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TECICAL NOTE 19 

DI METHOD FOR TWO-DIMENSI(gAL U3tEIES FOR CORESSIBLE 

FLW WITH APPMCPiTIai TO EGH-SOLIDETY CASO.ADS 

By Sumner Alpert 

A procedure is presented for the desii of two-dimensional. 
channels for ccmrpressible nonviecous flow. The method. requires 
boundary conditions consisting of the shape of one channel sur-
face and. the velocity distribution on that surface. The process 
consists of the step-by-step computation of an arbitrary number of 
streamlines within the channel. Two variations of the method are 
presented: Ckie variation is based on an assumed constant stream-
line curvature along an equipotential line, and the other is based 
on an assumed vortex-type variation. Tables for the use of both 
methods are presented for a range of kch numbers and valuos of 
the ratio of specific heats. 

In order tä obtain satisfactory performance from gas turbines, a 
blade-profile desii yielding proscribed velocity distributions is 
desirable, Proposed. procedures for blade-profile desi from 
specified surface velocities 1oiawn as inverse procedures, such as 
those given in references 1 and 2, utilize conformal transformation 
or interference techniques. Such methods are limited in application 
by the assumption of incompressible flow and by the lengthy corn-
putaticzis required. 

For closely spaced blades of high solidity, such as those 
encountered in axial-flow turbines, the application of channel 
methods has been found useful. Stodola (reference 3) presents 
Flugel' a stream-filament technique for determining the velocities 
in a lmown channel by aphical integratiàn. A simplified method 
for such analysis is presented in reference 4. 

A procedure based on stream-filament techniques for the 
desi-i of two-dimensional channels for compressible nanviscous 
flaw has been developed at the NACA Lewis laboratory and is
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presented herein. The method requires boundary conditions con-
siting of the shape of one channel surface and the velocity 
distribution on that surface. Although the method is not a 
completely inverse solution, it is useful in the desi of blades 
for. high-solidity cascades. The proposed procedure deals only 
with the channel between adjacent blades and. is inapplicable tO 
the regions in the vicinity of the nose and the tail. A similar 
technique for incompressible flow is given by von Mises (refer-
ence 5). The specification of the shape and the velocity die-
trlbution on one channel surface constitutes an over-determination 
of desired conditions in that the specification of only a short 
continuous length of streamline and the velocities along it are 
needed to determine the flow in the complete field. The inethod of 
solution, however, is based on. satisfying the conditions of 
continuity and. irrotational flow at a series of points along the 
specified strem*i-1-ne and the fairing of a curve to represent the 
solution. The solution is thus an approxinnte one and the 
velocities in the resulting channel should be computed to determine 
the deee of satisfaction of the specified conditions. 

Further variation from specified conditions will result from 
the fact that the inlet flow required to satisfy theoretically the 
specified conditiths in the channel is unknown. This variation will 
undoubtedly be szU as experiments of high-solidity cascades have 
shown that the flow in. the channel sections of cascades is relatively 
insensitive to the inlet conditions. 

In the application to cascade design of the method presented 
h'erein, specification of the boundary conditions as those for the 
suction surface of the blade is desirable. P1n arbitrary number of 
stream filaments is successively constructed starting from the 
assigned surface, each carrying a specified fraction of the total 
weight flow. The streamline bounding the last stream filament is 
taken as the channel boundary and. as the pressure surface of an 
adjacent blade.. The orthogonal spacing between a given streamline 
and. the next streamline constructed from it is approxinted. by a 
spacing taken perpendicular to the given stremiil Ine. This spacing 
is computed by integration of the flow equations with an assumed 
variation of streamline curvature along an. equi.potential line. 
Two variations are considered herein; (1) a constant curvature, 
and (2) a vortex-type variation. 

weinig (reference 6) presents a solution.to a similar problem 
by the graphical construction of an orthogonal flow net in Vnich 
the spacings between, streamlines, for equal potential increments
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along the assiied streamline, are taken as equal to the potential 
spacings with corrections for compressibility. The streamlines 
are constructed. for several potential increments and an extra-
polation yields the final flow net. 

The problem may be stated as follows: Given the shape of one 
of the channel boundaries, the desired velocity distribution thereon, 
and the weight flow to be carried by the channel, find the, opposite 
boundary. In the case of a cascade, the shape of the suction 
surface of a blade and the velocity distribution on that surface 
will be assumed and the pressure surface of the adjacent blade will 
be sought. The form in which the initial surface and. the velocity 
distribution are asstned and the construction of an adjacent stream-
line are shown in figure 1. The orthogonal spacing between a 
givep. streamline and the next streamline constructed from it is 
appoximated by a spacing 2 taken perpendicular to the given 
streamline. 

Basic equations. - The continuity equation for two-dimensional 
flow in a channel ray be written as 

W $7VdL	 (i) 

where 

w	 channel weight flow per unit height 

7	 weight density 

V	 velocity 

dL	 line element perpendicular to direction of flow 
0 

Al]. symbols are redefined in appendix A. 

The condition for irrotatiana]. flow is expressed as 

=-CV	 (2)
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2. The curvature C is assumed to vary as in vortex flow 
such that

Xi+l Xj 
Ci+l - C1 

The applicaticn of the two methods resulting fron these 
assumptions will be discussed. in a subsequent section. 

In order to n1n4rt ze the inaccuracies due to these assumptions, 
they are applied, to cmly a part of the total channel carrying the 
specified fraction n of the total weight flow. Equation (4) can 
then be eolved for the mknown velocity parameter X 1, aM the 
approxüite 2 ccxnxputei3. from the irrotation-f low equation. With 
this value kaown, the streamline 1+1 can be aphicaUy con-
structed. aM its curvature, in turn, used for the construction of the 
next streamline. 

Solution for assmq,tion of constant curvature. - If C is 
assumed equal to C1, equation (4) becomes

1 

-C1n'f(w) =J	 (1 _:X2)	 dX	 (5) 

xi 

The 1nte'al can be expressed as 

rxi+1 

- nf(w) J - (1 - x2) k-i dX - j	 (1 - x2 )	 dX	 (6) 
0 

wtLere the uniaiown is the value X1^1 representing the velocity 
on the streamline forming the botuidary of the stream filament carry-
ing the weight flow specified by nl(w).
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For a known value of k, the integral 

IXr 

	

I	 k-i 

	

g(Xr) . =J	 (i—x2 )	 ax 
0 

can be computed. as a function of the limit	 Thi.s computation 
has been carried out in the nnner illustrated. in appendix B and 
the results tabulated in tables I and. II. 

Equation (6) can be written as 

-C1nf(w) = g(Xj+L) - g(X1 )	 (7)

With the knon curvature Ci , the assied fraction of the we1it 
flaw nf(v), the known velocity parameter X1 , and. g(X1 ) found 
from the tabulated values, equation (7) Is solved for g(xj^) 
and	 found from table I. 

If'	 is known, the approimnte spacing 2 (subscript c
denoting constant-curvature assumption) can be found for the 
assumption of constant curvature by integrating equation (2). 

	

+1	 xi+l 
loge	 = -Cj i = log0 

or

log	 (8) e X1 

The value 2, Is computed at a point on the laiown stremnllne 
and graphically laid out nornl to the streamline at that point. 

By computing 2 for a nuither of points, the adjacent stream-
line	 can be drawn. (See fIg. 1.) With the curvature of 
this new streamline C11,	 can be readily computed, the 
Initial curvature C1 , and. the spacing 2, a closer approT(ntIon 
to the velocity on the new streamline 11fl can be found from 
equation (8) using an avera8e curvature.
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- (c1+c11)1 

X11 X1 e	 2	 (9) 

Fin'Uier ref inenent of 2 is not required. n1eas the avera€e 
curvature is ,eatly d.ifferent from the initial va1ue C 1 . If the 

velocity parameter	 is known, the next s eamline 1+2 
be constructed.. The process is repeated. tuitil chmiiel space baa 
been ccnputed. to allow for all the specified. weight flow. 

Solution for assmrpt1on of vortex variation. - A vortex 
'variation of the fn

Cj	 Cj
(10) 

is inserted, into equation (4). 

nf(w) = -j
	

(1 - x2 ) dl 

xl 

If the constant X1/C1 is removed. from the integrand. and. the 
integral is replaced by the st of two Integrals, 

1	 1 

-nf(v) =]
	

2: (1 -x2 )	 ax_J 2: (1 -x2 ) dx (U) 

At the lower limits the integrals are improper. As onJ,y the 
differences between the two Integrals are required, a lower limit 
of 0.01 wIll therefore be used.. By definition, 

	

I	 k-i 

	

h(X)= I	 2:(i-x2 )	 dX 

	

r J	 X 
0101



NACA TN 1931	 9 

For a iaiown value of k, the integral h(x1,) can be 
conn1ted. as a functicm of the livLtt 	 This cazputation. has 
been performed. in the nnner illustrated in appendix C and. the 
results tabulated in tables UI and. IV. 

Equation (U) can then be written 

-	 nf(v) = h(X11) - h(X1 )	 (12) 
xi 

arid the value of X11 iy be found.. 

The channel spacln€ can then be canrputed. by Integrating 
equation (2) with the curvature variation of equation (10) 

d.V = -	 dl 
v2 

or

=-idL 
x2 

By integration between	 and. 

2 =! ,___	 (13) V Cj	 / 

there the subscript v indicates vortex-type-variation assumption.' 

With this value for 2, the new streamline can be constructed. 

and. a closer approtion to the velocity parameter X 1 can 
be obtained by use of equation (9). 

condi e	
aseumtions. - For the same initial 

e ciu'vature assumption, on the ccmxputed. 
value of 2 is a ttuiction of the step size so tbat for a specific 
application the effect is dependent on the number of steps 1/n 
need. in the computation. Without a ]mowled.ge of the true variation
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in the streamline curvature, the absolute effect of' the assuntption 
cannot be determined. Prom several ty-pical d.esii problenw, the 
vortex-type variation was found to more closely appro.nte the 
variations obtained. 

For the same initial cond.itions of C1 and 	 and. for the 

same value of nf(w), the differences in 2 for the constant 
curvature and vortex-type-variation asstmrptions can be computed. 
These differences are plotted in figure 2 as a function of step-
size parameter C 2.,, with X1 as a parameter. It can be seen 

that the constant-curvature assumption, yields a higher value of 
2 than does the vortex-type variation. For most desi problems, 

the nd.mum value of' C1 2.,, (or C1 2) can be kept below 0.3 

without an excessive number of steps. For this value, the differ-
ences in 2 are usually less than the accuracy of the 'aphical 
construction process.

APPLICATII UF MEUEQD 

Selection of prescribed velocity and bojmiii ry shape. - In 
blade-desigu. work, the suction surface is usually the more critical 
surface. As the proposed method allows any streamline to be 
specified, it appears to be of' eater advantage to fix the suction-
surface conditions. My arbitrary surface and velocity distribution 
me.y be assigued., but they might not result in a physically possible 
blade. As a basis for assige.ing the initial surface and velocity, 
it has been found. convenient to ana.lyze first an arbitrary channel 
drawn to give the appearance of a conventional blade • The vel-
ocities In this channel can be easily found by the direct stream-
filament method of'. reference 4. The suction-surface shape or the 
velocity distribution or both can then be adjusted and utilized 
as the initial values in the proposed method. (Such adjustments 
should be carefully nude to prevent excessive thiciciess or thinness 
of the resulting blade. For subsonic flow, an increase in the 
assiied. velocity will result in a narrower channel, thus a thicker 
blade, and vice versa. An increase In curvature on the suction 
surface will result in a wider channel at that point.) 

Boundary-layer theory has shown that flow separation is most 
likely to occur in a region where deceleration takes place. In 
order to n1niin1ze the danger of separation, information on boundary-
layer flow should be employed to limit the rate of flow deceleration 
along the suction surface. In the absence of any reliable lnf or-
mation on boimdary layers, the velocity over as large a portion of 
the suction surface as possible should be either constant or 
increasing.
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DeterzLnation of weight-flow parameter. - The weight-flaw 
parameter f(w)	 y be readily computed from the known velocity 
diagrams and the blade spacing by

1 

f(w) = sXo(l - xJ)	 cos e	 (14) 

(See appendix D for development.) 

where 

s	 blade pitch 

relative inlet-velocity parameter at infinity 

6	 angle between relative velocity and its axial component at 
infinity 

The parameter f(v) is related to the nss-flow parameter 
of reference 4 by

- f(w) 

where I is the total channel width measured along an orthogonal 
line.

For d.esii problems where the flaw per tuilt blade height is 
not constant throui the channel, the weight-flow parameter can be 
varied to conform to the expected diètributiorx in weight flow per 
wdt blade height. 

Selection of nunther of steps. - The number of steps to be used 
in the computation can be set from considerations of the desired 
accuracy. As the errors involved In a curvature assumption increase 
with step size, it is apparent that mv11 steps are desirable; 
as the graphical construction of each streamline introduces errors, 
however, the least number of steps consistent with theoretical 
accuracy should. be used. 

A large number of 11 steps would, theoretically, yield the 
highest accuracy. Two factors contributed errors to the computation; 
namely, (i) the assumption on the curvature variation and (2) the 
uae of a straight line in place of a true orthogonal for construct-
ing 2 • Without knowing the true curvature variation, complete 
evaluation of the effect of these assumptions is impossible.
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With low initial velocities and low curvatures, relatively 
larger steps can be Used than for high velocities and. curvatures. 
For most turbine blades, five steps (n = 1/5) should. be adequate; 
whereas three steps can be used for sections not requiring accurately 
specified velocities. 

Selection of curvature variation. - The comparison of 2 as 
computed for the vortex variation and for constant curvature is 
shown in figure 2. For low initial velocities and curvatures, the 
difference is very si' i-l; unless a high deee of accuracy is 
desired and large steps used, the differences are smell compared with 
the errors involved in graphically constructing 2 and computing. 
curvatures. om illustrative examples, the vortex variation 
was found to more closely approxinmte the measured variation than 
did the constant-curvature assumption. 

The following step-by-step procedure is suggested: 

1. Assii suction-surface shape o and. velocity distribution 

The curvature of the assigued stremnl Irie C0 can be found by 

graphica]. or computatial methods. 

2. Compute the weight-flow function f(w) and set n for 
the desired number of steps. For a departure from two-dinvnsional 
flow where, the value of f(w) is not constant, the values at the 
inlet and the outlet of the channel should be ccuted end a 
variation between these values assumed. 

3. For a nwnber of points (10 to 15) on the given strein11ne, 
compute 2.

(a) For vortex variation. - For the initial velocity 
parameter X0, obtain the value of h(X0) from table III. By use 

of equation (12) compute h(X1) and obtain X1 from table III. 

Compute 1v by equation (13). 

(b) For constant curvature. - For the initial velocity 
parameter X0, obtain the value of g(X0) from table I. By use 

of equation (7) compute g(X 1) and obtain X from table I. 

Compute 2, by equation (8).



NACA TN 1931	 13 

4. With the values of 2 known, construct the streamline 

as shown in figure 1 aM compute its curvature C1. 

5. Compute the velocity on the new streajifline by equation (9). 
The curvature and velocity values in this equation are those at the 
points of intersection of the 2 line with the respective stream-
lines.

6. Repeat steps 3 and 4 for the assiied ntmiber of stream 
filaments and take the last streamline	 as the channel 
boundry.

7. Compute the velocities in the channel to determine the 
degree to which the specified surface velocities have be satisfied. 
The method of reference 4 can be used. to good. advantage although It 
me.y be necessary to carry the method beyond the usual first approxi-
natIon of consideration of the channel in a single step. 

As an aid in adjusting assied velocity and curvature values 
as well as an indication of the needed accuracy in curvature determi-
nation, a study was nade of the effect of variations in the primry 
parameters C1 and	 on 

The effect of a variation in initial curvature on the computation 
of 2v wan fotmd. by taidng the partial derivatives of equations (12) 
aM (13) wIth respect to C. As 

- tI2 

and by definition

t2 
E2	 2 
EC1

Ci 

It can be shown that
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-1	 (15) E2y -
1 

cuT (_	 - ( + 2T ) 1 + c1ç 

Values of' this ratio E2/ECj have been couted for values of 
C12 fran 0 to 1.0 aM X1 of 0.2, 0.3, aM 0.4 for k of 1.4. 
The results are ahorim In figure 3. 

Similarly, the effect of a variati a In	 the conrputation 
of	 as fotm to be 

2T 
E2

i-txi 

xi

1 I	 E	 2 1k-i 
1+CjlvI I _________ 

C	 2	 1-i	 2 
1	 i_(Xj 

LL c2+1)

h(k) h( Xu - i+cicil
(16) 

''i] 1 i 
1-It	 Xi 
- (i+c1z)] J 

Values of this ratio E2/X have been conxputed for values of 
Cj2 froni 0 to 1.0 aM Xi of 0.2, 0.3, and. 0.4, for k of 1.4. The 
results are shom in figure 4. 

Illustrative Eban1e 

The chprmel poi'tim of a typical blad.e was desied by the 
methods ,eaented herein. Aaeied. values were
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X = 0.2062	 = 0.505) 

= 1.475 
S 

-	 e=4L3° 

where 

c	 axial width 

An arbitrary suction-surface velocity and suction-surface shape 
were assumed as X0 azul.	 as shown in figure 5. For n = 1/3, 
the channel was constructed using both the vortex-type variation 
and the constant-cuature method. The desii plot for the constant.. 
curvature method .ls shown in figure 5. The third. streamline 'TI3 is 
taken as the pressure surface of the adjacent blade. A comparison 
of the channels found by the two methods is shown in fIgure 6. In 
the channel section corresponding to the highly curved portion of the 
suction surface, the channel width was 'eater for the constant-
curvature computation. This difference is in accordance with the 
theoretical differences previously noted. Beyond the 40-percent 
chord position, the two channels are in close agreement. The 
differences in pressure-surface profile, which show a wider channel 
for the. vortex variation for a snfl section of the blade surface, 
are possibly due to errors in graphical construction and In curvature 
Computation. 

Lewis Flight Peopulsion laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, March 17, 1949.
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APPID3I A 

The following symbols are used in this report: 

C	 curvature (reciprocal of radius of curvature) 

c	 specific heat at constant pressure 

C1	 axial Width 

E	 prefix to denote fractional variation 

f(w) weight-flow parameter,	 W 

7' J2cT'

1 

g(X) integral finiction, J	 (]. - x2) 

h(Xr) integral function,	 1 2: (1 - x2) J x.\ 
0 • 01 

Ic	 ratio of specific heats, c/c. 

L	 length along velocity potential line 

2	 approxinte width of stream filament 

xi	 specified fraction of weight flow 

s	 blade pitch 

T	 absolute temperature 

V	 velocity 

w	 channel weight flow per unit height 

X	 dimensionless velocity parameter, 	 V 

/2cT'
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weight density 

A	 prefix to Indicate change 

e	 eie between relative inlet velocity and its axial 
component at iafinity 

*	

0 

desiatjon of stremitHnes 

Subscripts: 

o	 assi&ied conditions 

1,2,3 ind.ex of streamlines 

c	 computed. for constant curvature 

cr	 cond.iticms at critical sonic velocity 

I	 general in1ex 

r	 limit value 
S 

v	 computed for vot'tex-ty-pe variation 

w	 total width 

x	 axial 

Superscripts: 

staatIon state
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APPDIX B 

	

C0MPUJAT]X!1	 g(X1) 

The integral

g(X) I	 ' =	 (i-X2)	 lix 

can. be readily integrated by expaMing the integranci in a power 
series aM Integrating terniwiae-

1 

(1 - x2 )	 = -	 x 
+ 

2 () 214 - (2;k)(3;2k) x6 + 

1 

8(Xr ) = -	 (1 - x) o.x =x. -
	

Zr3 + ( 2 k)Xr5 - (2_k)(3_2k)Xr7 + 

0	
3(k-1) 10(k-l) 2	 42(k-1)3 

For a ch number of 1.0 aM a k of 1.40, the value of I is 
0.40825 and for lower values of ]c, the value of I decreases. For 
the range of I from 0 to 0.41 and for k from 1.28 to 1.40, the 
first four terms shown In the previous expansion were sufficient to 
coute g(X2,) acurate].y to five decin1 places. 

The values of the Integral g(X) are given in table I for 
values of the argument X from 0 to 	 in increments of 0 • 005
for k of 1.40, 1.38, 1.36, 1.34, 1.32, 1.30, and 1.28. 

Values of g(X) for critical (siic) velocities for the values 

of k used are tabulated in table II. For critical flow 

cr JT
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APPDfl C 

C0MP1JiATIIQF h(X1,) 

The integral

fLr 

h(Xr) = J 	 ('-x2)	 dl 
0.01 

can be readily integrated by expanding the integrand. in a power 
sertes and. integrating termwise. 

(1 - x2 )	 -	 x + 2-k	 - (2-k)(3-2k) x5 + ...1 dx X	 k-i	
2(k-l)2	 6(lr-].)3	 J 

When this equation is integrated, it yields 

h()) = lOge x - _____ + (2-k)	 - (2-k)(3-2k) X6 + ... 2(k-1J	 8(k-i) 2	 36(k-l)3
0.01 

Values of this integral for 	 from 0.010 to	 have 

been computed and are given in table III for k = 1.40, 1.38, 1.36, 
1.34, 1.32, 1.30, and. 1.28. 

Values of h(X1,. ) for critical velocities are given in table IV.
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D±jtATI QF W	 -FLOJ PJ	 f(w) 

The weight-flaw parameter y be readily determined from the 
velocity dia'a1n2 by application of the continuity equation to con-
.d.itlons at infinity relative to the blade. The channel weight flow 
• per unit blade height ny be written as 

W 78 VXco 

The term f(w) is defined as 

f(w)=
7' /2cT' 

so that

f(w) = --7 AJ20p' 

InaartD.lch as 

end

= V, cos 0 

and.

X = 1_L. 
.J k^]. Tcr
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then

f(w) =

1. 
2\k-1 

X)	 cosO 

For rotor blades 1(w) naist be computed relative to the 
rotating blades. 
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TABLE I - VALUES OF FUNCTION g(x)

1 
Xr	 El 

J(i-x2) 
0 

Velocity 
parameter 

Xr

Ratio of specific heats of gas, k 

1.110 1.38 1.36 1.311 1.32 1.30 1.28 
0 0 0 0 0 0 0 

.005 .00500 .00500 .00500 .00500 .00500 .00500 .00500 

.010 .01000 .01000 .01000 .01000 .01000 .01000 .01000 

.015 .01500 .01500 .01500 .01500 .01500 .01500 .01500 

.020 .01999 . 01999 .01999 .01999 .01999 . 01999 .01999 

.025 .02499 .02499 .02499 .021198 .02498 .02498 .02498 

.030 .02998 .02998 .02998 .02997 .02997 .02997 .02997 

.035 .03496 .03496 .03496 .03496 .03 1#96 .03495 .03495 

.040 .03995 .03994 .039911 . 03994 .03993 .03993 .03993 

. 0 1i5 .011492 .04492 .0411.92 .04491 .04490 .04490 .04489 
• 050 .04990 .04989 .04988 .04988 .04987 .04986 .04985 

.055 .0511.86 .05485 .05485 .05484 .05483 .05482 .o48O 

.060 .05982 .05981 .05980 .05979 .05978 .05976 .05974 

.065 .06477 .o646 .0611.75 .06473 .06472 .06470 .06467 

.070 .06972 .06970 .06968 .06966 .06964 . 06962 .06960 

.O7 .071165 .07 1163 .07461 • o7li.59 .07456 .07453 .07450 

.080 .07958 .07955 .07953 . 07950 .07947 .07943 .07939 

.085 .084119 .081e46 .08443 .08440 .08436 .08432 .08427 

.090 .08940 .08936 .08933 .08929 .08924 . 08920 .08914 

.095 .09429 .09425 .09421 .09416 .091111 .09405 .09399 

.100 .09917 .09913 .09908 .09902 .09896 .09890 .09882 

.105 .10404 .10399 .10393 .10387 .10380 .10372 .10363 

.110 .10890 .10884 .10878 .10870 .10862	 . .10853 .108113 

.115 .11374 .11367 .11360 .11352 .11343 .11333 .11321 

.120 .11857 .11850 .1i841 .11832 .11822 .11810 .11797 

.125 .12338 .12330 .12321 .12310 .12299 .12285 .12270 

.130 .12818 .12809 .12798 .12787 .127711 .12759 .12742 

.135 .13297 .13286 .132711 .13261 .13247 .13230 .13211 

.1110 .13773 .13762 .13749 .13734 .13718 .13699 .13678 

.i4 .142118 .14235 . 111.221 .111.205 .14187 .14166 .111143 

.150 .14722 .14707 .114. 691 .14673 .14653 14631 .146o5_
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1 

J(1_xe) 
0

TABLE I - VALU oi uric'rioii g(Xr) dl - Continued. 

Velocity 
parameter 

I.,.

Batlo of specific heats of €as, k _______ 
1.11.0 1.38 1.36

_______ 
1.311

_______ 
1.32

_______ 
1.30

_______ 
1.28 

0.150 0.lIi.722 O.11i.707 0.114691 0.111.673 0.111653 0.]Ji631 0.114605 
.155 .15193 .15177 .15160 .151110 .15118 .15093 .15065 
.160 .15663 .1561i5 .15626 .l6o4 .15580 .15553 .15522 
i6 .16130 . L611]. . 16090 .16066 .160140 .16010 .15976 

.170 .16596 .16575 .16552 .16526 .1611.98 .161165 .161e28 

.175 .17060 .17037 .17012 .16981 .16952 .16917 . 

.180 .17521 .1711.96 .1711.69 .171139 .171105 .17366 .17323 .185 .17981 . 17954 .17924 .17892 .17855 .17813 .17766 

.190 .18438 .1811.09 .18377 .18342 .18302 .18257 .18206 

.195 .18893 .18862 .18827 .18789 .187146 .18698 .186143 

.200 .19311.5 .19312 .19275 .192311. .19188 .19136 .19077 
205 . 19796 .19760 .19718 .19676 .19626 .19571 .19507 .210 .20244 .20205 .20162 .20115 .20062 .20002 .19934 

• .215 .20689 .206148 .20602 .20552 .20495 .20113]. .20358 
.220 .21132 .21088 .21039 .20985 .20925 .20856 .20779 

.225 .21572 .21525 .21474 .21416 .21351 .21.278 .21196 

.230 .22010 .21960 .21905 .218114 .21775 .21697 .21610 

.235 .221145 .22392 .22333 .22268 .22195 .22113 .22020 

.211.0 .22878 .22821 .22759 .22690 .22612 .22525 .22426 

.245 .23307 . .23248 .23181 .23108 .23026 .22933 .22828 

.250 .23734 .23671 .23601 .23523 .23436 .23338 .23228 

.255 .211158 .24091 .24017 .23935 .23843 .237110 .23623 

.260 .24580 .24509 .24430 .243414 .24247 .24138 .24014 

.265 .24998 .24922 .24841 .24749 .24647 .211.532 .24401 

.270 .25413 .25334 .25247 .25151 .25043 .24922 .24785 

.275 .25825 .25742 .25651 .255149 .25436 .25309 .25164 

.280 .26235 .26147 .26051 .259114 .25825 .25691 .25540 .285 .26641 .26549 .261148 .26336 .26211 .26070 .25912 

.290 .27044 .26948 .268142 .26724 .26593 .261145 .26279 

.295 .27444 .27311.3 .27232 .27108 .26971 .26816 .26642 

.30C .278140 .27734 .27618 .27489 .27345 .27184 .27001

w 
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Xr	 1 

I	 2I (1-X )	 dX - Concluded. 

0 

TABLE I . - VALUES OF FUNCTION g( Xr)

Velocl.ty Ratio of specific heats of gas, Ic 
parameter

1)4.0 1.38 1.36 1.311. 1.32 1.30 1.28 

0.300 0.27840 0.27734 0.27618 0.27489 0.273 115 0.2718k 0.27001 

.305 .282311 .28123 .28001 .27866 .27715 .27511.7 .27356 

.310 .2862i .28508 .28380 .28239 .28082 .27906 .27707 

.315 .29010 .28889 .28756 .28609 .281445 .28261 .28053 

.320 .29394 .29268 .29128 .28975 .28803 .28612 .28395 

.325 .29774 .29642 .29497 .29337 .29158 .28958 .28733 

.330 .30150 .30013 .29862 .29695 .29509 .29301 .29066 

.335 .30523 .30380 .30223 .30049 .29856 .29639 .29396 

.340 .30893 .30744 . 30580 .30399 .30198 .29973 .29720 

.345 .31259 .31104 .30934 .30746 .30537 .30303 .30040 

.350 .31621 .31460 .31284 .3.O88 .30871 .30629 .30356 

.355 .31980 .31813 .31629 .31427 .31202 .30950 .30667 

.360 .32335 .32162 .31971 .31761 .31528 .31267 

.365 .32687 .32507 .32310 .32092 .31850 .31580 

.370 .33035 .32848 .32644 .32418 .32167 

.375 .33379 .33186 .32974 .32740 .32481 

.380 .33719 .33520 .33300 .33058 

.385 .34056 .33849 .33622 .33372 

.390 .34389 .34175 .33940 

.395 .34718 .. 34497 .34255 

.1,00 .35043 .34815 
.35365 

.410 .35682 ________ ________ ________ ________ ________ ________ 

TABLE II. - VALUES OF	 FOR CRITICAL VELOCITIES 

k g(Xcr) 

i.40 0.40825 0.35571 
1.38 .39957 .34788 
1.36 .39056 .33976 
1.34 .38118 .33132 
1.32 .37139 .32254 
1.30 .36115 .31339 
1.28 • 35Q41. -.303811.



NACA TN 1931
	

25 

TABLE III - VALUES OF FUEC'1'ION h( Xr)

	 Xr 
(1x2 )	 dl 

0.01 

1r

_______	 Ratio of_specific_heats of_gas, k 
1.40 1.38 1.36 1.34 1.32 1.30 1.28 

0.010 0 0 0 0 0 0 0 
.015 .1i.0531 .40530 .40529 .40528 .40527 . 11 0526 .110524 
• 020 .69277 .69275 .69273 .69271 .69268 .69265 .69261 
.025 .915611. .91600 .91556 .91552 .91547 .91542 .91535 
.030 1.09761 1.09756 1 .09750 1.09744 1 .09736 1.09728 1.09718 
.035 1,253.36 1.25128 1.25120 1.25111 1.25101 1.25089 1.25076 

.040 348442 1.38432 1.38421 1,38409 1 .38395 1.38380 1.38362 

.014.5 1.50167 1.50155 1.50141 1.50125 1.50107 1 .50087 1.50064 

.050 1.60644 1.60628 1.60611 1.60591 1.60569 1.60544 1.6o16 .055 1.70110 1.70090 1.70069 1.70045 1.70018 1.69988 1.69954 .o6o 1.78739 1.78716 1.78691 1.78662 1.78630 1 .78594 1.78552 
.o6 i.8666 1.86638 1.86608 1.86575 1.86537 1.86494 1.86446 • .070 1.93992 1.9396]. 1.93926 1.93887 1.93843 1 .93793 1.93737 
.075 2.00801 2.00765 2.00725 2.00680 2.00630 2.00572 2.00507 .080 2.07159 2.07117 2.07072 2.07021 2.06963 2.06898 2.068211. .085 2.13118 2.13072 2.13020 2.12962 2.12898 2.128211 2.12740 

.090 2.18726 2.18673 2.18615 2.18551 2.18478 2.18396 2.1830]. 

.095 2.24017 2.23959 2.23895 2.23822 2.23741. 2,23650 2.23545 

.100 2.29026 2.28961 2.28890 2.28810 2.28720 2.28618 2.28502 .105 2.33778 2.33706 2.33628 2. 33540 2.3344]. 2 .33328 2.33200 

.110 2.38296 2.36218 2.38132 2.38035 2 .37927 2.37804 2.37663 
•1].5 2.42602 2.42517 2.1121423 2.42317 2.42198 2.42064 2.41911 .120 2.46713 2.46620 2.46517 2.46403 2.46274 2.11.6127 2.45961 .125 2.50614.4 2.50543 2.50432 2 .50307 2 .50167 2 .50009 2.49828 .130 2.5411.08 2.54300 2.54179 2.54045 2.53894 2.53723 2.53528 .135 2.58019 2.57902 2.57772 2.57627 2.57464 2.57280 2.57070 
.140 2.61486 2.61360 2.61221 2.61065 2.6089]. 2.60693 2.60467 .i4 2.64820 2.64685 2.64536 2.64369 2.611.182 2.63970 2.63729 .150 - 2.68029 2.67885 2.67725 2.67547 12.67347 2.67121 2.66863
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TABLZ III. - VALTB OF y ri	 h(ç = f	 1x2)	 dl - Continued. 

0.01 

Velocity 
parameter

Batio of specific heats of gas, k 
1.li.0 1.38 1.36 1.311. 1.32 1.30 1.28 

0.150 2.68029 2.67885 2.67725 2 . 675147 2.673 11 7 2.67121 2.66863 
.155 2.71120 2.70967 2.70797 2.70607 2.70393 2.70152 2.69877 
.160 2.711102 2.73939 2.73758 2.73554 2.73329 2.73072 2.72780 
.165 2.76980 2.76807 2.766111 2.76400 2.76159 2.75887 2.75577 
.170 2.79760 2.79576 2.79373 2.791145 2.78890 2.78602 2.78273 

.175 2.824148 2.822514 2.82038 2.81798 2.81528 2.81223 2.80876 

.180 2.85049 2.848143 2.81&616 2.84362 2.814077 2.83755 2.83388 

.185 2.87566 2.87350 2.87109 2.86842 2865iil 2.86202 2.85816 

.190 2.90005 2.89777 2.89524 2.892112 2.88926 2.88569 2.88163 

.195 2.92368 2.92128 2.91863 2.91567 2.91235 2.90860 2.90433 

.200 2.94660 2.94409 2.94130 2.93819 2.93470 2.93077 2.92629 

.205 2.96884 2.96620 2.96328 2.96002 2.95637 2.95225 2.94756 

.210 2.99043 2.98766 2.98460 2.98119 2.97737 2.97306 2.96815 

.215 3.01139 3.00850 3.00530 3.00173 2.99774 2.99323 2.98810 

.220 3.03176 3.02874 3.02539 3.02167 3.01750 3.01279 3.00744 

.225 3.05155 3.04840 3.041191 3.04102 3.03667 3.03176 3.02618 

.230 3.07080 3.06751 3.06387 3.05982 3.05529 3.05017 3.04436 

.235 3.08952 3.08608 3.08230 3.07809 3.07336 3.068011 3.06200 

.2110 3.10772 3.10416 3.1002? 3.09583 3.09092 3.08539 3.07911 

.245 3. 125411 3.121714 3.11764 3.11309 3.10799 3,10224 3.09571 

.250 3.114270 3.13885 3.13149 3.12986 3.12457 3.11860 3.11183 

.255 3.15949 3.15550 3.15109 3.14618 3.14069 3.13450 3.127118 

.260 3.17585 3.17171 3.16714 3.16205 3.15636 3.111995 3.14268 

.265 3.19178 3.18750 3.18276 3.17749 3.17160 3.16496 3.15744 

.270 3.20731 3.20287 3.19796 3.19251 3.186112 3.17956 3.17178 

.275 3.22244 3.21785 3.21277 3.20714 3.200811. 3.19375 3.18571 

.280 3.23719 3.23244 3.22720 3.22137 3.2114.86 3.20754 3.19925 

.285 3.25156 3.214666 3.211125 3.23523 3.22851 3.22096 3.212140 

.290 3.26558 3.26052 3.25493 3.24872 3.214179 3.23400 3.22518 

.295 3.27925 3.271403 3.26827 3.26187 3.25472 3.214669 3.23760 

.300 3.29258 3.28720 3.28126 3.27466 3.26730 3.259033.214967
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TABLE III - VALUFE OP FtCTI( h( Xr) 	 f	 ( ix	 dl - Conc1ud.et. 

0.01 

Velocity 
parazTter ________ Ratio of specific heats of gas, k _______ ________ 

L1. 1.110 1.38 1.36
_______ 

1.311
_______ 

1.32
_______ 

1.30
________ 

1.28 
0.300 3.29258 3.28720 3.28126 3.271166 3.26730 3.25903 3.211967 
'.305 3.30558 3.300014 3.29392 3.28713 3.27955 3.27103 3.26]Jio 
.310 3.31827 3.31256 3.30626 3.29927 3.29111.7 3.28271 3.27280 
315 3.33065 3.321177 3.31829 3.31110 3.30308 3.291407 3.28389 

• .320 3.31,272 3.33668 3.33001 3.32262 3.311,37 3.30512 3.291,66 

.325 3.355O 3.3iu9 3.34144 3.333 3.32537 3.31587 3.305111 

.330 3.36600 3.35962 3.35258 3.31,478 3.33608 3.32633 3.31532 

.335 3.37722 .37067 3.36344 3.3551i3 3.311.651 3.33651 3.32521 .3110 3.38817 3.38].li.li. 3.37403 3.36581 3.35666 3.34614]. 3.33483 .3115 3.39886 3.39196 3.38435 3.37593 3.36655 3.3560le 3.311418 

.350 3.140929 3.14.0221 3.39414.2 3.38578 3.37617 3.364]. 3.35327 

.355 3.14.1911.7 3.41222 3.401,23 3.39538 3.38551i 3.371,52 3.36210 

.360 3.42940 3.42198 3.41379 3.404714. 3.39467 3.38339 .365 3.113910 3.143150 3.112312 3.41385 3.14.0355 3.39201 

.370 3.411857 3.44078 3.143221 3.14.2273 3.11.1219 

.375 3.4578]. 3.44984 3.14.11108 3.143138. 3.42061 

.380 3.14.6683 3. Ii5868 3.44972 3.43981 

.385 3.47563 3.146730 3.45814 3.144802 

.390 3.1481422 3.47571 3.11.6636 

.395 3.49261 3.11.8391 3.471136 

.1100 3.50079 3.49192 

.4o 3.50878 

.410 3.51657 ________ _______ 

TABLE IV - VALUES OF h (Xr) FOR CRITICAL VELOCITIES 

k Xcr h(Xcr) 

1.11.0 0.140825 3.513811. 
1.38 .39957 3.149123 
1.36 .39056 3.14.6725 
1.31i. .38118 3.44175 
1.32 .37139 3.41453 
1.30 .36115 3.38537 
1.28 .350144 3.34o4
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Figure I. - Typical assigned suction—surface contour, 

typical assigned velocity distribution, and 

construction of first stream filament.
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Initial Velocity parameter, Xi 
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Figure 2.— Effect of step—size parameter on ratio 

of channel width for constant curvature to channel 

width for vortex—type variation.	 Ratio of specFfic 

heats k,	 ).4.
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Initial velocity parameter, X11 
U 

U' U'

.35 

C 

0 

(V 

I-

>
	

-. 30 
a) 
0. a, 
>, L 

4... 

x (V 

a > 

4.. L 

L	 .25
0 U 

> 

0 
.4-
 

4. 

C 

4..

• 20 
C 

C 

a) 
C 

C 4-. 

(V 

(-
(V 
>. 

a, 

0 
4.. 

C 

a, 
U	 IC 

a) 
a-

'4 

U

0	 .2	 .4	 .6	 .8	 1.0 

Step—size parameter C-I. 
I	 V 

Figure 3. - Effect of step—size parameter on ratio 

of percentage variation in channel width for 

vortex—type variation to percentage variation in 

initial curvature from equation (15). 	 Ratio of 

specific heats k, 1.4.
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Figure 4.— Effect of step—size parameter on ratio 

of percentage variation in channel width for 

vortex—type variation to percentage variation in 

initial velocity parameter from equation (16). 

Ratio of specific heats k, 1.4. 
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.6 

0

Projected chord, percent 

Figure 5. - Assigned suction-surface contour, assigned velocity distributiOn, 

and channel construction for ii lustratie example.
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Figure 6. - Comparison of channels constructed by 

constant—curvature and vortex—type—variation methods 

for illustrative example. 
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