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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 1939 

THE EFFECTS OF AERODYNAMIC BRAKES UPON THE 

SPEED CHARACTERISTICS OF AIRPLANES 

By Jack D. Stephenson 

SUMMARY 

A study has been made of the factors influencing the performance 
of aerodynamic brakes. The requirements which must be met in order for 
the brakes to provide the necessary control over the forward speed are 
discussed for various flight conditions under which they may be used. 
Equations relating the speed and altitude are presented for several 
cases in which certain simplifying assumptions are made. For these 
cases, formulas and graphs in the report furnish a means of quickly 
computing the longitudinal speed variations, the dive angles, and the 
rates of descent for airplanes having known drag characteristics. For 
the cases to which the simplifying assumptions do not apply, it is 
indicated that a satisfactory solution, which takes into account all 
of the possible variables (such as atmospheric density, drag coeffi­
cient, and flight- path angle) can be obtained by a step-by-step method 
of calculation. Graphs are presented to reduce the time required f or 
step-by-step calculations. Example calculations, which show each step 
in detail, illustrate the use of the graphs and formulas. 

The increases in drag coefficient that are characteristic of 
several types of wing and fuselage aerodynamic brakes, which have been 
tested in wind tunnels or in flight, are summarized in the report. 
The effect of Mach number on the drag coeffi cient and the effect of 
partial brake deflection are included where such data are available . 

INTRODUCTION 

The continued improvement in the aerodynamic design of high-speed 
airplanes has brought the normal operating speeds near to their maximum 
safe speeds. As a result of low drag and of high engine output, 
airplanes may under certain circumstances accelerate to speeds at which 
dangerous compressibility effects or structural loadings arise. The 
trend toward higher wing loadings has added considerably to the possi­
bility of attaining dangerous speeds, especially at the high operating 
altitudes which are characteristic of many modern airplanes. 
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One means of controlling speed is the use of aerodynamic brakes. 
This report is concerned with the problem of relating the drag increases 
due to aerodynamic brakes to the control of forward speed. Problems of 
buffeting, of changes in stability, of aerodynamic loads, and of changes 
in trim, which may arise when a particular brake is used on an airplane, 
are not consid~red. If a satisfactory brake is to be selected for an 
airplane, however, the possible occurrence of such phenomena must be 
investigated for the airplane and brake combination. 

The increases in drag that result from the use of air brakes have 
been measured in wind-tunnel and flight tests for a large variety of 
brakes. In this report a summary of such drag data is presented. The 
effect of increases in the drag coefficient upon the speed variation 
calculated for a hypothetical airplane is illustrated. A procedure 
for calculating the speed of an airplane at any point in arbitrarily 
specified maneuvers is presented and discussed. 

SYMBOIS 

CD net drag coeffic ient (Dn) 
n qS 

Dn 

K 

S 

increase in drag coefficient due to the aerodynamic 

brake (brak:s drag) 

drag coefficient due to the aerodynamic brake referred 

to the area of the brake (brake drag) 
qSB 

lift coefficient (l~~t) 

algebraic sum of aerodynamic for ces parallel to the direction 
of flight, positive t oward the rear, pounds 

deceleration factor (~ lis CDn ) , per foot 

Mach number 

wing area, square feet 

maximum projected area of the aerodynamic brake, including 
slots, gaps, and perforations, square feet 
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V true airspeed, feet per second 

Vv vertical component of speed, feet per minute 

tN speed change in time interval l::.t, feet per second 

V average speed during time interval l::.t, feet per second 

W airplane weight, pounds 

wjs wing loading, pounds per square foot 

a longitudinal acceleration, feet per second squared 

a average longitudinal acceleration during time interval 6t, 
feet per second squared 

b wing span, feet 

g acceleration due to gravity, feet per second squared 

h altitude, feet 

l::.h altitude change in time interval l::.t, feet 

n indicated normal acceleration factor 
(

indicated acceleration) 
normal to flight path . 

g 

q d.yna.mi.c pressure ( ~V2 ), pounds per square foot 

r radius of curvature of flight path, feet 

t time, seconds 

l::.t time increment, seconds 

a angle of attack, degrees 

/ flight-path angle from the horizontal (positive for a climb), 
degrees 

IXl change in flight-path angle in the time interval l::.t, degrees 

/ average flight-path angle during the time interval l::.t, degrees 

," p air density, slugs per cubic foot 

) 
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Subscripts 

e est ina ted 

o value at t = 0 

1 value at beginning of time interval ~t 

CONTROL OF AIRPLANE SPEED 

Flight experience has indicated that the control of forward 
speed, which is possible through the use of aerodynamic brakes, is of 
considerable value in the operation of airplanes of all types. The 
required act ion of brakes in controlling the speed differs among 
various airplanes, and for any one airplane the requirements may 
differ with the type of maneuver that is to be performed. For the 
purpose of t he present discussion, brakes are considered according to 
their use in producing longitudinal deceleration at approximately 
constant alt itude, in permitting greater angles of dive at moderately 
low speeds, and in avoiding dangerously high speeds. 

Deceleration at Constant Altitude 

It is to be expected that a device that controls the longitudinal 
deceleration would find especial applications in the operation of 
combat airplanes. A sudden deceleration would be required' in order 
for a fighter airplane which was overtaking its target to slow down 
so as to have a maximum amount of time for firing. Rapid decelerations 
may also be called for in traffic-control zones during poor visibility 
in order to prevent collision. 

Aerodynamic brakes may assist the pilot in performing various 
maneuvers. If the maximum normal acceleration is fixed by the maximum 
to which the pilot may be subjected or by structural limitations of the 
airplane, t he minimum radius of curvature of the flight path varies 
with the square of the speed. Thus, a reduction in speed by the use 
of air brakes prior to and during a maneuver would effect a substantial 
decrease in t he minimum turning radi us. 

The performance of aerodynamic brakes used primarily for speed 
reduction is indicated by the magnitude of the longitudinal dec~lera­
tion in level flight. Calculations showing the variation of speed 
with time can be used to measure the comparative suitability of 
different brakes on the same airplane in producing needed changes of 
speed. 

", 

J 
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Speed Control in Dives 

Aerodynamic brakes which keep the speed moderately low during dives 
are needed for the performance of some tactical maneuvers. For tre dive 
bomber, low speed is required as a precaution against excessive normal 
accelerations during pUll-outs at low altitude. In rapid descent of 
large airplanes; the desirability of avoiding high forward speeds is 
apparent. The braking which would be sufficient to prevent increases 
in speed may be used to gauge the performance of brakes for airplanes 
in controlled-speed dives. Aerodynamic data for brakes to be used on 
airplanes in such dives may be evaluated by a comparison of the measured 
brake drag with the brake drag which would be required to reduce the 
longitudinal acceleration to zero. 

Speed Control at High Speed 

The maximum safe diving speed is commonly specified as the ma~imum 
indicated airspeed upon which calculations of loads are based in the 
structural analysis. The rapid change in altitude resulting from a 
steep dive at high speed means that the true speed would have to be 
reduced in order to keep from exceeding the allowable indicated speed. 
Calculations which show the variation with time of the speed of an 
airplane with brakes indicate whether the drag of the brakes is suffi­
cient to produce the required reductions in speed. Methods are pre­
sented in this report to aid in making such calculations. 

One of the most important examples of the employment of aerodynamic 
brakes is their use in avoiding dangerous compressibility effects. 
These effects take the form of changes in longitudinal stability, such 
as described in reference 1, or as other erratic behavior of airplanes 
or their controls. Without brakes, pilots of modern high-speed combat 
airplanes are not always able to avoid speeds at which such compressi­
bility effects appear. 

A method of calculation which shows the variation with time of 
speed and altitude of an airplane throughout various maneuvers can be 
used to determine whether the aerodynamic brakes are adequate to keep 
the maximum Mach number below a certain critical value. 

ANALYSIS 

The foregoing discussion has indicated various instances wherein 
a need for aerodynamic brakes has been observed. The drag increments 
due to air brakes do not by themselves afford a complete measure of 
the degree to which brakes meet these needs. Brake designs can be 
evaluated by studies which demonstrate the effects of the brakes upon 
the forward speed of airplanes. These effects are analyzed in this 
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report through a study of equations of longitudinal motion of airplanes, 
Gf the validity of various initial assumptions, and of the accuracy of 
approximate calculations. 

Algebraic Analysis 

The deceleration of an airplane with air brakes depends upon a 
number of factors, such as variations of flight-path angle, of alti­
tude, and of speed, as well as upon the characteristics of the brakes 
themselves. In order to separate the effects of the brakes from t he 
other effects, the problem is simplified by assuming that one or more 
of these factors is constant. The effects of various air-brake 
designs and locations on the variation of speed with time may then be 
readily determined. The following sections present analyses employing 
such Simplifications. 

Level-flight deceleration.- In level flight, one form of the 
equation of longitudinal motion of an airplane is 

dV = _ Ii Dn 
dt W 

(1) 

where Dn is the algebraic sum of the aerodynamic forces acting 
parallel to the flight direction, positive being taken toward the rear. 
The value of TIn is affected by any changes in the drag of the air­
plane, which may result, for example, from variations in angle of 
attack, variations of Mach number, or changes in the setting of the 
air brakes. Any factors that cause the thrust to change, such as 
variations in engine output, variations in propeller efficiency, and 
effects of velocity upon propeller or engine thrust also influence Dno 
It is convenient to express nu in the form of a force coefficient 

CD 
Dn 

n lpv2s 
2 

Substituting in equation (1), 

dV p gV2 
= Cnn 2" wjS ' dt 

If Cnu is constant, this expression may be integrated to give 

v 1 
( 2 ) 

• .1 

/ 



7 
NACA TN 1939 

where 

K 

The quantity K is a measure of the effects of altitude, wing loading, 
and net drag coefficient upon the longitudinal acceleration and in this 
report is referred to as the "deceleration factor." The value of the 
deceleration factor may be obtained for an airplane from figure l(a) , 
which takes into account the effects of altitude and of wing loading, 
and figure l(b) which includes the effect of the net drag coefficient. 

The velocity variation given by equation (2) has been plotted in 
figure 2 for four initial speeds: 300, 500, 700, and 900 feet per 
second. Curves are given for various values of deceleration factor K. 
Comparison of the slopes of curves for equal values of K shows a 
considerable increase in the deceleration as the initial speed increases. 

In deriving equation (2), it was assumed that Cnn was constant 
during the time interval considered. For this assumption to be valid, 
the engine output must be constant and the effects of speed changes on 
the thrust and drag coefficients must be negligible. If aerodynamic 
brakes are extended at the start of the time interval, the resulting 
increase in drag must be so rapid that it can be approximated by an 
instantaneous increase. 

It is obvious that assuming Cnu (or K) constant will in some 
cases lead to large errors. However, the results can represent the 
actual velocity variations fairly accurately under certain conditions. 
Below the Mach number of drag divergence the variation of airplane 
drag coefficient with Mach number is generally small. The effect of 
a delay due to the time required for full extension of the air brakes 
could introduce a large discrepancy; however, a rapid rate of exten­
sion is an essential characteristic of brakes which are to be used 
at high speeds. 

It is possible to express variations in Cnn as a series of 
instantaneous changes occurring at chosen time intervals during the 
deceleration. The variation of speed with time is then given by 
equation (2) with values of K computed for each interval and values 
of Vo successively determined as the velocity at the end of each 
preceding interval. The same variation may be obtained from figure 2 
by shifting along the time axis portions of the curves having these 
values of deceleration factor and initial velocity. The curve thus 
obtained is continuous but changes slope abruptly at the start of each 
interval. 
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Constant flight-path inclination.- When the flight path is in­
clined, the component of weight W parallel to the direction of motion 
must be included, and the equation is 

where )' 
stituting 

dV g 
dt = W (-Dn - W sin),) 

is the flight-path angle, positive for climbing flight. 
K as in the case of level flight, 

dV 2 
dt = -KV - g sin )' 

Sub-

The assumption can again be made that K does not vary during the 
period of time being considered. Then (as shown in reference 2) equa­
tion (3) integrates as follows to give the velocity variation for an 
airplane in a dive or climb at a constant angle: 

If )' is negative and -./LTi <vo, where L = -g sin )' 

where 

If JL/K>VOJ 

where 

v 

/L + Vo JK 
loge -----------

.fL-vo JK 

If )' is positive, 

V = N cot [N (Kt + Cs) ] 

(4) 

(6) 

( '.. 
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where 

and 

In assuming that K is constant the same approximations are made 
as in the case of level flight, together with the additional assumption 
that the density does not vary as a result of the inclined flight. It 
is necessary to estimate an average value of density, and, for large 
changes in altitude, some improvement in accuracy can be gained by 
dividing the time under consideration into shorter intervals and making 
separate calculations for each interval. 

Constant-speed dive.- If there is adequate control over the drag, 
an airplane can be dived at any angle at constant speed. Such control 
requires a net drag coefficient given by the relation 

2(W!S)sin '( 
pV2 

For most airplanes having even moderately high wing loadings and low 
drag, however, it is not feasible t o provide air brakes effective 
enough to prevent increases in speed under all conditions. The com­
bination of factors which govern the maximum angle for a constant-
speed dive can be determined from figure 3. This figure shows the 
relation between forward speed, angle of dive, and rate of descent. 
The other variables which affect the dive, such as altitude, net drag 
co~fficient, and wing loading, are again included in the single quan­
tity K. Figure 3, used in conjunction with figures l(a) and (b), 
permits graphical solution for any one of these quantities when equilib­
riu::n exists. 

An indication of the separate effects of altitude and speed upon 
the net drag required for equilibrium is given in figure 4. Wing 
loadings of 30 and 50 pounds per square foot were assumed. On the 
left in figure 4 the drag coefficient is plotted against altitude for 
a vertical dive. It is apparent that unless the airplane speed is 
very high, the equilibrium drag coefficient is large even at low alti­
tudes and becomes extremely large at high altitudes. On the right in 
figure 4, curves of constant drag coefficient are plotted against the 
dive angle. The drag coefficient as a function of altitude and 
airspeed may be found for any dive angle by reading Cnn correspond­
ing to the ordinate from the left part of the figure at the desired 
value of dive angle. 
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Graphical Analysis 

As the number of variables in the equation of motion is increased, 
it becomes impractical to obtain an accurate solution by direct inte­
gration of the equation of motion along the flight path. Because of 
the arbitrary manner in which some of the quantities involved can be 
varied) a method of calculation in which specific variations of these 
quantities are assumed would place untenable restrictions on the use­
fulness of the solution. Among the quantities which cannot be defined 
mathematically by expressions suitable for all problems are the follow­
ing: 

(a) Variation of engine output with time 

(b) Variations of drag and thrust wIth Mach number 

(c) Variation of flight-path angle with time 

(d) Variation of drag with lift 

(e) Variation of drag with time when the air brakes are 
operated 

These variations, which are either arbitrary or empirical, and the 
variation of atmospheric density with time can all be taken into 
account if the calculations are made by graphical means. The calcula­
tions can be performed by a step-by-step method in which the longitudi­
nal acceleration in each step is obtained from graphs that have been 
prepared. The change in velocity can then be ascertained as the inte­
gral of the acceleration with respect to time. This integral may be 
evaluated graphically, but it has been found that the integration is 
sufficiently accurate if trapezoidal elements of area are assumed and 
an arithmetical evaluation is used. 

Constant fli ht- ath inclination.- The longitudinal acceleration 
(or deceleration at the beginning of the interval of time being 
studied is determined by the known or assumed initial flight conditions. 
The acceleration at any later time, however, cannot be computed 
directly, since it is a function of speed and altitude, the values of 
which are not known. This acceleration may be found by dividing the 
total time interval into a series of increments and calculating, step 
by step, the conditions at the end of each increment. The step-by-step 
calculation is made by estimating the speed and . altitude at the end of 
each increment upon the basis of the known conditions at the beginning 
of that increment. With these estimated values, the longitudinal accel­
eration at the end of the increment may be computed. The speed and 
altitude at this time may then be calculated to greater accuracy and 
compared with the estimated values. Although this procedure amounts to 
a method of successive approximations, it has been found that the 

. 
I 
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velocity and altitude can usually be estimated so accurately that the 
first approximation is sufficient. If it is not, a second approx ima­
tion may be made, or else smaller increments of time can be chosen. 
The time increments should be small enough so that all important 
changes in acceleration are taken into account, but large enough to 
keep the number of steps to a minimum. 

The change in altitude during the time 6t for flight with a 
constant flight-path angle is 

V (6t) sin )' 

where V is the average velocity. The estimated altitude change for 
each 6t is given by this relation in which V is the average 
velocity estimated for that incremental time. 

11 

The longitudinal acceleration at the end of the time increment is 
given by figure 1, which includes the effects of altitude and wing 
loading (fig. l(a)), of drag coefficient (fig. l(b)), of velocity 
(fig. l(c)), and of flight~path inclination (fig. l(d)). When the 
speed variation of an airplane at a constant flight-path inclination 
is being calculated, the values of flight-path angle and wing loading 
are known. The altitude and speed are estimated, as indicated in the 
preceding paragraphs. The net drag coefficient, which may be a 
function of the flight Mach number and the airplane lift coefficient, 
is obtained from experimental or theoretical data using values of Mach 
number and lift coefficient computed from the estimated speed and 
altitude. 

The increase or decrease in velocity during the time 6t, assumed 
to be given by the area of the trapezoidal element under the CQTVe of 
acceleration against time, is 

in which a~ and a are the longitudinal acceleration at the begin­
ning and of the end of the time increment. The velocity and Mach number 
which result from this velocity change can now be compared with the 
estimated values to ascertain whether the estimates are accurate. 

Variable flight-path inclination.- Because proposed aerodynamic 
brakes are to be designed for use in flight at any time, a method for 
calculating the speed of an airplane during any flight evolution is 
needed. The calculations for a dive at constant angle discussed in the 
preceding section would not accurately represent a steep dive of a 
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high-£peed airplane because a large part of the latter maneuver would 
consist of the dive entry and pull-out. The effects of curvature of 
the f light path can be evaluated by an extension of the graphical 
method just described. 

When the airplane is following a path of increasing or decreasing 
inclination, a calculation of the changes in altitude is complicated by 
the necessity of extrapolating along the curved path. One means of 
making such an extrapolation is to assume that the airplane follows a 
path consisting of a series of circular arcs. The curvature of the 
fli ght path, which is a function of the forces normal to the direction 
of motion, i s evident to the pilot as a normal acceleration. In order 
to permit the changes in altitude to be expressed as a function of the 
normal acceleration felt by the pilot, motion in a vertical plane is 
first considered. The altitude change during the period of time 6t 
can be computed by the relation 

r [cos ,~ - cos (,~ + 6,)] 

where r is the radius of the arc of the flight path, ,~ 

flight-path angle at the beginning of the period, and 6, 
angular cha~ge in the direction of motion during the time 

is the 
is the 
6t. 

( 8 ) 

The actual acceleration normal to the direction of flight is equal 
to the indicated normal acceleration minus the normal acceleration due 
to the weight of the airplane. If n is the indicated normal accelera­
tion f actor, 

== g (n - cos ,) 
r 

In figure 5(a) the acceleration factor n is plotted against the 
quantity (n--cos "7) for values of f from OOto 900

• The curves for 
negat ive val ues of , are the same as for positive values. 
Figure 5(b) presents the variation of airspeed with (n-cos y) for 
constant radii of flight-path curvature. Example guide lines show h ow 
t he r adius may be found by projecting the abscissa from a point in 
f igure 5(a) to the line for cos "7 == 0 ("7 == 900

, positive n) and con­
t inuing at this ordinate to the desired value of average airspeed in 
par t (b ). 

Figures 5(c) and 5(d) give a graphical solution for 6, as a 
funct ion of (n - cos r), V, and 6t. The graphs were obtained from 
the following equations. Since r is considered to be constant during 
the time interval 6t, 

• I 

'. 
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_1_ ru:. = y 
57.3 dt r 
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V Substituting from equation (9), 
r 

d)' 

dt 57·3 g 
n - cos )' 

V 

from which, by using small finite time intervalp, 6)' may be computed 
as 

6)' = £r 6t 
dt 

The estimated average speed Ve during the time 6t is used in calcu­
lations for radius of curvature and d),/dt. In addition, an estimate 
of the average flight-path inclination is necessary to determine the 
value of the abscissa (n-cos 1). The accuracy of this estimate can be 
checked as soon as 6)' has been found, if it is assumed that Y is 
the initial angle plus half the increment. 

Figure 5(f) shows the variation with 6)' of the quantity 
[cos )'1 - cos ()'1 + 6),)]. There are two sets of values of )'1 identi­
fying the curves, one of which applies when 6)' is positive and one 
when 6)' is negative. This .dual labeling is used because the curves 
have been plotted on only one side of the vertical axis. The algebraic 
sign of 6)' may readily be ascertained since it is the same as the 
sign of the quantity (n-cos )'). When the ordinate of figure 5(f) and 
the radius of flight-path curvature, figure 5(b), are known, the change 
in altitude is given by figure 5(e). Although the algebraic sign of 
the change in altitude is not shown in the graph, in most cases it is 
evident from the problem. If the Sign is not apparent, a simple 
diagram showing )'1 and 6)' will indicate whether the altitude increases 
or decreases during the time 6t. 

It is seen that figure 5 cannot be used when the flight-path 
radius becomes very large. In this case the altitude chanee may be 
calculated with sufficient a ccuracy from equation (7). 

The graphical solution for the change in altitude is arranged so 
as to be used directly with maneuvers in a vertical plane which are 
identified by the magnitude of the normal acceleration or load factor. 
For maneuvers not wholly in a vertical plane, part of the total load 
factor results from accelerations in a horizontal direction and does 
not affect the altitude. In this case the value of the load factor to 
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be used with the graphs is the component measured normal t o the f l ight 
path in a vertical plane tangent to the flight pat h . 

The procedure in the calculation of the speed ch::l.nges wi·~ .. hin each 
time increment is the same wit h a variable flight-path angle at> with a 
constant angle. The flight-path angle and the altitude are progres­
sively evaluated for the beginning of each time interval and their 
values are e s timated for the interval by the method just described. 
The acceleration of the end of the increment 6 t is obtained graphi­
cally (fig. 1) and the velocity is computed. Step-by-step calculations 
furnish the velocity variation during the complete interval being inves­
tigated. 

DRAG CHARACTERISTICS OF AERODYNAMIC BRAKES 

The characteristics of various aerodynamic brakes have been inves­
tigated in wind-tunnel and flight tests. (See references 3 through 7.) 
Results of such tests are summarized in this report: Data are presented 
in the form of increments in drag coefficient which are attributable to 
the brakes. It is to be expected that in some cases such increments are 
affected by the particular location of the brakes on the Wing, the 
fuselage, or elsewhere, and by their proximity to other components of 
the airplane. The air brakes shown are representative of installations 
in which air brakes are added to typical fuselages or at different 
locations on Wings. 

Geometric data and incremental drag coefficients for the aerody­
namic brakes shown in figure 6 are presented in table I. These data 
indicate increments in the drag of the airplane which are small in 
comparison with the values required in a steep dive for an airplane 
having a moderate wing loading (fig. 4). Increased drag can be obtained 
by increasing the relative size of the brake. However, increasing the 
size is practical only within the limitations of available space into 
which the brake may be retracted. The size is limited also by consider­
ations of weight of the structure transmitting the aerodynamic loads, 
and by the effects of large brakes upon the trim, stability, and 
buffeting of the airplane. 

Table I indicates that the drag coefficients (based upon the areas 
of the air brakes) vary over a wide range, depending upon the shape and 
location of the brake on the airplane. The lowest drag coefficient was 
measured for the picket-fence type of brake (type N). This low value 
of brake drag coefficient might be expected since the brake area used 
as a reference is more than twice the actual frontal area. The highest 
drag resulted from solid brakes at forward positions on the wing 
(types F and G). This forward location of the brakes results in a 
spoiling action which causes changes in the lift as well as drag. 
Since the drag increments in table I are for zero lift, a part of the 

.. 
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drag is attributable to the change in angle of attack necessary for the 
lift to be constant. Because the rate of change of drag with angle of 
attack for lift coefficients near zero is small, the effect of such an 
angl~f-e.ttack change is not large for the data presented. Apparently, 
therefore, the large drag values of the spoiler-type brakes result from 
changes in the flow over the wing. 

From the discussion of the functions of aerodynamic brakes, it is 
evident that they should be designed to be effective throughout a wide 
range of conditions. There should be a smooth increase in drag as the 
brake is "extended, permitting any position between fully open and 
closed to be selected with a corresponding control over the decelera­
tion. The variations of drag coefficient with percent extension for 
brakes of several types are shown in figure 7. 

The effect of Mach number upon air-brake drag is dependent upon 
the particular installation. The variations of incremental drag 
coefficient with Mach number for two aerodynamic brakes (of type D) on 
a rectangular wing are shown in figure 8. The drag characteristics are 
affected to a large extent by the lift on the wing. At an angle of 
attack of -1.00 , the rate of rise of drag with Mach number became 
greater as the Mach number increased from 0.3 to 0.775. At an angle 
of attack of 3.00 , the drag increased with Mach number up to a Mach 
number of 0.7 and then began to decrease. The drag coefficient due to 
the fuselage side brake, shown in figure 8, increased nearly uniformly 
with Mach number throughout the range of Mach numbers from 0.3 to 
0.875. The drag coefficient due to the fuselage dive-recovery flaps 
(type p) increased rapidly with Mach number above 0.6, rising to 161 
percent of its low-speed value at a Mach number of 0.8. 

EXAMPLE CALCULATIONS 

Examples are presented to illustrate the procedures for calculat­
ing the variations with time of the forward speed and altitude. These 
calculations are for an airplane with a wing loading of 50 pounds per 
square foot, initially flying at a true airspeed of 700 feet per second. 
An initial altitude of 25,000 feet Was assumed and some additional 
calculations were made assuming an initial altitude of 10,000 feet to 
indicate the effects of this reduction in altitude. 

The longitudinal aerodynamic forces on the airplane can be repre­
sented by the coefficient 

where the terms are defined as follows: 
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CDA drag coefficient of the airplane without air brakes, excluding 
the induced drag 

CDT force coeffiCient, either drag or thrust, due to the propulsion 
unit 

F induced drag factor 

6CD increment in drag coeff icient resulting from the extension of 
aerodynamic brakes 

Level Flight 

The speed variation for level flight is given by equation (2) in 
which it is ne cessary that CDn be constant. 

The following coefficients have been assumed: 

F = 0.060 

2 FCL = 0.001 

L1CD = 0.100 

CDn = 0.114 

For an altitude of 25,000 feet, 

v 

(0.114) 0.00;066 ( 3~o2) 

25,600 
t + 36.6 

For an altitude of 10,000 feet 

-3 0.0391 X 10 per foot 

' . 
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K = 0.0644 X 10-3 per foot 

v = 15.500 
t + 22.2 

17 

The relations for speed as a function of time are sh~fll in figure 9 for 
level flight. Figure 9 indicates that, by reducing the altitude from 
25,000 to 10,000 feet, the time required for a given speed reduction is 
decreased by 40 percent. 

Constant Dive Angle 

The variation of speed with time during the first 15 seconds for 
a constant-angle dive has been calculated for the same assumed coeffi­
cients. A dive angle of 600 was assumed. 

Initial altitude, 25,000 feet 

Estimated average altitude, 20,500 feet 

K = 0.0000458 per foot (fig. l(b)) 

L = -g sin 1 = (32.2) (0.866) = 27.9 feet per second squared 

JL/K = 780.5 feet per second 

Since JL/K is greater than Va, equation (5) is used. 

1 JK/L loge JL + Va JK = 0.001866 
2 ./L-vo./K 

v = 780.5 tanh [780.5 (0.0000458t + 0.001866 )] 

Initial altitude, 10,000 feet 

Average altHude, 5,000 feet 

K = 0.0000752 per foot 

~L/K = 609 feet per second 

Since JL/K is less than Va' equation (4) is used. 

V = 609 coth [609(0.0000752t + 0.002187)] 
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The relations for speed as a function of time when the airplane i s 
in a 600 dive are shown in figure 9 . 

A more accurate solution results from a step-by-step calculation. 
The velocity relations have been calculated by this method for com­
parison with the relations given by the equations. In order for the 
results of the step-by-step calculations to be comparable, to the formu­
las, the assumption is again made that there is no variation in CDn. 
However, the effect of the variation in density is included, instead of 
assuming an average value. The step-by-step calculations for a n initial 
altitude of 25,000 feet are presented in table II and the results of the 
calculations are shown in figure 9. 

Calculations were made also to ,indicate the effect oi' a lag in the 
time f or the drag due to the air brakes to reach its full value . It 
was assumed that the increase in drag caused by extending the brakes 
takes place during the interval between 1 and 2 seconds after the brake 
actuation is started. The amount by which the curve is displaced ' 
(fig. 9) indicates the gain in braking effect that can be realized by 
designing the brakes for minimQID delay in opening. 

It is seen from the slopes of the velocity curves in figure 9 that 
a change in flight-path angle from level flight to a dive of 600 results 
in a change from an initial deceleration of 18 feet per second squared 
to an initial acceleration of 6.8 feet per second squared for the 
assumed airplane with aerodynamic brakes at an altitude ,of 25,000 feet. 

Entry Into a Dive 

An example in which the flight-path angle is variable is provided 
in the calculations of the speed during a dive entry. The same initial 
speed, altitudes, and coefficients as in the preceding example are used . 

It is assumed that the airplane is flown so that from level flight 
the indicated normal acceleration factor decreases to -1. 5 within the 
first second and is then held constant until the airplane is in a 600 

dive. The detailed calculations are presented in table III for an 
initial altitude of 25,000 feet . The results, plotted in figure 10, 
show the variation of l~ngitudinal acceleration, dive angle, and speed 
with time for initial altitudes of 25,000 and 10,000 feet . 

CONCLUDING REMARKS 

Aerodynamic brakes afford a means of avoiding undesired increases 
in speed during the operat i on of an airplane, make possible rapid 
decelerations in flight, and allow a considerable increase in the angle 
of de s cent at constant speed. A measure of the utility of aerodynamic 
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brakes is provided by calculations which show how the speed of an 
airplane in a specified maneuver is altered by the employment of the 
air brakes. 

19 

Equations are presented in this report which permit a rapid cal­
culation of the speed changes with time. Use of the equations results 
in cl ose approximations to the values obtained by more accurate 
methods. The equations are not general, however, and apply only to 
several specific problems. The speed during a maneuver can be accurate­
ly calculated as a function of time by a step-by-step procedure. The 
graphs p~esented in this report substantially reduce the time required 
to make such calculations. 

Ames Aeronautical laboratory, 

1. 

National Advisory Committee for Aeronautics, 
Moffett Field, Calif., May 31, 1949. 
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TABLE 1.- SUUMARY OF TEE DRAG CHARACTERISTICS 
OF VARIOUS AERODYNAMIC BRA.KESa. 

Perforat.ed 
.put. nApe 

Po.r1'orated. 
spUt tape 

Perf'orate4 
spUt flape 

SoU4 split. 
flo .. 

'I\relTe .1IItI.11 
eplH napa 

'I\relTe • .,,11 
split flapa 

So114 .pUt 
flop' 

h.ord~~.~~~at10n Blllke chord Brake IIpIln Brake angle =. ~~ed.:'~ 
Airplane oomponent I---r----ji-- -,--t----r-:--t--,-:----i ratio, on on 
t.eet-eel vtth 'bnLke Upper Lover Upper Lover Upper Lover Upper Lover S» v11"16 brake 

surface surface ew-race eurt'ace eurface eurfee" _urreclI eurtac B 

Ree tangular v ins Co.600 o.8oe O.200c O. 200e o.~ o.~ 90° 90° 0.2400 0.243 1.01 

. Iloc . Iloc .2000 .2000 l.~ l.~ 90° 90° 

Tapered wins . 8oC .200e .2ociC .~ 
2 
~ • 2 600 .2400 . 190 ·79 

'l'apered w:1 ng .8oC .8oC .200c .200c l.~ l.~ 
2 2 

. I0000 . 329 .82 

.6Ioe .6"e . li7e .li7e .33~ 413° ~o .0863 .083 

.860 .88c .14"0 .12,. .~ ~ . 2 .oBo' .012 

. 630 . lOOo . 1020 .~ .3"'1 . 0612 .()In 1.)8 

Bc.l:Ier mocI.el vlns Rone .2400 . 1"!JO .093 .611 

So114 
epollers Elliptioal vt'nS .16c .160 Oll)er ,O'&r . 12~ .12et goO 90° .Ol~ . ~l 2 . 48 No saP (SlUt !1s.6) 

So1l4 
.pollen. 

Sol1d 
epollen 

Solid 
apoUel'8 

Solid. 
epollenl 

50lJ4 
apolle"' 

EllIptical v1ng 

Elllpt1cal vttlS 

nliptloal wi ns 

Iillpttcal ving 

Elliptical vine 

Elliptical vtns 

None 

None 

None 

Rone 

None 

. 160 

.160 .07lor .2~ 90° .0220 .0,1 2 . )2 

.160 . 106er 90° .0330 .olIo 1.21 

• JOe .072or .3"1 90° .0320 .066 2 .06 

• JOe .096cr 90° .011)0.069 1.60 

· 3Oe .14:>Cr 90° .0640 .06) .98 

SaUd 
epoller Rectangular wins l'Ione.2Oo .067c 1.~ 900 . 0667 .114 1. 71 

Solid 
spoUer righter model vine .2Oc Kone .1* .202~ 900 .0}42 .069 2.02 

SaUd 
spoUer Flghter model wins None .2Oc .1* .202~ 90

0 
.0342 . O~ 1 . :52 

So114 
.poUer Fight.er lIOdel wing .!JOe "one .1* .202~ 90

0 
.OJl!2 .~1 1.61 

So114 
epoiler Flght.er model wins None.~ .16~ .202~ 900 . 0342 .044 1.29 

So11d 
epoller 'nLpered vins . no "one . oBoe ."09£ 900 . 0131 .020 1."6 

Solied 
.poUer 

Perforated 
plate 

'nLpere4 w1ng .7'5c 

I'1ght.er lIIOI1e1 wins 

Double bare 
gap and alot. 

Tapered. wins .~ None 

Double bare 
SSP and elot 

Tul!ltlla~e 
air brakes 

Tapered. wing 

Beaber fuse lag,. 
aft. of wing 

Fueelage 4.11'.-. Bottom or a 
reeovel'y brak right.er tueelage 

Tueel.e.ge 
all' br&.ky Boa.bor ruaelage 

Fueele.ge Side of ffgbter 
sldo bt'all:ee fueelage 

Kane 

Data are tor r.ero Uft; Macb numbe r le88 than 0.3. 

b See ri8\U'1' 6. 

co. local chord of wins. 

d C _ \fins chord at :aean apanvll!1t1 etation at brake. 

e cr _ root cbord of wing. 

.560 

r porosity: JPper Surface , 0.506; 10ller aurface, 0 . 433. 

. oBoe .oeoe .~ 

. 2>0< .4~ 

. 14~ 

.()02c 

·000e 

.4~ 
2 

.14~ 
2 

.11ao .1"3 1 . 21 

. 0131 .012 ·92 

.0131 ·009 .69 

.012, .011 .88 

92
0 

. 1220 .042 . 34 

900 .04" . 046 1.04 

1'(0 gap 

Gap - 0.2~ 

Gap • O."'CB 

1'10 gap 

Cap. 0 .2~ 

Gap • O. "'CB 

Ko saP 

Gap • 0.33CB 

Gap • 0.33CB 

Gap • 0.33CB 

Gap • 0 . 33CB 

No gap 

No gap 

Gap. O.l~ 

Gap - 0.3"CB 

Gap • O. 32CB 

Cap - O. 34CB 

Gap • O.32CB 

Ror. 

, . 

\. 
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t 

(ssc) 

0 
1 
2 
4 
6 
8 

10 
14 
18 

TABLE II. - CALCULATION OF TEE VARIATIONS OF AIRSPEED WITH 
TIME F OR AN AIRPLANE IN A 60° DIVE FROM AN ALTITUDE OF 
25,000 FEET. WING LOADING, 50 POUNDS PER SQUARE FOOT 

~t Ve 'Ie &. h 
CDn a it ~v 

(ssc) (n/ssc) (ft/ sec ) (ft) (ft) a / g (ft/sec2
) (ft/sec2 ) (ft/sec) 

0 - - - - - - 25,000 0.114 0.27 8· 7 - - - -
1 709 704 -610 24,390 .114 .24 7· 7 8.0 8.0 
1 715 712 -620 23, 770 .114 . 20 6.4 7.0 7.0 
2 725 720 -1240 22 ,530 .114 . 17 5· 5 6.0 12.0 
2 737 732 -1270 21 ,260 .114 .13 4.2 4·9 9.8 
2 744 740 - 1280 19,980 .114 .07 2· 3 3·2 6.4 
2 746 744 -1290 18,690 .114 . 03 1.0 1.6 3·2 
4 745 745 ~580 16,110 .114 -. 04 - 1. 3 -0. 1 -0.4 
4 736 741 -2570 13,540 .114 -. 11 -3. 5 -2 . 4 -9 . 6 

Example calculation: 

2l 

V 

(n/sec) 

700 
708 
715 
727 
737 
743 
746 
746 
736 

An airplane in a 600 dive at a speed of 700 fest per s econd instantaneously extends air brakes at 
time t: o. 

Drag cosfficisnt of airplane without air brakes, CD = 0.014. 

Drag increment due to a i r brakes, teD : 0.100. 

At t: 0 

t = 1 sec 

t = 2 sec 

h = 25,000 ft 

a /g : 0.27 (See guide l i nes , fig. 1) 

ao = (0.27) (32 .2) = 8.7 ft/sec2 

Ve = 700 + 8. 7 (1) = 709 ft/sec 

-
Ve : ~ (700 + 709) = 704 ft/ sec 

&. = Ve ~t sin 7 = (704) (1) (-0. 866 ) = -610 ft 

h = 25,000 - 610 = 24, 390 ft 

a/g = 0.24 (fig . 1) 

a1 = (0 .24 ) (32 .2) = 7.7 ft/sec2 

= ~ (8. 7 + 7. 7) = 8. 2 ft/sec2 
2 

~v = a ~t = 8.2 ft/ sec 

v = 700 + 8 = 708 ft/ sec 
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t 
( . oc) 

0 
1 
1 
2 
3 
4 
6 
8 
~ . 5 
12 
15 

TABLE 111 .- CALCULATION OF VARIATI ONS WITH TIME OF AIRSPEED AND 
FLIGHT- PATH ANGLE FOR AN AIRPLANE ENTERING A 60° DIVE. WING 

LOADING, 50 POUNDS PER SQUARE FOOT. INITIAL ALTITUDE, 
25, 000 FEET 

6 t V. V. ;- 67 I 7 _ r _ 

"" h 
q. 

CVn (rti. oo·) 
;;: "X 

(.00) (tt/ •• c) (ft/ •• c ) n (dog) (d.g ) (dog) 1000 (f t) ( tt) ( l b/ .q Or. a/g (ft/800· ) ( f</. oo ) (f t) f t ) 

0 - - - - 1 - -- - -- 0 - - - - - 25.000 261 0. 19 0. 015 -<> .08 ~ . 6 - - - - --
1 689 695 - 1. 5 - 3.2 -6. 5 -6. 5 6. 0 - 30 24.970 253 -· 30 . 118 - .50 - 16. 2 ~. 2 ~.2 
1 691 696 - 1.5 - 3. 3 -6.6 -6. 6 6. 0 -30 24.970 255 -· 29 . 118 - . 48 - 15.5 -8·9 -8·9 
1 679 685 - 1.5 ~· 9 -6.7 - 13· 3 6. 0 -60 24.910 246 -· 30 . 118 ~ 35 -11.3 - 13. 4 -13 . 4 
1 669 674 -1.5 -16. 6 -6. 6 -19 ·9 5 ·9 - 180 24.730 241 - · 31 . 118 -. 22 - 7. 1 ~. 2 ~ . 2 
1 663 666 - 1.5 ~3 . 2 -6. 6 ~6. 5 5· 7 ~60 24 .470 238 -· 32 . u8 - . 10 - 3·2 -5 . 1 - 5.1 
2 664 664 -1. 5 - 33. 0 - 13· 0 -39.5 5· 9 - 570 23 .900 245 -· 30 . 118 . 06 1.9 -<> . 6 - 1.2 
2 670 666 -1. 5 -45· 7 - 12. 0 - 51.5 6. 1 - 770 23. 130 256 -· 29 . 118 . 20 6. 4 4.1 8.2 
1.5 682 676 -1. 5 - 55 · 7 -8. 5 -60.0 6· 7 ..a4O 22 . 290 272 - .28 . 118 . 23 7· 4 6 ·9 10· 3 
2· 5 700 690 b . 5 -60 . 0 0 -60 .0 ~ 0_1490 20 .800 298 . 08 .113 . 18 5. 8 6 . 6 16. 5 
3 712 705 · 5 -60 . 0 0 -60. 0 ~ -1830 18.970 332 . 08 · llJ ·09 2. 9 4· 3 12.9 

a67 .-60 .0+ 51.5 _ -8.5°. ;- _ - 51.5 _8:} _ -55 . ~ . 6t - 1.5 .oc (figo. 5(c) and (d) for Vo - 670 ft/.oo) 

bNonnal acceleration fac tor for a steo.d.y f'::J:Jo dive , n'"' 008(-60°) ·0. 5 

Example calculat i on: 

V 
(rt/. oo ) 

700 
691 
691 
678 
669 
664 
663 
671 • 
681 
698 
711 

An airplane begins a dive from level flIght at 700 feet per a&cond l reach Ina an IncUcated nortl81 accele:t'8.tion of - 1.58 during the first s econd., and 
mlntalnl ng this acceleration until the dive angle Ie 60°, 

Net drag coefficient o~ the airplane , COn = 0.013 ... 0.060 CL2 
+ !:CD 

Drag inorement due to air bmk8S , l::Cn - 0 . 100 

At t ... 0 

t • 1 sec 

., • 0 , Proceeding 8S In the case of cons tant ., (table nl, a/B . -0 .08, a .. -2.6 tt/s&<;2 

a Is 8s t l.I!ll t ed, con81der l ng that CD. 0.015 at t. 0 and Cn. 0.n8 at t:. 1.0 , 
8e • -11 rt/sec2 

V •• 700 - 11 (6t) - 689 tt/.oc (6t • 1 . oc) 

n - - 1.5 

n - 00. 7 • ~.5. for ., - OO(f1g. 5(a» 

7. - 1/2 or • 1/2 (6. 5) - 3. 20(flgo. 5(c) and (d) . Th1. "'Y pos01bly requ1r. moro than 
than a single t rial In some i ns tances . ) 

61 _ -6.5° (figo . 5(0 ) . (b) . and (0» 

r/lOOO • 6 . 0 (See guide linee, for e:uunpl e 1, f igs . 5(011) and (b ). ) 

& - - 30 rt (figs. 5( e ) a.nd. (f) Minus sign chosen b ecaus s a di ve has been s pecif i ed} 

h • 25. 000 - 30 - 24 . 970 rt 

q. _ 1/2 pV 0' - 253 1b/ •• rt 

Or. - ( 1.5 ) (50 ) _ -<> . 30 
253 

a/g - -<> · 50 (rig. 1) 

V _ 700 - ¥ (-<>.08 -<> . 50) (1) - 691 tt/ •• c 

To shOY that the ori gi nal es tima t e "'8.e c loee enough to glve the correct velocity , the calculati ons have been repeated i n the tab l e v lth 
Ve - 6:)1 ft/sf!JC . This again gives V. 691 rt/S8C. 
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Figure 2. - The effect of deceleration factor K upon the 
variotion of speed with time for several initial 
speeds. Level flight condilion. 
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Figure 6 . - Aerodynamic brake installations for which drag 

characteristics are summarized in Table I. 
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Figure 6 . - Continued. 
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Figure 8. - Effect of Mach number on the Incremental drag 
coefficient due to air brakes. 
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