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SUMMARY

Two matrix methods for calculating responses of linear systems for
given forcing functions and indicial responses are analyzed in order to
find a method suitable for solving the inverse problem of calculating
forcing functions from known responses. The first method consists of
a numerical evaluation of Duhamel's integral, the second of an approxi—
mation of the forcing function by means of stralght—line or parabolic—
arc segments. The second method 1s more generally adaptable to the
solution of the inverse problem than the first; when the first method
can be used, however, it is usually less time consur’

The results of both methods are compared with exact solutions for
both the direct and the inverse problems. Both methods are found to be
convenient to use and sufficiently accurate for meny practical purposes.
They may find application in work on gust loads, maneuvering loads,
impact loads, in electric problems, as well as many other dynamic and
gome static problems.

INTRODUCTICN

It is often of interest to calculate the regponse of a static or
dynamic gystem to an arbitrary forcing function, such as the response
of an airplane to an arbitrary gust or stick—force variation. Similarly,
it is often of interest to calculate the forcing function that gives rise
to a known response.

If the system 1s linear so that solutions may be superposed, the
direct problem of calculating the response to an arbitrary forcing
function may be solved by superposition with the use of an indicial
response (the response to a unit Jjump function, see fig. 1). The integral
form of this superposition is known as Duhemelts integral. When the
integral cannot be evaluated in closed form either numerical or graphical
methods (reference 1) may be used.
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For the purpose of solving the inverse problem of calculating
forcing functions from known responses, Duhamel?®s Integral may be
congldered to be an integro—differential equation. Because solutions
to this equation cannot always be obtained in closed form and graphical
methods cannot conveniently be adapted to this problem, numerical methods
mst be resorted to. )

In this paper two numerical methods are presented for solving the
inverse problem. One method consists of a numerical evaluation of Duhamel?s
integral in a manner similar to that of Simpson®s rule. The other method
consists of an approximation of the forcing function by means of straight—
line or parabolic-arc segments. Both methods are expressed in matrix form
and are based on matrices that are obtalned by inverting matrices which
congtitute the solution to the direct problem. Consequently, the solution
of the direct problem by the two matrix methods is discussed first and the
adaptation of these methods to the solution of the inverse problem, later.
The mechanice of computing solutions to specific problems are discussed in
some detail in the corresponding sections of this paper concerned with the
analysis of the direct and inverse problems. Methods of evaluating the
responses to unit gradient and unit parabolic forcing functions (see fig. 1)
required in the second method of this paper are described in the appendix.

The adaptation of these and similar numerical methods to the solution

of the other inverse problem, that of calculating indicial responses from
known forcing functions and responses, is discussed briefly. ‘

SYMBOLS

g independent variable, usually time

A indicial resﬁonse

G arbltrary forcing function

R response to arbitrary forcing function

B responge to unit gradient function

C responge to unit parabolic function

f integrand of Duhamel®s integral

o variablé of integration corresponding to s

byt independent variables equivalent to &
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[r]
(4]

M,N

c,d,e,f
g

h

differentiating matrix
matrix which performs the function of Duhamel?s integral

constants of linear and parabolic term in the parabolic-—arc
approximation

nth point on any curve or number of last point of interest

coefficlent in q or Q matrix or coefficient of original
matrix

coefficient in inverse of Q or Q1 mwatrix or coefficient
in auxiliary matrix '

coefficients in Qp matrix

gubmatrix of Q2 matrix

submatrix of inverse of Q2 matrix

Matrix notation:

[]
{}

square matrix

columm matrix

The subscripts on the A, B, C, G, and R functions or their
derivatives denote the point at which the function (or derivative)

is teken; thus, for instance, Gt

= G'(8)

3 s=3A8"

A prime mark indicates differentiation with respect to s or o.
An underscore indicates a submatrix.

ANATYSTS OF THE DIRECT PROBLEM

Numerical Evaluation of Duhamel?®s Integral

The response R(s) of a linear static or dynamic system to an
arbitrary forcing function G(s) can be obtained from the indicial
responge of the system A(s) by superposition. If the forcing
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function is approximated by a staircase function (fig. 2), the response
at different values of the independent variable s will be:

R(0) =Ry = A G, .
R(sy) =Ry R AGy + Ag(Gy — Ggp)
| > (1)
R(sp) =Rp ® AgGo + A1(Gy — Go) + Ap(Gp — Gy)
R(s3) =Rg X AgGy + AQ(G]_ — Gp) + Ay(Gp — Gy) + Ap(Gg = Gp)
-

L) ] @ ® L]

Ag the interval As approaches zero these discrete values of R
approach a function R(s) given by Duhamel®s integral:

R(s) = A(8)Gg + ,rSA(S — 0)G*(o)do (2)
uo

where o 1is the variable of integration corresponding to s.

For cases in which Gp 1s not zero the integral in equation (2)
can be evaluated as indicated in the following analysis; to this integral
the function A(s)G, may then be added. When G, 1s zero, equation (2)
reduces to the gimpler form:

R(s) = fsA(s — 0)G'(0)do (2a)
0

This expression is evaluated numerically in two steps: an expression
for the derivative of the forcing function G(o) is first determined

and then the integration of the function A(s — ¢)G'(o) is performed

by Simpsonts rule. '

An approximate value of the derivative of G at point s, may be
obtained from the relation

i
roji-
]
o
roj-

(3)
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which in effect implies that the actual curve for G 18 replaced by a
parabolic segment between the points s, 1 and 8,.L. If, in addition,
2 2

the slope at 8 =0 1is estimated as

o -
Gf'g % i% (3a)

a differentiating matrix for calculating G?¥(s) can be set up from
equations (3) and (3a):

(G ) 2 0 00. chl/g
G'l -1 1 00. .. G3/2
4@:2?351; 01 10.. .Gk (%)
G'y 0 0-11...|lGr/n
L) IR

or

{o} =~ =@l fop (ba)

The integration of the function A(s — 0)G'(co) = f(¢) indicated in
equation (2a) may be performed by Simpsonts rule. For even values of n,

On,
R, = Lr f(o)do
(0]

B3P 4+ Py 4 2Fn + bfa + 2F) 4 . . .+ BF o 4 P) (5)
350 1 2 3 L n-1 * Tn

For odd intervals the Integration over the last segment Bphy to 8,
can be performed by passing a parabola through the three points 855
8y 15 and s, and integrating the parabola between g8, ; &and s,.

This procedure yields a set of coefficients (—1/12, 2/3, and 5/12) which
is used in the same manner as the Simpson integrating factors (1/3, 4/3,
and 1/3) which would be obtained upon integrating from 8p.p to 8.



6 : NACA TN 1965

Thus for odd values of n,

On
Rn=f f(o)do
0

o %(fo + bf1 + 2fp + bfg + 284 + . . . + bEp ) + 2fn3)

+ As(z-fn o+ Fpg + f’g—fn) (5a)

gince there are only two values of the function f +that can be used to
calculate Rj, the trapezoidal rule is used in the initial interval
instead of Simpsonts rule, so that

Ry X égﬁ(fl + o) (5b)

Equations (5), (5a), and (5b) can be combined by writing them in
matrix form: '

— " =~ N e ~
Ry Th Ay O o 0 N
Ry l3- %*Al % o o 0o ...faqn
<y e %A3 e A %AO © o - |4 G's L (6)
T, b 2 by 1 |
Rll» EAI[I_ EA 3 'é' —3-Al EAO 0 e s s Gt 3
1 2 ) p)
R5 §A5 EA)_} §A3 EAQ Al EAO e s @ G? ,—l-
B PR U
or |
IR} = 2s [A}{G’} (62)

Then, substituting the expression for {b{} from equation (ka) into
equation (6a) gives

{r} ~ [4 ey ' (6v)
- [qc} (6c)

where [@ﬂ is a combined matrix that performs the operations indicated by
Duhamel®s integral mumerically.
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The steps required in computing responses by this method can be
summarized ag follows:

1. The values of the forcing function are tabulated for the midpoint
of each interval and thoge of the indicial function are tabulated for
each end point. -

2. The values of the forcing function are then multiplied by the
D matrix (equations (4) and (ka)) to obtain the values of a matrix that
consists of As times the values of G! (the derivative of the forcing
function). If n 1is the last point of interest, the tabulation of the
values of the forcing function should be extended to the value at the
midpoint of the next interval Gh+%5 the values of G! can then be

calculated up to G'n.

3. The values of the indicial response are multiplied by the
factors 1/2, 1/3, 5/12, 5/4, and so forth and tabulated in the manner
indicated by the A matrix of equation (6). The A matrix has one
more columm than it has rows. If n is the last point of interest,
it will have n + 1 columms, which correspond to the n + 1 values
of G' (starting with G'j).

b, The A matrix is postmultiplied by the colunm As {Gﬂ- obtained
previously. The values calculated in this manner are the values of the
response at the end points of the intervals, provided Gp 1is zero.

Only n wvalues of R are calculated; Ry is zero.

5. If Gp 18 not zero, the response is obtained by adding the
terms GpAy, GpAs, GOA3, « » . to the values of Ry, Ry, R3, + « o

calculated 1In the preceding step. The initial value of the response
is then GOAO.

Approximation of the Forcing Function

In the preceding section the response to an arbitrary forcing
function was evaluated numerically by approximating the integrand
A(s — 0)G*(0) of Duhamel's integral by parasbolic segments. Another
method of calculating such a response consigtes of approximating the
forcing function elther by straight—line segments or by parabolic—arc
segments. The response is then calculated as the linear superposition
of responses to the unit gradient and unit parabolic forcing functions
shown in figure 1.

Straight—line approximation.— If the arbitrary forcing function G(s)
is approximated by straight—line segments as shown in figure 3, ths values
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of the response to that forcing function at different values of 8 can
be determined from the response B(s) to a unit gradient function (see
fig. 4) as follows:

R'O =0 -
Ry 8 BGy

N Bply + By(Gp — Gp)

Ry % B3Gi + Bo(Gp — Gy) + By(G3 — GQ)J

>~ (1)

=
n
2

This relation can be expressed Iin matrix form as

] [Bpo o000 ..[20000..7 g
Ry|] |BoB 0 00 ...|L 10 o00... |6
Bl [Bsmemo o o100 desl
Ryf " |ByB3ByB O .. .{0 01 10... |a |
Rs| |BsByBgByBy ... |0 0 0-11...| |a
5 I REEE T | PRI I P

or

8

&

(5] @1] {of (7o)
[o1] {c} (Te)

A method for calculating the response to the unit gradient function
B(s) in terms of the indicial response A(s) 1s presented in the appendix.
The steps required in computing responses by this method can then be
summarized as follows:

1. Tne values of the function G are tabulated at the end points
of the Intervals from point 1 +to point =n, and those of the function A,
at the midpoints as well as at the end points from point O to point n.

2. The values of the function B at the end points of the intervals
(from points 1 to mn) are calculated from equation (A6) of the appendix.
The matrix of equation (A6) will have n rows and 2n + 1 colums,
gince 2n + 1 values of A are used (at the n end points, at the n
midpoints, and at O) and n values of B are calculated.
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3. The values of the function B calculated in this manner are
entered in a matrix as shown in equation (7a) and are postmultiplied
by the Dy wmatrix to yield the Q; matrix. Both the Dy and the @

matrices are sgquare and of order =n.

4. The response to the forcing function G(s) is found by post—
multiplying the Q; wmatrix by the G matrix as indicated in equation (70),
provided Gg 1s zero. .

5. It Gp 18 not zero, it must be subtracted from every other value
of G in tabulating the G matrix. The terms GpAy, Gphs, . . . must

then be added to the values of the responss calculated in the preceding
gtep for points 1, 2, . . . . The response at point O 1is then Goho-

Parabolic-arc approximation.— A clossr spproximation to the forcing

function than the sgtraight-line approximation of the preceding section
may be had by fitting parabollic—erc segments to the function. In the
first segment O £ s< As, for instance, the forcing function may be
expressed approximately as

o(s) x Ml(§>2 ¥ NJ_(i) | (8)

provided Gp is zero. The constants M; and N; are selected in such
a manner that the parabolic arc coincides with the true values of G at

8=0,8= %?, and 8 = As; therefore,
(9)
Ny =4 -G
similarly, in the second interval
(s) ~ (" — 51)2 + N (S — 2 (8a)
o % My () o
where
Mo = A(G3/2 — G1) + 2(Ge — G1)
‘ (9a)

Ny = 4(030 - Gl) - (& - &)
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A

and in further intervals, for s, 3 <s Shs
&s) — G q ¥ Mn(?.:_s_r_x_:;)2+ . E_:_Bn:l_) (8b)
-1 hs o\ As )

where

N

-“(Gn—%- - Gn—-l) + 2<Gn - Gn—l)

ta

1 (9p)

=
i

o = (G- = %) = (% ~ Go) J

These relations may be written in maitrix form as

R -
My -4 2 00 0 o0. Gl/;

Ny b= 00 0 0...|l|¢

M, 0 2-4% 2 0 0.. G3 /p

1Nor=[0-3 52 0 0. ..[46G L (9c)
My 00 02— 2...|G/p

1\1i 00 0-3 k...l |G

»... ‘—“- » L] . . --:_ L.J

or

{o} - 2] {e} (9a)

Once the M and N coefficlents pertaining to the arbitrary
forcing function G(s) have been evaluated, the response to that forcing
function at different values of 8 may be determined from the
response B(as) to a unit gradient function and the response C(s) to
a unit parabolic function as follows:
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Ryjo ® Cy /oMy + By oy
R3/p % C3/oMy + B3 solly + Cy /oMy + By /ol - (10)

R5/2 Pt C5/QM1 + B5/2Nl + 03/2M2 + B3/2N2 + Cl/2M3 + Bl/EN‘:L

or

- i

R, o By G By O 0 ...l N
Bs0|  |%s/2 B5/2 C3/2 B3/ Crfp Brje v ¢ LM3
L - - . . . . . SR .

£}~ @t | (100)

where the M,N column is calculated by means of equation (9c) so that
b} 100 00
which may also be written as

{r} = [%2] {G} ' - (104)

vhere the Qp matrix in effect performs the operatioris of Duhamel?®s
integral. ‘ N
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If values of R are desired at only integral multiples of As,
alternate rows in equation (10a) may be omitted so that the equation
is simplified to

Ro ~ CoBx(C3 B3 O O . . N1 (10e)
R3 03 B3 C2 Bg Cl Bl o e M2
e ® a » ° [ L] @ ) N2

Methods for calculating the responses B(s) and C(s) in terms of
the indicial response A(s) are presented in the appendix. The steps
required in computing responses by the method of parabolic-—erc approxi-
mation to the forcing function may then be summarized as follows:

1. The values of the forcing function as well as those of the
indicial response A(s) are tabulated at the end points and midpoints
of the intervals; there will then be 2n wvalues of G (from G1/2

to G,) a8 well as 2n + 1 values of A (from Ay to Ay,).

2. If values of the response are desired only at the end points of
the intervals, the functions B and C can be calculated at those
points from equations (A6) and (A1k) (disregarding altermate rows). If,
on the other hand, values of the response are also desired at the mid-—
points; the functions B and C must be calculated at thoge points as
well; equations (A7) and (All4) may be used for this purpose. Equations (A8)
and (Al5) may be used to yleld somewhat more accurate valuss of Bl/2

and Gy /p than furnished by equations (A7) and (Alk), respectively.

3. The values of B and C are tabulated in matrices as indicated
in equation (10e) or equation (10a), depending on whether the response is
to be calculated only at the end points or at both the end points and the
midpoints.

h. The values of the coefficients M and N are calculated from
the values of G by means of equation (9).

5. The response to ths function G 1is calculated from equations (10a)
or (10e), provided Gp is zero. If Gp 1s not zero, a term

(GoA;, GoAp, . . .) has to be added to each value of the response

calculated fromlequation (10a) or (10e); the response at s = 0 is
then Gphp.
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ANATYSIS OF THE INVERSE PROBLEMS

There are two types of Inverse problems. The one concerned with
calculating the forcing function from a known responge and indicial
regponse appears to be generally of thore interest. It is consequently
treated in more detail in this paper than the second inverse problem,
which consists of calculating indicial responses from known forcing
functions and regponses.

Calculation of the Forcing Function

For the purpose of calculating responses to arbitrary forcing
functions, the numerical methods presented (equations (6c), (7c),
and (lOd)S may be considered to consist of summation formulas involving
the indicial response, the arbitrary forcing function, as well as
certain numerical factors. For the purpose of solving the inverse
problem, however, the sams equations may be considered to be linear
similtaneous equations with known responses on cne side and unknown
values of the forcing function multiplied by certain coefficlents on
the other side. These coefflcients are the elements of the Q matrices.
The unknown values of the forcing function may then be obtained by
solving the simultaneous equations in any convenient manner. There must,
of course, be as meny equations as unknowns, or, in other words, the Q
matrices must be square if they are to be used for the solution of the
inverse problem. '

In the following analysls Gy 1s assumed to be zero. When it is
not zero it may be calculated from the relation

R
Go = =2 : (11)
Ao
and the terms GphAy, GpAp, . . . must be subtracted from the known values

of the responss before they are operated upon in the manner indicated in
the following sections in order to calculate the forcing function. To
the values of the forcing function calculated in this manner the value Go

as calculated from equation (11) must then be added at each point.

Numerical—integration method.— The numerical evaluation of Duhamel®s
integral leads to equation (6¢c). In the case of the inverse problem, a
unique golution for the values of G corresponding to a given set of
values of R can be obtained from this equation only if Ay 1is zero,
gince otherwise there are more unknown values of G than there are
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equations. Consequently, this method can be applied to the analysis of
the inverse problem only if Agp 1is zero. In that special case the Q
matrix is triangulsr; the solution of equation (6¢c) can be performed by
the following method: The  Q matrix may be written in the form:

’

q&ll 0] 0 0] s s

an] 8oo .0 ...
[QJ = 8.31 8.32 a33 O . . & (12)
{841 B2 B3 Bhl - - -

® ° ® °

where the coefficients a are obtained by postmultiplying the A
matrix of equation (6) by the D matrix of equation (4). The solution
of equation (6¢c) is then

|

Gr/2 = 'a_i:i' R

G3/o = 5o (B2 — 80161 /2)
822 o (13)

Os/2 = a33(B3 ~ 23101 /2 ~ 23203/2)

» ° ®

——

If many response functions are to be analyzed for the same indicial
response, it may be expedient to invert the Q matrix as follows:

b, 0 0 0 ..
boy boo O O . ..
@™ - by bgp baz O . . . | (14)
byg byo b43 byy - o

° @ * ®
L— -
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where each columm of Eﬂ'ﬁ- ig obtained successively by means of
equation (13) from an appropriate R columm of the type

1’ -

oOHOO

and the values of G pertinent to the glven problem.

The steps required in calculating forcing functlons by this method
are: '

l. The n values of the response are tabulated at the end points
of the Intervals from points 1 +to n.

2. The A matrix is obtalned from equation (6) as described in the
section concerned with the direct problem; it is postmultiplied by the
D matrix of equation (&) to yield the Q matrix.

3. The elements of the Q matrix are considered to be the coeffi-
clents of simultaneous equations for the unknown values of G from G1/2

to Gh--l in terms of the known values from Rl to Rn. The solution
2

of these equations may be carried out as outlined in equation (13).

L. If it is desired to invert the Q matrix, equation (14%) can be
_uged. Tne values of the forcing function corresponding to any set of
values of the response may then be obtained by premultiplying the values
of the response by the inverse of the § matrix.

Straight—line approximation.— The straight—line approximation to
the forcing function leads to equation (7c), which involves the
triangular matrix

a; 0 0 0 . . 7]
8.2 al 0 O « s e
E)J:I = &3 8.2 &l 0 s o a (15)

&h&.3&2&1...
L ° L] Blj



16 : NACA TN 1965

where
a; =B |
ap =By =B
a3 = By — By (16)
ay = By — B3
y

When there are n values of G (from Gy to Gpn) and n values of R
(from Ry to R,), the @ matrix is square and there are n equa-
tions for the n unknown values of G.

The solution for these values is carried out very easily as a
result of the triangular form of the Q; matrix. In fact

G1=al‘l‘31
1
Gp = 5—(Re — aot)

)
O3 = (B3 ~ 230 ~ o) g o

Gy = 3-(Ru — 30 — 8o — ax0y)

» e

If the forcing functions for many known responses are to be obtained for
the same system (with the same indicial response), it may be more expe—
dient to calculate the inverse of the Q; matrix than to solve for each
forcing function separately. The inverse of the Q; wmatrix may be
wriltten as

v, 0 0 0 ..
b2 bl 0 O e o o
[oa] ™ = b3 bp by O . . . (18)
-bl'_ b3 b2 bl e o @
o o« o s s e s
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where
——
’ 1
by = EI
l ke
bz = _E-I ae'bl
(19)

The steps required in calculating forcing functions by this method
are:

1. The values of the response are tabulated at the end points of
the intervals from points 1 to n.

2. The Q) matrix is calculated as indicated for the direct
problem.

3. A get of gimultaneous equations having the elements of the Q;
matrix as coefficients and the values of R as knowns is golved for
the unknown values of the forcing function Gy to G, as indicated
in equation (17).

L. If 1t is desired to invert the @ matrix, equations (18)
and (19) can be used; the forcing functions may then be obtained by
premultiplying the given sets of values of R by the lnverse of the
Ql metrix.

Parabolic—arc approximation.— The Qo matrix obtained for the

parabolic—erc method {equation (10d)) is not quite trisngular but may
be reduced to triangular form by partitioning:
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where

[l

cpd7(0 0 )0 0 ...
81 fll 0O 0 I 0O 0 e & @

02 del Cl gll 0 O s o »
92 f2 'el fl' Q 0O .. .
03 d3| 02 de Ol dl ® o @

62 fg' 91 fl s o o

[

&
1

o
W
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(20)

- (20a)

and where the ¢, d, e, and f +values are obtained by postmltiplying
the C matrix of equation (10b) by the Do matrix of equation (9d) to

yield the Qp matrix.

partitioned into palrs such that

If the column matrix of response values 1s also
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(21)

'mrwe)
ey
I
A
d
w
)
N4

il
e
Y

where E -

T (21a)

then a solution of the simultaneous equations having the elements of
the Qo matrix as coefficients may be effected in the manmer Indicated
for the straight-line method, except that two—by—two matrices take the
place of ordinary algebraic quantities. Tne g matrices of

equations (20a) take the place of the coefficients a (equations (15)
and (16)), the R matrices of equations (2la) take the place of the
values of R in equation (17), and the forcing function is computed in
the form of G matrices defined by ‘

~
Gy
-‘Glzﬁ /2.
.l
- - (22)
G
& = 3/2
I




20 NACA TN 1965

which take the place of the values of G in equation (17). If the
Qo matrix is to be inverted, the resulting matrix has the form

Moo .

i, h2hlo » 8 e
g™ = |2 == (23)

B3faly - - -

-. o ® 0.':‘1

where the h matrices take the place of values of b in equation (18)
and are calculated as indicated in equation (19). The quantity 1/aj
is replaced by gl“l, the inverse of the gy matrix. The operations
called for in equations (17) and (19) are now, of course, matrix multi—
plications, so that the order of the multiplicands must be preserved.
The fact that the inversion of the Qp matrix entails, with the
exception of the inversion of the two-by-two g7 matrix, only matrix
miltiplications and additions of low—order matrices facilitates the
problem greatly.

The steps required to calculated forcing functions by this method
are:

1. The values of the response are tabulated at the end points and
midpoints of the intervals from Rl/2 to R,.

2. The values of B and C are calculated at both the end points
end the midpoints of the intervals and entered in a matrix as shown in
equation (10a). This matrix is postmmltiplied by the Dy, matrix shown

in equation (9c) to yield the Qp matrix.

3. A set of gimultaneous equations having the elements of the
matrix as coefficients and the values of R as knowns is solved
for the unknown values of the forcing function G1/2 to G, 1in the

manner suggested in equation (17), where the submatrices indicated in
equations (20a), (2la), and (22) are used instead of the terms a, R,
and G of equation (17).

L. If 1t is preferred to solve the problem by inverting the Qp
matrix, the inversion may be performed as indicated in equations (18)
and (19), where the submatrices indicated in equation (20a) are used
instead of the values of a of equation (19), however; the forcing
functions may then be obtained by premultiplying the given sets of
values of R by the inverse of the Qo matrix.
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Calculastion of the Indicial Responss

The numerical—integration method outlined for the direct problem
may in certain cases be modified to obtain a solution to the second
inverse problem of calculating an indicial response from a known forcing
function and response. Equation (6) ‘may be rewritten in the form:

]

%G'l —21—(}'() 0 0 0 o .. fAJ R, |
%G‘g %G'l o 0 0 o Ay R,
2613 o'p %G'l 5‘3:G'O o o .. .JAQ L1 (o)
i—G'u %G'g %G'g %G'l -13-G'O o ... A; as RhP
%@5 G, %G'S ?3—G'2 %Gfl %G'l | 1A B5

-
]
.

®

. e e e .
A, — ./

which permits a solution for the values of A from known values of R
and G'. The values of G' may be obtained from the values of G at
the midpoint of the chosen intervals by means of equation (4%). As in
equation (6), it is assumed that Gy 1s zero. Furthermore unless
either Ap or Gp 1s zero as well, equation (24) will have more
unknown values of A than equations, so that it cannot be solved.

If these conditions are not met, it may be possible to use another
approach which consists of using the alternate form of Duhamel®s Integral:

R(s) = [‘SA'(G)G(B — o0)do (25)
uo

The following equations may be obtained in a manner analogous to that
uged in obtaining equation (6):

t— it 7 —
26 36 O o 0 0 A'Ow Ry
1, b, 1

=%, 0 0 0 At
3% 38 3% 1 Ro
1 5 5 J
el T R OO L S
Lo to. 20 Y lo, o : .
1 2 D¢ 2
3R 3% % & % - A B5
R : ) -
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This equation serves to solve for the values of A?! 1in terms of the
known values of the response; the values of the forcing function appear
as coefficients in the simmltaneous equations, as do the integrating
factors. Equation (25) is valid when Ay ise zero; it does not imply
any restriction on Gp. However, unless either Gp or Ap 1is zero
there will be more unknown values of A than equations in equation (26),
so0 that the equation cannot be solved. A set of values of A may be
obtained from the calculated values of A' by means of an integrating
matrix:

a1l [5/122/3 <a/122 0 0o o .. [ay
Al 143 4/3 143 <; 0 0 ... (A"
A3>= 5/12 1 54 1/3 0 O . o AT
4y as 1/3 4/3 2/3 4/32/3 0o ... 4A‘3 (27)
As 5/12‘ i 54 2/34/31/3. .. AY)
- - . I I

The integrating process indicated in equation (27) will tend to
average out any discrepancies in the values of A" calculated from
equation (26).

Since in the particular cases where equations (24) or (26) may be
used the matrices of the values of G or G' will be triangular, the
methods indicated in the preceding sections in analyzing the numerical
integration method will also be applicable to the solution of these
equationg or the Inversion of these matrices.

RESULTS AND DISCUSSION
Comparison of Numerical and Exact Results

The direct problem.— The accuracy of the numerical results has been

investigated for several cases by comparing their results with known
exact solutions for simple indicial response and forcing functions.
The indicial response selected is:

-0.28
e

MM:l—% (28)
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Two forcing functions have been considered

Gp(s) = sin é& 8 (29)
and. ‘
Grr(s) = %—(l ~ cos 2—’;; s) (30)

The responses to the two forcing functions have been computed by
Duhamel's integral exactly and by the numerical methods of this paper.
The interval was chosen as- As = 2, which is one twenty—fourth of the
period of the forcing function. The response B(s) to the unit gradient
and the response C(s) to the unit parabolic function required in the
second method (the straight—line or parasbolic—arc approximations) have
been computed by the numerical methods indicated by equations (A7)
and (Allk); they are presented in table I with the exact values.. A
comparison shows that the numerical methods for the evaluation of the
unit responses B(s) and C(s) should yleld results to an accuracy of
better than 0.1 percent for reasonably small intervals.

The response to the forcing function of equation (29) has been
calculated by all three numerical methods and is presented in table II.

A comparison of the results indicates that the numerical—integration
method and the straight—line approximation have the same accuracy,
approximately 0.2 percent. The parabolic—arc approximation gives much
better accuracy, approximately 0.0l percent in this example.

The inverse problem.— The forcing functions which give rise to the
responses may be calculated from these exact responses and the indicial
response given by equation (29). Since Ap 1is not zero, the approximate~
integration method cannot be used. Therefore, only the other two methods
have been used to calculate the forcing functions.

An increment As = 2 was used and the required unit gradient and

unit parabolic responses were taken from table I. The forcing functions
calculated by these methods should check those given exactly by
equations (30) and (31). The comparison is presented in table ITI.
The average accuracy of the straight—line approximation applied to the
inverse problem is approximately 0.3 percent; that of the parabolic-—arc
approximation, approximately 0.04 percent. No points have been calcu—
lated at the midpoints of the intervals by means of the straight—line



ol NACA TN 1965

approximation aince they would simply be the average of the ordinates
at the end points of the given intervals in view of the approximation
inherent in that method.

Factors Affecting the Accuracy of the Methods

The comparisons of the numericel methods with known solutions
show that, with intervals of the order of 1/20 to 1/30 of the period
of the first natural frequency of the system or that of the forcing
function, the numerical—integration method amnd the straight—line
approximation yleld results that have an accuracy of 1 percent or
better; whereas the results of the parabolic—erc approximation are
accurate to 0.1l percent or better. Similar calculations have indicated
that an accuracy comparable to these values may be expected even when
higher harmonics are present, provided those higher than the third are
unimportant compared with the first few.

In general, the accuracy of the numerical methods depends to some
extent on the shape of the curve that is approximated; the closger the
approximate curve (which consists of straight—line or parabolic-arc
segments) fits the actual curve, the higher the accuracy. Consequently,
the intervel should be chosen small enough that the degree of curvature
of the approximated curve is small within a gegment; any reflexes in
the approximated curve should be near end points of segments, if
possible.

In the case of the inverse problem, great care must be exercised
in the case where both the indicial response and its first derivative
venish initially (Ag = A'y = 0). The determinant of the coefficients

of the simultaneous equations to be solved for the values of the
forcing function tends to be relatively small for this case and the
squations relatively ill-behaved. It is then difficult to obtain
reliable results by numerical means unless very small increments are
taken near 8 = 0. The accuracy of the values of the forcing function
may, however, be improved by replacing the actual indicial response by
a gtraight—line segment extending over the first two or three intervals
for the purpose of computation; in this masnner a nonvanisghing value is
assigned to A'y and the simultaneous equations for the values of G
can be solved more accurately.

Factors Affecting Choice of Methods

The accuracy of the numerical—integration method and straight—line
approximation for both problems tends to be approximately the same. The
numerical-integration method is less time consuming than the other method
if only one response or one forcing function is to be analyzed, since the
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straight—line spproximation requires the computation of the function 3.
If many cases are to be analyzed for the same indicial response, the
straight—line approximation will tend to be the more expedient, since
it involves matrices which are somewhat more convenient to use. The
numerical-epproximation method is, of course, applicable to the inverse
problem only when Ag 1s zero. ’

The parabolic—erc approximation is more accurate than the other
mothods but is also more time consuming. If by decreasing the size
of the segments used in the other methods thsir accuracy is increased
until it is comparable to that of the parabolic—arc approximation, the
expenditure of time required becomes comparable ag well. The shape of
the function to be approximated will then determine whether any small
advantage would be with the parabolic—arc approximation or the other
methods.

CONCIUDING REMARKS

Two matrix methods for solving the problem of calculating forcing
functions from known responses have been derived by means of a numerical
analysis of the problem of calculating responses frec.. g ‘cing
functions. The first method, which consists of an approximate evalu—
ation of Duhamel®s integral, leads to a matrix that can only be inverted
waen the initial value of the indicial response is zero. The matrices
obtained in the other method, which consists of approximating the
forcing function by straight—line or parabolic-arc segments, can always
be inverted readily. Some results obtained by the numerical methods for
gimple explicit functions have been compared with exact results. The
accuracy of the numerical methods was found to be adequate for most
practical purposes. A brief discussion has been given of the possi—
bility of calculating the indicial response by the approximate—
integration method if the forcing function and the response to it
are known.

Langley Aercnautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., July 1k, 1949
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APPENDIX

‘EVALUATION OF RESPONSES TO UNIT GRADIENT

ARD UNIT PARABOLIC FORCING FUNCTIONS

The response to the unit gradient function can be determined from

the indicial response by meang of Duhamel'’s integral. For the unit
gradient, for 0 < s < As,

G(s) = i
and

G*'(s) = Al—s'
for 82 As,

G(s) =1
and

G'(s) = 0

so that, for 0 < 8 € As,
1 s
B(s) = - A(s — o)do

and, for 8 2 As,

1 As
B(s) = E(J; Als — (?)do

(A1)

(A2)
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or, if § is substituted for s — o and £ is substituted
for —(o —As), for 0 <8 < As,

B(s) = ;L—E,LESA(QMQ (A3)

and, for s, 2 As,

; [os
B, = A—Q\L A(spg + t)at (Ak)

If equations (A3) and (A4) cannot be evaluated in closed form,
nunmerical msthods can be used. Since the accuracy of the further calcu—
lations (equation (7a)) depends on the accuracy with which the function B
has been calculated, increments As/2 should be used in performing the
integration indicated by equations (A3) and (A4). However, the values
of B used need only be calculated at integral mul. 1le- As, If
Simpson's integration rule is used to evaluate equation (A4), the
following values are obbtained for B:

-

As /2

> (a5)
By zA—Z-éQ—- S(hy + bagso + )
. . . . -
or
B, 1410000 [A,
Bol ., 2[00 4100 |4 (A6)

B[ “6/00001 41 (8
N s« o o o o & » A3'/2

If for some reascn the values of the function B are needed at the
midpoints of the intervals, they can be calculated in a similar manner.

The value at As/2 poses a special problem in that the Simpson factors
are not directly applicable. However, the integration of function A



28 NACA TN 1965

between O and As/é may be carried out approximately by replacing A
by a parabolic segment betwsen O and As but integrating the parabola
only between O and As/2. This procedure leads to the factors 5/12,
2/3, and —1/12 which are used instead of the Simpson factors 1/3, 4/3,
and 1/3. Thus,

s

?31/; 5/ 2 1/ 000 [ag ]
By 0 0 1 %10 JA3/n

Should a more accurate value of 31/2 be desired, it can be
obtalned fram

34

By /o 9—2-5& %—(Ao o b fh v h1jp)

&

The response to the forcing function as approximated by equation (8)
is composed of two parts. One part is due to a unit gradient B(s) which
has been described in the preceding paragraphs. The second part of the
response, that due to the unit parabolic function C(s), may similarly
be calculated from the indicial response. ZFor the parabolic function,
for 0< 8 < As,

a(s) = (i 2
and

Gt(s) = (—2:-)—2—
for s 2 As
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and
G (g) =0
so that, for 0 < 8 < As, ’
c(s) = 2 5 fsA(a — g)o do (A9)
(As)< Uo
for s > As,
As
¢(s) = —2 f A(s ~ o)o do (a10)
(as)2 do

or, if { is substituted for s — ¢ and £ is substituted for —(o - 4as),
for 0% 8 < As,

ole) = 2 | a)2 - L)t (Alll)
As o As As
for s 2 As,
JAY: | ¢
Cn = ij; Alep + g)(l - ZE)dE (A12)

If equations (All) and (A12) cannot be evaluated in closed form,
numerical methods may be employed. The factor 1 — é takes the

values 1, 1/2, and O when the term s, — ¢ is 8p-1, 8p_L, and g,
2

respectively, as does the factor i - & for 8 = As. However,

for g = é'gi the factor - A—% ‘assumes the values 1/2, 0, and —1/2

5
As
when o 1s As/2, 0, and -As/2; the point at o= %2 1is fiotitious

since it lies beyond the limits of the integration and is used only to
furnish a better description of the curve in the region of interest.
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These values may be combined with the integrating factors to yield
\

~ 2 08(5 1 2 I
C1/2 % x5 2<1eéﬂofs(o)Al/2 12( 2)*’*1)

Cy i %(]_Ao + A—Al/e + (o)Al> i)
~ 2 1 1
Co AQ—E%E %é_Al + ‘%A3/2 + (O)A2>
or, in metrix form,

C1 /o 5/801/800 . . .| |4

C1 1 20 00...] |A/p

Co 310 01 20. . .1 |A3p

Cs /o 000 12... [A

Again, as in equation (A6), the rows in equation (A14) for the values
of C at the midpoints of the intervals may be disregarded if these
values are not of interest.

A slightly more accurate value of Cj /2 than that given in
equations (A13) and (Alk) is given by

Cr/o= i % %@;ﬁo + %Al/h + (O)Al/2>

I—’ll_.

5 (B0 + 28y ) (A15)
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TABLE I.— COMPARTSON OF THE NUMERICAL AND EXACT

CALCULATTONS OF THE RESPONSES TO THE UNIT

GRADIENT AND UNIT PARABOLIC FUNCTIONS

Response to unlt Response to unit
gradient function, | parabolic function,
8 B(s) c(s)
Exact Numerical Exact Numerical
010 0 0 0
1 S5h62 5468 5317 5317
2 .6290 .6290 6166 .6166
3 L6962 .6963 .6861 .6861
L .T512 .T513 .Th30 .T430
5 .T7965 . T96k4 . 7896 .7896
6 .8332 .8333 8277 L8277
7 .8635 .8636 .8589 .8590
8 .8882 .8882 .8845 .8845
9 .9085 .9079 .9054 .9048
10 .9250 .9258 .9226 .9233
11 .9388 .9396 .9366 .9367
12 9497 L9497 .o4k81 9481
13 .9589° .9589 <9575 9575
1k . 9664 . 9664 .9652 .9653
15 L9724 972k .9715 9715
16 OTTH LITTH L9767 L9767
17 .9816 .9815 .9809 .9809
18 .9848 .9849 .98 .984k4
19 .9876 .9876 .9872 .9872
20 .9899 .9899 .9895 .9895

ﬁ\\\\/m
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TABLE IT.— COMPARISON OF EXACT AND APPROXIMATE

VALUES COF THE RESPONSE TO THE FUNCTION

G(s) = sin Zg

3
Method Txack Approximate integration, Straight line, Parabolic segment,
equations (4) and (6) equation (7a) equations (9c) and (10a)

0 o} 0 0 0

2 1522 .1498 1522 21522
b .3294 .3287 .3292 «3293
6 5079 .5072 .5073 <5079
8 66T .6661 L6671 L6678
10 L7927 .T91k L7912 . 7927
12 .8708 .8689 .8689 8707
1k . 8ok .8926 .8921 .80k
16 .8600 8577 .8581 .8600
18 .T7693 .T679 LT6TL . 7693
20 6276 .6259 .6255 6276
22 RN} k3o o3 RIS}
o4 .2310 .2303 «2296 .2310
26 .0026 .0025 L0017 .0026
28 —. 2057 —.2052 —.2260 —. 2257
30 —.1385 —. 4378 -.4386 -.14385
32 -,6212 —.6196 —. 6207 - 6212
3k -, 7615 —. 7602 —. 7602 ~. 7615
36 -.8499 —. 8476 —.8482 —.8499
38 —.8803 -.8787 -.8782 ~.8804
ko —.8506 —. 848k -.8488 —.8506
o -. 7629 ~. 7616 —. 7639 —. 7629
4y —.6233 -.6206 - 6214 —.6233
46 ~.4h11 —. ol ~.4395 — 411
48 —.2289 -, 2084 —-.2278 —.2290

GO6T NI VOVN
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TABLE TIT.— COMPARISOR OF THE RESULTS OF THE NUMERICAL CALCULATIONS

OF THE FORCING FUNCTIONS WITH THE EXACT VAIUES

i sin Zg ;L(l - cos —“—s)
Forcing ol 2 2k
ction
) Approximation Approximation
s Exact Exact
value Straight— | Parabolic— value | Straight— | Parabolic—
line arc line arc

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 21305 | -m----- .1306 LO0U3 | - .00k3

2 .2588 2588 .2586 L0170 .0161 .0170

3 3827 | ------- .3823 L0381 | --em- .0373
4 .5000 .5005 .9g7 .0670 . 0660 L0670
5 6088 | --mmme- .6085 21032 | ------ .1033
6 .T071 T081 .T068 L1k6h L1453 .1466

7 934 | emmeee- .7928 21956 | -=---- <1957

8 .8660 .8676 .8659 .2500 .2ho1 .2502

9 29239 | ------- .9237 23087 | ------ .3086
10 .9659 .9681 L9657 3706 3698 .3706
11 991 |~ .9913 R e L4346
12 1.0000 1.0024 .9997 .5000 4996 .5000
13 2991k | emeooee <991k 5653 | ~m---- .5649
1k .9659 9687 .9660 .6292 6292 L6294
15 9239 | - .9234 B9k | meee- 6914
16 .8660 .8685 .8659 . 7500 .T500 . 7498
17 T93M | e L7935 B0 | —emeee .8oko
18 .TOTL 7095 L7071 .8536 85k1 8534
19 (ols < T S —— .6089 8968 | ~—---- .8967
20 5000 .5021 .5000 .9330 .9337 .9328
21 L3827 | memeemee .3829 L9620 | ---m- .9618
22 .2588 260k .2588 .9830 L9841 .9830
23 0 I .1308 .9958 | ------ .9955
24 .0000 0010 .0000 1.0000 1.0012 .9998
25 —.1305 | -----me —.1303 29958 | ------ .9957
26 —.2588 —.2584 —.2587 .9930 .984L .9931
27 —3827 | --mem-- —.3822 L9618 | ---ee- .9606
28 —.5000 ~.5003 ~.4998 .9330 9341 .9321
29 —.6088 | —-mee-- -.6083 .8968 | ~--e-- .8965
30 —. 7071 —. 7081 —. 7071 .8536 8548 .8533
31 - 7934 | —emmeee —.7931 8ol | —-ee-- .8042
32 -.8660 -.8676 -.8659 . 7500 . 7509 .T500
33 -9239 | cmmmeee —.9237 6914 | - L6913
34 —.9659 ~.9680 —. 9657 6204 .6301 .6293
35 —.991% | emmeee -.9911 5653 § —m--e- 5661
36 —1.0000 ~1.0024 —.9998 .5000 .500k 996
37 —-991h | —------ —.9912 A4348 | - L4338
38 —.9659 -.9685 —.9658 .3706 3708 .3707
39 —-.9239 |  ---e--- -.9234 L3087 | -==--- .3086
40 —.8660 —.8685 -.8659 .2500 2h97 .2499
by —.793% | —mmeee- -.7933 L1956 | ------ .1959
ko —. 7071 —.7093 -, 7069 L1466k Lh57 L1463
43 —.6088 | ~-eee-- -.6087 ,1032 | ------ .1033
Ly —.5000 —.5019 -.4998 . 0670 0661 L0670
45 —3827 | - —.3829 .0381 [ ------ .0382
L6 —.2588 —.2601 —.2585 L0170 0157 .0169
L7 ~.1305 | ~------ —.1308 L0043 | ------ ,00h5
48 .0000 —.0008 .0003 .0000 —-.0012 0000
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Abstract

Two matrix methods for calculating forcing
functions from known responses are presented, one
consisting of a numerical evaluation of Duhamel's
integral and one consisting of straight—line or
parabolic—arc approximations to the forcing function.
The methods are sultable for application to many
dynamic and some static problems.

Abstract

Two matrix methods for calculating forcing
functions from known responses are presented, one
consisting of a numerical evaluation of Duhamel's
integral and one consisting of straight—line or
parabolic—arc approximations to the forcing function.
The methods are sultable for application to many
dynamic and some static problems.
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