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SUMMARY

The theory for single—degree torsional instability of a two—
dimensional wing oscillating in a supersonic stream is extended so as
to apply to a finite rectangular wing oscillating in a supersonic stream.
The velocity potential and aerodynamic—torsional-moment coefficient
based on the linearized equations of motion for small disturbances are
derived by means of appropriate distributions of moving sources and
doublets. The aerodynamic—torsional-moment coefficient thus derived is
combined with a mechanical—-damping coefficient to study the effect of
aspect ratio on the undamped torsional oscillatioris of a finite rec— -
tangular wing. Decreasing the aspect ratio of the wing is found .to
have a highly stabilizing effect on the. undamped torsional oscillations.
Results of some selected calculations are presented in several figures.

It is pointed out that second—order thickness effects may be of
gignificance. .

INTRODUCTION

In theoretical studies of an oscillating wing in two—-dimensional
gupersonic flow Possio noted, reference 1, that under certain conditions
a single—degree torsional instability is possible. This instability,
also sometimes known as a typs of "single—degree flutter," was briefly.
discussed by Temple and Jahn in reference 2 and has since been further
investigated by Garrick and Rubinow in reference 3, by W. P. Jones in
reference 4, and by Cheilek and Frissel in reference 5.

It is pointed out in reference 3 that this single—degree flutter
is due to the wing being negatively damped in torsion and that the
negative damping is associated with a change in sign of the torsional-
damping coefficient; furthermore in the two-dimensional case the

ingtability may take place in a low supersonic Mach number
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range (1 < Mach number < |/2.5), at low values of the frequency paramster,
and for axis—of-rotation locations forward of a point two—thirds of the
chord distance from the leading edge. This phenomenon may be of
particular importance in connection with high—gpeed airplanes that are
flown in (or through) the range of -low supersonic Mach numbers at which
the phenomenon may take place. Although in general discussions this
phenomenon is usually associated with the word "wing" the theory applies
as well to an aileron when the alleron is considered as a sgeparate

degree of freedom. Hereafter in this discussion the word "wing" may
generally be given the broader interpretation of "wing or aileron."

The purpose of the pregent paper is to extend the theoretical
investigation of the single—degree torsional instability of a wing '
ogcillating in two-dimensional supersonic flow, as presented in
reference 3, to a finite rectangular wing and to determine the effect
of aspect ratio on the undamped torsional oscillations of such a wing.
It is assumed that the negative damping phenomenon in three-dimensional

~ flow, like that in two-dimensional flow, is determined mainly by low—

order terms of a low frequency and that only the effect of the first
power of the frequency must be considered.: to get a good approximation
of its total effect.

In order to obtain the three—dimensional velocity potential and
asrodynamic—damping coefficient the method suggested by Garrick and
Rubinow in reference 6, which is briefly discussed in subsequent
paragraphs, 1s applied to a thin, flat, rectangular wing performing
glow, sinusoidal, torsional oscillations in a supersonic stream, The
particular wing treated is such that the Mach cones emanating from the
foremost point of each tip do not intersect the opposite tip ahead of
the trailing edge of the wing.

The procedure developed hereln may be readily extended to apply to
any plan form with supersonic trailing edge as long as other edges that
might be in the regions of mixed supersonic flow are continuousgly straight.

+ What might be a more desirable extension would be to obtain the non—

linear effect that thickness might have on the undamped torsional oscil-—
lations of a given plan form.

In reference 6, Garrick and Rubinow make use of the theory of small
perturbations to investigate the air forces on a thin finite wing
oscillating in a supersonic stream. For convenience the boundary—value
problems for the velocity potential for a three—dimensional surface
(finite wing) moving at supersonic speed are classified into two types
and referred to as "purely supersonic" and "mixed supersonic." The
purely supersonic boundary—value problem refers to regions of flow
where no interaction between the flow on the upper and lower surfaces is
present. In this case the surfaces can be treated separately and the
boundary—value problem for each surface can be satisfled by source and
sink distributions. The source and sink distributions for each surface
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are known functions of the plan form and profile of the wing. Conse—
quently, the velocity potentials in the purely supersonic region can
always be expressed in the form of surface integrals with known
integrands. ‘

The mixed—supersonic boundary—value problem refers to regions where
interactlion between the flow on the upper and lower surfaces is present..
This problem cannot be solved by a distribution of sources alone over
the wing surface but in general can be gatigfied by use of doublet
digtributions. The manner in which the doublets are to be distributed
(or the distribution function) depends on the camber of the wing and on
the plan form of the region of the wing where interaction between the
flow on the upper and lower surfaces is present. In order to find a
required distribution function it is usually possible to make use of the
given boundary conditions and express the digtribution function as the
unknown function in an integral equation.

It may be appropriate to mention that Evvard, reference 7, has
recently developed, by consideration of a source distribution over the
entire upwash field, a time—dependent velocity potential that may be
applied to certain edge problems. In reference 8 Harmon made use of
this develomment to derive same stability derivatives for thin
rectangular wings at supersonic speeds. The velocity potential derived
herein for the slowly oscillating case can be ghown to bear a relation-—
ship to the sum of three potentials employed by Hermon, namely those
due to (1) constant vertical motion, (2) accelerated vertical motion,
and (3) pitching motion.

SYMBOLS
o disturbanoe—velocify potential
¢l potential function of a movihg source defined in

equation (7)

[ potential function of a moving doublet defined in
equation (16)

¢N potential function due to distribution of sources in
region N of figure 1

¢T potential function due to distribution of doublets in
region T of figure 1

X, ¥, Z rectangular coordinates attached to wing moving in nega—
tive x—direction
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\
Z function defining mean ordinates-of any chordwise section
of wing such as at y = y, as shown in figure 1

w(x,yl,t) vertical velocity at surface of wing along chordwise
gection at y = y;; (99)
‘ dz
z=0
£ 1 rectangular coordinates used to represent space location

of sources or doublets in the xy—plane

x . abscissa of axis of rotation of wing (elastic axis) as
shown in figure 1

t time

a . angle of attack

a time derivative of a

v ‘ velocity of main streém

c ~velocity of sound

M free—gtream Mach number (V/c)
B = Mo — 1

T Tor Ny T, functions defined with equation (7)

W(e,n) function used to represent space variation of source and
~doublet strengths

w(t — Tl) . functions used to represent time wvariation of source and
(t — T2) doublet strengths -

w - angular frequency

b A one--half cord

h one—half 'span

A aspect ratio ( %)
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F(&,1), £(&,n) functions used to denote doublet distributions

p

density

pressure difference, measured positive downwards, defined
in equation (24)

values of p in regions N and T, respectively, of
figure 1

aerodynamic moment, defined in equation (25)

in—phase component of aerodynamic—moment coefficient
defined in equation (30) '

out—of—phase component or (torsional-damping) aerodynamic—
moment coefficient, defined in equation (31)

total-torsional—damping coefficient

mechanical—damping coefficient; g, corresponds to the

usual logarithmic decrement

wing density parameter <-3£—>
4yp2

mass of wing

radius of gyration divided by b; ‘/
mb2

moment of inertia per unit length of wing about elastic
axis

flutter coefficient

natural angular frequency of torsional vibration about
elastic axis . :
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ANALYSIS

Consider a thin rectangular wing moving at a constant supersonic
speed in a chordwise direction normal to its leading edge. 1In accord—
ance with linear theory the boundary—value problem for the velocity
potential is treated at the plane of the wing. For the portion of the
wing between the Mach cones emanating from the foremost point of each
tip, region N in figure 1(a), the boundary~value problem-involves only
the purely supersonic flow; and for the portions of the wing within these
Mach cones, regions T in figure 1l(a), the boundary—value problem involves
the mixed supersonic flow. Thus the solution to the present problem pro—
poses the use of the two types of boundary—value problems discussed in
the introduction. :

Boundary-value problems for velocity potential: for a rectangular
wing — The differential equation for the propagation of small disturbances
that must be satisfied by the velocity potential in both regiong T
and N (referred to a uniformly moving coordinate system as shown in
fig. 1) is (equation 4, reference 6)

2 2 2
1(a,va)y- 2,8 O 1)
2 \ ot dx- 3x2 aye. 352

The boundary conditions that must be satisfied by the velocity potentials
may be stated as follows: (a) In regions T and. N the flow must at
all times be tangent to the wing surface and (b) in regions T the pressure .
must fall to zero along the wing tips and remain zero in the portion of
the Mach cones emanating from the foremost points of the wing tips not
occupied by the wing. (As customary with linear boundary conditions the
effects of thickness and camber are separated. In particular, in the
nonstationary case the linear thickness effect is of no significance and
1s not considered here. The important camber effect is characterized by
the conditions that the perturbation pressure, the perturbation velocity
in the free—stream direction, and the perturbation—velocity potential are
all antisymmetrical with respect to the reference plane, whereas the
rerturbation velocity normal to the reference plane is symmetrical.
Accordingly, the boundary condition of zero pressure in the side wake may
be stated as zero perturbation velocity in the free—stream direction. In
view of these antisymmetric characteristics it is only necessary to derive
the perturbation—velocity potentials for either the upper or lower -surface
of the wing. The upper surface is chosen for the derivations herein.)

With the boundary conditions stated as in the preceding paragraph,
the difference in the two types of boundary-value problems involved
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is in the additional conditions stipulated in condition (b) that must
be gatisfied in region T.

The condition of tangential flow may be expressed analytically as

3\ Xy Ly |
<5§>z=o B =V 5 @

" where Z, 1is the function defining the mean ordinates at any chordwise

gection of the wing. For the particular case of the wing performing
gmall sinusoidal oscillations of maximum amplitude R about the span—

wise axis X = x,, the equation for Z, may be written as (see fig. 1(b))
: - _ - iwt _
z q(x xo) e <x X, - (3)

Substituting this expression for Zm into equation (2) gives for this

case
w(x,t) = \‘701, + o'c(x - xo) : (4)

Equation (4) indicates that the vertical motion of a wing moving for—
ward and at the same time performing sinusoidal oscillations about a
spanwise axis 1s equivalent to the superposition of the vertical motion
of two similar wings moving forward, one at an instantaneous: angle of
attack and the other rotating about the spanwise axis x = X, at an

instantaneous rate of rotation. Since the differential equation (1)
is linear, the velocity potential satisfying equations (1) and (4) may
be considered as the sum of two potentials: the first corresponding
to the first term of the right—hand side of equation (4) which
hereinafter is denoted by ¢a and the second corresponding to the

second term .of the right—hand side of equation (4) which hereinafter
is denoted by ¢do The symbolic forms of the velocity potentials for

the regions N and T may therefore be written as

P = P t P | (5)

[¢2
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and
Br = Ppg, + Py (6)

Derivation of pN.— Reference 6 shows that the boundary—value

problems for unsteady motion in the purely supersonic region (region W)
may be satisfied by distributions of moving sources. The potential at
any point (x,y,z) due to a moving source of strength w(t), varying only
with time, located at point (&,n,0) is given in equation (Ta) of refer—
ence 6. In the present notation the expression for this potential may
be written as

=wt—'rl)+w(t—1'2) 1)

M(n = n)(e - n) |

where

o _Mx—-8) \/(n—nll(ng—n)
1 cp? Bc

_ux =), V= )(ne =)
cp? Bc

-1 12 _ g2,2
L A \/(x ) — Bz

=
n
|

_y+% \/(x_g)e_ﬁzze
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The integral form of the velocity potential at any point (x,y,z) due to
a distribution of such sources over the g n—plane is

1 X—Bz N2
¢(x)y:z:t) = "'2'57; W(E:ﬂ)¢1 dn dg (8)
‘ 0 n

where W(&,n) represente the space variation of source strength.

The 1limits and 1, are the intersections of the ¢n—plane

N
1
and the upstream-opening Mach cone with vertex at point (x,y,z). Thus
the velocity potential at point (x,y,z) is affected only by the sources
in the &n—plane that are within this Mach cone. (See fig. 2(a) for
_the limiting case 2z = 0.) ‘

In order to obtain ¢Na for an oscillating flat wing, the time

variation of source strength w(t) is defined as follows:
w(t) = el®®

This form for w(t) gives for the numerator of equation (7)

\

w(t =T1) +w(t =7To) ei‘n(t—'rl)+ e:‘La)(t—'l’g)

- T2+T1
= Qeiwt e 2 cos (D.TA—_TL (9)

The space variation of source strength is defined as

W(E,n) = —Voy (10)
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If the expressions given in equations (9) and (10) are substituted into
equation (8) and z is made zero, the following equation for the velocity

potential on the upper surface of the wing, with « = abeiwt, is obtained:

USSP
Pro(x,7,t) = gfx L[-"Q o o8 °0° g5 \/<*1 :‘1)(’12 - n) anae
0 1 : \/(TI - Tll> (‘n2 - n) (11)

The integrations indicated in equation (11) can be carried out in
the form of a series of Bessel functions as in reference 3; however, this
is not required here since, as is pointed out in the introduction, only the
first—order effects of the frequency o are necegsary in the present
discussion. The terms involving higher powers of the frequency can be
deleted by expanding the integrand of equation (11) into a power series
in o and dropping the “erms involving this paramster to powers higher
than the first. When this expansion is made, the indicated integration
in equation (11) can be carried out in closed form. There is obtailned

it
¢Na:.~."_g‘£x<[n2 1—‘”3%&—5) .t
| S dm \/(n —nl)(n2 —n)'

Vo, _daM 2
B 2620

. iwt
Vag ' [ s %
P 2620

or, if the out—of—phase comporent iax 139 denoted by «,

1}

P, ® V—g x - YoM 2 (i2)
4 283 .

Note that even though the expression for Pne 1n equation (12) does

not contain the integrated effects of higher—order terms in. w, 1t remains
sinusoidal with respect to time.
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In order to obtain ¢Nd it 1s only necessary to change the definition
of W(t,p) 1in equation (10). In this case

W(E,n) = tax (& — xp) (13)

Substituting the expressions from equations (9) and (13) into equation (8)
and letting =2z approach zero yislds

£)
x g, (& —xy)e cBT cos é%-\/zq ~ ql)(n2 - q)

0 Jmy \/(n - nl)(n2 - )

¢Nd=;r3_'

or

& , 2 ' .
- & (P2 (15)

Equations (12) and (15) may be substituted into equation (5) to obtain the
complete expression for ¢N at the upper surface of the wing.

Derivation of ¢T.~ As pointed out in the introduction, distributions

of doublets may be used to satisfy the boundary—value problem in the reglon of
mixed supersonic flow (region T). The type of doublet required is that with
axis normal to the reference plane. It will be recalled that the potential

of suca a doublet may be obtained from the, potential of a source, located

in the reference plane, by a partial differentiation of the source

potential with respect to the direction normal to the reference. plane.

—
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If such a differentiation is applied to the potential of a moving source

in the ¢n—plane (equation (7)), the following expression that may be shown
to satisfy equation (1) is obtained:

p = & fute ,m T M o T2) (16)

V(o = ) (e = )

where now W(&,n) refers to doublet streﬁgth.

In order to obtain ¢T0L for the oscillating flat wing it is convenient
to assign to the functions w(t —T7y) + w(t —To) and W(t,n) the

expressions given in equation (9) and equation (10), respectively.
Substituting these expressions into equation (16) gives

et N
P = §- -2Va, R - \/(n _ nl)(ne )
Z
\/ n - nl)(n2 )
= —QVGBEZe_f:%(’X— Ol o é% ('l _ ’ll)(ﬂg _ Tl)

B% (n = mp)(np =~ )

)
w

e

[(n‘ _ "1)("2 _ n)] 3/2 J

> (17)
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Expanding the terms invblving @ in equation (17) into a power series
to the first order of w glves ‘

1 -1y )
Po = —oVap2y CBQ

. En - nl)(n2 - ﬂﬂ 3/2

v é CB)KT'_"Q '*n):’3/2 cp® K“'”l) _nﬂB/é

(18)

Each of the two terms within the braces in equation (18) can be shown to
satisfy equation (1) to the first order of w. Furthermore it can be seen
that, to the first order of w, the potential of a moving doublet may be
considered as a superposition of two doublets of the stationary type; one

of strength proportional to o — M@%» and the other of strength proportional

cB
Ma
to =—¢.
c52

The potential ¢Ta composed of distributions of doubiets of the types
in equation (18) may be written

v 2 Fi(e,m)dn at

T c 3
_ B “f”l("e )]/2

// :'ﬂ)dT] dat ( ) |
19

T cBrn 3/2 .

l:n - nl)(n - n)] '

¢Tm
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where the integration is to be extended over the wing surface S included

in the fore cone with vertex at (x,y,z) (see fig. 2(b) for the limiting

case 2z = 0) and where F, and F, are functions describing the manner in
which the doublets are to be distributed in the region S and must be deter—

mined in such a manner that the boundary conditions (a) and (b) will be
satisfied. : :

The normal procedure of determining Fl and 'Fé would be to formulate

an integral equation by imposing the boundary conditions on equation (19);
however, this procedure is tedlous and difficult. It can be circumvented
here by making use of known solutions to similar problems. Ths integrand
of the first integral in equation (19) is recognized to be the same as that
in the integral form of the velocity potential for a similar wing at constant
angle of attack, and the integrand of the second integral is recognized to
be the same as that in the integral form of the velocity potential for a
similar wing undergoing a constant rotation about its leading edge.
Furthermore, the boundary conditions for these cases can be stated precisely
as conditions (a) and (b), stated herein, for the oscillating wing. The
distribution function and the velocity potential at the wing surface for

the rectangular wing at constant angle of attack can be readily obtained
from the known distribution of 1ift for this case. The distribution
function and velocity potential at the wing surface for the rectangular

wing undergoing a constant rotation about its leading edge can be obtained
from the wing at constant angle of attack by linear superposition. The
distribution functions and velocity potentials at the wing surface for

both these cases are derived in the appendix. The value of ¢Ta

(equation 19) at the wing surface can be easily deduced from these results;
that is,

¢Ta,(x)y:t)z 21(“ _kﬁ_){) VB}'(X - By) + X.Sin_l [B?y

BT[ c 32

3

cfB 'n

LT 3 2B \/oy(x ~ By) + 22 stn?, /i—y]
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~ Bm

= 2la [\/By(x - By) + x sin~t \/EE']

M2°°3 (x + 2By) VBy(x — By) + 3x%sin™t \/‘ ] (20)

3nB

In order to obtain ¢T&' it is convenient to define W(&,n) as in

equation (13). Substituting equations (9) and (13) into equation (16)
ylelds :

— .

-1 (x—t)
¢2 _ 9 _2&(§ _ xo) e cB2 x cos Bt—jg:' \/(7] - 'ﬂl>(n2 - 7\) (21)

’Bz \/(n - nl)(n2 )

b aned

Carrying out the indicated differentiation and expanding to the first
power of ® results in

2%z £~ %

_[(q - “1)("2 - ﬂ 3/2

po

X0 3 | (22)

[(n “ ) (% - n)] 3/?_ [(n =n)(n, = n)] 2 ,2

The two expressions in the right side of equation (22) have the same form
as the expressions in the right side of equation (18). The following

282264

\.
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integral expression for ¢T& is therefore of the same form as the
integral expression for ¢T (equation 19) and the functions F3

and Fh can be determined by the procedure given for determining n

¢ . Bza.xo f/ 3(§,q)d§ d'q _ Bz&, [[ §Fh(§"n)_d-§ dn
( 3/2 7 s ¥ :

n ﬂ , [(n - n])(n2 - n)] 3/2

The~expression for ¢Td at the wing surface can therefore be deduced from (
the results in the appendix to be

| P _
Prg = - ::O \By(x — By) + x sin ™ _Bx_y
T : , |
¢ 2| 2B\ oy(x — By) + % st \’EXZ

=£;[5x—26y—6xo \/m+X(x—2xo)sin \/‘_

3
(23)

Equations (20) and (23) may be substituted into equation (6) to. obtain p
at the wlng surface.

Aerodynamic moment — The local pressure difference between ths upper
and lower surfaces may be written as

P = —2p(¥ + V') :ﬁ) ' ‘ (2k)
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The aerodynamic moment on the entire wing about the axis X = Xo, measured
in the positive clockwise direction, is then (see fig. 1)

;40=2 L/L/I;(x—xo)dede'c4:2(/7‘/r’(x—x()PTdy'dx ;25)

If 211 linear dimensions involved in equations (24) and (25) are referred
to the chord 2b, these equations become, in a sense, nondimensional and
can be written

P = —2p ég + jL ég> (26)

ot 2b ox

and

My = 1653 /L[v( — xo)py dy dx + 1603 A/:/;( = %o)er 47 ax

Putting in the appropriate limits of integration (see fig. 2) results in
the following equation for the total aerodynamic moment :

3I1fh , 3 1 x/B( ’
M_ = 16b X —-X dy dx + 16b ff X - X)) b, dy dx
* 0 x/B( o) B 0 do O)_T

If the nondimensional forms of Py and P are computed from

equé,tions (12), (15), (=20), and (23) and substituted into equation (28),
there is obtained a complex expression for M, that may be written as

(27)

(28)

M, = —8°b3v21;2aA<M3 + iMu> (29)
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where

M, = 3;}(2 313(1~ - 2x0) —%(2 - SXO):I (30)

is the in-phase component of the aerodynamic-moment coefficlent, and

, = =2 31 - 335 + 3%?) — B2 - 3x) - o3ty =) < (uxo =3)
387k _ oA |
(31)

is the out—of—phase or torsional—damping aerodynamic—moment coefficient.

The expression for Mh in equatioh (31) repregents the central result

of the present investigation because the conditions of torsional stability
or instability depend directly on the sign and magnitude of M. It will

be noted, in equation (31), that M, may undergo changes in sign as any
one of the parameters B, Xy, and A ‘is varied.

Although equation (31) has been derived for the condition that the
intersection of the Mach cones from the foremost points of the side edges
i1s off the wing, it can be shown that it remains valid as long as the Mach
cone from one slde edge does not intersect the opposite side edge. When a
side edge 1s intersected by the Mach cone from the opposite edge different
velocity potentials from those explicitly derived herein are required for
portions of the wing behind the points where the Mach cone intersects the
edge. The derivation of these potentials is not considered here.

Total torsional—damping coefficient and some selected calculations of
gtability conditions.— If mechanical damping is assumed to exist about the
axlg of rotation, for example as the hinge friction in an ailleron instal—
lation, and if this damping is converted to coefficient form as in
references 3 and 9 and combined with the aerodynamic damping, the total
torsional—damping coefficient may be written as '

>
M, = Mu(a,xo,k,A) + urf(“—“) g

(V]
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or

S )
M," = Mu(B,xO,k,A) + k-lg ura2<b‘-$> &, | . (32)

Negative values of M),' indicate dynamic instability that may
correspond to single—degree torsional flutter. Positive values of Mn'
indicate stable conditions and between the stable and unstable conditions,
that is when Mh' vanishes, a borderline state of unstable equilibrium

separating damped and undamped forsional oscillations occurs. Since the
term 1nvolving g, 1in squation (32) 1s always positive, negative values

of Mh' and the wvanishing of Mh' are agsoclated with negative values
only of My, (equation (31)).

With the exception of aspect ratio A, the effects of the individual
parameters in squation (32) are presented in references 3 and 4. The
effect of aspect ratio for some particular values of the othsr parameters
is briefly discussed in the following paragraphs.

The range of values of Xo and 62 (and M?) for which Mh' vanishes

when g, 1s assumed to be zero and A has different selected values is

shown plotted in figure 3. The reglong ingide the different curves give
the range of values of X, Be, and M° 1in which instability might occur.

The curve for infinite aspect ratio agrees with that given in figure 21 of
reference 3 and that given in figure 2 of reference 4. It will be noted
that decreasing the aspect ratio has a highly stabilizing effect. .

The dashed portions of the curves in figure 3 correspond to aspect
ratio and Mach number combinations that cause the Mach cone from the
foremost point of one tip to intersect the opposite tip ahead of the
trailing edge.

In figure 4 ths quantity M, multiplled, for convenience, by 3B“k is

plotted as a function of M® for the values of A selected in figure 3.
The ordinates of these curves are proportional to the amount of negative
aerodynamic damping avallable for given Mach numbers and for given values
of the frequency parameter k. The stabilizing effect of decreasing aspect
ratio is apparent in this figure.

Corresponding values of the flutter—speed coefficient V/bma and
aspect ratio A for which Mu’ vanishes for some selected values of the

parameters xb, €a,s M?, M, %; and ra? are plotted in figure 5.
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The regions above these curves give the range of values in which insta-—

-bilities might occur.

It should be recalled that thickness effects have not been considered
in the present discussion., Second—order thickness effects may be of
considerable significance in regard to undamped torsional oscillations of
wings of finite or infinite aspect ratio.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
. Langley Air Force Base, Va., March 28, 1949
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~ APPENDIX

VELOCITY POTENTIALS FOR TIP REGION OF RECTANGULAR
WING IN STEADY SUPERSONIC FLOW
It can be shown, as in reference 10, that at points in the xy—plane
‘the perturbation-velocity potential in a supersonic stream due to doublets

in the xy—plane distributed according to a distribution function f(g,n)
is proportional to the distributlion function; that is,

P(x,y,0) =1im Vapz jl r(&,m)dn dt
20 " Ex — 52 =y = )2 = Bez;_g]3/2

(%, ¥) - (A1)

where the positive sign applies to the upper surface of the region S and
the negative sign applies. to the lower surface; that 1s, the direction from
which 2z - 0. Waen the appropriate distribution function can be found, such
doublet distributions can be wed to satisfy boundary—value problems, in the
xy—plane, for vanishingly thin airfoils at vanishingly small angles of
attack. In the case of a rectangular wing placed in a supersonic stream
flowing from the negative x—~direction, with its leading edge normal to the
free—stream direction, the added velocity in the free—stream direction in
the tip reglon can be obtalned from the expression derived for the added
pressure difference, in this region, in reference 11. In the present
notation.this expression for pressure difference 1s :

or

P _, ‘BIE sin~L \[BL (A2)
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If ¢ is eliminated from equations (Al) and (A2), the following differ—
ential equation for f(x,y) is obtained:

§£ - gin—1 ,/EZ - (a3)
Abx Bx o X

The expression for =f(x,y) or @(x,y) can now be obtained by a partial
integration, with respect to x, of equation (A3). This integration gives

nf(x,y) = #(x,y) = Z—“[\/By(x —By)+ x sin > \/%Cr):] (AL)

For the rectangular wing rotating about its leading edge the
distribution function for the tip region can be obtained by a linear
superposition of the function given in (AkL); that is,

X '
—«f £(x - g)ag = -2 Ve[ — o) -yl + (- g) ot BT A ag

x—¢&

_Ya X =2BY G pr) 4 %2 sin L [P
= Bx [.3 By(x — By) + x° sin X] (A5)

If in equation (Ak) o is replaced by o — -ME’Q-‘ and if in equation (A5)
. cB
a is replaced by Mdé, the sum of the resulting equations will yleld

cB
equation (20) of the text. Similarly, if in equatlon (AY) Vo is
replaced by —xy& and if in equation (A5) Va is replaced by &, the

sum of the resulting equations will yield equation (23) of the text.
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