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SUMMARY

With the assumption of the linearized pressure-volume relation,
a solution of the problem of designing an airfoll with any
theoretically attainable prescribed dimensionless velocity distri-
bution in a potential flow of & compressible perfect fluid was
obtained by a method of correspondence between potential flows of
compressible and incompressible flulds.

If the prescribed velocity distribution was not theoretically
realizable, that is, the distribution would result in an open pro-
file, the method gave an easy way of modifying the velocity distri-
bution in order to obtain a closed profile. Numerical examples are
‘included.

INTRODUCTION

In order to avold flow separation and excessively high local
velccities in designing an airfoil or profile, it 1s advantageous
to prescribe the velocity distribution as a function of the arc
length along the airfoil and then compute the airfoil shape. For
a two-dimensiocnal potential flow of an incompressible nonviscous
fluid, several methods based on conformal-mapping theory are avail-
able for obtaining a profile with a prescribed velocity distribution
.in a uniform stream. (See references 1l to 3. )

A similar solution for the two-dimensional potential flow of a
compressible nonviscous fluid was obtained at the NACA Lewis lab-
oratory. This solution is based on the assumption that the pressure-
volume relation is given by the tangent to the isentropic curve
instead of the true curve. The flow pattern of the compressible
fluid is obtained by transformation from corresponding flow of an
incompressible fluid in the manner developed by Lin in his
extension (reference 4) of the method developed by von Kérmen and
Tsien (reference 5) for obtaining the flow of a campressible fluid
past a given profile. An approach similar to that of reference 4
is given by Gelbart in reference 6.

\
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The method presented herein consists in using the prescribed
dimensionless velocity distribution about the airfoil in compressible
flow (1) to select the proper potential flow of an incompressible
fluid about the unit circle, and (2) to determine the mapping func-
tion that transforms this incompressible flow into a compressible
flow. The image of the unit circle under this mapping gives the
airfoil with the prescribed velocity distribution provided the
velocity distribution is theoretically attainable. For velocity
distributions that are not realizable, a method is given for so
modifying the velocity distribution that a closed profile 1s
obtained.

SYMBOLS
The following symbols are used herein:

A,B,C,D, constants

a,b

F({) complex potential in { plane

£(¢) regular function of ¢

g " real part of f({) | \

H(L) analytic function of {

h imaginary part of f()

Im | imaginary part . *

k regular function.of ¢

n : number determined by 1n§luded tall angle of‘airfoil

P profile

P pressure

Q(s) auxiliary function of s ’ |
q magnitﬁde of dimensionless velocity iﬁ campressible plane

(ratio of actual velocity to stagnation velocity of sound )

Re : real part
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8 arc length on profile

W free-stream velocity in incompressible flow (See fig. 1.)
w . complex velc'acity in incompressible flow @d_(!Q

z = x+1y camplex variable (compressible-flow plane)

a angle velocity makes with x-axis (compressible flow)
r circulation (See fig. 1.) \ ‘
7Y _angle determined by tralling-edge stagnation point on

unit circle (See fig. 1.)

5 tail angle of airfoil
{ = t+in  camplex variable (inccanp:lgssible-flow plane)
E' auxiliary complex variabie '
6 circle angle |
(o} density
P velocity potential
v stream function )
Subscriptss’
. C compreesible
i incompressible
min minimum
n nose

Prime indicates a related function.
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THEORY OF METEOD

’

In reference 4, Lin shows thé.t if the pressure-density
relation for a compressible fluid is expressed as

B
p=A-3 | (1)

where A and B are constants, then given a potential flow of an
incompressible nonviscous fluld past a prqfile P 1 in the _(,

plane described by the complex potential function F) and the
complex velocity w( §), the potential flow of a nonviscous com-
pressible fluid about some profile Pc‘ in the 2z plane can be

obtained by choosing a function k({), regular and nonzero in the
exterior of the profile P1 and satisfying the conditions

o] <t

Sb'k(c)a; %gS‘%% at =0 G

along any path enclosing Pj. (The bar denotes the conjugate
complex quantity.) Then the equations

on Pi’ and

1 '@ | '
z=x+1y=fk(§)d§-z T%%dg (4)
—_—2a o la_yw ' (5)
1+ A1+ E{‘B- |
@, + W, = F({) (8)

give the parametric representation of the compressible flow past a .
profile P, 1in the 2z plane with § as a parameter and where

P, bas the same general analytic nature as the original profile
Py. In these equations @, ¥., q, and o denote for the com-

pressible flow, the velocity potential, the stream function, the
magnitude of the dimensionlese velocity, and the angle the.velocity
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makes with the x- axis, respectively. Equation (4) gives the
correspondence between the two planes and equations (5) and (6)
give the relation between the velocities and the potentials at
corresponding points.

It is also shown in reference 4 that if the { plane is con-
formally transformed into the Z Plane by the analytical function
{ = H(E) (taking the profile P, into a profile B,) and this

. resulting flow about ﬁi is mapped into a compressidble flow in the
Z plane by

~eo o~ ~2 .Y ~
z=jk(§)d§-%‘- ‘Ez-gldl

2q o ~-ia -

l+ /\/l - q2 ‘E(Z)

.

P + fqrc = g(z)

where

F(E) = F(Y)
~Y - d /% =W d
v EEF“) masg.
k(D = k() &
at

then the profile obtained is the same as that given by equations (4)
to (6). Consequently, the unit circle in the { plane can be taken
as Py. When the unit circle is taken as P;, a profile with a

pointed tail can be obtained as indicated -in reference 4 by allowing
k() to vanish at the trailing-edge stagnation point where
w(_t‘) = 0.

In order to apply this transformation to the problem of obtain-
ing the profile with a prescribed dimensionless velocity distribution
in a compressible potential flow, the complex potential about the
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circle in the ! plane must be determined and the function k({)
obtained. .For the actual computation of the profile, only the
values of these functions for points on the circle are needed.

Flov in Circle Plane

The complex potential in the { plane for the incompressible
flow about the unit circle f=e 16 1is

F(L) =@y + 10y = -w(; +§1-> + 2—1;1? logt +C (7)

where W 18 the free-stream velocity and is in the direction of
the negative ¢ axis, I'y 1s the circulation, and C is an

arbitrary'consta.nt. For points on the circle, equation (7) becomes

CP1(6)=-2}I(cosé+cosy)+2£1;(9+:t-7) (81)

when C 1s so chosen that @ = 0 at the trailing-edge .stagnation
point = -el”. (See £ig. 1.) The velocity is

I

T
w(g) = -10~16 (zw sin 6 + Eii> - (9)

Both cpi(e) and W(0) are completely determined when Iy, W,

and 7y are known and these quantities are obtailned from the pre-
scribed velocity distribution in the following manner: The magnitude -
of the prescribed dimensionless velocity along the airfoll is given
as a function of arc length q = q(s) (fig. 2) where the total arc
. length is taken as 21 and is measured from the tall along the
lower surface. If Q(s) 1s defined as '

Q(s) = -a(s) when 0<s

A

®n

Q(s) = q(s) when 8y < 8 <2

where s 1is the nose stagnation point (fig. 2), then

vote) = [ " ato) as (10)
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2xn
Te =f Q(s) ds (11)
0 v

g ¢
Pe,min if : Q(s) ds (12)
0 .

By equation (6) the potentials are equal at corresponding points
so the%

®4,min = Pe,min
r " =1'; (13)
Then 7 1s glven by (referexice 2)

! min ﬂcpc min (14)

=X _ =X .
cot y + y = ——P!-;—— 5 —f:-

and W 1s given by

Y

I‘1 by

= = —c
4 neiny 4xs8iny

(15)

»The’ flow about the circle is obtained by using these values of
1"1, W, and 7 in equations (8) and (9)

Function k({)

The function k(!) 1s computed for points on the unit circle
by using the prescribed velocity distribution on the airfoil and
the velocity on the circle to determine the real part of k(!) on
the circle. Then Poisson's integral gives the imaginary part of
k() on the circle. The values of k({) for any point in the
exterior of the circle can be obtained from these values on the
circle by further use of Poisson's integral. For the computation
of the airfoil, however, only the values on the circle are needed.

Airfoil with pointed tail. - In order that the alrfoil have a
pointed tall, it is necessary for k({) to vanish at the trailing-

edge stagnation point ({ = -el”) of the unit circle. Hence
k() can be written :
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iy \n
e ) o 8+ 1ib (16)

K(t) = (1 . &

vhere g + ih is a regular function of { on and outside the
circle. The exponent n and the included tail angle b of the
airfoil are related by

n=1-2 - (17)
‘ T

as shown in appendix A. For points on the circle { =e 19,

equation (16) becomes

x(6) = [1 Ve 1(7-9)] N o8(6) + 1n(g) (18)

Determination of g(6) and h(6). - From equation (6) the
potentials cpi(e) and @ 0(5) are equal at corresponding points.

Thus, by matching these potentials a correspondence is established
between points along the airfoil arc and the circle angle; that is,
s = 8(68). By this relation, the magnitude of the dimensionless
prescribed velocity along the airfoil is obtained as a function of
the circle angle q = q(6). Hence, by taking the absolute values
of equation (5) .

2g(6) - |w§9;| a (19)
1 + A/1 + q2(6) | k()]
for points on the circle. By use of equations (9) and (18), equa-

2\’Is:|.n9+l

2q(6) - 21 ' (20)

L+ AL a?(e) [2 +' 2cos(y - 9)]% o8(6)

~ tion (19) reduces to

or, on solving for g(6),
T 1 +N1 + qaiéi ;1
g(e) = 1oge<2w sin 6 + 21() + loge[ 2a0) | z 1039[2 + 2003(7-9]

(21)

The function h(6), the harmonic conjugate of g(6), is
obtained for points on the circle by using Polsson's integral
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h(e) = i fzng('r) co‘l': (I—‘—e> at + D (22)
2n 0 . 2

where D 1s a constant (reference 7). For convenience, this con-
stant is taken as zero because a change in D merely rotates the
coordinates in the 2z plane, as shown in appendix B. Hence k(L)
is now completely determined on the circle by using the values of
g(6) and h(6) (equations (21) and (22), respectively) in equa-
tion (18).

Closure conditions. - In order that the airfoil P, be closed,
k() must satisfy the condition
v2(L)
al =0 '(23)

ggk(ﬁ) at - s

. along any path enclosing the unit circle. If these functions are
expanded about infinity and residues considered, this condition can
be expressed in a more useful form, which permits the adjustment of
the values of k(6) as given by equation (18) so that equation (23)
is satisfled.

=

’ |

n ‘ '
k() = (1 + °—;-Z> of (0

where f(!) 1is regular on and outside the circle. By writing

Now

a a
1, 22
f(§)=ap+§+§2+ooo
then '
17 4+ a L. ’
K(t) = e70| 1 + — 1<+ terms in E%-, 3 ?2> (24)
Hence,

. . o
ggk(g) at = 2x te o(neﬂ‘7 + a.l) , (25)
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From the incompressible flow about the circle,

w(L):d—ld?-(Q.;w-M.;_w_

¢ ¢ t2
and
: 21y 2
we -a 4W2131n7-nWe -alw
s oRCId L t *
1
(terms in QJ, J iz)}

Therefore

o §"—is.8. al = 2nie -80(4W21 sin 7y - nﬂzei7 - alwz) (26)

Then by using equations (25) and (26), equation (23) becomes

a

‘ -a
2xie o(ne;j'7 + a.l) - %-[Z:tie 0 w2 (41 8in 7 - nel? - al)] =0

or

2,‘191 Im(a'o)e-Re(&o) GZRO(GQ) [neiy + Re(al) + 1 Im(al)] 4

z——z- [41 sin 7y -.ne.i7 - Re(al) +1 Im(&li‘> =0 (27)

where Re and Im indicate the real and imaginary parts, respec-
tively. Equating the real part of equation (27) to zero gives

[ez Re(ag) _ :—2-] [ ncos y + Re(al)] =0 (28)
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But
e2 Re(ao') ) ﬁ
4
cannot be zero except for zero free-stream velocity; hence
ncos 7y + Re(al) =0 ©(29)

The imaginary part of equation (27) gives

2 Re(a

e (0)[n sin7+Im(al)] +2—E[-4 sin7+Im(al)+nsin 7:l=0

or

wz gin 7 (30)

2
e2 Re(ag) + {_

Consequently, k({) will satisfy equation (23) if Re(al) and
Im(a,) satisfy equations (29) amd (30), respectively.

Im(al) +nseiny=

Determination of Re(a,), Re(aj), and Im(a;). - In order to ’

determine Re(ay), Re(a;), and Im(a;) when k(6) is given by
equation (18), the expansion in equation (24) is written as
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.

o,

._ . - u
_WHaVaH + 4 ugs u|g - _w.ncvom + 4 mooAn“T = gp 800 ()X oY =
{ -
0
%2
ev (8)X wr T =g
x2 .
0 ¥z
op (6)X o¥ T=V
A xZ

ox0JoIoqy pue ‘sorges .nc.n..nsoh v 97 volsuedxe SIYL °df + V = ooo oxouM
=pr ¢
Qm S0 Copy® UT ESWIO})

\ | + 0 5_m* _w._”dvaH + 4 ure uig + _wﬂovom + £ 800 nu_e. nw

+ @ BOD ﬁ _w.ndvom.+ 4 800 a“_m + _W.nale + ule L«w+ mda

b (2EF fopye T Fmien)
+ g uys A _W.ndvom + 4 802 n.‘_m,+ _w._”chH + 4 ue @ a@.

+ @ 800 ﬁwacvﬂ + 4 uts u|g - _Waavom + 4 800 nu_i + V= (6)XW T+ (6)XoH = (6)%
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and

-[*ex ‘
1
;f Re k(6) s_inede-:Ansin7+Im(al):, +Bncosy+Re(al)]
o .
Then
efe(a0) | A% 4 B2 (31)

{j‘z‘ Re k(8) cos 0 46 + gj“zx Re k(6) sin 6 d6

. _]__ 0
n cos y + Re(al) =

2
AA2+B

(32)
2n 2x )
_Af Re k(8) ein 6 40 -~ B Re k(‘O) cos 6 46
nsin7+1m(al)=i'- 0 0

A +B
(33)
These equations glve Re(a ), Re(a.l), a.nd Im(al), which are
required to satisfy equations (29) and (30) for closure.

Adjustment of k(l) for closure. - If these values of 'ao and
a, do not satisfy the conditioms, k({) must be modified and this

’ modification will change the velocity distribution’'slightly in most
. cases. For adjusting k(t{), b, 1s defined,

Re(bl) -[n cos 7 + Re(alil

Im(bl) = - Im(al) +neiny - __124.;3_7_
°2Re(ao) . 32_
4
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where Re(ao), Re(al), and Im(al) are given by equations (31) to
(33). Then the function k'(!) defined by

(bl/ ¢) (34)

k'(8) = k(L) e
will satisfy equation (22) and the airfoil obtained using Xk'(l)
will close. The velocity distribution q' on the resulting profile
will differ slightly from the prescribed velocity because of thie
ad Justment. The ratio of these velocitles 1is

gt _ (e -|w[P)eRe(1) co8 8 + In (b)) sln 0

1 42 g2[Re(b1) cos 6 + In (b1) ein 6] - |w|?

Because

e (8)] = |icleR®(P) ©08 @ + Tu(P1) oin 6

it is possidble that k'({) will not satisfy inequality (2). If it
doesn't satisfy the inequality, a new funtion k"({) defined by

do + 'd-l
() =k(D e © (35)

where do is chosen so that k"({) will satisfy inequality (2)
and

Re(dl) = Re(b,) , | ’

Im(dl) = Im(bl) - W sin y + Hz gin 7
, e2.’1!6(60) + 1_14_2 o2Re(ag + a) | é

will satisfy all requirements and yleld a closed airfoil. That such
a do existes is shown by taking do to be any positive real number

such that

wasin7
We

4

dy>|Re(dy)| + Imm(v))l +
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but
d_ + Re(d)) cos 6 + Im(d)) sin 6

k"(§)| = lk(i)

» | ,
[Re(a,)] +|Tm(ay ) Ro (by)] +|miby)] + 2322(a:m5 2 znewzla 0851121(10 2| =
e +T° + 7

-

'|Be(blj +IIm(b1)| + “2—-?-1 <d,

4

Therefore

en0l> ()] > |3 wit)

which is inequality (2).

If this method is used, do should be chosen as small as

possible, so that the velocity on the profile will differ only ,
slightly from the prescribed values. With k"({), the velocity on’
the profile 1s

dy + Re(d;) .cos 6 + In(d;) sin 6
} 4l x (o) lw(e)] o

af¥(o)? [d0 + Re(a1) cos 6 + In(d)) ein é]-|v2(a)|

q"

In some cases it may be better to modify k'({) to satisfy
inequality (2) by changing the higher harmonic terms which, of
course, do not affect the closure; that is, multiply k'(§$ by

b, Dbz ,

¢ 3
e o« In fact, these terms may be used to reduce
the changes induced in the prescribed velocity distribution when
modifying k() to obtain a closed profile. These terms also may
be used to alter the airfoll shape when the computed profile is
too thin or has negative thickness. The selection of the coeffi-
clents by, bz, . . . depends on the particular problem and the

velocity distribution desired and therefore no general method can
be given for determining them. :
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Airfoil Coordinates

The function k(6) has been obtained to satisfy all require-
ments; hence, the airfoil coordinates in the 2z plane are given by
equation (4) on integrating around the unit circle. For convenience
let k(6) be written

k(0) = k,(e) eika(e) : (36)

Then from equation (4) the airfoil coordinates are
I

' _41:12 -2Wsin6+-—1-2
: a in(k, + 6) a6 (37)
X= 4kl 8 2 +
4klz -(Zw Sin 9 + ""1‘.‘ 2 \
y= 152 cos(k2 + 0) d6 (38)
4k1 A

COMPUTATIONAL PROCEDURE
An outline of the procedure for computing the airfoll follows:

1. Obtain @,(s), T;, and @ min from equations (10), (11),
and (12), respectively. -

2. By use of these values in equations (13), (14), and (15),
obtain P4, 7, and W, respectively. Then calculate P4(6) and
v(6) from equations (8) and (9).. ‘

3. Plot P;(s) and ®4(6). By camparing equal values of these

potentials, obtain s as a function of 6, which permits writing
the preecribed velocity q as a function of 6, q = q(6).

4. Compute g(6) by equation (21) and h(6) by equation (22).
Then k(6) 1s obtained from equation (18). '
5. The closure conditions are checked by camputing Re(ao),

Re(a.l), and Im(al) from equations (31), (32), and (33), respec-
tively, and checking these values in equations (29) and (30). If
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these equations are not satisfied, k(6) 1is adjusted by equation
(34). This new function k'(6) must be checked in inequality (2).
If it does not satisfy this condition, k'(6) 1s further modified
as indicated in equation (35).

6. By use of the adjusted values of k(6) that satisfy all
conditions, the airfoil coordinates are obtained from equations (37)
and (38) by integration.

JLLUSTRATIVE EXAMPLES

Circular profile. - As a check on the method, the theoretical
velocity distribution on a nearly circular profile, as computed in
reference 8 from the simplified pressure-density relation, was taken
as the prescribed velocity distribution (fig. 2) and the profile was
computed. The profile agrees with the one used in reference 8, as
shown in figure 3.

Airfoil profile. - In this example, the prescribed veloclty q
was obtained from the incompressible velocity distribution about a
symnetrical Joukowski profile, computed by Lipman Bers at Syracuse
University in the form of the ratio of actual velocity to free-stream
velocity, by taking the dimensionless free-stream velocity to be 0.538.
The resulting distribution is shown in figure 4 together with the
final velocity after adjustment for closure. The camputed profile
(fig. 5) 1s slightly thicker than the Joukowskl profile toward the nose
and has some reflex camber. The peaks in the velocity distribution
about the computed profile are lower than those that would occur in a
compressible flow about the Joukowskl profile with the same free-stream
velocity and angle of attack because: (1) the circulation was kept the
‘same as for the incompressible flow, which resulted in the reflex
camber; and (2) the thickening of the profile reduced the curvatures
in the vicinity of the velocity peaks.

CONCLUSIONS

By the assumption of the linear pressure-voluﬁe relation, a
method has been given for uniquely obtaining the shape of an air-
foil having any prescribed veloclty distribution, which 1s theo-
retically realizable - that is, ylelds a closed profile - in a
potential flow of a compressible perfect fluid. If the prescribed
velocity is not realizable, the method gives a means of modifying .
it 80 that a closed profile is obtained. Whether the resulting -
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profile is practical or not will depend on other considerations

such as thickness. The applicability of the method is limited dnly
by the accuracy of this linear approximation to the actual pressure-
volume relation.

Lewls Flight Propulsion Laboratory;
National Advisory Committee for Aeronautics,
Cleveland, Ohio, May 4, 1949.
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APPENDIX A

RELATION BETWEEN n AND

On the unit circle, equation (5) becomes

-1(e
2q -la e (+)(me+sm7)zw

——————— e =
,,/ 2
1+l +4q [l + ei(y-ei] o8 + ih

or
n
2q o-la _ 9-1(9 + 5) (sin 6 + 8in 7) 2 W
n
l+\}l+q2 2 1[h+narctanl_5£1.£1_9.l__:|+g
P . 2008(7-9ﬂ + cos(y-6)
(A1)

For a point p:L on the upper surface of the airfoil very near the

tail of the airfoil, the angle of the veloclty in the 2z plane 1s
given by equation (Al) and

sin(y-64)

a = (6 +-’2(-) + n arc tan +h(61)

1 1 1+ cos(‘y-el)
where 91 is the circle angle corresponding to pl and
bL¢ <91<n +

Similarly, for a point pp, on the lower surface

sin(7-65)

3
= (6, + —) + n arc tan - + h(6
%2 (62 2) A 1 +cos(7-92) (2)

where

- + 7<92<-%
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Hence

ay-a, = (91-62)- % + nlarc t

Then the angle 5 is the limit of (

=

{%rc tan sin(7-9§):]= .3
1+ cos(7~92) 2

approach the tail.

limit
el-*a»u + 7

limit
92-—>~u + 7

Hence

or

n(e;) - n(e

o o10(7-6,)

1+ coé(y-el)

2)

51n(7-6,)

- arc tan.

NACA TN 1913

sin(7-92)

1+ cos(y-eéf

a-X
1+ °°°(7'91£} 2

r
A

+ n(-n)

al-ah) as p, amd p,
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APPENDIX B
INFLUENCE OF D ON PROFILE

If D 1is not taken as zero in equation (22) , the airfoil
coordinates x' and y' are

2
2W sin 7 +—
sin(kz +D +0) a6

b

T\
4k12 -(EW gin y + %)
= _ [s;in(k2 + 6) cos D + cos(ky + e)sinlil ae
1

xcosD=-yseinD

and I

2

4 <2W sin ¥ + 2:)

y' = = cos(k, + D + 6) de
1l - ,

. . r\2 . .
41:1 -\ 2W gin 7y + ox :
= = I}os(kz + 6) cos D = sin(k, + 6) sin D]de‘
l

=ycosD +xs8inD

Conseqliently, the airfoil given by x' and y' 1s the same
as the one given by x and y rotated through the angle D.
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