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SUMMARY

An approximate method, based on a simplified form of the con=-
tinuity relation, is developed to predict the lccation of detached
shock waves ahead of two-dimensional and axially symmetric bodies.
In order to reduce the problem to asn equivalent cne-dimensional
form, it was assumed that: (1) The form of the shock between its
foremost point and lts sonic point is adequately represented by
an hyperbole asymptotic to the free-stresm Mach lines; and (2) the
sonic line between the shock and the body is straight and inclined
at an angle that depends only on the free-stream Mech nuwber. With
these assumptions, the lccation of the shock relative to the body
sonic point is independent of the form of the nose cr leadlng edge
ahead of the sonic point and becomes a single-valued function of
the Mach number. A simple geometric method for estimating shock
location is also presented, but this method agrees less closely
with experiment then the continuity method.

When the location of the detached wave and tke sonic line
relative to the body are known, the drag of the portion of the
body upstream of 1ts sonic point can be estimated from the momen-
tum change of the fluid that crosses the sonic line. Comparison
with available experimental resulte Indicates that the estimated
drag coefficlents are good approximations except for very blunt
bodies and for free-stream Mach numbers close to 1.0.

The simplified continuity method is also appllied to unsym-
metric two-dimensional bodies at angle of attack and tc two-
dimensional and axially symmetric supersonic inlets with detached
waves due to spillage over the cowl. For supersonic inlets, the
relation between spillage and shock location is presented and the
additive drag due to spillage 1s estimated.
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INTRODUCTION

When a region of subsonic flow occurs in a supersonic flow
field, many simplifying assumptions are generally required to make
theoretical analysis feasible. Without such assumptions, the flow
can be constructed only by means of lengthy numerical methods
based on differential equations of fluid mechanics. Such compu-
tations differ for each configuration investigated; general trends
and important parameters are therefore not easily discernible.

A reasonable set of assumptions for simplifying the analysis
of supersonic flow with detached shock waves should be consistent
with the following cheracteristices of such flow fields: The entropy
varies from the free-stream value to the value behind a normal
shock, and the velocity varies from the free-stream value to zero
at the stagnation point. Thus, if the free-stream Mach number 1is
considerably greater than unity and 1f the subsonic region is a
significant part of the entire disturbed flow fileld, analyses based
on such assumptione as irrotaticnal flow, small differences between
local and free-stream velocity, or incompressible flow in the subsonic
region can no longsr be expected to yleld valid results. For such
problemd, other simplifying assumptions must therefore be formulated.

An analysis based on assumptions concerning the form of the
boundaries of the subsonic region rather than on the nature of the
flow variables is presented herein. 1In this analysis, which was
made at the NACA Lewis laboratory, both plane and axially symmet-
tric bodies were considered. The form of the detached wave is
assumed to be only secondarily influenced by the form of the body
ahead of the sonic point, and the sonic line between the shock and
the body is assumed to be straight and inclined at an angle that
depends only on the free-stream Mach number. The continuity rela-
tion is then applied to this simplified picture to obtaln the loca-
tion of the shock relative to the sonic point for plane and axially
symmetric bodies. The drag is estimated from the momentum change
of the fluid that passes the sonic line. The method 18 also
applied to plene unsymmetric bodles at angle of attack and to
two-dimensional and axially symmetric supersonic inlets with
spillage over the cowl. Results are compared, where poseible,
with available experimental data.
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SYMBOLS

The following symbols are used, scme of which are illustrated
in figure 1:

A area

a speed of sound
P

B = o<—9>
Pg

b x-coordinate of foremost point of body

c B(B tan @g - A[B? ten® @g - 1)

c drag coefficient of portion of body ahead of theoretical sonic
point (based on area indicated by subscript)

Pg\ P
k = -—1—2 [1.2679 (F') p_o - 1}
7M0 0 c 0

L distance between vertex of detached shock wave and xSB

M free-stream Mach number

P stagnation pressure
P statlc pressure

v local veloclity

b ¢ coordinate In stream direction

X, distance from foremost point of detached shock to intercept
of its asymptote on x-axis

y coordinate perpendicular to stream direction

B M2 -1

y ratio of specific heats (1.4 for air)
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o) local angle of body contour relative to x-axis

n angle between sonic line and normal to free-stream direction

®  half-angle of wedge or cone

ed conz half-angle for which shock becomes detached

A angle of streamline relative to x-axis

Aq wedge half-angle for which shock becomes detached

p density

ag i1sentropic contraction ratio from free stream to sonic velocity

T fraction of maximum possible inlet mass flow that passes
outside cowl

p local inclination of detached shock relative to x-axis

Subscripts:

0 free-stream conditions

1,2 upper and lower portion of unsymmetric body contour,
respectively '

c centroid of stream tube passing sonlc line

cr critical conditions

S sonic point of detached shock

SB  sonic point of body

8 conditions along sonic line

ANALYSIS

The representation of flow with detached shock waves to be used

in the present analysis is shown in figure 1. The region of subsonlc
flow is bounded by the portion of the detached wave below its sonic
point S, by the portion of the body contour upstream of its sonic

1142
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point SB, and by the sonic curve between S and SB. If the form
of the detached wave is kmown, the location of S on the shock can
immediately be determined, because for a given My the angle @g

for which sonic velocity exists behind the shock is known from shock
theory. The flow direction )Ag at this point is then also known.

The sonic curve is shown in figure 1 as a straight line. This
approximation i1s used throughout the analysis, although more exact
computations, as well as experimental results, indicate that the
form may depend considerably on the shape of the nose or leading
edge (references 1 and 2). To the degree of approximation of the
present method, however, such variations appear to be unimportant.
With the simplified picture shown iIn figure 1, approximate expres-
sions can be derived for the shock location relative to the body
sonic point and for the drag of the portion of the body in the
subsonic-flow region.

Location of Body Sonic Polnt

Evidence is available to show that, for bodies with sharp or
well-defined shoulders (fig. 2(a)), the sonic point ie located at
the shoulder (reference 2). For more gradually curved bodies, such
as ogives, the location of the sonic point can be estimated by
an extension of a method suggested by Busemann (reference 3). This
method locates the shoulder at the point where the contour of the
body is inclined at the wedge angle or cone angle corresponding to
shock detachment (fig. 2(b)). If the sonic line is approximated by
a straight line, the location of the shoulder and the sonic point
coincide. These results are analogous, in some ways, with the
flow past the throat section of a supersonic nozzle, for which the
location of the maximum constriction (shoulder) and the sonic point
coincide if the throat is sharp or if the flow is treated as one
dimensional.

The choice of the point of tangency of the body with a line
inclined at the detachment angle as the approximate locatlion of the
sonic point has some theoretical justification for two-dimensiomal
flow. W. Perl has pointed out to the author that for flow near
sonic velocity and for small perturbation velocitles, the deriva-
tive OA/OV taken along the normal to a streamline, vanishes to a
first approximation at the intersection of the sonic line with the
shock wave. This result implies that A 1is relatively constant
along the sonic line and hence, that the inclination of the body
at ite sonic point is approximately equal to )‘S‘ Inasmuch as >‘S
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1s slightly smaller than A4, the sonic point would be located

slightly downstream of the shoulder of the body; whereas the dis-
cussion glven in reference 3 shows that the sonic point lies ahead
of the shoulder. These differences, however, are insignificant for
the present analysis, because the sonic point and the shoulder are
assumed to coincide.

Although the theoretical basis for locating the sonic point
by means of the detachment angle 1s far from complete, particularly
for axially symmetric bodies, the procedure appears reasonable if,
as agsumed in the present analysis, the form of the nose or leading
edge ahead of the shoulder (or sonic point) has only a secondary
effect on the form and the location of the sonic line. This sonic line
ghould therefore have almost the same form for all bodles as, for
example, for a wedge or a cone with half-angle only slightly greater
than the detachment angle. Because the sonic point for these bodles
is known to be located at the point of tangency with the detachment
angle, the procedure should be valid for all bodies at the same
Mach number within the degree of approximation of the present method.
This procedure will therefore be used to determine body sonic polnts
for comparison of theoretical and experimental results.

The reasoning used in the preceding paragraph leads to a very
simple geometric method for predicting the locatlon of detached
shock waves. A wedge or a cone with Included angle large encugh to
cause shock detachment and with well-defined shoulders is considered
(fig. 2(a)). If b-xo is the distance from the vertex of the cone

or wedge to the foremost point of the detached wave, then

b-x
0L . cot 6 (1)
Isp JsB

If 6 1is now set equal to the detachment angle, then b-x, becomes
zero, and the expressions for shock location become:
for plane flow;

—L— = cot >\d ) (2)

IsB
and for axially synmetric flow,

— cot Gd (3)
YSB t
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Because, by the present assumptions, L/ySB is constant for a given

M, and independent of the form of the nose, equations (2) and (3)

represent estimates of the location of the detached shock wave for
all bodies at zero angle of attack. This estimate should be par-
ticularly valid for bodies only sliightly blunter than the wedge or
cone for which detachment occurs. The following derivation, how-
ever, which is based on the continuity relation, should provide a
better estimate of the average shock location for more general
blunt bodies.

Location of Detached Shock Wave
(Continuity Method)

Assumed form of detached shock wave. - The most typical char-
acteristics of detached waves are that: (1) They are normal to the
free stream at their foremost point; and (2) they are asymptotic to
the free-stream Mach lines at large distances from their foremost
point. A simple curve that has these characteristics is an hyperbola
represented by

By = Afx?-x 2 (4)

where B 1s the cotangent of the Mach angle and X4 1s the dis-

tance from the vertex of the wave to the intersection of 1ts
asymptotes. For the purpose of the analysis, the hypothesls is made
that to the degree of approximation required, all detached waves in
the region between the axis and the asonlc point S5 may be
represented by equation (4).

With this form of detached wave, the angle between the stream
direction and the tangent to the shock at any point is obtalned

from (fig. 1)
2. .42.2
ﬂx +B
& - tangp = —E— - 10 4 (s)

2
2 _2 By
B'\/x -X,
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The location of S 1is then

ctcp
s (6)

ﬂ'\/- - cot Q)S

B
xg = ! (6a)
\/Bz - cot2 Pg

If the y-coordinate of the body sonic point is used as the refer-
ence dimension, then the form of the shock wave is given by

(equation (4))
FEESUN S A i@.)z (1)
JsB B IsB IsB

vhere, from equation (6),

xo 2 2
= B 2 A/B” tan -1 8)
JsB ySB ¥s (

From equation (6a) the dimensionless location of the shock sonic
point 1s

Xg ySB (9)

The distance from the foremost point of the shock to the x-coordinate
of the body sonlc point is

L _%B_% (10

ySB Jsp JsB
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where, from figure 1,

X
SB=xs+yS-1\)tann (11)
B ysB  \JsB )

If equations (8), (9), and (11) are combined to eliminate all
unknown coor<inates excepl ygq and L, equation (10) becomes

J .
L. -8 (¢c+tanq) - tan 1 (12)
YsB

JsB

where

c =5 <B tan ©g - f\/az tan” cps-1> (13)

Inasmuch as B and Qg are known for any given free-stream
Mach number, only the quantities ys/ySB and n remain to be

determined to predict the relation between the sonlc point on a
body and the location of ite detached wave.

Application of continuity equation. - In order to determine
the quantlty yS/ySB’ the continuity relation is applied to the

fluld that passes the sonic line. The Integral form of this rela-
tion is useless for the present method, inasmuch as the distribu-
tion of the flow varlables along the sonic line is unknown. The
distribution of stagnation pressure immediately behind the shock,
however, is known. An appropriate average value of thls quantity
is that existing along the streamline which represents the mass
centrold of the fluid passing the sonic line. This centroid
streamline enters the shock wave at yc=ys/2 for plane flow and at

yc=2ys/3 for axially symmetric flow. The shock angle correspond-

ing to these values of y can be obtalned from equations (5) and
(6). Because the stagnation pressure remains constant along each

streamline behind the shock, the value of Ps,c will remain

unchanged between the shock wave and the sonic line. Because the
total temperature 1is constant, the simplified continulty equation
may be written as .
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Ay _ (pgTg), =(5_ (p7),,. _(P__s> 1 (16)
R  "Po%o  \Po/ | Po%0 | B0/ O

c
where ¢ 1is the contraction ratio required to decelerate the free
stream to sonic velocity 1sentropically. In terms of the coordi-
nates of the sonic points, equation (14) becomes, for plane flow

Js-¥ss  (Po
= (o} = B
o8 1 (F; 778 = s

or

’s (1 -8 )-1
YB - co8s 1 (15)

and for axlally symmetric flow

g

2 2
Y35 ~YsB 0 2 2
cos N - <?;' 0¥g = BYS
[+
or
-1
¥ 2
— = (1 -B cos 3) (16)
IsB

The appropriate values of 17 to be used in each case remain
to be established. On the basis of the previously clted analogy
between cne-dimensional channel flow and flow with detached shock
waves, the sonic line is assumed to be normal to the average flow
direction in its vicinity. At S +the inclination of the flow is
known to be Ag both for plane and axially symmetric flow;

whereas at SB the inclination i1s assumed to be 7‘d for plane
flow and ed for axially symmetric flow. If the aritimetic

mean of the inclinations at the two extremities 1s used, the
appropriate expressions for 71 become:



2Pt

NACA TN 1921 ' 11

for plane flow,

n=z (g +2Ag) (17)

and for axially symmetric flow,

N =2 (6 +2g) (18)

Because AS differs only slightly from Ad, the Inclination of
the sonic line for plane flow will be assumed to be simply n = As.
Values of ys/ySB obtained from equations (15) and (16) are shown

as functions of M, 1In figure 3. The variation of xo/ySB with

My, as computed from equation (8), is also ehown. The values of

AS and 6,
shock charts of reference 4 and are plotted against MO in figure 4.

required to determine yS/ySB were obtalned from the

The shock angle at the sonic point Pg and the shock angles at the

mass centroid for two-dimensional and axially symmetric flow are also
showm in figure 4. In figure 5, the resulting total-pressure ratlos
(Ps/PO)c are glven together with the values of ¢ and C used in

equations (13) through (16).

Comparison of Theoretical and Experimental Shock Location

A comparison of the shock form and location estimated by the
continuity method with the experimental results of reference 2 1is
shown in figure 6. The data of reference 2 were obtalned with a
free jet with an outlet Mach number of 1.7. The flow field in the
vicinity of the models was reconstructed from Interferograms. For
comparison of theory and experiment, the foremost polint of the
detached wave was used as the common point. The theoretical con-
figuration 1s independent of the body form and is therefore the
pame for each of the three bodles shown. For the sphere and the
cone, experimental sonic points are given in reference 2 and the
y-coordinate of these points was used as the reference dimension.
For the projectile, however, the actual sonic point was not deter-
mined in reference 2 and the theoretically estimated location of
this point was used as the reference dimension. The assumed shock
form and the estimated distance from the vertex of the shock to the
body sonic polint are shown to be approximately in agreement with
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experimental results for all three bodiea. Increasing bluntness of
the nose appears to shift the upper portion of the detached wave
away from the body, but in view of the wide range of nose forms
this effect appears to be small. The shock form for the projectile
may be somewhat in error in figure 6 due to the relatively small
scale of the subsonic portion of the diagram preasented for this
body (reference 2).

The theoretical varlation of L/ysB wlth Mach number is shown

in figure 7 for plane and axially symmetric bodies, together with
available experimental values from references 1, 5, and 6, and the
numerically computed values of reference 1. The data obtained from
reference 6 were converted to the present parameters from a small
gsketch of the model and may therefore be somewhat in error. The
values obtained by the continuity method are seen to agree more
closely, 1n general, with experimental results than the values
obtalned by the geometric method. As previously stated, however,
the geometric method should yleld more accurate results for bodles
only slightly blunter than the wedge or cone for which shock detach-
ment occurs. This prediction is born out to some extent for the
two-dimensional bodiles, where the value obtained in reference 1 for
the wedge agrees closely with the value obtained by the geometrilc
method, and the continulty method appears to average the results
obtained for the wedge and the flat-nosed body. For the axially
symmetric bcdies no such comparison 1s available, although fig-

ure 6 shows that L/ySB tends to increase as the body becomss less

blunt. These results indicate that the continuity method leads to
an average value of L/ySB; whereas the geometric method ylelds

the maximum value of this quantity for a glven MO.

Drag Upstream of 5B

Because the form and the location of the shock wave and the
sonic line are assumed to be independent of the shape of the nose
or the leading edge, it follows that the drag coefficient of the
portion of the body upstream of its sonic point is, by the present
method, also independent of the body form. This portion of the
drag can be determined from the momentum theorem. If the stream-
lines are assumed to be normal to the sonic line and if average
values of the flow variables at the sonic line are again used, the
momentum equation may be written as (fig. 1)

A NN
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SB 2
(p-po)cu gin 5 = °ovo,

b
(19)

2
AO-(%VEj )cAB cos 11-(ps,c-p0)1\s cos N

from which the drag coefficlent based on AO becomes

SB
f (p-p_)dA s8in B
b 0
(6]

(ep),

=2¢1 - <
2 2
AA M, 0
A . N .
=21 +—229810 11 - (941) 39.) (20)
0 7MO po c

Using the value of A’/AO from equation (14), equation (20)

becomes
(0p) =2{1+9%80 |20(70) Ps( ) (21)
A Po. 2 |Po \Fs Pg
PO 0] ’

where ?3 = 0.5283.
Ps

The drag coefficient based on the area of the body at 1its
sonic point 1s:
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for plane flow,
Is
(@), = (o) <ﬂ£) (22)
and for axially symmetric flow,
Ig g
Cp), = (o), (@; | (23)

If the appropriate values of 1, (PS/P ), and y./y are used,
0'¢ S'Ysp

the expressions for the drag coefficient become identlal for plane
and axially symmetric flow:

(CD) =2 l - kB cos 0 (24)
ASB 1 -3Bcosn
where
P P
K = —lE 1.2679 <—E> 0. (25)
My Fo/, P0

These drag coefficients are plotted against Mg in figure 8§,

together with the experimental values obtained from reference 2 by
numerical integration of the pressure coefficients given therein
and the theoretical values for flat-nosed bodles and for a wedge
computed in reference 1. The theoretical values obtained by the
present method are not expected to be valid near My = 1.0, because

the subsonic fleld becomes very large relative to the body
(ys/ygB —> ®) end small variations in the assumed form and

inclination of the sonic line have a large effect on the computed
drag. Equation (24) becomes indeterminate for M, =1 because

cos 1, B, and k are all unity for sonic free-stream velocity.

The agreement with experimental data for the cone and the sphere

at MO = 1.7 18 seen to be good. The drag coefficients computed

for the flat-nosed bodies in reference 1, however, fall considerably
above the values obtalned by the present method. Part of this
disagreement is probably due to the somewhat extreme form of the

1142
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sonlic¢c line assumed for these bodles in the computations of refer-
ence 1. This assumed sonic line meets the face of the body per-
pendicularly at the shoulder, whereas the actual sonic line is
probably concave downstream. (See fig. 6.) Some disagreement
should probably be expected, however, Ilnasmuch as the momentum
integral used to obtain the drag coefficient by the present method
i3 more sensitive to differences in the stream angle near the
sonic line than the continuity equation used to predict shock
location. The present procedure 1s therefore most valid when the
streamlines are expected to be almost normal to the sonic line and
when the sonic line is not expected to have large curvature.

. The maximum possible drag coefficlent, obtained by assuming
that the stagnation pressure behind a normal shock acts on the
entire nose, is plotted in figure 8 for comparison.

Unsymmetric Bodles and Effect of Angle of Attack
for Two-Dimensional Flow

If the method used for determining the location of SB for
symmetric bodies 1s applied to unsymmetric bodies or to bodles
at angle of attack, the magnitude of the coordinates of the upper
and lower sonlc points will, in general,differ (fig. 9). It is
apparent that portions of figure 9 above and below the center line
between the two tangent lines are each similar to the configuration
shown in figure 2(b). Such a representation, however, can be con-
gsidered valid only for bodies that can be completely described in
two dimensions. If the reasoning used to locate the sonic point
for symmetric bodies at zero incidence 1s followed, then varia-
tions of the portion of the body between SB,1 and SB,2 will not
appreciably alter the location of the sonic points or the form and
the location of the detached wave and the sonic line. The contl-
nuity method can be applied separately to the portions of the flow
field above and below the zero streamline (that is, the streamline
that reaches the stagnation point on the body). The location of
this streamline need be known only in the free stream ahead of the
detached wave. The assumption that this streamline must pass
through the intersection of the two tangent lines (fig. 9) is con-
sistent with the reasoning used to locate the sonlic polnts. Because
the upper and lower portions can be treated separately, equetions (15)
and (16) lead to the result

J
JsB,1 YsB,2 YsB
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Therefore, from equations (8) and (12),

X X X
0,1 __0,2 _0 (27)

ySB,l ySB,z ySB

and

L -_L . L (28)
IYs,1 Jsp,2 s

The equations for the portions of the shock wave above and
below the Xx-axls are:

Upper

By . xR0\ (29)
YsB,1 st,l Usp

2 x \2 ’
By _ - ( X > -<—9£> (29a)
YsB,2 YsB,2 J

A example of the resulting configuration for an unsymmetrlc
two-dimensional body is shown in figure 10 for Ysp 2 = O.SySB 1
J } Rendd

The values of yo/y and x./y were obtalned from figure 3 and
S/Y 3B 0/Y3B

L/ygg Was obtalned fram the results of the continuity method

(fig. 7). A slight discrepancy appears in the location of the
vertex of the detached wave due to the separate construction of the
upper and lower portions of the configuration, but this discrepancy
is well within the accuracy of the approximations. Use of the
geometric method would locate the origin of the shock at the point

of intersection of the tangent lines from the sonic points. This

method would avoid the discontinuity at the vertex of the shock,
but would fail to satisfy the continuity equation.

7 From equations (21) and (22), the drag coefficient of the lower
and upper portions of the body are seen to be dependent, for a
given M,, only on yS/ySB’ 8o that the drag coefficient for the
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portion of the unsymmetric body ahead of the sonic polnts based
on (ySB 1t ySB,Z) is identical to the drag coefficient based on
2

ASB for the symmetric body at zero angle of attack. This result

is also evident from the consideration that the momentum change of
the fluild that passes the sonic line depends only on the Mach number
of the free stream. The total mass flow past the sonic lines
depends only on ASB’ but the portions of this mass flow above and

below the zero streamline are not equal for unsymmetric bodies or
for bodies at angle of attack.

In addition to the limitations mentlioned in conmection with
the estimated drag coefficlents at zero angle of attack, the fact
that regions of negative pressure coefficient may occur when the
stagnation streamline fails to intersect the foremost polnt of the
body muet also be considered. The drag coefficlents estimated by
the present method correspond to the integral of the pressure forces
over the zerc streamline and are independent of the shape of this
gtreamline ahead of the sonic point. Local separation reglons near
the foremost edge, however, may alter the subsonic portion of the
flow sufficiently to invalidate estimates of drag based on a pre-
scribed form of the sonic line and an assumed flow direction. The
procedure for estimating the location of the shock, however, should
not be greatly in error, because the continulty relation used to
predict this location is relatively insensitive to variations in
the form of the sonic line or the inclination of the velocity vector.

Shock Location and Additive Drag for Supersonic
Inlets with Spillage over Cowl

The method of the preceding sectiomns may be easily extended
to the problem of estimating the shock location and the additive
drag as functions of the fraction of the maximum mass flow that is
spilled over the cowl of two-dimensional or axially symmetric
inlets. The simplified picture corresponding to this problem is
shown in figure 11, where the y-coordinate is now measured from the
axis of symmetry of the inlet. The coordinate I denotes the

free-stiream location of the streamline that separates the mass
entering the inlet from that passing outside the inlet. The Inter-
gection of this streamline with the detached shock wave is assumed
to be the origin of the hyperbolic portion of that shock wave. In
torms of the coordinates shown in figure 11, the splllage T 1is
defined by the following expressions:



18 NACA TN 1921

Two-dimensional inlets

T =1--"2 (30)
Axially symmetric inlets

(30a)

-1
]
’—l
1
L
Ak
\—/(‘\)

The drag due to splllage is defined as the integral of (p-po)

along the streamline that bounds the entering fluid. This drag is
similar to the additive drag defined by Ferrl for nose inlets with
proJecting central bodles, for which the streamlines may be deflected
a considerable distance ahead of the cowl.

The sonic point SB can be estimated by the procedure used
for closed bodies., For most cases of interest, the lip of the cowl
will be sharp or very thin relative to the inlet cross section, so
that SB will be very close to the foremost polnt of the lip. Here
the flow rapidly expands to supersonic velocities, Separation
regions resulting from this expansion are agaln neglected and may
considerably reduce the additive drag due to spillage. The relation
to be derived between spillage and shock location, however, should
not be greatly affected by local separation regions.

Other camplications usually encountered with supersonic inlets
have also been ignored. Oblique shocks from a protruding central
body, for example, are assumed to have negligible effect on the
relation between mass-flow spillage and drag and on the form of the
shock wave above y, . These simplifications should yleld wvalid

estimates when open-nosed bodles without central bodies are con-
sidered or when the effect of the central body 1s felt only below
the origin of the hyperbolic portion of the detached shock. The
analysis is independent of the nature of the shock below this

origin.

The hyperbolic portion of the shock wave is now represented by

the equation
2
o /2 -Tm\. <If'@% (1)
Jsg ¥ IsB JsB
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where

X

J J,
2o \/62 tan® g1 (—-—S -2 (32)
JsB ) Tsp

Equations (9), (10), and (11) for the x-coordinates of the sonic
points and for the shock location remain unchanged by translation
of the origin. When equation (32) 1s used in place of equation (8),
the expression for the shock location (equation (10)) becomes

y
L _78 (c+tanm) - CIB_ - tan (33)
Ysp  JsB IsB

Two-dimensional inlets. - For two-dimensional flow, the ratio
of the sonic-line flow area to the free-stream area of the stream
tube is (fig. 11)

A Ja- P
- I S)""SB — = <.£>c =B (34)
A, (ys-ym cos Ag

80 that

hj
1 -8 cos ?\S
Ig JsB (35)

-

) 1 - 3B cos RS

If this value 1is substituted 1n equation (33), the expression for
the location of the vertex of the detached wave becomes

¥, C+ B sin A
Lo _fh.m ] (36)
Isp Ygp/ \1 - B cos AS
When no air passes through the inlet (ym = 0), this expression is
found to reduce to the value obtained for closed symmetrlc bodies,

The drag coefficient based on A, (equation (21)) is inde-

pendent of the coordinates, so that the drag coefficlent for the
inlet is obtained by multiplying (CD)A by the ratio AO/ASB,

0
and becomes
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-(cp) (B Im)), Is
(CD)ASB = (CD)AO <5'SB ySB) (CD)AO (;5 -1+ T> (37)

Equations (35) and (36) indicate that the distance of the shock
from the inlet lip and the drag coefficient for a given M,

increase linearly with the amount of air that passes outside the
inlet.

Axially symmetric inlets.ﬁ ~ The ratio of sonic area to free-
stream area for axially symmetric inlets becomes

2_,_2
A ¥ys© -

2 = ZS ZSB =B (38)
0 (yg"-yp") cos n

¥
5 <m B cos q
S - (39)
JsB 1 -Bcosq

 For axially symmetric inlets, however, the value of n to be
used may be expected to vary with the value of ym/ySB. When this

ratio is close to unity, phenomena near the cowl lip should be
almost two dimensional; whereas for large splllage the flow becomes
similar to that obtained with closed bodies of revolution. Inas-
much as the cases of relatively small spillage are probably of
greater Interest, it will be assumed that the flow near the cowl
lip is two dimensional so that 1 = XS. Similarly, the two-

dimensional value of total-pressure ratio at the mass centrold will
be used. By substituting equation (39) into equation (33), the
shock location is found to be

so that

Y 1-B cos Ag JSB

2
Jm
1-<—>Bcos>\
YsB ) S
L - (C+tan7\s)-0ﬁ1—-tan7\

(40)
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Equation (21) for (Cp) a ™7 again be multiplied by the ratio

AO/ASB to obtain the drag coefficient based on the Inlet area.
Thus,

_ 2 2 2
- 8 (Im) . ).
(CD)ASB = (CD)AO gsxa) (y‘;) (CD)AO <st) 1+ 7T

(41)

where 1 1in equation (21) is replaced by Ag for y, = JYsp-

The variations of shock location and drag coefflclent with 7T
are shown in figure 12 for two-dimensional and axially symmetric
inlets at M, = 2.0. For axially symmetric inlets, the values

obtained using N = % (Bd + AS) are also plotted for comparison.

The value assumed for 1 evidently has little effect on the estl-
mated drag or the shock location.

SUMMARY OF METHOD

An approximate method has been developed for predicting the
location of detached shock waves ahead of plane or axially
symmetric bodies and for estimating the drag of the portion of
the body upstream of the theoretical sonic point. The method 1s
based on the continuity relation, which is applied to the air that
passes the sonic line. The main assumptions were that: (1) The
form of the detached wave from the axis to 1ts sonic point is ade-
quately represented by an hyperbola asymptotic to the free-stream
Mach lines; and (2) that the sonic curve between the shock and the
body 1s a straight line. These assumptions imply that the form and
the location of the shock and the sonic line are only secondarlly
influenced by the form of the body ahead of its sonic point and that
the shock location relative to the body sonic point 1s primarily a
function only of the free-stream Mach number. The drag of the body
to the sonic point was estimated from the change of momentum of the
air that passes the sonic line and was consequently also independent
of the form of the nose or the leading edge in the present approxi-

mation.
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Comparison with experimental results indicates that the assump-
tions made are valid to good approximation for predicting the form
and the location of detached waves, but may be oversimplifications
when it 18 desired to predict the drag of extremely blunt bodies.
The method also fails in the vicinity of sonic free-stream velocity.
The effects of angle of attack and unsymmetric body contour are
discussed for two-dimensional flow, but no experimental results are
avallable to check the theoretical predictions.

Extension of the method to the problem of estimating the addi-
tive drag and the shock location for supersonic inlets with spillage
over the cowl indicated that the drag, both for two-dimensional and
axially symmetric inlets, increases linearly with the percentage
of the maximum inlet mass that passes outside the cowl. The dis-
tance between the shock and the inlet lip also increases linearly
with this percentage for two-dimensional inlets and almost linearly
for axlally symmetric inlets.

Lewis Flight Propulsion Laboratory,
Retional Advisory Committee for Aeronautics,
Cleveland, Ohio, June 1, 1949.
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Flgure 1. -~ Representation of flow with detached shock wave
and notation used 1ln analysis.,

SB =
~
e LT /1 _
Plane bodies ‘ Axlally symmetrlic bodles
(b) Gradually-curved bodies.

Flgmre 2. - Approximate location of body sonic point.
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Figure 9, - Determination of sonic points for plane unsymmetric
bodles at angle of attack,

Flgure 10. - Predicted relation between detached shock and body
sonic polnts for two-dimensional body when ySB o " O.SySB 1°
» ?

uo = 2-00
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Filgure 11l. - Simplified plcture used for analysis of flow past
supersonic inlets with spillage.
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Flgure 12, - Shock location and drag as function of splllage.

H0=

2.0,

NACA-Langley - 7-20-49 - 1000



