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SUMMARY

A study has been made of the factors influencing the performance
of aerodynamic brakes. The requirements which must be met in order for
the brakes to provide the necessary control over the forward speed are
discussed for various flight conditions under which they may be used.
Equations relating the speed and altitude are presented for several
cases in which certain simplifying assumptions are made. For these
cases, formulas and graphs in the report furnish a means of quickly
computing the longitudinal speed variations, the dive angles, and the
rates of descent for airplanes having known drag characteristics. TFor
the cases to which the simplifying assumptions do not apply, it is
indicated that a satisfactory solution, which takes into account all
of the possible variables (such as atmospheric density, drag coeffi—
cient, and flight—path angle) can be obtained by a step—by—step method
of calculation. Graphs are presented to reduce the time required for
step—by—step calculations. Example calculations, which show each step
in detail, illustrate the use of the graphs and formulas.

The increases in drag coefficient that are characteristic of
several types of wing and fuselage aerodynamic brakes, which have been
tested in wind tunnels or in flight, are summarized in the report.

The effect of Mach number on the drag coefficient and the effect of
partial brake deflection are included where such data are available.

INTRODUCTION

The continued improvement in the aerodynamic design of high-speed
airplanes has brought the normal operating speeds near to their maximum
safe speeds. As a result of low drag and of high engine output,
airplanes may under certain circumstances accelerate to speeds at which
dangerous compressibility effects or structural loadings arise. The
trend toward higher wing loadings has added considerably to the possi—
bility of attaining dangerous speeds, especially at the high operating
altitudes which are characteristic of many modern airplanes.
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One means of controlling speed is the use of aerodynamic brakes.
This report is concerned with the problem of relating the drag increases
due to aerodynamic brakes to the control of forward speed. Problems of
buffeting, of changes in stability, of aerodynamic loads, and of changes
in trim, which may arise when a particular brake is used on an airplane,
are not considered. If a satisfactory brake is to be selected for an
airplane, however, the possible occurrence of such phenomena must be
investigated for the airplane and brake combination.

The increases in drag that result from the use of air brakes have
been measured in wind—tunnel and flight tests for a large variety of
brakes. In this report a summary of such drag data is presented. The
effect of increases in the drag coefficient upon the speed variation
calculated for a hypothetical airplane is illustrated. A procedure
for calculating the speed of an airplane at any point in arbitrarily
specified maneuvers is presented and discussed.

SYMBOLS

Cp net drag coefficient <z—lsl>

ACD increase in drag coefficient due to the aerodynamic

i <brake drag)
as

ACDB drag coefficient due to the aerodynamic brake referred

%0 tho ares of the brake ( DEOES drag>
i aSp

C,  1lift coefficient <hﬁ>
as

Dn algebraic sum of aerodynamic forces parallel to the direction
of flight, positive toward the rear, pounds

. 10
K deceleration factor <2 % CDn) ; per foot
M Mach number
S wing area, square feet

Sp maximum projected area of the aerodynamic brake, including
slots, gaps, and perforations, square feet
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v true airspeed, feet per second

Vo vertical component of speed, feet per minute

AV speed change in time interval At, feet per second

v average speed during time interval At, feet per second
w airpléne weight, pounds

W/S wing loading, pounds per square foot

a longitudinal acceleration, feet per second squared

a average longitudinal acceleration during time interval At,
feet per second squared

b wing span, feet
g acceleration due to gravity, feet per second squared
h altitude, feet

Ah altitude change in time interval At, feet

indicated acceleration
normal to flight path

n indicated normal acceleration factor 2

q chnamic pressure ( -;‘-sz> , pounds per square foot

r radius of curvature of flight path, feet

t time, seconds

At time increment, seconds

a angle of attack, degrees

Y flight—path angle from the horizontal (positive for a climb),
degrees

Ay change in flight—path angle in the time interval At, degrees

average flight—path angle during the time interval At, degrees

<|

o] air density, slugs per cubic foot
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Subscripts
e estimated
o value at t =0
s value at beginning of time interval At

CONTROL OF ATIRPLANE SPEED

Flight experience has indicated that the control of forward
speed, which is possible through the use of aerodynamic brakes, is of
considerable value in the operation of airplanes of all types. The
required action of brakes in controlling the speed differs among
various airplanes, and for any one airplane the requirements may
differ with the type of maneuver that is to be performed. For the
purpose of the present discussion, brakes are considered according to
their use in producing longitudinal deceleration at approximately
constant altitude, in permitting greater angles of dive at moderately
low speeds, and in avoiding dangerously high speeds.

Deceleration at Constant Altitude

It is to be expected that a device that controls the longitudinal
deceleration would find especial applications in the operation of
combat airplanes. A sudden deceleration would be required’ in order
for a fighter airplane which was overtaking its target to slow down
so as to have a maximum amount of time for firing. Rapid decelerations
may also be called for in traffic—control zones during poor visibility
in order to prevent collision.

Aerodynamic brakes may assist the pilot in performing various
maneuvers. If the maximum normal acceleration is fixed by the maximum
to which the pilot may be subjected or by structural limitations of the
airplane, the minimum radius of curvature of the flight path varies
with the square of the speed. Thus, a reduction in speed by the use
of air brakes prior to and during a maneuver would effect a substantial
decrease in the minimum turning radius.

The performance of aerodynamic brakes used primarily for speed
reduction is indicated by the magnitude of the longitudinal decelera—
tion in level flight. Calculations showing the variation of speed
with time can be used to measure the comparative suitability of
different brakes on the same airplane in producing needed changes of
speed.




NACA TN 1939 2

Speed Control in Dives

Aerodynamic brakes which keep the speed moderately low during dives
are needed for the performance of some tactical maneuvers. For tre dive
bomber, low speed is required as a precaution against excessive normal
accelerations during pull—outs at low altitude. In rapid descent of
large airplanes, the desirability of avoiding high forward speeds is
apparent. The braking which would be sufficient to prevent increases
in speed may be used to gauge the performance of brakes for airplanes
in controlled—speed dives. Aerodynamic data for brakes to be used on
airplanes in such dives may be evaluated by a comparison of the measured
brake drag with the brake drag which would be required to reduce the
longitudinal acceleration to zero.

Speed Control at High Speed

The maximum safe diving speed is commonly specified as the maximum
indicated airspeed upon which calculations of loads are based in the
structural analysis. The rapid change in altitude resulting from a
steep dive at high speed means that the true speed would have to be
reduced in order to keep from exceeding the allowable indicated speed.
Calculations which show the variation with time of the speed of an
airplane with brakes indicate whether the drag of the brakes is suffi—
cient to produce the required reductions in speed. Methods are pre—
sented in this report to aid in making such calculations.

One of the most important examples of the employment of aerodynamic
brakes is their use in avoiding dangerous compressibility effects.
These effects take the form of changes in longitudinal stability, such
as described in reference 1, or as other erratic behavior of airplanes
or their controls. Without brakes, pilots of modern high—speed combat
airplanes are not always able to avoid speeds at which such compressi—
bility effects appear.

A method of calculation which shows the variation with time of
speed and altitude of an airplane throughout various maneuvers can be
used to determine whether the aerodynamic brakes are adequate to keep
the maximum Mach number below a certain critical value.

ANALYSTIS

The foregoing discussion has indicated various instances wherein
a need for aerodynamic brakes has been observed. The drag increments
due to air brakes do not by themselves afford a complete measure of
the degree to which brakes meet these needs. Brake designs can be
evaluated by studies which demonstrate the effects of the brakes upon
the forward speed of airplanes. These effects are analyzed in this
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report through a study of equations of longitudinal motion of airplanes,

of the validity of various initial assumptions, and of the accuracy of
approximate calculations.

Algebraic Analysis

The deceleration of an airplane with air brakes depends upon a
number of factors, such as variations of flight—path angle, of alti—
tude, and of speed, as well as upon the characteristics of the brakes
themselves. In order to separate the effects of the brakes from the
other effects, the problem is simplified by assuming that one or more
of these factors is constant. The effects of various air-brake
designs and locations on the variation of speed with time may then be
readily determined. The following sections present analyses employing
such simplifications.

Level—flight deceleration.— In level flight, one form of the
equation of longitudinal motion of an airplane is

Do 8
dt w ’n (1)

where Dp is the algebraic sum of the aerodynamic forces acting
parallel to the flight direction, positive being taken toward the rear.
The value of D, is affected by any changes in the drag of the air—
plane, which may result, for example, from variations in angle of
attack, variations of Mach number, or changes in the setting of the
air brakes. Any factors that cause the thrust to change, such as
variations in engine output, variations in propeller efficiency, and
effects of velocity upon propeller or engine thrust also influence D.
It is convenient to express Dp in the form of a force coefficient

ke
CDn-—l
=pVZ3S
2
Substituting in equation (1),
SN gv>
at. Do w/y

It CDn is constant, this expression may be integrated to give

N 1
TR (1) L

/|
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where

& P g
K_CDn_Q_ ;J-/—S-

The quantity K 1is a measure of the effects of altitude, wing loading,
and net drag coefficient upon the longitudinal acceleration and in this
report is referred to as the "deceleration factor." The value of the
deceleration factor may be obtained for an airplane from figure 1(a),
which takes into account the effects of altitude and of wing loading,
and figure 1(b) which includes the effect of the net drag coefficient.

The velocity variation given by equation (2) has been plotted in
figure 2 for four initial speeds: 300, 500, 700, and 900 feet per
second. Curves are given for various values of deceleration factor K.
Comparison of the slopes of curves for equal values of K shows a
considerable increase in the deceleration as the initial speed increases.

In deriving equation (2), it was assumed that Cp, was constant
during the time interval considered. For this assumption to be valid,
the engine output must be constant and the effects of speed changes on
the thrust and drag coefficients must be negligible. If aerodynamic
brakes are extended at the start of the time interval, the resulting
increase in drag must be so rapid that it can be approximated by an
instantaneous increase.

It is obvious that assuming Cp, (or K) constant will in some
cases lead to large errors. However, the results can represent the
actual velocity variations fairly accurately under certain conditions.
Below the Mach number of drag divergence the variation of airplane
drag coefficient with Mach number is generally small. The effect of
a delay due to the time required for full extension of the air brakes
could introduce a large discrepancy; however, a rapid rate of exten—
sion is an- essential characteristic of brakes which are to be used
at high speeds.

It is possible to express variations in C as a series of
instantaneous changes occurring at chosen time intervals during the
deceleration. The variation of speed with time is then given by
equation (2) with values of K computed for each interval and values
of Vo, successively determined as the velocity at the end of each
preceding interval. The same variation may be obtained from figure 2
by shifting along the time axis portions of the curves having these
values of deceleration factor and initial velocity. The curve thus
obtained is continuous but changes slope abruptly at the start of each
interval.
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Constant flight—path inclination.— When the flight path is in—

clined, the component of weight W parallel to the direction of motion
must be included, and the equation is

LB L b

where 7 1is the flight—path angle, positive for climbing flight. Sub—
stituting K as in the case of level flight,

— = —KV2 — g sin v (3)

The assumption can again be made that K does not vary during the
period of time being considered. Then (as shown in reference 2) equa—
tion (3) integrates as follows to give the velocity variation for an
airplane in a dive or climb at a constant angle:

If 7 1is negative and ~/L7K <Vo, vwhere L = —g sin 7

¥ = */—IT/_K coth [«/I-.—/_IZ (Kt + cl)J (%)
where
C1 = £ VE/L loge '\%
VLR >V,
v = J/L/K tanh‘:‘/L—/E(Kt*'Cz):' (5)
where

Cg—EN/K_/Z loge://_I:Z: ,‘/Jé

If 7 1is positive,

V =N cot [N (Kt + Ca) } (6)
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where
N = 4/ -L/K
and

cot ™t (Vo/N)

=11

B =

In assuming that K 1is constant the same approximations are made
as in the case of level flight, together with the additional assumption
that the density does not vary as a result of the inclined flight. It
is necessary to estimate an average value of density, and, for large
changes in altitude, some improvement in accuracy can be gained by
dividing the time under consideration into shorter intervals and making
separate calculations for each interval.

Constant—speed dive.— If there is adequate control over the drag,
an airplane can be dived at any angle at constant speed. Such control
requires a net drag coefficient given by the relation

2(W/s)sin vy

Cn =~
Dn I

For most airplanes having even moderately high wing loadings and low
drag, however, it is not feasible to provide air brakes effective
enough to prevent increases in speed under all conditions. The com—
bination of factors which govern the maximum angle for a constant—
speed dive can be determined from figure 3. This figure shows the
relation between forward speed, angle of dive, and rate of descent.
The other variables which affect the dive, such as altitude, net drag
coefficient, and wing loading, are again included in the single quan—
tity K. Figure 3, used in conjunction with figures 1(a) and (b),
permits graphical solution for any one of these quantities when equilib—
rium exists.

An indication of the separate effects of altitude and speed upon
the net drag required for equilibrium is given in figure k., Wing
loadings of 30 and 50 pounds per square foot were assumed. On the
left in figure 4 the drag coefficient is plotted against altitude for
a vertical dive. It is apparent that unless the airplane speed is
very high, the equilibrium drag coefficient is large even at low alti-—
tudes and becomes extremely large at high altitudes. On the right in
figure 4, curves of constant drag coefficient are plotted against the
dive angle. The drag coefficient as a function of altitude and
airspeed may be found for any dive angle by reading C correspond—
ing to the ordinate from the left part of the figure at the desired

value of dive angle.
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Graphical Analysis

As the number of variables in the equation of motion is increased,
it becomes impractical to obtain an accurate solution by direct inte—
gration of the equation of motion along the flight path. Because of
the arbitrary manner in which some of the quantities involved can be
varied, a method of calculation in which specific variations of these
quantities are assumed would place untenable restrictions on the use—
fulness of the solution. Among the quantities which cannot be defined

mathematically by expressions suitable for all problems are the follow—
ing:

(a) Variation of engine output with time

(b) Variations of drag and thrust with Mach number
. (¢) Variation of flight—path angle with time

(d) Variation of drag with 1ift

(e) Variation of drag with time when the air brakes are
operated

These variations, which are either arbitrary or empirical, and the
variation of atmospheric density with time can all be taken into
account if the calculations are made by graphical means. The calcula—
tions can be performed by a step—by—step method in which the longitudi—
nal acceleration in each step is obtained from graphs that have been
prepared. The change in velocity can then be ascertained as the inte—
gral of the acceleration with respect to time. This integral may be
evaluated graphically, but it has been found that the integration is
sufficiently accurate if trapezoidal elements of area are assumed and
an arithmetical evaluation is used.

Constant flight—path inclination.— The longitudinal acceleration
(or deceleration) at the beginning of the interval of time being
studied is determined by the known or assumed initial flight conditioms.
The acceleration at any later time, however, camnot be computed
directly, since it is a function of speed and altitude, the values of
which are not known. This acceleration may be found by dividing the
total time interval into a series of increments and calculating, step
by step, the conditions at the end of each increment. The step—by—step
calculation is made by estimating the speed and altitude at the end of
each increment upon the basis of the known conditions at the beginning
of that increment. With these estimated values, the longitudinal accel-—
eration at the end of the increment may be computed. The speed and
altitude at this time may then be calculated to greater accuracy and
compared with the estimated values. Although this procedure amounts to
a method of successive approximations, it has been found that the
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velocity and altitude can usually be estimated so accurately that the
first approximation is sufficient. If it is not, a second approxima—
tion may be made, or else smaller increments of time can be chosen.
The time increments should be small enough so that all important
changes in acceleration are taken into account, but large enough to
keep the number of steps to a minimum,

The change in altitude during the time At for flight with a
constant flight—path angle is

Mh =T (At) sin y {F)

where V 1is the average velocity. The estimated altitude change for
each At 1s given by this relation in which V is the average
velocity estimated for that incremental time.

The longitudinal acceleration at the end of the time increment is
given by figure 1, which includes the effects of altitude and wing
loading (fig. 1(a)), of drag coefficient (fig. 1(b)), of velocity
(fig. 1(c)), and of flight—path inclination (fig. 1(d4)). When the
speed variation of an airplane at a constant flight—path inclination
is being calculated, the values of flight—path angle and wing loading
are known. The altitude and speed are estimated, as indicated in the
preceding paragraphs. The net drag coefficient, which may be a
function of the flight Mach number and the airplane 1lift coefficient,
is obtained from experimental or theoretical data using values of Mach
number and 1lift coefficient computed from the estimated speed and
altitude.

The increase or decrease in velocity during the time At, assumed
to be given by the area of the trapezoidal element under the curve of
acceleration against time, is

AV = = (a; + a) At

n |+

in which a; and a are the longitudinal acceleration at the begin—
ning and of the end of the time increment. The velocity and Mach number
which result from this velocity change can now be compared with the
estimated values to ascertain whether the estimates are accurate.

Variable flight—path inclination.— Because proposed aerodynamic
brakes are to be designed for use in flight at any time, a method for
calculating the speed of an airplane during any flight evolution is
needed. The calculations for a dive at constant angle discussed in the
preceding section would not accurately represent a steep dive of a
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high—speed airplane because a large part of the latter maneuver would
consist of the dive entry and pull-out. The effects of curvature of
the flight path can be evaluated by an extension of the graphical
method just described.

When the airplane is following a path of increasing or decreasing
inclination, a calculation of the changes in altitude is complicated by
the necessity of extrapolating along the curved path. One means of
making such an extrapolation is to assume that the airplane follows a
path consisting of a series of circular arcs. The curvature of the
flight path, which is a function of the forces normal to the direction
of motion, is evident to the pilot as a normal acceleration. In order
to permit the changes in altitude to be expressed as a function of the
normal acceleration felt by the pilot, motion in a vertical plane is
first considered. The altitude change during the period of time At
can be computed by the relation

Ah = r [cos 73 — cos (71 + AY)] (8)

where r 1is the radius of the arc of the flight path, 7, is the
flight—path angle at the beginning of the period, and Ay is the
angular change in the direction of motion during the time At.

The actual acceleration normal to the direction of flight is equal
to the indicated normal acceleration minus the normal acceleration due
to the weight of the airplane. If n is the indicated normal accelera—
tion factor,

V2 :
L =g (n - cos y) (9)

In figure 5(a) the acceleration factor n is plotted against the
quantity (n—cos 7) for values of 7 fromO°to 90°. The curves for
negative values of 7 are the same as for positive values.

Figure 5(b) presents the variation of airspeed with (n—cos 7) for
constant radii of flight—path curvature. Example guide lines show how
the radius may be found by projecting the abscissa from a point in
figure 5(a) to the line for cos 7 = 0 (7 = 90°, positive n) and con—
tinuing at this ordinate to the desired value of average airspeed in
part (b).

Figures 5(c) and 5(d) give a graphical solution for Ay as a
function of (n — cos 7), V, and At. The graphs were obtained from

the following equations. Since r is considered to be constant during
the time interval At,
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e s O ¥
Dt 3t

Substituting % from equation (9),

2 n—cos 7
dt_57'3g ‘V'

from which, by using small finite time intervals, Ay may be computed
as

Ay = L2 A
Tt

The estimated average speed Ve during the time At 1is used in calcu—
lations for radius of curvature and d7/dt. In addition, an estimate
of the average flight—path inclination is necessary to determine the
value of the abscissa (n—cos 7). The accuracy of this estimate can be
checked as soon as Ay has been found, if it is assumed that 7 is
the initial angle plus half the increment.

Figure 5(f) shows the variation with Ay of the quantity
[cos 71 — cos (71 + Ay)]. There are two sets of values of 7; identi-—
fying the curves, one of which applies when Ay 1is positive and one
when Ay 1is negative. This.dual labeling is used because the curves
have been plotted on only one side of the vertical axis. The algebraic
sign of Ay may readily be ascertained since it is the same as the
sign of the quantity (n—cos 7). When the ordinate of figure 5(f) and
the radius of flight—path curvature, figure 5(b), are known, the change
in altitude is given by figure 5(e). Although the algebraic sign of
the change in altitude is not shown in the graph, in most cases it is
evident from the problem. If the sign is not apparent, a simple
diagram showing 7; and Ay will indicate whether the altitude increases
or decreases during the time At.

It is seen that figure 5 cannot be used when the flight—path
radius becomes very large. In this case the altitude change may be
calculated with sufficient accuracy from equation (7).

The graphical solution for the change in altitude is arranged so
as to be used directly with maneuvers in a vertical plane which are
identified by the magnitude of the normal acceleration or load factor.
For maneuvers not wholly in a vertical plane, part of the total load
factor results from accelerations in a horizontal direction and does
not affect the altitude. In this case the value of the load factor to
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be used with the graphs is the component measured normal to the flight
path in a vertical plane tangent to the flight path. g

The procedure in the calculation of the speed changes within each
time increment is the same with a variable flight—path angle as with a
constant angle. The flight—path angle and the altitude are progres—
sively evaluated for the beginning of each time interval and their
values are estimated for the interval by the method just described.
The acceleration of the end of the increment At is obtained graphi—
cally (fig. 1) and the velocity is computed. Step—by—step calculations
furnish the velocity variation during the complete interval being inves—
tigated.

DRAG CHARACTERISTICS OF AFRODYNAMIC BRAKES

The characteristics of various aerodynamic brakes have been inves—
tigated in wind—tunnel and flight tests. (See references 3 through 7.)
Results of such tests are summarized in this report. Data are presented
in the form of increments in drag coefficient which are attributable to
the brakes. It is to be expected that in some cases such increments are
affected by the particular location of the brakes on the wing, the
fuselage, or elsewhere, and by their proximity to other components of
the airplane. The air brakes shown are representative of installations
in which air brakes are added to typical fuselages or at different e
locations on wings.

Geometric data and incremental drag coefficients for the aerody— *
namic brakes shown in figure 6 are presented in table I. These data
indicate increments in the drag of the airplane which are small in
comparison with the values required in a steep dive for an airplane
having a moderate wing loading (fig. 4). Increased drag can be obtained
by increasing the relative size of the brake. However, increasing the
size is practical only within the limitations of available space into
which the brake may be retracted. The size is limited also by consider—
ations of weight of the structure transmitting the aerodynamic loads,
and by the effects of large brakes upon the trim, stability, and
buffeting of the airplane.

Table I indicates that the drag coefficients (based upon the areas
of the air brakes) vary over a wide range, depending upon the shape and
location of the brake on the airplane. The lowest drag coefficient was
measured for the picket—fence type of brake (type N). This low value
of brake drag coefficient might be expected since the brake area used
as a reference is more than twice the actual frontal area. The highest
drag resulted from solid brakes at forward positions on the wing .
(types F and G). This forward location of the brakes results in a
spoiling action which causes changes in the 1lift as well as drag.
Since the drag increments in table I are for zero lift, a part of the Pk
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drag is attributable to the change in angle of attack necessary for the
1lift to be constant. Because the rate of change of drag with angle of
attack for 1ift coefficients near zero is small, the effect of such an
angle—of-attack change is not large for the data presented. Apparently,
therefore, the large drag values of the spoiler—type brakes result from
changes in the flow over the wing.

From the discussion of the functions of aerodynamic brakes, it is
evident that they should be designed to be effective throughout a wide
range of conditions. There should be a smooth increase in drag as the
brake is extended, permitting any position between fully open and
closed to be selected with a corresponding control over the decelera—
tion. The variations of drag coefficient with percent extension for
brakes of several types are shown in figure 7.

The effect of Mach number upon air-brake drag is dependent upon
the particular installation. The variations of incremental drag
coefficient with Mach number for two aerodynamic brakes (of type D) on
a rectangular wing are shown in figure 8. The drag characteristics are
affected to a large extent by the 1lift on the wing. At an angle of
attack of —1.0°, the rate of rise of drag with Mach number became
greater as the Mach number increased from 0.3 to 0.775. At an angle
of attack of 3.0°, the drag increased with Mach number up to a Mach
number of 0.7 and then began to decrease. The drag coefficient due to
the fuselage side brake, shown in figure 8, increased nearly uniformly
with Mach number throughout the range of Mach numbers from 0.3 to
0.875. The drag coefficient due to the fuselage dive-recovery flaps
(type P) increased rapidly with Mach number above 0.6, rising to 161
percent of its low—speed value at a Mach number of 0.8.

EXAMPLE CALCULATTIONS

Examples are presented to illustrate the procedures for calculat—
ing the variations with time of the forward speed and altitude. These
calculations are for an airplane with a wing loading of 50 pounds per
square foot, initially flying at a true airspeed of 700 feet per second.
An initial altitude of 25,000 feet was assumed and some additional
calculations were made assuming an initial altitude of 10,000 feet to
indicate the effects of this reduction in altitude.

The longitudinal aerodynamic forces on the airplane can be repre—
sented by the coefficient

Cpy = Cpy + Cpp + FCL® + ACy

where the terms are defined as follows:
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Cpy drag coefficient of the airplane without air brakes, excluding
the induced drag

Cpp force coefficient, either drag or thrust, due to the propulsion
unit

F induced drag factor

ACp increment in drag coefficiznt resulting from the extension of
aerodynamic brakes

Level Flight

The speed variation for level flight is given by equation (2) in
which it is necessary that CDn be constant.

The following coefficients have been assumed:

Cpy *+ Cpp = 0.013

F = 0.060

FC1® = 0.001
ACp = 0.100
Cpy = 0.11k

For an altitude of 25,000 feet,

g i B
K =0, 5575

3

(0.114) ) = 0.0391 X 10 = per foot

0.001066 [ 32.2
5 K 50

i i _ _25,600
Kt +(1/V,) t + 36.6

For an altitude of 10,000 feet

-
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0.064% x 102 per foot

™
It

At 15,500
£ 4+ 22.2

The relations for speed as a function of time are shown in figure 9 for
level flight. Figure 9 indicates that, by reducing the altitude from
25,000 to 10,000 feet, the time required for a given speed reduction is
decreased by 40 percent.

Constant Dive Angle

The variation of speed with time during the first 15 seconds for
a constant—angle dive has been calculated for the same assumed coeffi-—
cients. A dive angle of 60° was assumed.

Initial altitude, 25,000 feet

Estimated average altitude, 20,500 feet

= 0.0000458 per foot (fig. 1(b))
L = —g sin 7 = (32.2) (0.866) = 27.9 feet per second squared
»/L/K = 780.5 feet per second

Since ¥ L/K is greater than Vo, equation (5) is used.

]

Co ~/ K/L loge /I + Vo VK _ o 001866

L =¥, ~K

v

780.5 tanh [780.5 (0.0000458t + 0.001866)]
Initial altitude, 10,000 feét

Average altitude, 5,000 feet

K = 0.0000752 per foot

Vr£7g = 609 feet per second

Since ~/£7E is less than Vg, equation (4) is used.

= 609 coth [609(0.0000752t + 0.002187)]
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The relations for speed as a function of time when the airplane is
in a €0° dive are shown in figure 9.

A more accurate solution results from a step—by—step calculation.
The velocity relations have been calculated by this method for com—
parison with the relations given by the equations. In order for the
results of the step—by—step calculations to be comparable to the formu—
las, the assumption is again made that there is no variation in Cop-
However, the effect of the variation in density is included, instead of
assuming an average value. The step—by—step calculations for an initial
altitude of 25,000 feet are presented in table II and the results of the
calculations are shown in figure 9.

Calculations were made also to indicate the effect of a lag in the
time for the drag due to the air brakes to reach its full value. It
was assumed that the increase in drag caused by extending the brakes
takes place during the interval between 1 and 2 seconds after the brake
actuation is started. The amount by which the curve is displaced
(fig. 9) indicates the gain in braking effect that can be realized by
designing the brakes for minimum delay in opening.

It is seen from the slopes of the velocity curves in figure 9 that
a change in flight—path angle from level flight to a dive of 60° results
in a change from an initial deceleration of 18 feet per second squared
to an initial acceleration of 6.8 feet per second squared for the
assumed airplane with aerodynamic brakes at an altitude of 25,000 feet.

Entry Into a Dive

An example in which the flight—path angle is variable is provided
in the calculations of the speed during a dive entry. The same initial
speed, altitudes, and coefficients as in the preceding example are used.

It is assumed that the airplane is flown so that from level flight
the indicated normal acceleration factor decreases to —1.5 within the
first second and is then held constant .until the airplane is in a 60°
dive. The detailed calculations are presented in table III for an
initial altitude of 25,000 feet. The results, plotted in figure 10,
show the variation of longitudinal acceleration, dive angle, and speed
with time for initial altitudes of 25,000 and 10,000 feet.

CONCLUDING REMARKS

Aerodynamic brakes afford a means of avoiding undesired increases
in speed during the operation of an airplane, make possible rapid
decelerations in flight, and allow a considerable increase in the angle
of descent at constant speed. A measure of the utility of aerodynamic
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brakes is provided by calculations which show how the speed of an
airplane in a specified maneuver is altered by the employment of the
air brakes.

Equations are presented in this report which permit a rapid cal—
culation of the speed changes with time. Use of the equations results
in close approximations to the values obtained by more accurate
methods. The equations are not general, however, and apply only to
several specific problems. The speed during a maneuver can be accurate—
ly calculated as a function of time by a step—by—step procedure. The
graphs presented in this report substantially reduce the time required
to make such calculations.

Ames Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., May 31, 1949.
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TABLE I.— SUMMARY OF THE DRAG CHARACTERISTICS
OF VARIOUS AERODYNAMIC BRAKES®

[a0p e
b (rorduiss 10cation| pruye chord | Brake spn | Brake angle [BTKe (B[R
Brake| Deassiption Airplane ratio,| on | on Remarks Ref.
type tested with brake Upper Lower Upper | Lower Lower | Upper | Lower wing |brake
surface |surface |surface|surface|surface]surf: ' B |area |area
Perforatsd e b b © ° ok3| 1.01 ol e,
A split flaps Rectangular wing 0.80c | 0.80c |0.200¢ |0.200¢ 0.600§ o.soo—2 90 90 0.2400|0.243| 1. 3
Perforated b b o ©
A |Goite tiaps |Rectangular ving 80c [ .80c | .200¢ [ .200c [1.000% |1.0003 | 90 90 .h000| .b1k| 1.03 s 3
a
Perforated = = - = b b C o e
B |epiat flape Tapered wing .80c .80c | .200c | .200¢ .600—2 .600—2 60 60 .2h00| .190| .79 i
Perforated = = = = b b o o
B |ooits rlaps |Tepersd ving -805 | .805 | .2005 | .2005 |1.0007 |1.0007 | 60 60 .hooo| .329| .82 - I
¢ [SeMd &Pl lpober model ving Bio | .6k | .u17e | .u7e | .a75h | .335p | 48° | 56° [ Loge3| .083| .96 o =
pe ]
Twelve small b b o © «
D split flaps Rectangular wing .86c .88¢ Jbke | .125¢ .3005 3005 60 60 .0805| .072| .89 - 2
Twelve amall 7 4
D | gpitt flaps |Rectangular ving .63 | .63 | .10ec | .100¢ .300% .300‘21 60 60 .0612| .097| 1.58 -— 5
E s"":'}.;fl“ Bomber model ving None 68 || wai| Bl | “am .513‘21 —--| 6° | .1u50| .093| .64 - -
Solid 9
F “:’ian Elliptical wing J6c | 160 | .0b3er| .058cp. .12&% .128!21 90° 90° | .0165| .ob1| 2.48| Fo gap (See f£ig.6)| 6
Bk St Elliptical wi Rone 166 { === .09%p| — =~ 248 | —o_ | 90° | ,0265] .03 3.09 R 6
epoilere P g ' *LAXL e ¢ ¥ 3 o]
Solid - P il 0 -
o | e Elliptical wing None 16 .OTley| -2khz 90 .0220( .051| 2.32|  Gap = 0.25cp 6
Solid
¢ ’p:iie“ Elliptioal wing None 6c | -~ .2060p = ——| .2uB | ——~| 90° | .0330| .ok0| 1.21| Gap = 0.50cp 6
gl aEea Elliptical wi None o8 | == omeer| - 3508 | == -| 90° | .00 .066| 2.06 X 6
spoilers P g - X = i i e SO0 . . ¥ o gap
S Elliptical wi N 6o B °© | .ou30| .0 6| oa 6
apoilers ptical wing one .30¢ - == .096cp| - == .3505 - 90 .0h30| .069| 1. p = 0.25¢c
als| ot Elliptical wi Yone 3¢ | —==| .2bSer| -~~~ .35 | —~~[ 90° | .o6u0| .063| .98| Gcap=o0 g
spollers P ng . . e -3503 . 063 . p = 0.50c
gRl|Eea Rectangular wi None 200 | -- 067¢ | - 1.000% 0° | L0667 .114] 1 . 6
spoiler = 26 E Sl 10T =] LOGOE.| == 1 9 .0667| . %o o gap
SRIFVEE Fighter model wi 20¢ | None 1650 | === | 2022 | ===| 90° [ -=-]| .o32| .069| 2.02| ca
spoi ler > g ! 2 seves . . . P = 0.33cB —
Sold
1 !pgu" Fighter model wing| None 200 | ———| 6% | -—- .202121 —==] 90° | .o3ue| .o52| 1.52 Gap = 0.33cp -
1 -:zﬁ:r Fighter model wing|  .50c | None 1650 | ~——| 202k | | 90° | ———| .oke| .057| 1.67| Gap = 0.33p -
1 Soldd Fighter model wi; None %08 | «a 165¢ | - 2002 © o342| .ouk G
spoiler ng s by S| Pt 90' .03k2| . 1.29 P = 0.33cp -
D | et Tapered wi 7% | Mo o08oc = | MogBq === ° 137| .020| 1.46;
spoiler P e J ne . = Mog51 = 90 == .o137 . In No gap 7
s | soited Mipered ving e | .75c | .080c | .ofoc | .hooR | .koo® | 90 | 90° | .oe7| .038) 1.39 Yo 7
spoiler L 75 . . . gap
K P’;‘;::“" Fighter model wing|  .63c | None 85601 [ = = = .hw;l =-=| 90° | ==~ .1180| .143| 1.21|  Gap = 0.16cp =
Double bars 5 o Bne vl LY o R
L BAB snd wist Tapersd wing .56c | None +092¢ .11035 90° 0131 .012| .92 Gep = 0.3kcp -
Double bars
O ard slot |Tapered wing None b | —==| .09 | = ——| k3B | ———| 90° | .o125 .015| 1.20 Gap = 0.3cp -
Spoller with b
M| O ieal slotel TePered wing .56¢ | None s0980 | =~ = | N3} == 90° | ==~| .o131| .009| .60 Gap = 0.3kcp -
Spoile with
M '&1:1 slote| TEVEred wing None 966 | ===1 0928 { === 11.35 —=={ 90° { .o125 .o11{ .88 Gep = 0.32cp -
s
Ket—1
N | Pore brake. |Pomber model wing [ = ——| == | ———| ———| 6P| 26| 92° | 92° | .12e0| .ok2| .3 e =
Fusslage Bomber fuselage
O | atr brokes aft of wing mRSlaal fimsa] amia] cau] was]aaal GO LOMMIDNG] 108 S =
Fuselage divi Bottom of a C)
P | recovery brakel fighter fuselage ol et e Bl it I Bl [0 10536 .033 .62 =" o
F
Q| el [Bomver rusetmgs | —--f oo | —oof oo oo ooof oo &° | o3| om| . i =
Fuse Side of fighter o
B | sits tmbs fuselige end] con | ancfscn|san] caal canl 8 .0518] .053| 1.02 - -

Data are for zero lift; Mach number less than 0.3.

b
See

porosity:

figure 6.

¢ = local chord of wing.

¢r = root chord of wing.

© = wing chord at mean spanwise station of brake,

upper surface, 0.506; lower surface, 0.433.

-~
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TABLE II.— CALCULATION OF THE VARTATIONS OF AIRSPEED WITH
TIME FOR AN AIRPLANE IN A 60° DIVE FROM AN ALTITUDE OF
25,000 FEET. WING LOADING, 50 POUNDS PER SQUARE FOOT

t ot Ve Ve Lh b | a z v v
n
(sec) | (sec) | (£t/sec) |(£t/sec)| (£t) ] (£t) a/g (£t/sec®) | (£t/sec®) | (£t/sec) | (ft/sec)
0 0 - - ~ ~ 125,000 ] 0.11% | 0.27 8.7 L - T00
1 1 709 04 ~610 | 24,390 | .14 ]| .24 T 8.0 8.0 708
2 1 715 712 —620 | 23,770 | .114| .20 6.4 7.0 7.0 5
N 2 25 720 ~1240'| 22,5301 .11%] AT 5.5 6.0 12.0 27
6 2 737 732 1270 11R1 260 il 13 4,2 k.9 9.8 737
8 2 Thl 40 —1280 | 19,980 | .11k} .07 2.3 3.2 6.4 43
10 2 46 Thl —1290 | 18,600 | .114| .03 1.0 A 3.2 46
14 4 ™5 ™5 —-2580 [ 16,110 | .114 | —.Qk -1.3 -0.1 -0.4 46
18 L 736 Th1 -2570 | 13,540 | .114] -.11 -3.5 -2,k -9.6 736

Example calculation:

An airplane in a 60° dive at a speed of 700 feet per second instantaneously extends air brakes at
time t = O.

Drag coefficient of airplane without air brakes, Cp = 0.01k.

Drag increment due to air brakes, ACp = 0.100.

At t=0

h = 25,000 £t
a/g = 0.27 (See guide lines, fig. 1)
ao = (0.27) (32.2) = 8.7 £t/sec®

t = 1 sec
Aty = 1 sec
Ve = 700 + 8.7 (1) = 709 ft/sec
Vo =2 (700 + 709) = 70k ft/sec
Ah = Vg At sin 7 = (704) (1) (-0.866) = —610 ft
h = 25,000 =610 = 24,390 ft
a/g = 0.24 (fig. 1)
a; = (0.24) (32.2) = 7.7 ft/sec?
a =2(8.7+177) = 8.2 ft/sec?
AV =a it = 8.2 ft/sec
¥ = 700 + 8 = 708 ft/sec

% & 2 880
Aty = 1 secC

(21 - 20) g_tg]
e Aty

- 708 + (1) [7.7 s L1281 %ﬂ

° =V+At2[al+
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TABLE III.— CALCULATION OF VARIATIONS WITH TIME OF AIRSPEED AND
FLIGHT-PATH ANGLE FOR AN AIRPLANE ENTERING A 60° DIVE. WING
LOADING, 50 POUNDS PER SQUARE FOOT. INITIAL ALTITUDE,
25,000 FEET

5 st Vo Ve 7 | & y r | n e o a T & v
(sec) | (sec) | (£t/mec) | (rt/mec)| ™ | (dog)| (aeg) | (aem) | {259] (£0) | (£t) (l:{*;q L | “Pn | /8 | (rt/aec?) | (£t/sec?) | (£t/sec) |(rt/aec)
0 [ -- -— 1 |-~=}---] 0 |=-~]-=-|25,000| 261 | 0.19f0.015|-0.08 2.6 - - 700
: 1 689 695 -1.5| —3.2| -6.5| —6.5|6.0 —30| 24,970 | 253 | -.30] .118| —.50 | -l6.2 -9.2 -5.2 691
1 1 691 696 -1.5| -3.3| -6.6| -6.6]6.0 -30 | 24,970 | 255 -29| .118| —.u8 -15.5 -8.9 -8.9 691
2 g 679 685 -1.5| -9.9| -6.7|-13.3 |6.0 —60 | 24,910 | 246 —-30| .118| —35 -11.3 —13.4 -13.4 678
3 3 669 67k -1.5 | -16.6) —6.6|-19.9 [5.9 -180 ) 24,730 | 2k -31] 18] —.22 —7.1 ~9.2 -9.2 669
4 1 663 666 -1.5 |-23.2| -6.6 6.5 5: 7 —260 | 24,470 | 238 -3| .18 -.10 -3.2 ~5.1 5.1 66l
6 2 664 664 -1.5{-33.0] -13.0 | —39.5 | 5.9 -570 | 23,900°| 2k5 | -.30| .118 .06 1.9 ~0.6 -1.2 663 |
8 2 670 666 -1.5 | -45.7| =12.0 [ -51.5 | 6.1 —770 | 23,130 | 256 | -.29| .118 .20 6.4 k.1 8.2 671
89.5 15 682 676 -1.5 | -55. -8.5| —60.0 | 6.7 -8l4o | 22,290 | 272 -.28] .18 23 T.4 6.9 10.3 681
12 25 700 b .5]|-60.0 0 |-60.0]| & ©-1k490 | 20,800 | 298 .08 .113 .18 5.8 6.6 16.5 698
15 3 T2 705 .5 |—60.0 (] —£0.0 | = -1830| 18,970 | 332 OB 113 .09 2.9 4.3 12.9 11

8Ay ~—60.0+ 51.5 = -8.5°. 7 = -51.5 — 95 = 55.7°. &t = 1.5 sec (figs. 5(c) and () for Ve = 670 ft/sec)

é

DNormal acceleration factor for a steady 60° dive, n = cos(—60°) = 0.5
CAh = Vg Ot 8in(—60°)

Example calculation:

An airplane begins a dive from level flight at 700 feet per second, reaching an indicated normal acceleration of -1.5g during the first second, and
maintaining this acceleration until the dive angle is

2
Net drag coefficient of the airplane, ch = 0.013 + 0.060 CL~ + &Cp
Drag increment due to air brakes, ACp = 0.100

At t =0

y = 0, Proceeding &s in the case of constant 7 (table II), a/g = —0.08, a = 2.6 £t/sec”

t =1 sec

& 1s estimated, considering that Cp = 0.015at t =0 and Cp= 0.118 at t = 1.9,
ae = —11 ft/sec®

Ve = 700 — 11 (At) = 689 ft/sec (At = 1 sec)
n=-15
n—cos y = 2.5, for 7 = 0°(fig. 5(a))

Ye = 1/2 &y = 1/2 (6.5) = 3.2°(f1gs. 5(c) and (d). This may pomsibly require more than
than & single trial in some instances.)

&Y = —6.5° (figs. 5(a), (b), and (c))
r/1000 = 6.0 (See guide lines, for example 1, figs. 5(a) and (b))
Lh = =30 £t (figs. 5(e) and (f) Minus sign chosen because a dive has been specified)
h = 25,000 =30 = 24,970 £t
Qe = 1/2 pVe® = 253 1b/eq £t

o, = {=L:5) (50) T -0.30

a/g = -0.50 (fig. 1)
¥ = 700 — 32—23 (~0.08 —0.50) (1) = 691 ft/sec

To show that the original estimate was close enough to give the correct velocity, the calculations have been repeated in the table with
Ve = 691 ft/sec. This again gives V = 691 ft/sec.




Deceleration factor, K, per foot

Altitude , h, ft

NACA TN 1939 23
LY v,
o %9
3 ¥
© © + N Q © © - o S
R T R R . : : :
T 1 R 7 B T s s i T ol B S 0 i
9 7 i : 1
nol ] 13 i N
W ; = 1] , =
w W, e YENE) \ i
: b3 g /
Q | W
! ®
i TR
0 i ~N
A, /.
w [ ; \\ A ‘\\
g , A
Y / N
Qlii V1A L1
M Pl 4 17
il \\\. \\ \\ \
Qi I 17 ; ; i
~ m - A y n\ N ' A N i
i A S J NENSRSNN |
i 4 1 - N A |
o & / TSNl LA NESNR AN | o
=l Ay 11] 3 R TAVR A AN oy
I /7/ /r/ M/ _
If S NS “ N
\ NGRS DN _ﬂ.
N N v// !
NN N N N
h A N NN Ll ©
N e N RN
N BN N i RN |
Ao\ NN m i RN
RN RN N RTL RN ©
00 0 Y S U N W
Aﬁl/. N // N N N 1
N
i

02 .04.06 10 .20 40x10° 0

.0/

002 .004

.00/

o
g

! ongitudinal acceleration factor,

Figure |- Graphical solution for determining longitudinal acceleration.

(A larger copy of this figure is enclosed in an envelope at the end of the report.)
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Figure 5.—
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Figure 6. — Aerodynamic brake installations for which drag
characteristics are summarized in Table I.
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Leading edge

lI:-_----------_-

£

Brake | Chordwise | Brake chord Gap width |Brake span
location semispan
dy dr cs, sy 8y &, |upper|/lower

F__10.16¢]0.16 ¢ |0.043¢,|0.058¢, [2] O |0/28 0128
G None | ./6c | None | .053c,] —| o — e
g J6¢c % O7lcy | — |0.25¢cd — | .244

l6¢c g A06¢c, | —— | 505 — | .244

e/ Zoc| 0Zc; (8 ——|80 =='153%0

& 0L 096c,| —— | .25¢ — | .350

5 Joe| * J45¢, | — | .506| — | .350
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(b) Spoiler- and picket-fence—type air brakes.

Figure 6. — Continued.
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Figure 6 — Concluded.

(c) Fuselage air brakes.
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