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DESTIGNV METHOD FOR TWO-DIMENSIOGNAL CHANNELS FOR COMPRESSIBLE
FLOW WITH APPLICATICN TO HIGH-SOLIDITY CASCADES

By Summer Alpert
SUMMARY
A procedure 1s presented for the design of two-dimensional .
channels for compressible nonviscous flow. The method requires
boundary conditions consisting of the shape of one chammel sur-
face and the velocity distribution on that swrface. The process
. consists of the step-by-step computation of an arbitrary number of
streamlines within the channel. Two variations of the method are
presented: One variation is based on an assumed constant stream-
line curvature along an equipotential line, and the other is based
on an assumed vortex-type veriation. Tables for the use of both

methods are presented for a range of Mach numbers and values of
the ratlio of specific heats. - ‘

INTRODUCTIQN

In oxrder to obtain satisfactory performance from gas turbines, a
blade-profile design yielding prescribed’ velocity distributions is
desirable. Proposed procedures for blade-profile design from
specified surface velocities known as inverse procedures, such ag
those given in references 1 and 2, utilize conformal transformation
or interference techniques. Such methods are limited in application
by the assumption of incompressible flow and by the lengthy com- -
putations required. ' :

For closely spaced blades of high solidity, such as those
- encomntered in axial-flow turbines, the application of channel
methods has been found useful. Stodola (reference 3) presents
Flugel's stream-filament technique for determining the velocities
in a known channel by graphical integration. A simplified method

' - for such analysis is presented in reference 4.

A procedure based on stream-filament techniques for the
design of two-dimensional channels for compresslible nonviscous
flow has been developed at the NACA ILewis laboratory and 1s
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presented herein. The method requires boundary conditions con-
sisting of the shape of ane channel surface and the veloclty
distribution on that surface. Although the method is'not a
completely inverse solution, 1t is useful in the design of blades
for high-solidity cascades. The proposed procedure deals only
writh the channel between adjacent blades and is inapplicable to
the regions in the vicinity of the nose and the tall. A similar
technique for incompressible flow 1s given by von Mises (refer-
once 5). The specification of the shape and the veloclty dis-

1bution on one channel surface constitutes an over-determination
of desired conditions in that the specification of only a short
continuous length of streamline and the velocltles along it are
needed to determine the flow in the complete field. The ‘-method of
solution, however, is based on satisfylng the conditlons of
continuity and irrotational flow at a series of points along the .
specified streamline and the fairing of a curve to represent the
solution. The solution is thus an approximate one and the
velocities in the resulting channel should be computed to .determine
the degree of .satisfaction of the specified conditions.

Turther veriation from specified conditions will result from
the fact that the inlet flow required to satisfy theoretically the

specified conditions in the channel is unknown. This variation will

undoubtedly be small as experiments of ‘high-solidity cascades have

shovn that the flow in the channel sections of cascades is relatlvely

insensitive to the inlet conditions. o

Tn the application to cascade design of the method presented
herein, specification of the boundary conditions as those for the
suction surface of the blade is desireble. An arbitrary number of
stroam filaments is successively canstructed starting from the
assigned surface, each carrying a gspecified fraction of the total
weight flow. The streamline bounding the last stream filament is
taken as the channel boundary aend as the pressure surface of an
ad Jacent blade. The orthogonal spacing between a given streamline
and the next streamline constructed from it is approximated by a

spacing taken perpendicular to the given streamline. This spacing .

is computed by integration of the flow equatians with an assumed
variation of  streamline curvature along an equipotential line. .
Two variations are considered herein; (1) a constant curvature,

and (2) a vortex-type variation.

Weinig (reference 6) presents & solution to a similar problem
by the graphical construction of an orthogonal flow net in which
the spacings between streamlines, for equal potential increments:
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.along the assigned streamline, are taken as equal to the potential

spacings with corrections for compressibility. The streamlines
are constructed for several potential increments and an extra-
polation ylelds the final flow net.

THECRY OF METHOD

The problem may be stated as follows: Given the shape of ane

- of the channel boundaries, the desired velocity distribution thereon,

and the weight flow to be carried by the chamnel, find the. opposite
bowndary. In the case of a cascade, the shape of the suction .
swrface of a blade and the velocity distribution on that surface
wlll be assumed and the pressure surface of the ad Jacent blade will
be sought. The form in which the initial surface and the velocity
distribution are assumed and the construction of an ad jacent stream-
line are shown in figure 1. The orthogonal spacing between a

g:lvizn streamline and the next streamline constructed from it is
approximated by a spacing 1 taken perpendicular to the given
streamline.

. Basic equations. - The continuity equation for two-dimensional
flow in a channel may be written as

W= j‘lVdL ‘ | (1)

vhere
\ chammel weight flow per unit height

wéight density

v veloclty

dL line element perpendicular to direction of flow
All symbols are redefined in appendix A.

The candition for irrotational flow is expressed as

av _ ' '
T oo (2)
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2. The curvature C 1is assumed to vary as in vortex flow
such that '

The application of the two methods resulting from these
assumptions will be discussed in a subsequent section.

In order to minimize the inaccuracies due to these assumptions,
they are applied to only a part of the total chammel carrying the
specified fraction n of the total weight flow. Equation (4) can
then be solved for the unknown veloclty parameter X;,, and the

approximate 1 computed fram the irrotation-flow equation. With
this value known, the streamline V¥, ., can be graphically con-

structed and its curvature, in turn, used for the construction of the

r_lexb streamline.

Solution for assumption of constant curvature. - If C 1is
assumed equal to Cy, equation (4) becomes

+1 E%.‘i
~Cy nf(w) = (1-%) & (5)

X

The integral can be expressed as

Xy41 'l?_l'i' Xy =
-cixxf(w)=Jc)- (1 - x%) ‘dx-o (1 - X2) ax - (8)

vhere the unknown 1s the value Xy .4 representing the velocity

on the stresmline forming the boundary of the stream filanent carxy-
ing the weight flow specified by nf(w).
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For a known value of k, the integral

Xy 1
~ k-1
8(Xr) =JO (1-%%) &

* can be computed as a function of the limit X.. This computation
has been carried out in the manner illustrated in appendix B and -
_the results tabulated in tables I and II.

Equation (6) can be written as

-Cqnf(w) = (X ;) - alxXy) (7)

With the known curvature C,, the assigned fraction of the weight
flow nf(w) » the known velocity parameter X;, and g(X;) found
from the tabulated values, equation (7) 1is solved for g(Xi,1)
and Xy, found from table I.

If Xi +1 is known, the approximate spacigg Zc (subscript ¢

denoting constant-curvature assumption) can be found for the
agsumption of constant curvature by integrating equation (2).

or

1 = =2 log —=—= . (8)

The value 1, 1s computed at a point on the lkmown streamline
and graphically laid out normal to the streamline at that point.

By computing 1 for a number of points, the ad Jacent stream-
line V3,7 can be drawn. (See fig. 1.) With the curvature of

this new streamline Cy419 which4 can be readily computed, the
initial curvature Cy, and the spacing 1, a closer approximation
to the velocity an the new streamline X +1 can be found from
equation (8) using an average curvature.
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- (Ci + °1+1) l
=X e 2 (9)

Further refinement of 1 1s not requ.ired wnless the average
curvature is greatly different from the initial value Cy. If the

‘velocity parameter X, 1is known, the next streamline V, ., can

be constructed. The process is repeated until channel space has
been computed to allow for all the specified veight flow. ‘

Solution for assumption of vortex veriation. - A vortex
variation of the form

Cy Cq : %
C=amV ==X (10)
Vi o |
15 ingerted into equation (4)
- Fia 2
| k-1
nf(w) = - 41 -9 «
T X
A

If the constant X,/C, 1s removed from the integrand and the
integral is replaced by the sum of two integrals,
- c 1 : . 1
L4 B e T
C : Cae '
- iiin.f(w) = 1 @1-x%) ax- % 1 -x) ax (1)

X
0 0

At the lower 1imits the integrals are improper. As only the
differences between the two integrals are required, a lower limlt
of 0.01 will therefore be used. By deﬁ.nitian,

X
: k-1
= 1 - x°
h(xr) z (r - x°)
0.01
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For a known value of k, the integral h(xr) can be
compited as a function of the limit X,.. This computation has

been performed in the menner illustrated in appendix C and the
results tabulated in tables III and IV.

Equation (11) can then be written
- g_;. nt(w) = B(Xy,;) - B(g) (22)

and the value of Xy, may be found.

The channel spacing can then be computed by 'mtegratm
equation (2) with the curvature variation of equation (10)

c .
dv.=-._1..dL
v o0
or )
ax =-c_1u.
x° Xy

By integration betiween X; and Xy 4

1 _1_:_1'__ \ (13)
v o0 (X4 N

vhere the subscript v indicates vortex-type-veriation assumption.-

With this value f'orr' 7’7’ fh_e new streamline can be constructed

and a closer approximation to the ‘velocity parameter X._l +1 can
be obtained by use of equation (9).

Comparison of curvature assumptions. - For the same initial
candition, the effect of the curvature assumption on the computed
value of 1 is a function of the step size so that for a specific
application the effect is dependent on the number of steps l/n
uged in the computation. Without a kmowledge of the true variation
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in the streamline curveture, the absolute effect of the assumption
cannot be determined. From several typical design problems, the
vortex-type variation was found to more closely approximate the.
variations obtained.

For the same initial cosnditi‘ons of Ci and Xi and for the

same value of nf(w), the differences in 1 for the constent

curveture and vortex-type-veriation assumptions can be computed.
These differences are plotted in figure 2 as a function of step-
size parameter Cy 7'7 with Xy asa parameter. It can be seen

that the constant-curvature assumption ylelds a higher value of
1 than does the vortex-type veriation. Tor moet design problems,
the maximm value of Cy 1. (or C; 1) can be kept below 0.3

withdut an excessive number of steps; For this value, the differ-
ences in 1 are usually less than the accuracy of the graphical
construction process.

APPLICATION OF METHCD

Selection of prescribed velocity and boundary shape. - In
blade-design work, the suction surface is usually the more critical
surface. As the proposed method allows any streamline to be
specified, it appears to be of greater advantage to fix the suction-
surface .canditions. Any asrbitrary surface and veloclty distribution
mey be assigned, but they might not result in a physically possible
" blades  As a basis for assigning the initial swrface and velocity,
it has been found convenient to analyze first an arbitrary channel
drawn to glve the appearance of a conventional blade. The vel-
ocities in this channel can be easily found by the direct stream-
£1lament method of reference 4. The suction-surface shape or the
velocity distribution or both can then be adjusted and utilized
as the initial values in the proposed method. (Such adjustments
should be carefully made to prevent excessive thickness or thinness
of the resulting blade. For subsonic flow, an increase in the
assigned velocity will result in a narrower channel, thus a thicker
blade, and vice versa. An Increase In curvature on the suction
surface will result in a wider chammel at that point.)

Boundary-layer theory has shown that flow separation is most
1ikely to occur in & region where deceleratlon takes place. In
order to minimize the danger of separation, information on boundary-
layer flow should be employed to limit the rate of flow deceleration
alcng the suction surface. In the absence of any reliable infor-
metion on boundary layers, the velocity over as large a portion of
the suction surface as possible should be either constant or
increasing.



NACA TN 1931 : 11

Determination of welght-flow parameter. - The weight-flow
parameter f(w) may be readily computed from the known veloclity

diagrams and the blade spacing by

1
k-1
£(w) = sxc,(l - xmz) cos 6 (14)

(See appendiﬁ: D for development.)

vhere

8 blade pitch

X ) relativp inlet-t.relocity raremeter at infinity

2] angle between relative velocity and its axial camponent at
Infinity

. The parameter f(w) is related to the mass-flow parameter p
of reference 4 by : ,

- I(w)
g

vhere I, 1s the total channel width measured along an orthogonal
line.

For design problems where the flow per wnit dblade height is
not constant through the channel » the welght-flow parameter can be
varied to conform to the expected distribution in weight flow per
unit blade height. ' .

Selection of number of steps. - The number of steps to be used
in the computation can be set from considerations of the desired
accuracy. As the errors involved in s curvature assumption increase
with step size, it is apparent that emall steps are desirable;
as the graphical construction of each streamline introduces errors,
however, the least number of steps consistent with theoretical
accuracy should be used.

A large number of emall steps would, theoretically, yield the
. highest accuracy. Two factors contributed errors to the computation;
namely, (1) the assumption on the curvature variation and (2) the
use of a straight line in place of a true orthogonal for construct-
ing 1. Without knowing the true curvature variation, complete
evaluation of the effect of these assumptions is impossible.
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With low initial velocities and low curvatures, relatively
larger steps can be used than for high velocities and curvatures.
For most turbine blades, five steps (n = 1/5) should be adequate;
whereas three steps can be used for sections not requiring accurately
specified velocities. -

Selection of curvature variation. - The comparison of 1 as
computed for the vortex variation end for constant curvature is
ghown in figure 2. For low initial velocities and curvatures, the
difference is very emrll; unless a high degree of accuracy is
desired and large steps used, the differences are small compared with
the errors involved in graphically constructing 1 and computing
curvatures. From illustrative examples, the vortex veriation
was found to more closely approximate the measured variation then
did the constant-cirvature assumption.

SUGGESTED PROCEDURE FOR COMPUTATICN
The following step-by-step procedure is suggested :

1. Assign suction-surface shape V and velocity distribution
Xoe The curvature of the assigned streamline Co can be found by
graphical or computational methods. ' ‘

2. Compute the weight-flow function f(w) and set n for
the desired number of steps. For a departure from two-dimemnsional
flow where, the value of f(w) 1s not constant, the values at the
inlet and the outlet of the channel should be computed and a
variation between these values assumed.

3, TFor a mumber of points (10 to 15) an the given streamline,
compute 1. '

A .. (&) For vortex variation. - For the initial velocity
paremeter X,, obtaln the value of h(X,) from table ITI. By use

of equation (12) compute h(X;) and obtain X, from table ITI.
Compute 1y by equation (13). :

(b) TFor constant curvature. - For the initial velocity
‘parameter X, obtain the value of 8(X,) from table I. By use

of equation (7) compute g(Xl) end obtain X, from teble I.
Campute 1, by equation (8).
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4. With the values of 1 known, construct the streamline \1!1
as shown in flgure 1 and compute 1ts curveture Cqe ‘ ’

v

5. Campute the velocity on the new streamline by equation (9).
The curvature and velocity values in this equation are those at the
points of intersection of the 1 1line with the respective stream-
lines. ,

6. Repeat steps 3 and 4 for -the assigned number of stream
filaments end teke the last streamline V,/, as the chamel

boundary.

7. Compute the velocities in the channel to determine the
degree to which the specified surface velocities have been satisfied.
The method of reference 4 can be used to good advantage although it
may be necessary to carry the method beyond the usual first approxi-
mtion of consideration of the chamnel in a single step.

EFFECT OF VARTATIOGNS IN PRIMARY PARAMETERS

As an ald In adjusting assigned velocity and curvature values
as well as an Indication of the needed accuracy in curvature determdt-
nation, a study was msde of the effect of variations in the primary
parameters C; and X3 Lype

The effect of a variation in initial curvature on the computation
of 1., wes found by taking the partial derivatives of eguatians (12)

and (13) with respect to Cpe As

\ ol . Al
3C; ~ &Cy
and by definiticn ‘
Al
EL 1
EC, = ACy
T

it can be shown that
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X
E’!z =l h(xi) h (l + Ci”v)]

_ — -1 (15)

2| k-1
Oyly | b S G
1vilT+cq I+ Gt

Values of this ratio El./EC; have been computed for velues of
C42, from O to .0 and X3 of 0.2, 0.3, and 0.4 for k of l.4.
The results are shown in figure 3.

Similarly, the effect of a variation in X; on the camputaticn

of Zv was found to be
Aly
Ely, Iy
=T
X
r~ __L ’ 11 ’\.
2 k-1 n( )-h(r—cm
RAAL, ek i X \(26)
Ci Z'V< = x'i 2 2
\ 1-<c ] +1> L[ & > =
L 1'v 1+C,_2v J

Values of this ratio El,/EX, have been computed for values of

Cilv from O to 1.0 and X; of 0.2, 0.3, and 0.4, for k of 1l.4. The
results are shown in figure 4.

Illustrative Example

The chammel portion of a typical blade was designed by the
methods presented herein. Assigned values were
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-
Xo = 0.2062 | ® = 0.505

cr
X = 1.475
8
- 6 = 41,3°
where
Cy axial width

An arbitrary suction-surface velocity and suction-sﬁrface shape
were assumed as X, and Vg, as shown in figure 5. For n = 1/3,

the channel was constructed using both the vortex-type varietion
and the constant-curvature method. The design plot for the constant-
curvature method is shown in figure 5. The third streamline Yz is

taken as the pressure surface of the adjacent blade. A comparison

of the channels found by the two methods is shown in figure 6. In

" the channel section corresponding to the highly curved portion of the
suction surface, the channel width was greater for the constant-
curvature computation. This difference is in accordance with the
theoretical differences previously noted. Beyond the 40-percent
chord position, the two channels are in close agreement. The
differences in pressure-surface rrofile, which show a wider channel
for the. vortex variation for a small section of the blade surface,

are possibly due to errors in graphical construction and in curvature:
computation. -

Lewis Flight Peopulsion Laboratory,
National Advisory Commlittee for Aercnsutics s
Cleveland, Ohio, March 17, 1949.
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APPENDIX A

\ SYMBOLS \

The following symbols are used in this report:

g(X,)

h(X,)

[+/]

g 4 93

b

curvature (reciprocal of radius of curvature)
specific heat at constant pressure
axial width

prefix to denote fractional veriation
—_
7! \'/ZcPT'

L

weight-flow parameter,

X o\ k1
integral function, f (l -X > ax
0 .
N , 1
| o NET
integral function, F l1-X axX
0.01
ratio of specific heats, °p/°v

length along velocity. potenfial line
approximate width of stream f1lament

specified fraction of weight flow

blade pitch

absolute temperature
velocity
channel weight flow per unit height

dimensionless veloéity paramster,

v
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V4 wolght density

A prefix to mdicate change

6 angle between relative inlet velocity and 1ts axial
companent at infinity

v designation of streamlines

Subscripts:

0] assigned conditions

1,2,3 1ndex of streamlines

c . computed for constent curvature

cr conditions at critical sonic velocity
1 general index

r limit value |

v | computed for vortex-type variation:

W total width

b4 axial

Superscripts:

' stagnation state
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APPENDIX B

COMPUTATIN F g(X,.)

The integral N
, k1
g(%.) = 1-%x) &

can be readily integrated by expanding the integrand in a power
series and integrating termwlse- :

1
k-1 : .
(1,-1:2)' =1-E%Ix2+—3:£§x4-$?‘—k2&—231‘-)-x5+...
- 2(k-1)¢ 6(k-1)
N .
o -1 3 5 . 7
. e S G, S G ol
o) = | Q- &=h-gEn” 10(k-1)° T T T

0

For & Mach mumber of 1.0 and a k of 1.40, the velue of X 1s
0.40825 and for lower velues of k, the value of X decreases. For
the renge of X from O to 0.41 end for k from 1.28 to 1.40, the
first fouwr terms shown in the previous expansion were sufficient to
compute g(X,) accurately to five decimal places.

_ The values of the integral ‘g(xr) are given in table I for
values of the argument X, from Oto X, in increments of 0.005
for k of 1.40, 1.38, 1.36, 1.34, 1.32, 1.30, and 1.28.

Values of g(X,) for critical (sonic) velocities for the values
of k used ere tabulated in table II. For critical flow

k-1
or =/ £
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APPENDIX C

COMPUTATION OF h(X,)
The integral

1
* k-1

h(x,) = 1 (1-38) ax
- g % ~

can be readily integrated by expanding the integrand in a pover
series and integrating termise.

1
'J; (l - Xz) d-X = % - l X + 2-k XS - —'_—_-(z-k)(s-Zk) Xs + oee d.x
X E-17 7 o(k-1)? 6(k-1)3

When this equation is integrated, it yields

,- ; | X,
b - X (2-k) x4 _ (2-K)(3-2k) ¢6 , .
,(Xr) 18 X ey 8(k-1)% | 36(1:-;)3 ot ]0 oL

Values of this integral for }&, from 0.010 to Xcr have

been computed and are given in table III for k = 1.40, 1.38, 1.36,
1034, 1032, 1030’ and 1028. .

Valueg of h(Xr) for critical velocities are given in table IV.
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APPENDIX D

DETERMINATION OF WEIGHT-FLOW PARAMETER f(w)

The weight-fléw parameter may be readily determined from the.
velocity diagrams by application of the continuity equation to con-
.diticns at infinity relative to the blade. The channel weight flow
.per wnit blade height may be written as . ,

W =78 Vx’m'

The term f(w) is defined as

£(w) = .S
7 ,/écp’l"
so that
f(w) = l'_ __S_V.J.[-La_’
7 ch ] »
Inasmch as
o] e
k<l [V k-1
‘,Lu =1l -5 (vcr>
and
Vx’m = Voo COB 6
and .
X =K1 V_
k+l Veop
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then

1

A\ET
f(w) = eX_{1 = X, cos 6

For rotor blades f(w) mmst be computed relative to the

rotating blades. :

1.

3e

S.

6.
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1
- Xr 0 BT
TABLE 1 - VALUES OF FUNCTION 8&(X)) = “[ (1-x7) &
0
Veloci:gr ' Ratio of specific heats of gas, k
X, 1.40 1.38 1.36 1.34 1.32 1.30 1.28
0 0 0 0 0 0 0 0

005 .00500f .00500 .00500 .00500 .00500 | .00500 .00500
.010 | .01000| .01000 .01000 .01000 .01000 | .01000 .01000

.015 | .01500{ .01500 | .01500 .01500 | .01500 | .01500 | .01500
.020 | .01999| .01999| .01999|. .01999 | .01999 | .01999 .01999
.025 | .02499| .02499 | .02499 .02498 | .02k98 | .02498 | .02498

030 | .02998| .02998 | .02998 | .02997 | .02997 | .02997 | .02997
.035 | .03496| .03496 | .03496 | .03496 | .03496 | .03495 .03495
.0k0 | .03995| .03994 | .0399% .0399% | .03993 | .03993 | .03993
045 | .ouk92| .ok92 | .obk92 | .0kh9L | .OMLOO | .OMLOO | .OLKEF
050 | .0b990| .OM9B9 | .0u988 | .0u9B8 | .0LYBT | .0M9B6 | .OLIES

.055 | .05486| .05485 | .05485 L05484 | .05483 | .05k82 | .05u80
‘060 | .05982| .05981 | .05980 | .05979 | .05978 | .05976 | .059Tk
065 | .06MTT| .064T6 | .064T5 | .OB4T3 | .06kT2 L06470 | 06467
070 | .06972| .06970 | .06968 | .06966 | .0696k .06962 | .06960
075 | .OTh65| .07B63.| .OTB6L | .OTh59 | .OTW56 | .OTW53 07450

.08 |.07958 | .07955| .07953 | .07950 | .OT94T | .OT943 | .07939
085 |.08uk9 | .08446 | 08443 | .08k4O .08436 | .o8k32 | 08427
.090 | .08940 | .08936 | .08933 | .08929 .08924 | .08920 | .0891k4
095 | .o9k29 | .o9425 | .09421 | .09416 | .09411 .09%05 | .09399
100 |.09917 | .09913 | .09908 | .09902 | .09896 | .09890 | .09882

.105 |.lokok | .10399 | .10393 | .10387 | .10380 | .10372 | .10363
110 |.10890 | .10884 | .10878 | .10870 | .10862 | .10853 | .10843
115 |.11374 | .11367 | .11360 | .11352 | .113k3 | .11333 |.11321
120 |.1i857 | .11850 | .11841 | .11832 | .11822 | .11810 | .11797
125 [.12338 | .12330 | .12321 | .12310 | .12299 | .12285 |.12270

130 |.12818 | .12809 |.12798 | .12787 |.12774 |.12759 |.127k2
2135 |.13297 | .13286 | .1327% | .13261 |.13247 |.13230 |.13211
A4 13773 | .13762 | L1379 | .13734 | .13718 |.13699 |.13678
ks |142h8 | .1k235 | .1k221 | .14205 | .14187 | .1B166 |.14143
150 [.14722 | L1W707 | L 1M691 | .1M673 | .14653 | 14631 |.14605

W
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r 1
> T
TABLE I - VALUES OF FUNCTION g(xr) = (1-x%) dX - Continued.

0

Z::::;:E:r Ratio of specific heats of gas, k

X. 1.40 1.38 1.36 1.3% 1.32 1.30 1.28

0.150 0.14722 | 0.14707 | 0.14691 | 0.14673 | 0.14653 | 0.1k631 | 0.14605
155 |- .15193 | .15177| .15160| .15140( .15118| .15093 | .15065
.160 (15663 | .15645 | .15626 | .1560k | .15580 | .15553 | .15522
.165 16130 | .16111 | .16090 | .16066| .160k0| .16010 | .15976
.170 16596 | .16575| .16552 | .16526 | .16498| .1646% | .16428
175 .17060 | .17037 | .17012| .16984| .16952| .16917 | .1687T
.180 17521 | 17496 | .17h69 | .17k39 | .17hO5 | .17366 | .17323
185 J17981 | .17954 | .1792hk | .17892 | .17855 | .17813 | .17766
.190 18438 | .18409 | .18377| .18342| .18302 | .18257 | .18206
195 .18893 | .18862 | .18827 | .18789 | .18746 | .18698 | .18643
.200 19345 | 19312 | .19275 | .1923k | .19188 | .19136 | .19077
.205 19796 | .19760 | .19718 | .19676 | .19626 | .19571 | .19507
.210 2024k | 20205 | .20162 |. .20115 | .20062 | .20002 | .1993h

- .215 20689 | .20648 | .20602 | .20552 | .20495 L .20431 | .20358
.220 .21132 | ,21088 | .21039 | .20985 | .20925 | .20856 | .20779
.22% 21572 | .21525 | .21hk7h | .21416 | .21351 | .21278 | .21196
.230 .22010 | .21960 | .21905 | .2184k | .21775 | .21697 | .21610
.235 22445 | 022392 | .22333 | .22268 | .22195 | .22113 | .22020
240 .22878 | .22821 | .22759 | .22690 | .22612 | .22525 | .22426
.2k5 .23307 |. .23248 | .23181 | .23108 | .23026 | .22933 | .22828
.250 .23734 | 23671 | .23601 | .23523 | .23436 | .23338 | .23228
.255 .24158 | .24091 | .24017 | .23935 | .23843 | .237h0 .23623
.260 24580 | .24509 | 24430 | .2434k | .2k2u7 | .24138 | .2holk
.265 24998 | .2h922 | 24841 | 24749 | .24647 | .24532 | .24kOl
.270 25413 | .25334 | .25247 | .25151 | .2%0k3 | .24922 24785
275 25825 | .257h2 | 25651 | .255k9 | .25436 | .25309 |.2516%
.280 .26235 | .26147 |.26051 |.259k | 25825 | ,25691 .25540
.285 26641 | 26549 | .26448 | .26336 | .26211 | .26070 |.25912
.290 2704k | 26048 |.26842 | .26724 |.26593 | .264k5 | .26279
.295 L27hbh | 27343 [ .27232 | .27108 | .26971 | .26816 |.26642
.30C 27840 | 27734 |.27618 | .27489 |.27345 |.2718% |.27001

~_NACA ~
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TABLE I.- VALUES OF FUNCTION 8(Xy) = Jr (1-x2) d4X - Concluded.
0
Velocity ~ Ratio of specific heats of gas, k
parameter
X 1.40 1.38 1.36 1.3k - l.32 1.30 1.28

0.300 | 0.27840 | 0.27734 | 0.27618 | 0.27489 |0.27345 | 0.27184 |0.2700L
‘305 | .28234 | .28123 | .28001 | .27866 | .27715 | .275M7 | .27356
.310 08624 | .28508 | .28380 | .28239 | .28082 | .27906 | .27707
.315 .29010 | .28889 | .28756 | .28609 | .284k5 | .28261 | .28053
.320 - | .2939% | .29268 | .29128 | .28975 | .28803 | .28612 | .28395

.325 2977k | 29642 | .29497 | .29337 | .29158 | .28958 | .28733
.330 .30150 | .30013 | .29862 | .29695 | .29509 | .29301 | .29066
.335 .30523 | .30380 | .30223 | .30049 | .29856 | .29639 | .29396
.340 .30893 | .30744 | .30580 | .30399 | .30198 | .29973 | .29720
345 .31259 | .31104 | .30934 | .30746 | .30537 | .30303 .30040

.350 31621 | .31460 | .31284 | .31088 | .30871 | .30629 | .30356
355 .31980 | .31813 | .31629 | .31k27 | .31202 | .30950 | .30667
.360 .32335 | .32162 | .31971 | .31761 | .31528 | .31267 ,

.365 .32687 | .32507 | .3231C | .32092 | .31850 | .31580
.370 .33035 | .328u8 | .3264k | .32418 | 32167

375 .33379 | .33186 | .32974 | .32740 | ,32481
.380 33719 | .33520 .33300 | .33058
.385 34056 | .33849 | .33622 | .33372
.390 ..34389 | .34175 | .339%0 o
.395 | 34718 | ..3kOT |-.34255

800 | .35043 | .34815
.h05 .35365 ‘
.410 .35682

TABLE II.- VALUES OF g(Xr) FOR CRITICAL VELOCITIES

a3
lal

.| e(Xep)
cr cr

36115 | .31339
.350bk | 3038k

| 1.5%0 | 0.40825 | 0.35571
1.38 | .39957 | .34788
1.36 | .39056 | .33976-|
1.34 | .38118 | .33132
1.32 .37139 .32254
1.30
1.28
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X,
TAELE III - VALUES CF FUNCFION h(X,) = f 21-x2)

0.01

1

25

|12 ax

;el.“;gr Ratio of specific heats of gas, k

X. 1.40 1.38 1.36 1.34 1.32 1.30 1.28

0.010 0 (S 0 0 0 0 0 :

.015 405311 40530 .40529| .h0528| .ho527| .k0526| .hkos2k
.020 69277 .69275| .69273| .6927T1| .69268| .69265| .69261
.025 91564 | ,91600 | .91556| .91552| .91547| .91s42| .91535
.030 1.09761| 1.09756| 1.09750| 1.097kk | 1.09736( 1.09728| 1.09718
.035 1.25136| 1.25128 | 1.25120| 1.25111 | 1.25101| 1.2%089 | 1.25076
-0h0 | 1.38442 | 1.38432 | 1.38421 | 1.38409 | 1.38395 | 1.38380 | 1.38362
.045 1.50167 | 1.50155 | 1.50141 | 1.5012% | 1.50107 | 1.%0087 | 1.5006k
.050 1.606k4 | 1.60628 | 1.60611 | 1.60591 | 1.60569 | 1.6054k | 1.60516
.055 1.70110 | 1.70090 | 1,70069 | 1.70045 | 1.70018 1.69988 | 1.69954
-060 | 1.78739 | 1.78716 | 1.78691 | 1.78662 | 1.78630 | 1.7859% | 1.78552
.065 1.8666%5 | 1.86638 | 1.86608 | 1.86575 1.86537 | 1.86494 | 1.86k46
070 - 11.93992 | 1.93961 | 1.93926 | 1.93887 | 1.93843 | 1.93793 1.93737
075 2.00801 | 2.00765 | 2,00725 | 2.00680 | 2.00630 | 2.00572 2.00507
.080 2.07159 | 2.07117 | 2.07072 | 2.07021 | 2.06963 | 2.06898 | 2.0682k
.085 2.13118 | 2.13072 | 2.13020 | 2,12962 |2.12898 | 2.12824 | 2.127h0
.090 2.18726 | 2.18673 | 2.18615 | 2.18551 |2.18478 | 2.18396 | 2.18301
.095 2.24017 | 2.23959 (2.23895 | 2.23822 |2.23741 | 2.23650 2.23545
.100 2.29026 [2.28961 |2.28890 | 2,28810 |2.28720 | 2.28618 2.28502
105 12.33778 | 2.33706 | 2.33628 | 2.33540 |2.334k1 | 2.33328 |2.33200
©.110 2.38296 (2.38218 | 2.38132 | 2.38035 |2.37927 | 2.3780k |2.37663
115 2.42602 | 2,42517 |2.42k23 | 2,42317 [2.42198 | 2.42064 2.41911
120 12.46713 | 2.46620 | 2.46517 | 2.46403 |2.4627h | 2.46127 |2 45961
.125 2.506hk | 2.50543 [2.50432 |2.50307 |2.50167 2.50009 | 2.49828
.130 2.54408 | 2.54300 | 2.54179 {2.54045 |2.5389L 2.53723 {2.53528
135 2.58019 | 2.57902 |2.57772 | 2.57627 |2.57h6k4 |2.57280 2.57070
140 2.61486 |2.61360 |2,61221 |2.61065 |2.60891 2.60693 | 2.60467
145 2.64820 |2.64685 [2.64536 |2.64369 |2.64182 |2.63970 2.63729
.150 2.68029 (2.67885 [2.67725 |2.67547 [2.67347 |2.67121 2.66863

“‘!ﬂ‘;""
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L 1 .
TABLE III. - VALUES OF FUNCTION h(xr) = %(1-x?)E:I 4X - Continued.
0.01

Velocitl Zr Ratio of specific heats of gas, k _

X, 1.ko 1.38 1.36 1.34 1.32 1.30 1.28
0.150 2.68029 | 2.67885 | 2.67725 | 2.6T5T | 2.6T34T | 2.67121 2,.66863
.155 2.71120 | 2.70967 | 2.70797 | 2.70607 | 2.70393 | 2.70152 2.69877
.160 2.74102 | 2.73939 | 2.73758 | 2.73554 | 2.73329 | 2.73072 | 2.72780
.165 | 2.76980 | 2.76807 | 2.7661k | 2.76400 [2.76159 | 2.75887 | 2.755T7
.170 2.79760 | 2.79576 | 2.79373 | 2.79145 | 2.78890 | 2,78602 | 2.7827T3
175 2.80848 | 2.8225h4 | 2.82038 | 2.81798 | 2.81528 | 2.81223 | 2.80876
.180 2.850h9 | 2.84843 | 2.84616 | 2.84362 | 2.840T7 | 2.83755 | 2.83388
.185 2.87566 | 2.87350 | 2.87109 | 2.86842 | 2.86541 | 2.86202 | 2.85816
.190 2.90005 | 2.89777 | 2.8952k | 2.89242 | 2.88926 | 2.88569 | 2.88163
195 | 2.92368| 2.92128 | 2.91863 | 2.91567 | 2.91235 | 2.90860 | 2.90433
.200 | 2.94660| 2.94409 | 2.94130 | 2.93819 | 2.93470 | 2.93077 | 2.92629
.205 2.96884 | 2.96620 | 2.96328 | 2.96002 | 2.95637 | 2.95225 | 2.94756
210 2.99043 | 2.98766 | 2.98460 | 2.98119 | 2.97737 2.97306 | 2.96815
.215 3.01139 | 3.00850 | 3.00530 | 3.00173 | 2.9977k | 2.99323 | 2.98810
.220 3.03176 | 3.0287h | 3.02539 | 3.02167| 3.01750 | 3.01279 | 3.007kk
225 3.05155 | 3.048k0 | 3.04491 | 3.04102 | 3.03667 | 3.03176 | 3.02618
.230 3.07080 | 3.06751 | 3.06387 | 3.05982 | 3.05529 | 3.05017 | 3.0k436
.235 3.08952 | 3.08608 | 3.08230 | 3.07809 | 3.07336 | 3.0680k | 3.06200
240 3.10772 | 3.10416 | 3.10022 | 3.09583 | 3.09092 | 3.08539 | 3.07911
2h5 3.125%4 | 3.1217h | 3.11764 | 3.11309 | 3.10799 | 3.1022k | 3.09571
.250 | 3.14270 | 3.13885 | 3.13459 | 3.12986 | 3.12k57 | 3.11860 | 3.11183
.255 3.15949 | 3.15550 | 3.15109 |3.14618 | 3.14069 | 3.13450 | 3.12748
.260 3.17585 | 3.17171 | 3.1671k4 |3.16205 | 3.15636 | 3.14995 | 3.14268
265 |3.19178 | 3.18750 | 3.18276 |3.17T749 | 3.17160 | 3.16496 | 3.157hk
.270 3.20731 | 3.20287 |3.19796 |3.19251 | 3.186k2 | 3.17956 |3.17178
275  |3.2224k |3.21785 |3.21277 [3.20714 | 3.20084 |3.19375 {3.18571
.280 |3.23719 |3.2324% |3.22720 |3.22137 |3.21486 |3.20754 |3.19925
.285 3.25156 |3.2k666 |3.24125 |3.23523 [3.22851 (3.22096 |3.21240
.290 3.26558 |3.26052 [3.25493 |3.24872 |3.24179 (3.23400 |3.22518
295 3.27925 |3.27403 |3.26827 |3.26187 |3.25472 |3.24669 [3.23760
.300  |3.29258 [3.28720 |3.28126 [3.27466 |3.26730 |3.25903 |3.24967

"I‘ﬂ‘;’!”



TABLE III - VALUES OF FUNCTION k(X)) =

. NACA TN 193]

X.

0.01

1

%(1-12)E:I dX - Concluded.

27

Velocity Ratio of specific heats of gas, k
parameter
) & 1.40 1.38 | 1.36 1.34 1.32 1.30 1.28
0.300 | 3.29258 3.28720| 3.28126 | 3.27466 | 3.26730 | 3.25903 | 3.24967
.305 3.30558 | 3.3000k | 3.29392| 3.28713 | 3.27955 | 3.27103 | 3.26140
.310 3.31827 | 3.31256] 3.30626 | 3.29927 | 3.29147 | 3.28271 | 3.27280
315 | 3.33065| 3.32477| 3.31829 | 3.31110 | 3.30308 | 3.29k07 | 3.28389
".320 |'3.34272| 3.33668| 3.33001 3.32262 | 3.31437 | 3.30512 | 3.29466
325 3.35050 | 3.34829 | 3.3h1hk | 3.3338% | 3.32537| 3.31587 | 3.3051k
.330 3.36600 3.35962| 3.35258 | 3.34478 | 3.33608 | 3.32633 3.31532
-335 | 3.37722 3.37067| 3.363uk | 3.35543 | 3.34651 | 3.33651 | 3.32521
3ko 3.38817 3.3814k | 3.37403 | 3.36581 3.35666 | 3.34641 | 3.33483
345 3.39886 | 3.39196 | 3.38435 | 3.37593 | 3.36655 | 3.3560k 3.38418
.350 3.40929 | 3.k0221 | 3.39k42 | 3.38578 | 3.37617 | 3.36541 3.35327
355 | 3.41947 | 3.h1222 | 3.kok23 | 3,39538 | 3.38554 | 3.3Ths2 | 3.36210
360 3.42940 | 3.42198 | 3.41379 | 3.LOkTh 3.39467 | 3.38339
.365 3.43910 | 3.43150 | 3.42312 | 3.41385 | 3.40355 | 3.39201
-370 | 3.45857 | 3.440T8 | 3.43221 | 3.42273 | 3.41219
375 3.45761 | 3.5498k | 3.44108 | 3.43138 | 3.%2061
.380 3.46683 | 3.45868 | 3.44972 | 3.43981
.385 3.47563 | 3.46730 | 3.45814 | 3.44802
.390 3.48422 | 3.47571 | 3.46636
.395 3.59261 | 3.48391 | 3.47436
400 3.50079 | 3.49192
ko5 3.50878
410 3.51657
TABLE IV - VALUES OF h(X,) FOR CRITICAL VELOCITIES
k x¢r h(X,,.)
1.hg 0.40825 3.2138&
1.3 .39957 | 3.49123
1.36 | .39056 | 3.46725
1.34 | ,38118 | 3.44175
1.32 | .37139 | 3.41453
1.30 | .36115 | 3.38537
1.28 | .35044 | 3,35ho4
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Figure |. - Typical éssigned suction-surface contour,
typical assigned velocity distribution, and

construction of first stream filament.
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Figure 5. - Assigned suction-surface contour, assigned velocity distribution,
and channel construction for illustrative example.
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Figure 6. -~ Comparison of channels constructed by

constant-curvature and vortex-type-variation methods
for illustrative example. ' ‘
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