration 
of the microscopic elements; that is, the behavior of small (characteristic) 
disturbances (the elements of a large-amplitude disturbance) moving along 
the characteristic families has been under scrutiny. While the combination 
of these microscopic elements is simple for the case of a large-amplitude 
disturbance traveling through constant cross section and, thus, permits 
the gaining of a thorough understanding of the physical aspects for . this 
case, for the motion through variable cross section not much insight 
can be gained without making the actual calculations. The reason lies
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in the fact that for the case of variable cross section within the large—
amplitude disturbance as it moves past the inclined tube walls, many 
local reflections and re—reflections are created which interfere -with 
each other as they travel along different families of characteristics. 
The determination of the deformation of the large—amplitude disturbance 
consequently requires a point—by—point integration process and an 
iteration procedure. For the case of constant cross section, however, 
the correlation between the microscopic and macroscopic behavior will 
be simple since no reflections are created within the disturbance. 
It is thus necessary to look to viewpoints 'other than the microscopic 
in order to anticipate the results of the calculation. 

A lead on some other physical aspect of the motion of an unsteady 
large disturbance may be easily obtained from consideration of the 
fact that, for the case of bursting a diaphragm in a supersonic nozzle, 
the central problem is concerned with the process of reaching steady 
flow. The problem of balance between unsteady and steady flow energy 
is the basic problem for the motion of large unstea&y disturbances in 
general and. not just for the special case discussed herein. The 
anticipated flow pattern in this special case is thus the steady—flow 
pattern given by Bernoulli's equation for one—dimensional flow. 

In order to find the proper basis for comparison with the pattern 
of characteristics (time histories) of figure 9, representing the 
initial conditions, the final steady flow has also to be interpreted 
from consideration of the time histories of small (characteristic) 
disturbances moving through It in the downstream or in the upstream 
direction with the speeds v + a and v - a, respectively. The non—
dimensional form of these speeds is easily obtained from Bernoulli's 
equation. For ideal gases Bernoulli's equation can be written in the 
form:

= '1 - —_11v0\2 
a	 2 iao)	 (38) 

or

a0	
+ 7 - 1

	 (39) 

2
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M 

a0- ____________ 
+ 7 1 

a0	
^712	

(41) 

_____	 M0^1 
ao	 - F	 (42) 

\Ji 7-1 M 2 + 
2 

For the nozzle shape used in this paper and for air as a medium, 
the time histories of small disturbances, used to correlate the 
steady flow with the unsteady flow conditions, are given in figure 10. 
In figure 10 only three time histories are drawn, two of these are the 
time histories of small disturbances moving upstream with the speed v0 - a0 

in the subsonic and supersonic steady flow. The third is representative of 
the time histories of small disturbances moving, downstream with the 
speed v0 + a0. 

For the anticipation of the results of the calculations it is further 
useful to present the transition from unsteady to steady flow In a plot 
which simply demonstrates the deviations of the flow variables from the 
steady and the unsteady state. Such a plot is one with the coordi-
nates a/a0 and v/a0 (fig. 11). In this plot theaudden unsteady 

expansion into the vacuum for a tube with constant cross section (initial 
condition) is represented by a straight line given by equation (36) 

- 1 - 7 - 1 v 
a0	 2 a0

34 

and 

then 

and

(4o)
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Bernoulli's equation for steady flow is represented by an ellipse with 
the equation

fa0\2 y - 1 
+	 2 () ='.	 (43) 

It is important for the further discussion of transition from unsteady 

to steady flow to determine the liiaiting conditions for t_, Va a, 

and V + a From equation (36) the following values are obtained: a0 

maximum velocity for unsteady flow through constant cross section, 

v = 2 
a	 7-1 

which equals 5 for air, and maximum velocity for steady flow 

vof2 
a - j 7 - 1 

which equals \J for air. Since for the maximum velocity the velocity 
of sound a is zero, the maxiim of the velocity is the same as that 

of V - a and V + a• Further values of importance are those of the a0	 a0 

critical velocities. For unsteady flow through constant cross section, 
the critical velocity is

v= 2 
a	 7+1 

which equals 0.833 for air and for steady flow 

V0 
=	 2 

a0 \Jy^i 
which equals 0.9129 . for air.
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The value of Va; a corresponding to the critical velocity is zero 

in both cases. Thus in the plot of y against a0t the "critical" 

expansion wave coincides with the a0t axis. 

Two useful properties of the presentation of the transition problem 

in the coordinate system of a/ao against v/aO or the related 

system	 against v are now discussed. One of these useful 
properties is that the ch numbers are represented by straight lines 
radiating from the center of the coordinate system. The other useful 
property concerns the geometric presentations of the speed of the waves 

for arbitrary gases as intersects of the - axis. In one presentation 

(fig. 11) the intersects are obtained by subtending from the abscissa v/a0 

of the point A (, ) the length of the ordinate a/a0 in the 

positive direction or in the negative direction depending on whether 

one desires to obtain the values of v + 8 or that of V - a at the a0	 a0 

point A. In the other presentation (fig. 12) the speeds of the waves 
for arbitrary gases are obtained by presenting the steady—flow ellipse 
with the equation

21 + v2 = 2i0	 (I4.) 

where i is the enthalpy, as a circle with the radius 	 in the

coordinate system of JT against v. The intersects along the v—axis 
are made for this presentation by the normals to the character-

istics X = r(_) +	 and t = f(-) - -. The J..atter presentation

was first given by Buseinann (reference 13); it can also be extended 
to the presentation of the speed of shock waves in this coordinate 
system. The exact expressions for X and.	 for arbitrary gases 
are given in reference li. 

The reason for the simple geometrical picture of the speed of the 
waves lies in the foflowing facts: The characteristic theory for 
arbitrary as well as for ideal gases i based on the fact that in the 
vicinity of each point of the flow field, the flow may be linearized 
(reference IA). Furthermore, use is made of the fact that the motion 
of the wave may be expressed in terms of a coordinate system moving 
with the wave. In such a coordinate system, the wave will stand still, 
but the fluid will be moving with a velocity v - a or v + a. Since 
the steady flow is expressed. by a circle in this diagram, the variation of 
the velocity of the locally superposed steady flow is given by the motion 
of the center of the circle along the v—axis.
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METHOD OF CALCULATIONS 

Design of Nozzle 

The shape of the nozzle is given by a simple analytic exDressIon 
that approximates the shape of a conventional wind tunnel designed to 
give a steady-flow 1ch number of 5 In the test section. With the area 
ratio thus given as 25, the length and. the shape of the nozzle still 
had to be determined. The length was determined such as to give the 
shortest nozzle for the given ch number and was calculated to 

be l6 . 5887 lFmi or 16.5887 ^	 The shape of the nozzle was 

given by two analytic expressions. For lack of a more exact criterion, 
the subsonic part was chosen on the basis of the reasonable criterion 
that the maximum gradient of cross section of the nozzle presented as 
a one-dimensional flow should not be larger than the gradient of 
surface area of half a spherical wave traveling Into a gas at rest. 
Thus, if F and. y are made nond.imeneional by referring them 

to Fmi and \f'min' respectively, the variation in cross-sectional 

area Is given by the parabola

F = 2,ty2 + 1 

The supersonic part of the nozzle was chosen to have the variation of 
cross section of a parabola tangent to the cross-sectional area of the 
test section and to the parabola F = 2iry2 + 1 continued to positive 
y-values. The equation thus obtained was 

F = -O.O8843918(y2 - 33. 1778632.2y + 275.192655279) + 25 

The point of tangency of the two parabolas turned out to be 

F = 1.33312388 

and

y = 0.230257055 

The high number of decimal places has its basis in the fact that 
a smooth junction between the two analytic expressions requires 
considerable accuracy. This increased accuracy offers no difficulty
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to the Bell computer since it uses a high number of decimal places 
in all computations.

Flow Calculations 

As previously mentioned in the section "General Considerations," 
the calculations are concerned with the problem of transition from 
the initial purely unsteady flow condition (fig. 9) to the final steady 
flow condition. The initial conditions for the construction of the net 

of characteristics in terms of the quantities v/a0, a/a0, X, i, 

Va a, Va a, and J3 = tan Va• a are given in table nr; their 
magnitudes are obtained from equation (36). In the last columns 

of the table, the values for Va a or tan	 multiplied by the 

scale factor of 2/5 and' the corresponiing angle tan-( tan 

are given. As previously stated, these values had to be used in the 
construction of figure 9 in order to show a basis of comparison with 
the net of characteristics in figure 13. •The calculations were 

started at the V - a time history of the characteristic disturbance a0 

which moves into the gas at rest 	 a =
	 by subtending from 

V + a •characteristics at an interval of O . ly . Starting with a0 

these initial condit ions the flow field was calculated according to 
the step—by—step process given in part I with the aid of the Bell 
computer.

DISCUSSION OF RESULTS OF CALCULATIONS 

The results of the calculations are presented in the plot 
of y against a0t (fig. 13), as well as in the plot of a/a0 

against v/a0 (fig. i). In the plot of y against a 0t (fig. 13) 

ths criterion for the attainment of steady flow is givex by the 

condition that the Va a and v± a lines have to become parallel 

to those showii in figure 10 for steady flow. It can be seen that 
this will be true for a range. of higher values of a 0t. The relative 

position of the tio Va; a ltnes and the v+ a line of figure 10 

has no significance. The proper comparison between figures 10
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and. 13 is obtained by comparing the V 
a lines and. the V '+ a line a0	 a0 

of figure 10 individually with the corresponding lines in figure 13 
by shifting them individually along the a 0t axis • In the diagram 
of a/aO against v/ac) (fig. 14) 'the transition from unsteady to 
steady flow conditions is conveniently expressed by the variation of' 
the flow variables v/a0 and. a/ao at various locations y at 
the nozzle. Steady flow conditions are obtained when the y = Constant 
lines in the diagram of a/as against v/aQ reach the steady-flow 
ellipse' or, in terms of ?.ch number, when the Ivkch numbers along 
the y = Constant lines reach the steady-flow Mach number corresponding 
to the nozzle cross section at y. Since the plot in figure 14 does 
not permit the reading of values with sufficient accuracy, the values 
of v/a0, a/a0, and M for several values of y are given in 

table V. The corresponding values of a 0t are also given in table V 
to Indicate the rate of change of the flow variables. The full 
transition from unsteady to steady flow Ia represented in the subsonic 
range of the plot of a/a0 against v/a0 by y = Constant lines 

starting at the point (.. = i., L = o), since, as maybe seen from 
the plot of y against ant', y = Constant lines first intersect 

the disturbance Va a = -1. In the supersonic range, the y = Constant 

lines will start at the point (1 = 5, & = 0, since the y = Constant \aO	 a0	 / 
lines will first intersect the disturbances v a = V + a =	 For the 

ao	 ao 

purpose of identification of the intersections of the v+ a lines 

and the Va a lines in figure 13, the lines are denoted in the 

oUowing manner: The Va a lines carry numbers ranging from -0.1 

to -2.4; the numbers refer to eheir initial conditions on the 

line v- a = 1. The Va a lines carry angles	 varying from -45° 

to 78°4l'; the angles	 represent the starting angles of these lines 
for the true-scale initial, conditions. (See also table IV,) The 
scarcity of calculated points (see table v) near the maximum values in 
the supersonic region has the following reason: In the region where 

the maximum speed of the fluid	 = 5 is obtained, the maximum speeds 

of the small (characteristic) disturbances v - a = and V + a = 
a0	 a0 

will also be obtained. They are Indicated by the line denoted	 = 78°4l' 
in figure 13. (See also table IV.) Since the method of calculation Is based 

on the intersection of ti.ine histories of V + a	 V - a disturbances, a0	 a0
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the size of the step of the step-by-step process will become excessive in 
the region near the ma.ximum speed unless a very fine net of characteristics 
is used in this region. This fine net will also be necessary if higher 
iterations than those in the present calculations are used. The U88 
of a not-too-fine net (used in the present calculations) will cause 

the V + a lines and the V - a lines to become parallel before the a0	 a0 

physical limit for parallelity (tan 1 5 = 78°IL1') is reached., namely, 

at taif1 2.3558 = 670 . No efforts were made, however, to increase 
the fineness of the net in this region since for the phenomenon to 
be Investigated It was of no particular interest; and in spite of the 
use of the Bell computer, the use of an extremely fine net In every 
part of the flow field would cause the time required for the calculations 
to increase by factors up to 20. (The calculations of one point required 
about 6 minutes.) It should also be mentioned here that only a small 
number of the calculated points are indicated in the diagram of y 
against a0t (fig. 13). 

It appears that the statement concerning the fact that the very-
high-speed region was of no particular Interest could bear a more 
detailed expl.ntion. Comparison of figure 13 with figure 10, the final 
steady-flow picture, shows that moat of the supersonic expansion 
disturbances will take no part in forming the steady-flow picture; 
they will just disappear and.. the steady-flow picture will be formed 
without their help. The question arises now concerning the behavior of 

the reflected V + a disturbances. Figure 13 shows that the reflected a0 

disturbances in the supersonic region move even at a greater speed in 
the same direction (-i-y) as the expansion disturbances. This behavior of 
the expansion disturbances and their reflections is based on the previously 
discussed fact that the waves are produced in a coordinate system moving 
with the speed of the fluid. When the speed of the fluid Is supersonic, 

both the V - a and. the V + a disturbances move downstream and a0	 a0 

the V + a disturbances have greater speed. 
a0 

A closer Investigation of figure 13 and. table V also shows that 
the y = Constant lines do not completely reach the required values 
on the steady-flow ellipse. The reason lies in the following facts: 
The nozzle chosen for the calculations was a ty-pical supersonic nozzle 
designed for parallel flow at the test section. In such nozzles the 
large variations in cross section have to occur near the minimum 
section; thus, large changes in hch number also occur In this region. 

This again means that In the region near the minimum cross section large 

changes in the speod of the Va a and the Va a disturbances also 

occur. In consequence, the Intersections of the v- a 	 Va a lines



NACA TN No. 1878
	

14. 

yield inaccurate results unless very small steps are taken. The fact 
that steps taken too large could have such an effect was first noted 

during the calculations in the results obtained for the Va a time 

histories. The excessively large steps caused the Va a lines beyond 

th3se with' the starting point of y = —1 and aOt = i (
V
 a line 

to become parallel and. even to intersect. As pointed out previously 
in the discussion of figure 10, parallelity of the time histories 
of the disturbances would indicate that stea&y flow had been reached. 
It was found, however, that the reaching of parallelity was premature 
since the values of v/a 0 and a/a0 attaied in this region were 

still far from the steady—flow values for the given nozzle shape. 

A much smaller division of the V a lines was then taken from a0 

this region on until similar inaccuracies were noted again for 

tho V + a disturbance starting at y = —2.4 (v + a line —2.4. Since a0	 \a0 

steady flow conditions corresponding to the shape of the nozzle had 
almost been reached by then,.a further reduction in step size was not 
attempted. In this slightly premature stoppage of the calculations 
the subsonic flow part was especially affected, since as may be seen 

from figure 13 the Va a line —2.3 still cuts through low values 

of a0t especially in the low-subsonic region. Inaccuracies can also 

be noted in the reaching of such higher steady—flow supersonic ch 
numbers as correspond to values of y = 2 and y = 4. This larger 
error is due to a growth of the error introduced by the rapid 
changes in cross section near the minimum section. Since the error 
increased for increasing values of y, the y = Constant lines for 
higher values of y (up to y = 16.5887) were not plotted in figure 14. 
The line N0 = 5 is, however, included in figure 14 (dashed line) in 
order to indicate the range of the final values for the flow through 
the nozzle designed for a steady—flow Mach number of 5. 

For lower values of y (o. and. 1) the error introduced by rapid 
variation of cross section was still small and. the y = Constant lines 
came very close to reaching the required steady—flow Mach numbers. 
(See fig. 14 and. table V.) The gradual approach to the steady—flow 
values (indicated, in table v) is the result not only of th approximate 
nature of the calculations but also of the fact that steady flow 
actually presents an asymptotic condition which it would take an infinite 
time to reach. An important conclusion that can be drawn from the 
calculations is that the main changes in flow variables occur very 
quickly and that the remaining changes in the infinite time. interval 
are very small. The small number of decimal places used in table V
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compared to the high number of decimal places used in table 'TV is 
adequate for the accuracy of the calculations based on the use of 
relatively large steps. Further useful information for the transition 
from unsteady to steady flow may also be obtained, by observing the path 
of the lines y = 0.5 and y = 1 In the diagram of a/a 0 against v/a0. 

The extension of these lines into the area of the final steady—flow ellipse 
signifies that the final steady flow at first tries to establish itself 
at a similar lower speed range, that is, along a similar smaller steady—
flow ellipse, before it is boosted up to the final steady flow which has 
the critical pressure corresponding to the tank pressure at the minimum 
cross section of the nozzle. The boosting process is the reason for 
the consequent zigzagging of the y = Constant lines. Another inter -
esting effect that occurs in the near—to-naxI!mnn speed region concerns 

the speed of the v - a waves in this region; namely, that they have a0 

to reduce their speed In the transition from unsteady to steady flow, 
since the unsteady—flow maximum speed Is higher (5a0') than the steady—

flow maximum speed 

In order to facilitate the interpretation of figure 14, the steady—
flow ch numbers corresponding to y values of —0.2325, 0, 0.5, 1, 
ani 2 were indicated, by the N = Constant lines. This auxiliary 
construction Is especially useful for y = 0 (minlmu.m cross section) 
since for that case both the initial unsteady flow condition and the 
final steady flow lie on the M = 1 line. 

Finally, the time required for the transition from unsteady to 
steady flow is discussed. Table V shows that the values of aOt 
closest to the steady—flow vkch numbers to be reached lie roughly 
around a0t = 4.5. Prom the previous discussion it can be concluded 

that this value will be only very slightly too law in spite of the 
fact that for an inviscid fluid steady flow is reached aeymtotically 
after an infinite time. (For the calculations the rounded—off 
value a0t = 5 is used.) This behavior ia in agreement with the fact 

that unsteady disturbances once created in an inviscid fluid do not 
disappear, from a practical viewpoint, though, after a very short 
tIme the unsteady disturbances become sufficiently small so that they 
are completely dissipated 'by viscous effects. 

Since the dimension of a0t i the 

length, it can be conveniently expressed 
the minimum cross section of the nozzle. 

cross section, both a 0t and y have t 
since d =	 for min = 1. An a0t

same as y, that is, a 

in terms of the diameter of 
For a nozzle of circular 

) be multiplied by J7i'
of 5 then corresponds 

to 5 d\j7i 0 The time it takes to reach steady flow is given



NACA TN No. 1878	 43 

by d.min	 Since a0 is a constant, the time it takes to reach 

steady flow increases with the nozzle size for a given shape. For 
a dmi of 1 foot and room temperature in the tank, for exa.riple, the 

time it takes to reach steady flow will be 	 second. 
1116	 1000 

The general expression for the transition time of the flow in a 
nozzle with given shape but varying size way be extended to include 
nozzles of affine shapes (stretched or shortened shapes). This extension 
seems easily understandable inasimch as the length of a nozzle rather 
than the diameter is the determining factor in the calculation of the 
transition time, since the length directly affects the running time of the 
disturbances. The similarity of unsteady-flow phenomena for nozzles with 
the same or affine shape but varying size can also be said to signify 
that a "similarity rule" exists for unsteady flows through tubes with 
variable cross section. ThIs fact Is of importance to the test engineer. 

Through a process of affine shortening of a given nozzle shape, 
a shape with sudden change in crose 3ection is finally obtained, as 
indicated In figure 17. For this sudden change in cross section, 
steady flowehould. establish itself after zero transition time. (These 
considerations are based on one-dimensional theory.) On the basis of 
such consIderations, the motion of a disturbance of large amplitude 
through variable cross section may be substituted by that through a 
series of cylindric tubes with Interspaced abrupt changes in cross 
section. Such a scheme was used. in reference 15 without, however, 
giving thorough explanation as to why it should be permissible to use 
the scheme. The nature of the difference between the effects of 
tubes with gradual changes in cross section and. sudden changes is 
brought out to some degree in figure 15. The modifications of the 
original disturbance In this case consist of a weakened disturbance 
continuing to move in the same direction and of a reflected disturbance 
in the opposite direction. Since all the changes of the original 
disturbance take place at the seine location y, the continuing weakened 
disturbance as well as the reflected disturbance may be substituted by 
large sudden disturbances (group of dashed centered lines) originating 
at this location. Each centered disturbance may, furthermore, be 
substituted by a single line. From the discussion of the small values 
of transition time it can also be surmised that the scheme here discussed 
converges to the characteristic method. 

Finally, a few practical aspects of the short-duration tests are 
discussed. It is important to emphasize that, although practically. 
steady flow conditions will be reached in these very-short-duration 
tests, for most materials conmionly used for the construction of the 
test model and the tunnel walls, conditions of temperature equilibrium 
between models, walls, and air flow will not be reached. Because the 
model and the walls will remain close to their initial temperature, the 
amounts of heat transfer through the boundary layer will be different
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from those encountered in the customary steady—flow tests. The herewith—
connected changes in bound.ary—layer behavior (transition and others) have 
to be studied before drawing quantitative conclusions from such tests. It 
should be realized that the constancy of initial temperature of the model 
and the walls considered from a different viewpoint also makes it possible 
to conduct tests with arbitrarily chosen model and wall temperatures at a 
given steady—flow Mach number. Conclusively, it should be added that the 
main difficulty of such very—short—duration tests will be the problem of 
instrument at ion. 

PART III.- STUDY OF ThVARIANT INGRALS OF UNSTEADY FL 

DISTURBANCES OF LARGE AND SMALL ALITUDES 

GENEIRAL CONS DERATIONS 

In part III the behavior of unsteady flow disturbances is treated 
from a viewpoint differeit from that in parts I and II where a detailed 
study of the complicated pattern of local growths, reflections, and 
re—reflections within the disturbance was made. In part III integrals 
over the whole disturbance invariant with respect to time are developed. 
The value of such invariant integrals is doubtful as long as the 
disturbance, its reflections, and re—reflections belong to the integrand. 
Thus, the main purpose of the present paper is to find. integrancis which 
permit a separation of the integral effects of the growth of a disturbance 
and. its reflections. The logical choice of an integral for the separation 
is one which uses the characteristic parameters of the disturbance as the 
integrand. These characteristic parameters consist of two sunmiands, the 
velocity increment due to the disturbance, and another quantity of the 
dimension of a velocity which represents the pressure increment in the 
disturbance. Depending on whether the sum or the difference of these 
two velocity increments is used, these parameters are associated with 
disturbances traveling with the speed of sound to bhe right and to 
the left relative to the fluid. (For more detailed statement see 
section entitled "General Considerations" of part I.) 

The integrals with the characteristic parameters as integrands 
iere introduced in reference 5 under the name of pulse areas. In the 
language of the engineer and. the physicist, the invariance of this 
integral i also called its conservation. This word causes the question 
to arise immediately as to what relation the conservation of the pulse areas 
would have to one of the three conservation laws, the mass, energy, 
and momentum laws. The relation can be quickly found out from the 
previous definition of the characteristic parameters as a linear 
combination of two velocity increments, one of them representative of 
the pressure increment in the disturbance. It can be easily seen that 
the sum of these two parameters P and Q (or X and -ii, respectively) 
will be twice the increment of the flow velocity in the disturbance.
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Since the integral contains now a velocity increment as Integrand, it 
is related to the conservation law for the momentum. It has to be 
emphasized, though, that only a relation exists, but no identity, 
since the integral of the velocity increment is actually the velocity 
potential. The conservation of the potential here replaces the 
conservation of the momentum which, in contrast to the tube with 
constant cross section, is not conserved because of unknown pressures 
at the inclined walls. Since the invariant integral for the pulse area 
has played such a useful part in expressing an invariance of an unsteady 
disturbance, it is useful to express the invariant integrals for mass 
and energy in terms of the pulse area. These expressions have been 
given in reference 6 without introducing, however, the pulse area and 
applying the restriction of the short disturbance which is necessary 
for the complete separation of the growths (positive and. negative) 
and reflections of a disturbance. The reasons for the introduction 
of the short disturbance are given subsequently. 

So far the first step in the process of separating the growth 
in the disturbance and. the reflected disturbances has been shown which 
consists in the introduction of the pulse area. This introduction, 
however, still does not eliminate the re—reflections from the 
integrand - it only labels them and discriminates odd and even numbers 
of reflections. The final step in the separating process consists in 
uncoupling the growth and the reflections of the disturbance and its 
reflections by neglecting the re—reflections during the time a single 
reflection is being produced. This separation (or uncoupling) of the 
original disturbance and. its reflection is achieved by restricting 
the length and. the amplitude of the original disturbance and the 
inclination of the tube walls to small values (short disturbance). 

ANALYSIS

Conservation of Potential 

1t is shown in references 10 and 114. that for a fluid assuid to 
be inviscid a velocity potential exists for the motion of an unsteady 
flow disturbance of large or small amplitude in a steady flow or in a 
fluid at rest through variable cross section. It Is also shown in 
references 10 and 14 that the potential consists of two parts:

(45) 

The next step is to show the invariance of the potential with 
respect to time. This problem is conveniently Investigated In the 
coordinate system of y against at (see fig. 16). For the sake 
of discussion a disturbance of large amplitude Is assumed. to be

14. 
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produced at the time t = 0 in such a manner that behind the disturbance 
its amplitude is zero. The potential 0 is indicated by the area of 
the cross—hatched rectangle. The height of the rectangle presents the 
amplitude of the disturbance, which is, as is shown subsequently, the 
velocity increment through the diaturbance. The height, of course, 
does not lie in the y,a 0t plane, but it is conveniently indicated 

in the figure in thia plane. The unstea&y flow disturbance under 
consideration is assumed to be an isentropic expansion of an arbitrary 
gas produced at t = 0 and to move through an increasing crOss section. 
In the course of its motion the amplitude and the length of the 
disturbance change; at the same time reflected disturbances with given 
amplitude and length are given off, In figure 16 the reflected potentials 
are indicated by the long, thin cross—hatched areas; whereas the potentials 
of the growing disturbance are shom by short, thick cross—hatched areas. 
In order to show the invariance of the potential 0 with respect to 
time, equation (45) has to be integrated, along a path which does not 
enclose the region in which the disturbance is produced, the production 
of the disturbance being an extraneous process (for example, unsteady 
motion of piston, bursting of diaphra, unsteady motion of side walls, 
combustion or condensation front). The integration along such a path 
Is of the following form: 

dØ 
= 1B 

v dY_f v dy +
	

+ i)dt -
	

+ i)dt = 0 (46) 

Since the disturbance is assumed to move in a steady stream, the 

difference of the integrals with the Bernoulli constant (10 = 	 + 

as the integrand) is zero. The remaining integrals are equal to each 

other. The significance of this result is as follows: 

When an unsteady isentropic disturbance of large amplitude travels 
in a steady flow of an arbitrary gas through variable cross section or 
through a gas at rest, the potential of the growing (positively or 
negatively) disturbance itself with the addition of the potential due 
to all its reflections remains constant with respect to time; that 

is, 
J 

v dy = Constant. 

The application of this general law to the motion of strong shocks 
through variable cross section seems doubtful, since when entropy 
variations appear in the flow the potential ceases to exist. It would 
seem possible, perhaps, to enforce the existence of a potential even 
for such a case by choosing a path of integration which encloses 	 - 
Dositive and negative gradients in entropy. The situation is analogous 
to that for vortices in steady flow where, at least for skillfully
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chosen cases (Prandtl's starting vortex), the proper path of integration 
exists for the maintenance of the concept of potential. 

	

Although the potential	 v dy has yielded useful conservation laws 

for the behavior of a large disturbance moving through variable cross 
section, the information obtained from this law is incomplete since 
it only concerns one flow variable and, consequently, does not permit 
a separation of the integral effects of the.disturbances. As indicated. 
in the section entitled "General Considerations," the Introduction of 

the ,ulse areas 	 P dy and.	 Q dy is a first step toward the 

separation. The parameters P and Q are given for unsteady flaw 
of an arbitrary gas through a variable cross section by 

P=v+f(a) 1F	 (k7a)

Q=v—f(a) J 
or for an ideal gas 	 - 

P=v+ 2 a 
7-1

(4) 
Q=v— 2 a 

7 — 1 

Conservation of Pulse Areas 

A conservation law for the pulse areas may be obtained from the 

conservation law 0 =	 dy = Constant for the potential 0 by
expressing the velocity v in terms of the amplitudes P aM Q 
given by equations ( 1t7). The following conservation law for the pulse 
areas results:

(P + Q) dy = Constant
	

(18a)
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or	

dy	 dy = Constant	 (48b) 

This conservation law for the combination of the pulse areas for the 
disturbance of large amplitude, however, has no direct value for the calcu-
lation of the behavior of the large disturbance since P and Q (or X 
and p) are interrelated by the system of two nonlinear differential equa-
tions showti, for example, by equations (6) and. (7) of part I. As stated 
previously, two cases exist for which the integral effects of the 
disturbances can be fully separated. One case is that of short 
disturbances which is discussed in other sections of part III; the other 
is the case of motion of a large—amplitude disturbance in a steady flow 
without Mach number gradient through constant cross section. The 
specification "without Mach number gradient" is made to exclude the case 
of constant cross section at a steady—flow Mach number around one. 

As previously 'stated, the motion of a large disturbance through 
constant cross section Is characterized by the fact that P Is 
constant for a disturbance with the amplitude Q, and Q, is constant 
for a disturbance with the amplitude P. Thus, the fact is at once 
established that for a large disturbance the individual pulse areas 
are conserved; that is,

fP dy = Constant	 (49a) 

Q dy = Constant	 (l9b) 

In order to avoid confusion it is well to point out the difference 
between the symbols P and Q used. in reference 5 and the symbols X 
and i used in references and. 10. The parameter X and i are 
given for arbitrary gases by

fa\ V 
= ft—i + - a0j a0

(50a) 

= 
f (Q.\\ -

a0



and.

V =•
	 + 

2 (51a) 
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or for an ideal gas by

2 af\v 
y-l\a0	 ) a0

(5ob) 
- 2 fa f 7-la0	

) a0 

The equations are the same as equations ()) and. (5) but are repeated 
here for convenience. The difference in presentation between P and. Q (equations ( li-7)) and X and •t (equations (50)), respectively, may be 
stated directly in terms of the flow variables a and v for ideal 
gases. Expressed in terms of P and Q. (reference 5) 

a-71_ 
- 2	 2 

whereas in terms of X and .i

= x - 

a0	 2 

and

= 1 +	 -	 l.L 

a0	 2.	 2

(sib) 

(52a) 

(52b) 

The convention of writing the velocity as. the difference of tw 
flow. parameters X and 	 le taken from steaay two-dimensional 
supersonic flow (see reférence . 16). The convention of presenting the 
velocity in terms of the sum of the two flow parameters P and Q is 
taken from reference 17.
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Finally, a few remarks seen in place concerning the statement made in 
this section that only for the cases of a short disturbance and. of constant 
cross section can the integral effects of the disturbances be fully 
separated. It is shown in reference 15 (see, also, discussion in part II) 
that an approximate method of separation exists for a large—amplitude 
disturbance based on substituting the continuous change in cross section 
by a discontinuous change. This approximate method makes skillful use 
of the behavior of a large—amplitude disturbance in constant cross 
section. 

Relative Growth (Positive and Negative) and Reflection of the 

Amplitude of a Short Disturbance at a Given Steady—Flow Mach 

Number, Due to a Given Cross—Sectional Gradient or 

Mach Number Gradient 

In the process of determining the growth and. the reflection of the 
pulse area of a disturbance the behavior of their ainplitud.es has to be 
investigated. The equations for the behavior of the amplitudes of a 
small disturbance are given in references 5 and 6. As mentioned in the 
introduction, however, neither of the reference papers fully deal with 
the growth and. the reflection of the pulse area or the amplitude of a 
short pulse. For this reason the derivation in the present paper Is 
started with the basic equations for the amplitudes of small disturbances 
moving through a steady flow in variable cross section. The equations 
for air (y = i.4) (see reference 5, equations (14) and (15) ) are as 
follows:

op + (	 3P + 2Q\P (1	 )(3P + 2Q\dV0 - v0+a0+ 
5 )-+ -	 5 

_____ P^Q P—Q\0	
(53a) 

	

+ 
(2 - ')(o;	 + 2	 + 10 

Q (	 2P+	 _____ 3 Q\a	 _______ + \O - O +
	

+ (1 + )(2P + 3Q 

	

- (2 - \ (p2 -	 + + + p - Q\dVo 

	

) 20v	 2M	 10	 (53b)
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For the case of an arbitrary gas the multiples 2 and 3 of P aM Q, 

respectively, are given by the expressions 2(7 1) aM 
2(7—i)' 

respectively, derived, from equations (51a) and (51b). The d.enomi.-
nators 5, 10, and. 20 are given by the exlxressiona 	

2 , - 

and.	 For the sake of brevity, equations (53 a) and. (53b) for air 

are used. in the derivation; the quantity 7 is only introduced. Into the 

final equations. The sums 3P ^ 2Q 	 2P	
are equal to the sums 

v0 + a0 and v0 - a0, respeôtively. In the case of small disturbances the 
am:plitudee P and.	 are given by a linear combination of a velocity 
increment and. a pressure increment (expressed in the form of an increment 
of the velocity of sound.) with respect to steady—flow conditions. 
Since in the expressions for the P and. Q pulse (equations (li.7a) 
and. ( li.7b)) the pressure function f(a) has opposite signs, the alternative 
of compression or expansion enters into P and. Q with opposite signs. 
The flow velocity (the significant parameter for potential, momentum, 
and. pulse areas) enters into P and. Q with the same sign. For the 
parameters X and p. the situation Is reversed. The motion of the 
P pulse Is designated in the downstream direction by making the arbitrary 
down—tube direction coincide with the downstream direction. 

Equations (53a) and (53b ) are identical with equations (14) and. (i) in reference 5, which can be derived from the equations given for the variation 
of the flow variables along characteristic lines for Isentropic unsteady 
disturbances of large amplitude given In part I and. in references 

4, 5, and 10. For the case of small- .anipljtude disturbances, P and. Q are small and. are of the first order. Furthermore, as is indicated by 
equations (53a ) and. (53b ), the first derivatives of P and Q are also small and of the first order. 

For these conditions the following approximatjo can be made: 

(1) The term

	

	 may be considered negligible when compared Jvo 

with the expression + Q + P - 
2M0	 10 

(2) The term 3P ; 2Q may be considered negligible when compared. 
with v0 + a0. 

(3) The term	 may be considered negligible when compared 
with v0 - a0, with certain qualifications. 

The qualifications mentioned in approximation (3) are due to the fact that as IvL approaches one, v0 - a0 approaches zero. If v0 - a0,
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2P+3Q however, approaches zero, the term 	 may not be neglected. In 

view of these conditions, the behavior of the Q pulse and its reflections 
has to be investigated separately for the case of M0 = 1. The assurance 

whether or not the term 2P 	 may be actually neglected near 	 = 1 

may be obtained by comparing the results of the separate investigation 

at	 = 1 with the results obtained by neglecting 2P 	 at	 = i. 

The approximations made so far in equations (53 a) and (53b ) are all 
a direct consequence of the use of disturbances of small amplitude. The 
approximations, however, still do not simplify the simultaneous differ-
ential equations (53a) and. (53b ) sufficiently to make the solution easily 
interpretable. For a simple solution of the simultaneous equations, a 
type of uncoupling of P and. Q would be desirable. More specifically, 
the uncoupling would signify that ' in the equations (53 a ) and. (53b) P and Q 
could be alternately neglected depending on whether one is attempting to 
solve for the growths of the pulse or for the reflected pulses. The 
"uncoupling" process was substantially used. In reference 5 without explaining 
its full meaning. For a clear understanding of all approximations made In 
the calculations, the concept of uncoupling is explained briefly: For 
example, as a Q pulse moves through a tube with variable cross section, 
its amplitude Q grows to Q ± dQ and gives off a reflected pulse ±dP. 
The building—up process of the reflected pulse P (traveling with the 
speed v0 + a0 ), during its motion through the growing' Q pulse to its 
full strength dP, starts from zero inmiediately behind the head of the 
Q pulse and. ends when the reflected pulse at its full strength dP 
leaves the pulse Q. Because of the building—up process, P is at first 
very small compared with the average Q. The smallness of P compared 
with Q can be kept forever when the Q pulse has a small length dy 
and when the gradient of cross section dY/dy or, consequently, 

dF =	 dy, the change in cros,s section of the tube occupied by the 

disturbance Q, is small. A disturbance for which amplitude, length, and 
cross—sectional gradient are subject to these restrictions is called a 

5 short disturbance (or pulse) in the present paper. For the same reason, 
for the growing of the pulse8 to. Q ± dQ, P may be neglected compared 
with Q. The analogous' considerations are true for P ± dP and. the 
reflections dQ, where Q may be neglected compared with P. 

Before attempting to solve equations, (53a ) and (53b) for the 
desired quantities, the' equations are written in different form by 
performing the following transformations: 

P(	

3P^2Q\p (vo+a
	 3P+2Q'\dp -	 v0+a0+	

)-=	 0	 5	
(54a)
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and

	

Q (	 2P + 3Q\Q - (
v	 a	

2P + 3Q\dQ 
+	 - a +	 -	 - 0 +	 5 )a	 (54b) 

At first equations (54a) aM (5 11.b) are substituted in equations (53a) and (53b ); use is made of approximation (3) without qua1ifyin 
assumptions for M0 = 1, that is, with neglect of 2P	 Q compared
with v0 - a0. 

Since presenting the deformation and. the reflection of pulses in 
terms of the variation In cross section is desirable, the following 
substitution obtained from the continuity equation for steady flow Is 
made additionally:

i2_	 o	 •ldF 
dy 

The substitutions transform equations (53a) and (53 b ) into 

(V0 + ao) + 
v0	

l - 
) (3P+ 2Q) + (2 - l\/P + Q 

	

y	 2iFdy 

+ P1 Q)] = 0	
(56a) 

and

(VO -	
+ Vo	 + )(2P 3Q)_ (2 -	 + Q.

1 F dy 

P - 
+ 10	 =
	

(56b) 

The fact that d.y may be canceled in equations (56a) and (56b) has 
the significance that the equations are independent of the scale of y. 
In other words, the equations for short disturbances may also be 
interpreted to apply to small—amplitude disturbances of arbitrary length 
traveling through a small discontinuous change in cross section. As for 
the case of short disturbances no interference exThts while the reflection 

(55)
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is being produced; the lack of interference is due to the fact that the 
reflection is produced in the zero lengt.h of the discontinuity and that 
before and. behind the small discontinuity the cross section is constant. 
This last interpretation of the approximation of short disturbances 
establishes a connection with the approach given in reference 15. The 
behavior of a small—amplitude disturbance of arbitrary length traveling 
through a small continuous variation in cross section may be obtained by 
pairing small discontinuous changes together in such a manner that the 
distances between theni equal the lengths of the growth or the reflection 
of the small disturbances. The variation of the lengths of disturbances 
with 1vch number is discussed in a subsequent section. 

The following relations can now be determined: 

dP/P represents the relative growth dP of the pulse P. 

dQ/P represents the relative reflection dQ produced by the 
pulse P. 

dQ/Q represents the relative growth d.Q of the pulse Q. 

dP/Q represents the relative reflection d.P produced by the 
pulse Q. 

The following expressions for an-arbitrary gas are obtained. from 
equations (56a) and (56b) by making use of equations (40) to (42) of 
part II and the previously developed "uncoupling" effects, that is, 
alternately neglecting P and Q: 

- 1i+YlMo2dF 

P - -	 CM0 + 1)2 T	 (57a) 

______ 2 

P - 2 (Mo—l)2 •T 	 (Sm) 

7-1 2 
dQ	 2	 dF -	

1)2	 (57c) 

Q - 2 (M0+')2 F	
(57d)
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Equations (57) reduce to the acoustic case for M0 = 0. Expressing 
equations (57) also in terms of the steady—flow Mach number gradient is 
useful for the remøining investigations in this paper. This is done by 
the substitution of

_	
l—M	 dMD 

F	 1^7—l12M0 

obtained from the steady—flow continuity equation into equations (57). 
The following equations result

P - 1 - M3 dM0	
(58a) 

7-1 2 
M0+ll— 2 M, 

P	 i%—l1Y—l22M0	 (58b) 

QM0+ld14 

Q - M0-12140	
(58c) 

-	 M2 
____	 2 0 dM 

Q l+M017—l2	 (58a) 

A closer study of equations (57) and (58) reveals fir8t of all the 
interesting fact that the amplitudes of the relative reflections 
expressed by the ratios dP/Q and dQ/P change their signs at the 

supersonic steady—flow Mach nuiriber	
= V1?1 

which equals	 for 

air; that is, at M =/ .	 both the P and. the Q pulses give off 
no reflections. A more detailed study of equations (57) and (58) is 
given subsequently. 

Equation (57d) indicateth that, for example, for the upstream travel 
of a 0. pulse in the subsonic part of a diffuser (0 < M < i.) the 
reflected pulse dP is negative since it moves in the downstream 

direction ( > o) from zero (while it is being produced from zero).
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Since the factor 1 -	 > 0 for 0 < M0 1, the sign of dP 

consisting of the product of one negative quantity and. 'two positive 
quantities, that is, the product (_)(^)(+) is negative. In order to 
determine whether the reflection d.P is of the expansion or compression 
type if Q is, for example, a compression, equations (47) must be 
considered. They state that P and. Q are of the opposite sign. Thug, 
if according to equation (57d.) d.P has a sign opposite to Q, the 
additional information of equations (47) indicates that dP and. Q 
are of the same type; that i, if Q is a compression, dP is a 
compression also. For I4 = 0, this result is in agreement with the 
well—known acoustic behavior, The result obtained 'may also be conveniently 
discussed in terms of equation (58d) which uses the Mach number gradient. 
For 0 < M < 1, the product of signs (+)(+)(—) is negative (dM0 < 0) 
which naturally agrees with the result obtained from equation (57d). 
Another especially interesting illustration of equations (57) and (58) 
concerns the reflections dQ produced by a P pulse traveling down-
stream in the supersonic part of a nozzle. In this case, both the 
pulse and its reflection travel down the tube since for supersonic 
flow an upstream motion with the speed v0 - a0 is a down—tube motion. 
The behavior of the reflections of a P pulso_is described by 

equations (57b) and (58b). For 1 <N0	 2 1 the sign 

product (-)(^)(.) is negative for equation (5Th) and (—)(+)(+) is 
negative for equation (58b). Since P and Q are of the opposite 
sign, both the original pulse and. the reflection are of the Same type. 

For \f_2 	 <	 the sign products for (5Th) and (58b) are 
both (—)(—)(+) which is positive; thus, in this case the amplitude of 
the original pulse and that of the reflection are of opposite types. 
With the aid of the sign products the typed of the growths and 
reflections of the downstream-moving P pulses and the upstream—
moving 0. pulses not mentioned so far may be also determined from 
equations (57) and. (58) with two exceptions. The two exceptions concern 
the behavior of the reflection dQ produced by P (equations (5Th) 
and (58b)) and the growth dQ produced by Q (equations (57c) and. (58c)) 
at a steady—flow Mach number of N0 = 1. At that Mach number, dQ becomes 
infinite with respect to both the amplitudes of the pulse P . and. the 
'oulse Q. This 'owth toward infinity is in contradiction to the 
assumption of small disturbancesfor. which this result is obtained. 
Equations (57) and (58) only hold for a range in which the order of 
magnitude of "small't is not exceeded for the amplitude dQ. The range 
can be increased such as to include the closest proximity ' of '1 =1 
by choosing values close to zero for the amplitudes P and Q of the 
pulses. The deterioration of 'dQ at M = 1 itself, however, cannot 
be eliminated'. Similar considerations apply to the gradient Q/y.
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Another case concerning the behavior of the amplitude of a small 
disturbance near a steady—flow 1ch number of one concerns the steady—
flow equilibrium conditions involving a shock near N 0 = 1. A 
discussion of the equilibrium of shocks, however, is outside the scope 
of this paper. 

The discussion so far gives avery unsatisfactory picture about 
the singular behavior of a small disturbance at N 0 1. This picture 
does not seem to show anything significant, for it does not seem 
reasonable that an important quantity like the energy or the mass of 
a reflected disturbance dQ produced by a downstream disturbance P 
should become infinite at M0 = 1. The reason for the discrepancy 
between the physical expectations and the results obtained so far 
lies in the fact that only amplitudes of the small disturbances have 
been discussed so far and not the integrals over the whole disturbance 
extension as required for the mass, energy, and. pulse area. A 
discussion of these integral quantities is given In the following 
sect ion. 

Before going into these problems, the behavior of the amplitude dQ 

near N0 = 1 is explained, without neglect of the term 2P ; 3Q 

compared with v0 - 80 in equation (53b ). For a short disturbance 
at M3 = 1, equation (53b ) yields: 

=	 5	 •	
dv	 (5) 

	

V0 -	 + - 

if P is neglected (uncoupled) with respect to Q. The neglect 
(uncoupling) of Q with respect to P (equation (53 b )) yields 

dQ	 2	 2 

	

-	 2P0	 (60)
a0 +--

By comparing equations (59) with equations (57c) and. (58c) and 
equation (60) with equations (57b ) and. (58b), it may be seen that 
similarly to equations (57c), (58c), (5Th), and (58b), equations (59) 
and (60) have an Infinity. The only difference is that the Infinity 
of equations (59) and (60) does not occur at M3 = 1, but rather at a 

Macli number corresponding to a velocity V0 - a0 + . Similar 

considerations can be made for equation (61) and equations (5Th) 
and (58b). The physical meaning of these more exact equations is 
that the growths or the reflect1ors. of the Q pulses do not actually 
accumulate exactly at the minimum cross section of the nozzle.
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Conservation of ss, Energy, and Sum of Pulse Areas

for Short Disturbances 

The conservation of mass and energy for large aM small disturbances 
traveling through tubes with variable cross section without the benefit 
of uncoupling between the original disturbance and Its reflection is 
discussed in reference 6. For the case of short (uncoupled) disturbances 
it is clear that the amount of mass, energy, an pulse area of the growth 
of the original disturbance equals the amount of mass, energy, and pulse 
area, respectively, traveling in the reflected disturbance, since no 
mass, energy, or pulse area can disappear by the interference between 
the original and the reflected disturbance during the building-up process. 
The proof of the conservation for short disturbances is given subsequently 
for the simplest case of the pulse area. For the sake of convenience, 
equation (48b) is rewritten here: 

f

P dy + fQ dy = Constant 
Under the assumption that the growth and. the reflection of the pulse 

area have the shape of a rectangle with the lengths Ayp and 

equation ( ll-8b) can be presented in the following form: 

P LYp + 0. AY Q = Constant	 (61a) 

or

a(P Tp ± Q 4y ) = 0	 (611D) 

The differentiation in equation (61b) results in the following 
equation:

dP AYp + P dAYp + (IQ AYQ + Q	 = 0	 (62) 

if one chooses, for example, to express the conservation law oC 
a relative growth aP/P aM the relative reflection dQ/P, for the
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case of a short P pulse, Q starts from zero and the last term can 
be neglected. The conservation law thus assumes the following form: 

d.P AYp + P d4y =	 QdQ	 (63a) 

	

d(P LTp) = _ TQdQ
	

(6 3b) 

Equation (63b) indicates that the pulse area of the growth d.(P AYp) 
equals the reflected pulse area, since P and Q are of opposite sign. 
Equation (63a) may also be expressed in terin of ths relative amplitudes 
given in equations (57) and (58): 

dP dLyp	 AYQdQ 
T	 (64) 

Pulse Length and. Pulse Time for Short Disturbances 

It was stated previously that the travel of a short disturbance 
through a small continuous change in cross section is Identical with 
the travel of a small disturbance through a small discontinuous change 
in cross section. For the case of a small discontinuous change in 
cross section (see fig. 17), the pulse times tp and tQ are equal 
and the Mach number gradients are equal and opposite. These conditions 
are expressed by the following equations: 

	

yp = Ltp(v0 + a0)	 (65) 

	

L YQ = LtQ (v0 - a0 )	 ( 66) 

It should be recalled that without the restriction to a short 
disturbance, reflections and. re —reflections occur which will necessitate 
a step—by—step integration for the determination of the pulse lengths 
and pulse times.
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Relative Growth and. Reflection of the Pulse Area of a Short

Disturbance Due to a Given Mach Nuiither Gradient, as 

a Function of the Steady—Flow Mach Number 

The behavior of the relative reflection d(Q LYQ)/P rp of the 
pulse area P	 and of the relative growth d(Q AYQ)/Q AYQ of the 
pulse area Q LrQ is investigated first since their amplitudes were 
shown to degenerate for M0 = 1. The relative reflection may be written 
as follows

d(Q YQ) dQ LYQ Q 
d4y 

PLyp	 TjAy	 (67) 

The second. term is small as Q starts at zero; therefore, 

d(Q LYQ) - dQ Q 
PAyp	 (68) 

The terms dQ/P and yQ/Lyp are given in terms of the Mach number. 
The relative reflection d.Q/P is expressed already in equation (58b). 
The ratio ty0/t .yp is formed by substituting equations (42) and (4i) 
of part II into equations (65) and (66), respectively, which gives 

Yp = atp	
+ 1

(69a) 

and

LYQ = a\tQ

	

	 (69b) 
Vhi+7_2 

The required ratio of Ly and. Lyp is then given by 

- v0 - a0 - M0 - 1 
4ypv0 +a04 ^ 1	 (To)
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The value of the relative reflection is then 

7 'M 2 .d(QLYQ)	 M0+1	 2	 MD—ldM 
PLyp -
	 ol1^Y 2M0+l2Iv 

- 7 - 1 M 2 
--	 2	 dM0 

- 1^LJ22Mo	 (71) 

Thus, the magnitude (not the shape) of the relative reflection of the 
pulse has no singularity at	 = 1. The relative growth d(Q L\YQ)/Q ''YQ
may be written as follows:

d (Q L YQ)dQ dLyQ 

QAYQ	 (72) 

The quantity dQ/Q in terms of Mach number is already expressed in 
equation (58c). The ratio d4YQ /LYQ is obtained by logarithmic 
differentiation of equation (69b) 

dLYQ	 - dM0 	 721M0dM0 

AY 
-dlbgtrQ_1_ 1	 (73) 

The value of the relative growth is then

7—i d(QQ) +ld	 dM0	 2 
QAYQ - Mo12MoMol1y_1 2 

2 

-- 72dM0 

2M3 1+7uI2 (7k) 

Thus the relative growth of the pulse area has no singularity at M0 = 1.
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Next, the behavior of the relative reflection d(P Ayp)/Q AyQ and 
of the relative growth d(P L^yp)/P Ly of ths pulse area is investigated. 

The relative reflection may be written as follows: 

a(P Ap) dp AYp p ____ 

	

Q/yQ	 QLQAYQ	 (75) 

For short disturbances (P neglected) the relative reflection is 

d.(P LYp) - &P LYp
(76)  

Equation (76) is written in terms of Ich number by substituting 
equations (58d) arid (70) 

	

d(PYp) - l_	 _7-2	 +l 
Q4TQ	 1+IV17_12M012M0 

= _l 7-1 2

(77)  
1 +	 1	 2M3 

The interesting fact is indicated by equation (77) that the relative 

reflection of the pulse area Q TQ is zero at N0 =	 1 which 

equals	 for air but will not be zero at M0 = 1, in spite of the 
fact that the amplitude is zero there. In reference 5 it is concluded 
from the zero amplitude that the relative reflection of the pulse area 
would have to be zero at M0 = 1. In the next section of the present 
paper a numerical evaluation of this inaccuracy is given. The relative 
growth d(P yp)/P Yp may be written as follows: 

d(P1y) - &P dAYp 

P Ayp	 PAyp	 (78) 

Equation (78) is expressed in terms of Mach number by substituting 
equation (58a) and the logarithmically differentiated form of
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equation (69a). The logarithmic differentiation of equation (69a) 
results in

	

dAYP	 - dM0 - 721Md1v10 lOgTp_1^	
1^-42	

(79) 

The relative growth then is 

d(Piyp) 1d	 dM0 -	 'M0dM3 

	

Prp	 1+M32I	 l+	 1+7-12 
2 

2 _ _______ 

2M0 i+7'r.2	
(80) 

Thus, the relative growths of the pulse areas P AYp (equation (80)) 

and Q /y (equation (74)) as well as the relative reflections 
(equations (77) and (71)) are the same. 

Accumulated Growths and Reflections of the Pulse Area of a Short 

Disturbance as a Punction of Steady—Flow lvch Number 

The accumulated. growths and reflections are obtained by integrating 
the relative growths and reflections, respectively. The integration of 
the relative growths d(P Ayp)/P AYp and. d(Q Q )/Q LTQ can be 
performed without difficulties. The integration (accumulation) of the 
relative reflections, however, cannot be presented In closed form for 
the following reasons: The short disturbance during its motion through 
variable cross section gives off reflections, the accumulated value of 
which will soon have a length larger than that required for a short 
disturbance; furthermore, within this accumulated reflection, re—reflections 
wi occur. Consequently, the integration of the reflections would 
require Lhe use of a point—by—point method like that given in part I. The 
fact that the values of the accumulated reflections cannot be represented 
by an integration in closed form is not as unfortunate in the present 
case as might be expected since a conservation law exists for the pulse 
area which permits determination of the accumulated relative reflection 
readily from the easily integrable relative growth. In the following 
discussion the variatioxi with Itch number of the accumulated relative 
growths is given. The integration of the relative growths d(Q AYQ)/Q LYQ 
and d(P Ap)/P Ayp, as given in equatIons (711) and (80), results In
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y) ____ 

or _______________ 

	

P	

= loc[ +	

_	

(81)

log (Q Q) = log ( 

The definite integration from a reference pulso area Q0Lr 

to	 and the substitution of the definite integral J'Q cty over the 
pulse length Ay at a given time t for Q 	 result n 

IQd=Cl	 (82) 

The definite integration from a reference pulse area P0trp 

to P yp and the substitution of the definite integral 	 dy over the

pulse length Ayp at a given time t for P yp result in 

	

P dy	 C2.l	 (83) 
+ 7 - 1 

Equations (82) and (83) are formally equivalent, the difference in 
constants of the two expressions is due to the fact that the P pulse 
moves with the velocity v0 + a0, whereas the Q pulse moves with the 
velocity v0 - a0 . In terms of the 1ch numbers appearing in 
equations (82) and (83) the meaning bf this difference is that the 
1vch number in one equation will have the negative value of that in the 
other. The constants in equations (82) and (83) are thus related by 
the equation

C2 jC1 

The significance of the imaginary factor j in the equation is that 
a real P pulse can never become a real Q pulse. 

It may be seen from equations (82) and (83) that the accuimilated 
relative growths of the pulse areas Q and P Ay	 have a maximum 

for	 M0 =	 which equals for air. The accumulated reflections 

thus remain constant only for	 N0 = which equals	 V3	 for air.
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(The relative reflection is zero.) Equations (82) and (83) permit a 
numerical evaluation of the variation of the accumulated growth with 
steady—flow Mach number (see table vi). Table VI indicates that the 
assumption made in reference 5 concerning the conservation of pulse 
area at M3 = 1 is still fairly accurate, since f(M0) representing 
the variation with N0 of the accumulated growth remains fairly constant 
in the range of N0 = 1 to M0 = 5. The main changes in f(M0) occur in 
the regions of low subsonic and high supersonic Mach numbers. 

Accumulated Growths and. Reflections of the Mass of a Short 

Disturbance as a Function of Steady—Flow Mach Number 

For reasons similar to those in the case of the pulse area only 
the accunnilated growths are calculated. The basis for the calculation 
is.the following definite integral over the pulse length /y at a given 
time t (see also reference 6):

f pF	 (84) 

The quantity p represents the excess in density compared with steady 
flow at a given cross section F. The first step in the separation 
of the growth and the reflection is obtained by expressing p in terms 
of P and. Q. (see equations (47)) 

P=v^ 2 a 
7-1 

Q=v— 2 a 
7-1 

or

P + Q = 2v 

P—Q=	 a 
7-1 

The next step in the separation Is obtained by the introduction of 
the assumption of short disturbances. Since for the pulse area the 
variations of accumulated growths of pulses P and Q gave equations 
of the same form (equations (82) and. (83)), the behavior of one of the
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pulses is only treated here. For the growth of, for example, the 
pulse P, Q is neglected; that is, 

(P)0=2v=.1a	 (85) 

Th quantity a is expressed. in termà of p for a small disturbance 
by the following isentropic relation: 

P_ a a	 86 p0 y-1a0 

The substitution of equation (86) into equation (85) results in 

p=;. —P	 (87) 

Substituting equation (87) into equation (81i. ) gives 

p0Pv0 
dy	

= 2aovo J P dy	 (88) 

where p0Fv0/2 has a constant value, let us say, C 3 according to the 
continuity equation for steady flow. The equation (88) is written in 
terms of 'hch number by substituting for V0 and a0 the values from 

equations (!O) and. (39) in part II and. for 1P dy the expression from 
equation (83). The following equation results: 

f 
pF dy 

= c3c2 Ii + 7 1 
a2\i	

(89) 

7-1 2"1The fu.nction	
=	 + 2 M

0 )	 is tabulated in table VII. 

At M0 = 2 1 which equals for air, f(M3) has a inininuun. The 

physical significance of this behavior is that the accumulated growth 
of the mass of a short disturbance and., consequently, the reflection 
will be zero at that Mach nuiilber. No special behavior occurs for M0 = 1. 
The infinity indicated, in table VII for M3 = 0 (acoustic case) is due
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to the fact that from the point of view of the steady—flow problem, 
the acoustic case has , infinite cross section. The infinity at M3 = 
is due to the same reason. 

Accumulated Growth and Reflections of the Energy of a Short 

Disturbance as a Function of Steady—Flow !vch Number 

The basis for the calculation of the accumulated owths Ia the 
following definite Inte'a1 over the pulse length 4y at a given 
time t:

f+
	 + P)F dy - fEoP 

which when the second—order terms are negligible compared. with first—
order terms is equal to

fFpE dy + f 0p dy	 (90) 

In the above erpresslons, E + E 0 is the total convective energy 
stored per unit mass of the small disturbance 

v2 E + E0 = -- + cT - e0 

_V2 _____ (91) 

and E0 is the contribution of the steady flow to the convective energy 

of the small disturbance

E =	 + CvTo - e0	 .(92a) 0	 2 

or, since E0 is a steady—flow contribution, it may also be written in 

the form

	

a2	 a 
E0 = 71_ -feo	 (92b) 

The quantity eo is an arbitrary constant, which enters equation (91) 
because the convective energy is a potential and, therefore, can be 
referred to an arbitrary level. The terms V, T, and. A are the total 
values of the velocity, absolute temperature, and velocity of sound,
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respectively. Neglecting the second—order terin8, which are negligible when 
compared with the firat—order terma, in equation (91) gives 

2a0a
(93) E = v0V 

+ ( - i) 

The substitution of equation (85), (87), (92b), (93), (39), 
and c)-i.o) into equation (90) results in 

	

JFP0E dy ^ fo dy =	 p	
1 +	 1 2 

c3 f P dy dy^	 (7-1)iv 

—e	
i^712 ! 

°a02	 N0	
JPdY	 (94) 

The substitution of equation (83) into equation (94) gives 

_________	 1 f1+7'Mo2 f FpE dy +fo dy= 32(1 
+ 7 1	 + 7-1 

	

-	 7-1 2	 (95) e0	
+ 2 N0

1 •
I 

For reasonable values of the constant e 0, the accumulated growth 

of the energy of a short disturbance shows a behavibr similar to that of 

the pulse area; namely, it has an extremum at M0 =
	

2 1 which 

equals J5 for air and shows no special behavior at M0 = 1. 

CONCLUSIONS 

Part I.— The point—by—point method developed for the calculation of 
unsteady flows through tubes with variable cross section permits a simple 
presentation or the interaction of strong shocks and large temperature 
contact. discontinuities, a detailed treatment of which had not been given 
so far, The point-by—point method permits furthermore a presentation of 
shock calculations and calculations of flows with initial entropy gradient 
in a form convenient for computation by use of computing machines. Under 
certain auswnptions the formulas established may also be used for the 
calculation of flows with continuous heat addition over a large space.
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Part II.— The calculations, made of the flow pattern created by 
bursting into a vacuum of a diaphragm at the minimum section of a 
supersonic nozzle without a second throat, indicate the following: 
The transition time fromthe starting of the flow to the attainment 
of approximately steady flow conditions is sufficiently short to 
permit the use of Very—short--duration tests. The transition time for 
the specific nozzle is presented in such a form that a "similarity 
rule" can be established concerning the transition time for nozzles 
of different size but of the same or affine shape. 

Part III.— The restriction to short disturbances permits a 
simple presentation in terms of steady—flow Mach number of the growths 
and reflection of pulse area, mass, and energy of a disturbance 
traveling through a steady flow in a tube with variable cross section. 
The calculations show the interesting result that the conditions for 
zero reflection of mass, energy, and pulse area exist at a steady—flow 

Mach number N0 =
	

2 (which equals	 for air), where 7 is the 

ratio of specific heats, rather than at N0 = 1; they also show that 
for practical purposes for the range of Mach number from 1 to 5 the 
reflections are small enough so that the mass, energy, and pulse area 
of the original disturbance may be considered constant. However, at 
low subsonic and at high supersonic Mach numbers, the reflections may 
not be.neglected. 

Langley Aeronautical Laboratory 
National Advisory Coimnittee for Aeronautics 

Langley Air Force Base, Va., January 14, 1949
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TABLE I 

VARIATION OF	 WITE tv/aj , tu/ai, 

AND IT FOP A S0CK IN AIR 

[7 = 1.14.11 

tv/a1 at/a1 Ii/a1 v/a1 a2 /a1 Lu/a ii 

0 1.0000 1.00 1.00000 0.691414. 1.11490 1.50 0.9298) 
.0330 1.0066 1.02 .99990 .71814. 1 .1514.8 1.52 .92336 
.o651. 1.0131 1.014. .99990 .71422 1.1606 1,514. .91667 
.0972 1.0195 1.06 .99970 .7658 1.16614. 1.56 .90975 .3.2814. 1.0257 1.08 .99950 .7892 1 .1723 1.58 .90253 
.1591 1.0320 1.10 .99890 .8325 1.1781 1.60 .89526 .1893 1.0381 1.32 .99830 .8356 1.18140 1.62 .8&T63 
.2190 1.014.142 1.114. .99721 .8585 1.1899 1.611. .87989 
.214.83 1 .0502 1.16 .99602 .8813 1.195 8 1.66 .87199 
.2771 i.o56i 1.18 .9911.53 .90140 1.2017 i.68 .86393 
.3056 1.0621 1.20 .99285 .9265 1.2076 1.70 .85572 
. 3336 1.068) 1.22 .99069 .914.88 1.2136 1.72 .811.731 
. 3613 1.0738 1.214. .988314. .9711 1.2195 1.711. .83893 
.3886 1.0797 1.26 .98571 .9932 1.2255 1.76 .83029 
.14.156 1.0855 1.28 .97o 1.0152 1.2315 1.78 .i56 .144.23 1.0913 1.30 .979311. 1.0370 1.2376 1.8) .81261 .14.687 1.0971 1 . 32 .97570 1 .0588 1.214.36 1. .8)379 
.14.914.8 1.31)28 1.314. .971 1.08)14. 1.211.97 1.811. .7911.72 .5206 i.1o86 1.36 .96759 1.1020 1 .2558 i.86 .'8y'3 
.514.61 i.u1iJ 1.38 .96302 1 .12314. 1.2619 1.88 .77658 
.57114. 1.1201 1.140 .952 1.111.11.7 1.268) 1 .90 .767140 

• .5965 1.1259 1.112 .95302 i.166o 1.2714.2 1.92 .758)9 
.6213 1.1317 1.141. .914.760 1.1871 1.28) 14. 1.911. .711.8814. 
.614.59 1 . 13714. 1.11.6 .914.197 1.20 1.2866 1.96 .739511. 
.6703 1.11132 1.14.8 .93598 1.2291 1.2928 1.98 .73025 

1.2500 1.2990 2.00 .72093
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TABLE II 

VARIATION OF	 = m WITH Av/al 

FOR A SHOCK IN AIR

d.(a2/a1)
= 

d.(Cv/a1) 

0 0.2000 
.05 .2003 
.10 .2011 
.15 .20214. 
.20 .2014.1 
.25 .2062 
.30 .2089 
.35 .2120 
.li.0 .2152 
• 1#5 .2189 
.50 .2229 
.55 .2270 
.60 .2316 

.2363 
.70 .211.12 
.75 .214.62 
.80 .253)4.: 
.8 .2567 
.90 .2620 
.95 .2674. 

1.00 .2729 
1.05 .2839 
1.10 .2890 
1.15 .2914.8 
1.20 .3008 
1.25 .3073 
8.00 .5106

77 
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TABLE III 

d.rr VARIATION OF	 = n WITH a2/a1 
d(a2/a]) 

DR A SHOCK TN AIR 

[.= i.i] 

/ a,a dli	 =n 
d(a2/a1 )

/ a1a d.II 
d(a2/a1) 

O 0 1.11190 -1.O914. 
1.0066 -.0011.1 1.1511.8 -1.1311.7 
1.0131 -.0176 1.1606 -1.1720 
1.0195 -.0380 1.16611. -1.2076 
1.0257 -.0652 1.1723 -1.211.13 
1.0320 -.0980 1.1781 -1.2720 
1.0381 -.1367 1.1811.0 -1.3015 
1.Oli. Ii.2 -.1786 1.1899 -1.3286 
1.0502 -.2211.3 1.1958 -1.3528 
1.0561 -.27211. 1.2017 -1.3756 
1.0621 -.32511. 1.2076 -1.3959 
1.0680 -.3777 1.2136 _1.11.J.A5 
1.0738 -.11.316 1.2195 -1.11.311 
1.0797 -.11.883 1.2255 -1.11.11.58 
i.o8 _.51i.30 1.2315 -1.11.583 
1.0913 -.5982 1.2376 -1.11.696 
1.0971 -.6537 1.211.36 -1.11.785 
1.1028 -.7079 1.211.97 -1.11.862 

-.7619 1.2558 -1.11.923 
1.11 141. -.8111.5 1.2619 -1.14.967 
1.1201 -.8611.9 1.2680 -1.14.993 
1.1259 -.9151 1.2711.2 -1.5009 
1.1317 -.9625. 1.2801I. -1.5012 
1.13711. -1.0081 1.2866 -1.5000 
1.111.32 -1.0522 1.2928 -1.14.977 

____________ 1.2990 -1.11.911.0
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PABLS V

NUMERICAL RNSULNS OF CALCULATIONS FOR TRANSrI'ION FRCM UNSTEADY P0 STEADY FLOW 

a0t	 I	 I	 •/e0	 a/eo	 M 
I	 line	 I	 I	 I	 I	 I 

y = -0.2325 

F = 1.340; M0 = 0.500; cot'M.3 = 63°26; 8 = 0.48;	 =

0.1 -
.2 
.3 0.363 0.0]. 0.49 0.25 0.951 0.267 
.4 .548 .05 .73 .39 .932 .423 
.5 .731 .10 .79 .45 .930 .483 
.6 .915 .14 .81 .57 .934 .509 
.7 1.100 .18 .78 .48 .940 .515 
.8 1.286 .21 .75 .48 .947 .513 
.9 1.473 .25 .72 .49 .952 .510 

1.0 1.662 .27 .69 .48 .957 .505 
1. 
1.2

--------------

1.4 
1. 
1.6 
1.7 3.034 .29 .61 .45 .968 .468 
1.8 3.229 .30 

1. ............................. 

.60 .45 .969 .469 
1.9 3.425 .31 .60 .46 .970 .469 
2.0 3.621 .31 .59 '.45 .971 .467 
2.1 3.819 .31 .59 .45 .971 .466 
2.2 4.018 .30 .61 .46 .969 .475 

y=0 

F = 1.0; H0 = 1.0; cot'1M0 =	 0;	 =0.913;	 =0.913 

0.1 0.170 0.01 1.67 0.84 0.834 1.007 
.2 .349 .05 1.66 .86 .839 1.025 

.3 .522 .10 i.65 .88 .845- 1.041 

.4 .716 .15 1.63 .89 .852 1.04-4 

. 5 .881 .20 1.61 .91 .859 1.059 

.6 1.058 .25 1.58 .92 .867 1.061 

.7 1.230 29 1.54 .92 .875 1.051 

.8 1.423 .32 1.52 .92 .880 1.045 

.9 1.609 .35 1.49 .92 .886 1.038 
1.0 1.815 .37 1.47 .92 .890 1.033 
1.12.009 .37 1.45 .91 .892 1.020 
1.2 2.210 .38 1.43 .91 .895 i.016 

1.3 2.400 .38 1.43 .91 .895 i.016 

1.4 2.591 .38 1.42 .90 .896 1.004 

1.5 2.780 .38 1.42 .90 .896 1.004 
1.6 2.980 .39 1.42 .91 .897 1.014 

1.7 3.187 .39 1.41 .90 .898 1.002 
1.8 3.373 .40 1.41 .91 .899 1.012 

1.9 3.570 .40 1.41 .91 .899 1.012 

2.0 3.778 .40 1.41 .91 .899 1.012 

2.1 3.982 .38 1.42 .90 .896 1.004 
2.2 4.185 .35 1.49 .92 .886 1.038 

y = 0.5 

F	 2.107;	 4	 2.255; cotMo	 2355';	 .. 1.59;	 .. 0.703 

0.1 0.407 0.32 4.02 1.85 o.68 3.257 
.2 .593 .30 3.82 1.76 .588 2.993 
.3 .772 .25 3.57 1.66 .618 2.686 
.4 .949 .20 3.45 1.63 .635 2.566 
.5 1.127 .15 3.38 1.62 .647 2.503 
.6 1.306 .10 3.35 1.63 .655 2.488 
.7 1.488 .07 3.34 1.64 .659 2.488 
.8 1.674 .04 3.31 1.68 .665 2.526 
.9 1.860 .01 3.30 i.6 .669 2.466 

1.0 2.050 0 3.29 i.6 .671 2.459 
1.1 2.245 .01 3.29 1.65 .672 2.455

Ll a0t	 1	 I	 I v/a0	 a/a0 J	 N 

line	 I

y = 0.5 

F 2.107; H0 = 2.255; cot'1M0 23°55';	 = 1.59;	 0.703 

1.2 2.442 .02 3.28 1.65 .674 2.448 
1.3 2.639 .01 3.28 1.65 .673 2.451 
1.4 2.835 .02 3.25 1.64 .677 2.422 
1.5 3.029 .02 3.23 1.63 .679 2.400 
1.6 3.224 .02 3.26 1.64 .676 2.426 
3.7 3.420 .03 3.26 1.65 .677 2.437 
1.8 3.716 .04 3.26 1.65 .678 2.433 
1.9 3.817 .05 3.26 1.66 .679 2.455 
2.0 5.021 .05 3.26 1.66 .679 2.554 
2.1 4.232 .13 3.26 1.70 .687 2.574 
2.2 5.455 .12 3.00 1.56 .712 2.191 
2.3 4.681 .21 3.05 1.63 .716 2.276 

y = 1.0 

F	 3.508; M0 = 2.802; cotll0 = 19°38'; !D = 1.75; 0.625 

0.1 0.610 0.54 4.68 2.61 0.478 5.460 
.2 .801 .51 4.56 2.49 .503 4.950 
. 3 .985 .57 4.30 1.92 .523 3.671 
.4 1.165 .52 4.10 1.84 .48 3.357 
.5 1.343 .39 4.01 1.81 .560 3.232 
.6 1.522 .35 3.96 1.81 .570 3.175 
.7 1.702 .30 3.92 1.81 .578 3.131 
.8 1.886 .27 3.90 1.82 .583 3.121 
. 9 2.073 .25 3.89 1.82 .586 3.105 

1.0 2.263 .25 3.88 1.82 .88 3.095 
1.1 2.556 .22 3.86 1.82 .591 3.076 
1.2 2.653 .23 3.86 1.82 .591 3.079 
1.3 2.851 .23 3.85 1.81 .593 3.052 
1.5 3.058 .22 3.86 1.82 .592 3.074 
1.5 3.244 .23 3.84 1.81 .593 3.052 
1.6- 3.437 .22 3.84 1.81 .594 3.047 
1.7 3.631 .20 3.83 1.82 .597 3.048 
1.8 3.828 .20 3.85 1.83 .595 3.075 
1.9 4.027 .19 3.85 1.83 .597 3.065 
2.0 5.232 .19 3.85 1.83 .597 3.065 
2.1 4.541 .13 3.85 1.86 .603 3.085 
2.2 4.671 .16 3.84 1.84 .600 3.066 
2.3 4.897 .10 3.67 1.79 .623 2.873 

y=2.0 

F	 6.177; H0 = 3.398; cot' i40 = 16°24'; !o 1.86; D	 0.559 

0.1 0.998 0.75 .25 2.25 0.501 5.611 
.2 1.196 .73 5.07 2.17 .520 .i66 
. 3 1.387 .69 5.91 2.11 .440 5.795 
.4 1.573 .6 4.77 2.06 .458 4.597 
. 5 1.756 .62 4.64 2.01 .474 4.240 
.6 1.936 .58 4.52 1.97 .590 5.020 
.7 2.117 .55 4.45 1.96 .501 3.912 
.8 2.300 .52 5.51 1.95 .507 3.856 
.9 2.585 .50 5.38 1.94 .512 3.789 

1.0 2.674 '.48 4.37 1.95 .515 3.786 
1.1 2.867 .47 4.36 1.94 .517 3.763 
1.2 3.064 .47 ' 4.36 1.95 .518 3.756 
1.3 1.94 .519 3.735 
1.4 3.559 .47 4.35 1.95 .519 . 3.738 
1.5 3.656 .47 5.35 1.95 .519 3.738 
1.6 3.850 .47 4.33 1.93 .520 3.711 
1.7 5.043 .56 5.32 1.93 .522 3.697 
1.8 4.238 

-------------

.45 4.32 1.94 .523 3.709 
1.9 5.436 .54 - 5.32 1.95 .524 3.702 
2.0 5.641 .43 5.32 1.95 .525 3.715 
2.1 4.845 .38 4.32 1.97 .530 3.717 
2.2 5.078 .52 4.33 1.96 .525 3.733
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TABLE VI 

VARIATION WITh MIWH ISITJMBER OF TEE FUNCTION f(M0 ) = /	 M 

j	 7—i 

2 

REPRESENTATIVE F TEE ACCtJMtJLATIVE (OWTh

OF PULSE AREAS FOR AIR 

[ = i.1j 

M f(M0) 

0 0 
.1 .316 

3 .5113 
. .690 
.7 .798 

1.0 .913 
1.002 

1.5 1.017 
1.6 1.029 
1.8 
2.0 1.0514. 

1.057 
2.14. l.o56 
2.5 1.0514. 
3.0 1.035 
14.0 .976 
5,0 .913 

10.0 .690 
100.0 .2214. 

0
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TABLE VII 

VARIATION WITE MACH MJMBER OF TEE FUNCTION

\J1+7_1MO2 
-	 2 

REPRESENTATIVE OF TEE ACCItJLATIVE GROWTE OF MASS FOR AIR 

[	 i.] 

0
.1 3.165 
. 3 1.8)42 
.5 
.7 1.252 

1.0 1.095 
1.11. 
1.5

.997 

.983 
1.6 .972 
i.8 .957 
2.0 .911.9 

.911.6 
2.11. .911.7 
2.5 .911.9 
3.0 .966 

•	 1.025 
5.0 1.095 

10.0 1.1111.9 
100.0 14.11.73
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a0t 

Figure 1.- Diagram for the construction of point C in a flow with 
entropy gradient through a tube of variable cross section.
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a0t 

Figure 2. - Diagram for the construction of point C in a flow through 
a tube of variable cross section containing a shock.
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0	 __ I	 __ 
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Figure 5.- Variation of FT with a 2/a1 for a shock in air. y = 1.4. 
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Figure 6. - Variation of 	 = n with a2 Ia1 for a shock in d(a2/ai) 

air.	 = 1.4.
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<S. 

I 
0 \' 

oJ

Temperature contact discontinuity 

Centered	 a0t 
expansion 

waves 

Figure 7.- Sample results of bursting of a diaphragm presented in a 
diagram of y against a0t.
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a0t 

Figure 8.- Diagram for the construction of a point of the time-history 
curve of the temperature contact discontinuity.
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0	 .5	 /0	 /5	 20 25 3.0 35 4.0 45 5.0 55 6.0 6.5 
1' 

Figure 9. - Results of bursting diaphragm into vacuum for tube with
constant cross section presented in the plot of y against a0t.
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= Constant
	 = Constant 

1	

\ 

v-a	 v+a 

Figure 12. -. Presentation of disturbance velocities in the plot of 
against v.
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a0t 

Figure 15.- Large disturbance moving through sudden change in cross 
section presented in the plot of y against a0t.
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a0t 

Figure 16. - Conservation of potential presented in the plot of y against a0t.
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Figure 17. - Motion of a small disturbance through a small discontinuous 
change in cross 'section.
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