NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1942

THE EFFECT OF WALL FRICTION ON THE STRENGTH OF SHOCK
WAVES TN TUBES AND HYDRAULIC JUMPS IN CHANNELS

By Colemasn duP. Donaldson and Roger D. Sullivan
SUMMARY

A theory 1s presented for the attenuation due to viscous boundary
layer of shock waves traveling in closed passages., Because of the
similar nature of the problem, the theory is also developed for the
attenuation of a hydraulic Jump moving in a channel. Ths results of
oxperiments that bear out the theory are presented for both a shock
tube and a hydraulic channel. ’

INTRODUCTION

Recent interest in intérmittent—flow devices, as, for'example,
shock tubes, has caused guestions to be raised concerning the
viscous effects. '

Although a large amount of literature exists on the theory of
shock tubes in which perfect fluids are used (see, for example, refer—
ences 1 and 2), no discussion is known to be available of the effects
of viscosity in such devices. The present analysis is an attempt to
develop a quantitative method for determining the attenuation of a
shock wave moving in a tube or passage resulting from the action of
viscosity at the walls. "

Because of the similar nature of the attenuation of & hydraulic
Jump traveling in a channel, the method is also developed for this
phenomenon. ' ‘

SYMBOLS -

&  velocity of small disturbances in fluid

A area of tube
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g acceleration due to gravity ’ -
h depth of liquid

H  depth ratio (hp/hy)

1(H) = (B - LJE(E + 1)

m mass flow per unit tiﬁe

M Mach number
P-1
n(p) = P +155%

P pressure
P pressure ratio (po/p1)

r radial coordinate from center of tube
R radius of cylindrical tube

t time

T absolute temperature

u  velocity

w width of channel

x  horizontal coordinate

y &ertical coordinate

4 ratio of specific heats

1 absélute viscosity

v kinematic' viscosity (1/p)

o] density | _ .

Subscripts:

0 conditions in fluid on high—pressure side of diaphragﬁ or barrier

1 conditions in fluld on low—pressure side of diaphragm or barrier
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2 coﬂditions in fluid behind-shock or hydraulic Jump
3 conditions in fluid after wave reflection

ex pertalning to expansion wave

i. pertaining to initial flow conditions

8 pertaining to shock or hydraulic Jump

BOUNDARY TAYER IN A TUBE IN WHICH THE ENTIRE

FIUID IS SUDDENLY ACCELERATED

Since the boundary layers that cause the attenuation considered
are assumed to depend principally on time, the differential equation
of viscous motion 1s solved for the case of an infinitely long tube
of radius R 1in which the entire fluld at time t = 0 1s suddenly
gset in motion at velocity wuj;. In this case, the velocities caused
by viscous action depend only upon the distance from the center of
the tube and on the time that the fluid has been 1n motion, rather
than upon position along the length of the tube; therefore, the
differentlal equation of viscous motion in cylindrical coordinates
becomes :

3 _ fPu, 1 '
ot v<§r; * T 3;) (2)

The boundary conditions to be imposed are:
at t =0
-
u = uy (0 Sr<R)
and at r = R ' (2)
u=0 . (t >0)

In addition to these boundary conditions, the function u = f(r,t) must
" be continuous at r = O.
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"The solution of this equation subjJect to these boundary .conditions
is well-¥nown in the theory of heat conduction (see reference 3) and is

2
t /R2
Jo<é§r)é*%a vt/R

i‘-.= i - (3)

where the velues of an are the roots of the equation Jo(x) = O
and Jop and Jj are Bessel functions of the first kind of order O

and 1, respectively.

The velocity profiles in the tube for various values of the time
parameter vt/R2 are plotted in figure 1. This solution for small
values of. the time parameter reduces to the two-dimensional solution

where

end y 1s the distance from the surface at which the velocity is O
and in thie case is equal to R — r. This solution is useful not only
for evaluating the boundary layer in tubes of other than circular cross
section but also for evaluating the series of equation (3) for small -
values of the time parameter since, for these values of the paramster,
many terms of the series are necessary..:

Figure 1 indicates that, as time passes, the mass flow 'in the tube
decreases from its maximum and initlal value at t =0 of my = npuiRg.

The ratio of the mass flow at any time to the initial mass flow

\ . R ’
2npru dr [~}
m _ _Jo N

1 ‘—angvt/Rg )
mi npu1R2 z°
n=1 n

1s plotted in figure 2 as & function of the time parameter vt/R°.
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For ‘emall values of the time parameter equation (4) reduces to the two—

dimensional solution
2 _ 1 - AJZE
m4 A

where A 1is the area of the tube, so that for the circular tube

I [V
mq o Re-

This result is also plotted in figure 2 for comparison with the results
of equation (4). These solutions are 'used to discuss the attenuation
of a shock wave traveling in a tube.

ATTENUATION OF A SHOCK WAVE IN A TUBE

A shock tube is a closed tube that is divided into two compartments
by means of a breaskable diaphragm. If the two compartments are pumped
"~ to different pressures p; and Py where Po >p; &and the diaphragm

is broken, an expansion wave travels into the ‘compartment where the air
1s at rest at Po; the air 1s thus accelerated to velocity u, and the

pressure decreased from Po to po. A shock wave travels Into the

compartment where the air is at rest at pressure D1, accelerates
it to the same velocity up, and raises its pressure to the

same pressure Do. This process is illustrated in figure 3. The result
of bursting the diaphragm in the absence of viscosity is to set the
entire mass of air between the expansion wave and the shock wave in
motion at velocity up. Thus, the mass flow per unit time set in
motion across a section of the tube between the diaphragm and the .
shock wave is

o = tPyusR2
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This'mass flow 18 related to the pressure ratio across ths shock

wave B— = P and the conditions ahead of the wave by the following
P

equation (for 7 = 1.4)

_n S5 ETIiPE=1_5 .(p
ﬂplale = P.+ 1 - J?'H(P) (5)

which 1€ derived in the appendix; thus,

P-1

n(P) = 6P + 1 Sy (6)

In order to evaluate the effect of viscosity upon the flow in the
tube, the following assumption is made: The thickness of the boundary
layer at any point behind the shock depends only upon the length of time
the air has been in motion with respect to the wall of the tube, or upon
the length of time since the shock wave passed those particles. Such an
agsumption neglects variations of veloclity in the stream direction and
can be shown to give an answer to the steady flat—plate boundary—layer
flow that is a good approximation to the Blasius solution. Since, in
the present problem, the shock wave travels faster than the fluid in
motion behind it, this assumption should be an even better approximation
to the real solution. Thus, the boundary layer between the shock wave
and the particles that were originally at the diaphragm is essentially
as shown in figure 4.

When this assumption is made, the solutlon obtained in the
preceding section is applicable. If attention is confined to the
position in the tube at which the particles originally at the diaphragm
are found, the mass flow in this section must drop off with time according
to equation (4), so that the mass flow at any time t is

N 1 —qng\/t/Rg
m=my b E; —— e
n=1 an2 .
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If the value of the initial mass fléw in terms of the initial
pressure ratio (equation (5)) is substituted in this expression, the
mass flow at any time is given by

t2
- 2\ 1 phog b LS L o R (1)

T(plalRe n=1 G.n

This formula indicates that the mass flow in the tube decreases with
time according to the function that 1s plotted in figure 2.

Furthermore, the shock wave itself sets in motion a mass flow
that is given by (see equation (5))

e T

prl&le \[7

If this mass flow 1s greater than that crossing the tube at the

position of the dlaphragm particles, an expansion wave would be formed
that would catch up with the shock wave, reduce 1ts.strength, and thus
reduce the mass flow it was initiating; but if the mass flow caused by
the shock was less than that across the diaphragm-particle section, a
compression wave would develop that would move after the wave, catch it,
increase 1ts strength, and thus increase the mass flow it was initiating.
Hence, it may be assumed for the purposes of estimating the attenuation
that the mass flow initiated by the wave 1s Just equal to that given by
equation (7). If both the expansion wave and the compression wave were
reduced in thls manner, a pressure gradient would be produced between
these two waves in order to preserve the pressure ratio between the two
undisturbsd reglons. Part of this pressure gradient would be used to
accelerate somewhat the flow between the two waves, and thus the decrease
in mass flow at the dliaphragm-particle section would be somewhat less
than that given by equation (7). However, for the purpose of determining
the approximate magnitude of the attenuation, the effect of this pressure
gradient 1s neglected. If the mass flows given by equations (5) and (7)
are set equal to each other, the relationship between the strength of

the wave P and its initlal strength P; 18 found to be

. - ' P _ l 00 Qv.t R2
6P+l%—+—%= 6Py + 1 1 i _13‘% / (8)
P, +6 =] on
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The function

n(p) = \/6P+‘1P:6 3

P

is plotted in figure 5 as a function of the gtrength of the wave P.
Substituting n(P) from/equation (6) in equation (8) gives

a(e) _, S L e Vi/R |
a(er) nZ_l e (9)

an’

which 1s the same function as is pldtted.in figure 2.

If the strength of the shock at any distance from the diaphragm is
to be determined, the values of t need only be found in terms of the
distance x and the velocity of the shock ug &and the kinematic
viscosity behind the shock evaluated in terms of the shock strength P
_ and the conditions shead of the shock. If the attenuation is small,

usi )

Then, since u is a function of the stremgth of the shock and the
81

condition ahead of the shock, VQQ/RQ becomes (see derivation in the
eppendix) S : ' '

Vet'_ \ﬁ(Pi + 6)2Pi VlI

R® - (6pg + 1)2+2 glRe

(10)

where_linéar variation of viscosity with temperature 1s assumed.

"If the initial strength of the wave and the conditions into which
it is traveling are known, vgt/R2 can be evaluated for any distance
from the diaphragm. After this value is determined, the ratioc n(P)/mn(Py)-
may be found from figure 2. Then, from figure 5, the value of the
strength of the wave P.at x may be evaluated.

Before proceeding with an account of an experimental test of this
theory, the theory for the attenuation of a hydraulic Jump in a channel
is presented. ' .
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BOUNDARY IAYER IN A FLUID OF FINITE DEPTH

An analysis parallel to that of the boundary layer in a cylinder
may be carried out for the boundary layer in a fluid of finite depth on
a flat plate. This analysis can be -applied to find the attenuation of
& hydraulic jump traveling in a channel. )

The differential equation (corresponding to equation (1)) is

du _ VBQu
ot 2
oy

The boundary conditions are:
at t =0

u = uy (0 <y £h)
at y=0

u=0 - (t >0)
at y=h

ou '

= =0 t >0

- (t >0)

The iast condition expresses the absence of tangential force on the .
free surface. )

. The solution of this boundary-value problem is also known from
the theory of heat transfer. (See reference 3.) The solution is

)+°° . 1 . yr2 Vi
l=_§ S A -1) Die & 2
TP 2n_lsin[(2n l)ahe ‘h
The ratio of the mass flow past a section of width w at any time t

h .
m=wp| udy
0
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to 1ts value at t+ = O of
my = wphui

is

o -_ﬁ(&_l)gﬂ
ﬂ%-Z E{LT e 4 h2 (ll)

n:l

m _
my

This result is plotted in figure 6 and is used to evaluate ‘the attenu— ,
ation of & hydraulic Jump traveling in a channel.

A&ﬂTNﬁATION OF A HYDRAULIC JUMP IN A CHANNEL

If a channel is divided into two parts by a barrier and the two
parts are filled with a llquid to different levels h, and hy,

where hgo > hj, and the barrier is suddenly removed, & situation

analogous to that of a shock tube exists. Although the equations of
a shock and a hydraulic jump are completely different (not just the
same equation using different ratios of specific heats, as in the
case of continuous flows such as the water analogy, see reference L)
the phenomens are fundamentaelly similar; in particular, the liquid
originally at a depth h; 1s suddenly accelerated to a velocity wuo

and the depth is increased to hp when the Jump passes by it.
- The mass flow per unit time set in motion immediately behind a
hydraulic Jump in a channel of width w 1is
m = pwuphp

This mass flow is related to the ratio of the depths on the two sides
: h .
of the Jump Hg = H. and to the conditions ahead of the wave by the

equation (derived in the appendix):

n ___<H_1>@—H+—15 Lz(n)’ | (12)

pwa, hy V2
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where a; = \[gh; 1s the speed of an infinitesimal wave. The

parameter 1(H) 1s plotted as a function of the depth ratio H
in figure 7.

By an argument parallel to that for a shock tube, 1f the channel
is agsumed to be wide in comparison with the depth of the liquid so
that edge effects may be neglected, the strength of the wave after it
has gone a distance x can be determined by the relation

%P )2Vt . |
T( i (13)

7,(Hi) 1r2 '— 1)2

I vt/h22 is expressed in terms of the Jump strength and condi-
tions ahead of the wave,'and if the assumption 1s made that +t = X

u.Si’
this parameter becomes, as shown 1n the appendix:
vt _ 1 VX | (14)
2 geVH@E-1 2 '
n,2 EPVE(E -1) an

With the aid of equation (14) and figures 6 and 7, the strength of a
hydraulic jump at a position in the channel can be computed.

TESTS OF THE ATTENUATION OF A SHOCK WAVE IN A TUBE

In order to obtain an experimental check of the theory Just‘
presented, a special shock tube was constructed. The tube was 0.4 inch
in diameter, and the high—-pressure compartment was h% feet from the
diaphragm to the end of the tube. Two low-pressure chambers were
interchangeable on the other slde of the diaphragm — the first 1 foot
long, the other 11.3 feet long from the dlaphragm to the pickup
crystal. The experimental apparatus with the short low—pressure
chamber is shown in figures 8 and 9.

Tests were made by charging the high—pressure chamber with nitrogen
to the desired pressure. The diaphragm was then broken by puncturing it
with a solenoid—driven plunger, and a shock wave passed into the
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low-pressure chamber, which was at atmospheric pressure, reached the
end of the tube, and was reflected back toward the diaphragm. The
voltage output of a piezoelectric crystal mounted flush in the end of
the tube was recorded. This voltage, which was a measure of the ratio
of the initial pressure in the tube and the pressure after the shock
wave had been reflected, was recorded by means of an oscillograph and
rotating drum camera the same as that described iIn reéference 2. One
such record, which is typical, 1s presented herein as figure 10.

By this method the voltage output of the crystal was obtained for
a range of initial ratios of pressure betwsen the high-pressure and -
low—pressure sides of the dlaphragm with both the 1—foot and the
11.3—foot pressure chambers. Since the reflected—pressure ratio
measured (P3/Pl) is related to the strength of the wave striking the

end of the tube by the formula (see the appendix)

P3 _p(8p - 1)

Pl P+6

the records made are a measure of the relative attenuation of the wave
at stations 1 foot and 11.3 feet from the diaphragm and are seen to be
independent of the crystal characteriatics.

' The theorstical reflected—pressure ratio p3/pl as a function of
initial-pressure ratio pb/bl, with and without the effect of viscosity

considered, is plotted in figure 11 for a station 1 foot from the
diaphragm, along with the voltage output of the crystal measured at
' the same station. The derivation of the relation between PO/Pl

and P 1is given in the appendix.

If the theory is assumed to be correct, these data may be used to
determine the voltage output of the crystal for a given pressure rise.
This information is given in figure 12. The reflected—pressure ratios

. corresponding to the crystal voltage outputs measured with the 11.3~foot
tube can be determined from this figure and are plotted in figure 13,
elong with the theoretical pressure ‘ratio at this station.

Although the theory seems always to predict too little attenuation,
the order of magnitude (12 to 15 percent) agrees very well with that
measured (12.5 to 16.7 percent). However, the theory takes into account
only one factor contributing to the attenuation, and other factors (such
as the impossibility of a perfectly efficient dlaphragm) may contribute
to a reduction of the strength of the initial wave formed which might
well be the order.of the difference between the theory and experiment.
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TESTS OF THE ATTENUATION OF A HYDRAULIC JUMP IN A CHANNEL

For experimentally determining the attenuation of hydraulic Jumps

an apparatus was used that consisted of a standard 8-inch steel channel
"20 feet long with plates welded to its ends. A transverse cut was made
in the middle, into which a removable metal barrier was inserted. Liquid
wag poured in-to different depths on the two sldes of the barrier. The
barrier was suddenly removed, and the depth Just behind the wave was
measured at two points — one close to the barrier, and one farther down—
stream. The depths were measured in sixty—fourths of an inch by means of
thin steel scales. By this means the height of the moving liquid could
be obtained within 3 percent.

The first tests were made with water. The attenuation of the waves
was found to be about twice that predicted by the theory. However,
surface tension, unaccounted for in the theory, was belleved to contrib—
ute a large share of the attenuation. In order to avoid this effect,

SAE 10 oi1l, which has a surface tension about one—third that of water
and a kinematic viscosity about seventy times that of water, was used
Bo that the effect of surface tension would be negligible compared to
that of the viscous boundary layer. Measuremsnts were made of the
attenuation of hydraulic Jumps of various strengths moving into liquid
depths of from 30/64 inch to 60/6k inch. The height measurements for
this purpose were made at a position 2 inches downstream and at a.
position 4 feet downstream from the barrier.

Some of the results are given in figure 14. Since the derivation
of the relation between H; and hgp/hy; 1s straightforward (see
appendix) the experimental values of the hydraulic Jump strength H
measured close to the barrier position plotted against hO/hl when

compared with the theoretical curve indicate the accuracy of the
measurements. On the other hand, the plots of H measured 4 feet
downstream against ho/hl indicate the reliability of the theory
advanced herein. In the case of the initial strengths an error of
measurement seems to exist which glves wave strengths consistently
higher than the theoretical values. If the results are corrected
for this consistent error, excellent agreement between theory and
experiment 1is obtained.

* CONCIUSIONS

A theory has been presented for the attenuation due to viscbus
boundary layer of shock waves traveling in closed passages. Because
of the similar nature of the problem, the theory was also developed
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for the attenuation of a hydraulic Jump moving in a chamnel. The theory
in its two forms was then checked experimentally.

Experimental results obtained by two greatly different methods
indicate that the theory is sufficlently accurate to allow analysis of
the effects of viscosity in shock tubes and intermittent—flow apparatus.

The assumption that the boundary léyer in the Intermittent—flow
processes described depends only on time seems to be Justified.

Experiments made in the shock tube show that, in the relatively
small tube used, the pressure ratio across the shock wave dropped only
some 12 to 15 percent in a distance of 11 feet. Thus, since the parameter
controlling the attenuation is increased in proportion to length and to
the inverse square of the radius, in the passages of a normal intermittent—
flow apparatus the effect of viscoslty at the walls causes little change
in the strength of the waves moving in the passages.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
" Langley Air Force Base, Va., July 6, 1949

”,
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APPENDIX

DERIVATION OF FORMULAS

Derivation of Formula for m/rpja;R°

The equations characterizing a moving plane shock may be found by
changing the frame of reference so that the shock appears to be
stationary. The velocitles in this frame of reference are denoted by
_primes; the other quantities remain unchanged 1n the two frames of

reference.
(See reference 5.)

and the density ratio by

where

The equations of a stationary normal shock are well-known.

Further, the continulty equation is

Thus, if the ratio of specific heats 7 1is taken
as 1.4, the pressure ratio across the shock is given by
P 2 -1
Po_p.M~ -1 (1
1% 6 \
Pa - éM; 2 (1
PL M2 +5
_ uy '’
M = ho't B (1
a1
u1'ey = up'ep (1

In order to change the frame of reference back to the case of a shock

moving into a still gas,

the relations

L
ul uS

i u

8

Uo - U

15

5)

6)

7)

8)

(19)
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are used. By substituting values from equations (15) %o (19) in the
expression for mass flow

m = up2u2R2

the following relation, equation (5) in the text, is obtained:

=2 VgP +. l l
b1 plalR \17 + 6

Derivation of Formula for Vot /R®
If the gas law is written

Ko _ Tp
by T

2 2 :
Ho M ¢ o .
‘ v2 = ..3 = .i P<_l> - V1P<.i (20)
Po PL P2/ T \P2p
Writing t = —

— and using ‘equations (15) to (20) result in
8

Vot VTP + 6)%p VX
R (6P + 1)2%2 ajR°

which is equation (10) in the text.
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Derivation of Formula for py/py

Reference 6 shows that, on the two sides of an expansion wave, the
relation

2 _ 2
ug + — ag = Up + — 8o o (21)

holds. In this case, ug =0 and ag = a; since the original tempera—
ture on the two sides of the diaphragm is the seme. If the speed of
7
gound is taken as a ="Z£, the isentropic relation as Po _ P2
P 1% P1
y as 1.4 in equation (21), and by use of equations (15) to (19), the
following expression is found for po/pl:

2

= =Pl - ————
N VT(6P + 1)

Po - P—-1 j]‘7

Derivation of Formula for p3/p;

In order to determine the pressure in the end of the tube after the
wave is reflected, a new frame of reference is taken so that the
reflected wave appears to be stationary. This change is accomplished by
setting ‘ - '

uy ue3 T W (22)
22
u2' =1u

83
where u83 18 the velocity of the reflected shock.

Equations (15) to (19) can be solved for uo in terms of P, but
equations (15) to (18) also apply to the reflected shock (after suitable
changes in the subscripts) and, together with equation (22), can be
solved for up In terms of P3 P». Equating these two expressions

for u, and simplifying result in the expression

P3_8p -1

P P+6
Hence,

P3  p(8&'-1)

1 P+6



18 : NACA TN 1942

Equations for Hydraulic Jump

If a frame of referenceé 1s taken so that the jump appears to be
stationary, the equation of continuity can be written as (see
reference L)

ul'hl = ue'he : (23)

and the momentum equation as

]

+ w2y

’

gh 2 . 2 ) -
-+ Py 8h22 | (24)

By substituting values from equations (19), (23), and (24) in the
expression for mass flow

= pwughp

the following relation, equation (12) in the text, is obtalned:

L o LlE-_1)EE-+D

pwaihy 3

\

Also, the following expression for vt/hg , equation (lh) in the text,

is found
vt _ ;L_ VX
2 v
hyo H° H(H +1) aghy®

' Since the expansion wave is a continuous phenomenon, equation (21)
may be used in the hydraulic case in which 7 = 2.  (See reference 4.) .
Thus, if the speed of a small wave is a = \gh and if uy =0 in
equation (21), end by use of equations (19), (23), and (24), the following
expression for hy/hy 1is obtained: :

h 2
%:[run—l) %—1]
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Shock pressure ratio, P

Figure 5.- Plot of the function n(P) from equation (8).
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Figure 7.- Plot of the function 1(H) from equation (12).
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/Calibration voltage

Figure 10.— Typical voltage record obtained when shock is reflected from
end of tube. W
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