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l?UXCTIONS FROM KNOWN RESPONSES 

By Bemasd Mazelsky and Franklin W. Diederich 

Two matrix methods for calculating responses of linear systems for 
given forcing funstions and indicia1 responses are analyzed in order to 
find a method suitable for solving the inverse problem of calculating 
forcing fbnctions from known responses. The first method consists of 
a numerical evaluation of Duha;melts integral, the second of an approxi- 
mation of the forcing function by means of straight-line or parabolic- 
arc segments. The second method is more generally adaptable to the 
solution of the inverse problem than the first; when the first method 
c m  be used, however, it is usually less time conarm- 

The results of both methods are compared with exact solutions for 
both the direct m d  the inverse problems. Both methods are found to be 
convenient to use and sufficiently accurate for many practical purposes. 
They my find application in work on gust loads, maneuvering loads, 
impact loads, in electric problems, as well as many other dynamic m d  
some static problem. 

INTRODUCTION 

It is often of interest to calculate the response of a static or 
dynamic system to an arbitrary forcing function, such as the response 
of an air-plane to an arbitrary gust or stick-force variation. Similarly, 
it is often of interest to calculate the forcing function that gives rise 
to a known response. 

If the system is linear so that solutions may be superposed, the 
direct problem of calculating the response to a;n asbitrary forcing 
function may be solved by superposition with the use of an indicia1 
response (the response to a unit j u q  function, see fig. 1). The integral 
form of this superposition is known as DuhamelDs integral. When the 
integral c m o t  be evaluated in closed form either numerical or graphical 
methods (reference 1) maJr be used. 
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For the purpose of solving the inverse problem of calculating 
forcing functions from known responses, Duhaslslb integral may be 
considered to be an integro-differential equation. Because solutions 
to this equation cannot always be obtained in closed form and gaphical 
methods cannot conveniently be adapted to this problem, numerical - methods 
must be resorted to. 

In this paper two numerical methods are presented for solving the 
inverse problem. One method consists of a numerical evaluation of Duhae18s 
integral in a manner similar to that of Simpsonas rule. The other method 
consists of an approximation of the forcing function by means of straight- 
line or parabolic-mc sepnts. Both methods are expressed in matrix form 
and are based on matrices that are obtained by inverting matrices which 
constitute the solution to the direct problem. Consequently, the solution 
of the direct problem by the two matrix mthods is discussed first and the 
adaptation of these methods to the solution of the inverse problem, later. 
The mechanics of computing ~olutions to specific problem are discussed in 
some detail in the corresponding sections of this paper concerned with the 
analysis of the direct and inverse problems. Methods of evaluating the 
responses to unit gradient and unit parabolic forcing functions (see fig. 1) 
required in the second method of this paper are described in the appendix. 

The adaptation of these and similar numerical methods to the solution 
of the other inverse problem, that of calculating indicial responses from 
known forcing functions and responses, is discussed briefly. 

independent variable, usually time 

indicial response 

arbitrary forcing f'unction 

response to arbitrary forcing function 

response to unit gradient f'unction 

response to unit parabolic function 

integrand of DuhamslPs integral 

variable of integration corresponding to s 

c 9  
independent variables equivalent to s 
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Dl differentiating matrix 

CQI matrix which perfom the function of Duhatnelas integral 

MYN constants of linear and parabolic term in the parabol_ic+c 
approximation 

nth point on cwy curve or number of last point of interest 

coefficient in Q or Ql matrix or coefficient of original 
matrix 

coefficient in inverse of Q or Q1 matrix or coefficient 
in auxiliary matrix 

c,d,e,f coefficients in matrix 

submatrix of &2 matrix 

h - submatrix of inverse of Q2 matrix 

Matrix notation: 

C 1 square matrix 

column matrix 

The subscripts on the A, B, C, G, R functions or their 
derivatives denote the point at which the function (or derivative) 
is taken; thus, for instance, Gt = G' 

3 

A prime mask -fndicates differentiation with respect to s or a. 
An underscore indicates a submatrix. 

A4TAI;YSIS OF THE DlRECT PR0BI;EM 

Numerical Evaluation of Duhame18s Integral 

The response R(S) of a linear static or dynamic systsm to an 
arbitrary forcing function ~ ( a )  can be obtained from the indicia 
response of the system A ( B )  by superposition. If the forcing 
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function i s  approximated by a staircase function ( f ig .  2),  the response 
a t  different values of the independent vmiable B w i l l  be: 

A s  the interval As approaches zero these discrete values of R 
approach a function ~ ( s )  given by Duhame18s integral: 

where a is  the variable of integration corresponding t o  s. 

For cases i n  which Go i s  not zero the integral i n  equation (2) 

can be evaluated a s  indicated i n  the following analysis; t o  t h i s  integral 
the function A ( s ) G O  may then be added. When Go is  zero, equation (2) 
reduces t o  the ~limpler form: 

This expression is evaluated numerically i n  two steps: an expression 
fo r  the derivative of the forcing function ~ ( o )  i s  f i r s t  determined 
and then the integration of the function ~ ( s  - u)Gq (a )  is performed 
by Simpsongs mile. 

An approximate value of the derivative of G a t  point & may be 
obtained from the relation 
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which in effect implies that the actual curve for G is replaced by a 
parabolic seigt3n-L between the points - and If, in addition, 

2 2 
the slope at s = 0 is estimated as 

a differentiating ma.trix for calculating GP(s) can be set up from 
equations (3) and (3a): 

The integration of the function ~ ( s  - U ) G ~ ( U )  f(o) indicated in 
equation (2a) may be performed by Simpson's rule. For even values of n, 

For odd intervals the integration over the last segment %-1 to sn 

can be perfomd by passing a parabola through the three points sn-29 
E$+X, and s, and integrating the parabola between - a.nd %e 

This procedure yields a set of coefficients (-1112, 2/3, and 5/12) which 
is used in the same manner as the Simpson integrating factors (1/3, 413, 
and 1/31 which would be obtained upon integrating from %+ to %. 
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Thus f o r  odd values of n, 

Since there axe only two values of the function f tha t  c m  be used t o  
calculate R1, the trapezoidal rmle is  used i n  the i n i t i a l  interval 
instead of Simpsongs rule,  so tha t  

Equations (51 ,  (?a), and (5%) can be combined by writing thern i n  
matrfx form: 

Then, substituting the expression fo r  {G$ fron equation (4a) into 
equation (6a) givea 

where [Q] is a c~mbined matrix that  perf o~~ the operations indicated by 
Dubamel s in t  e g r d  n~merical ly . 
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The s teps required i n  computing responses by t h i s  method can be 
swrmarized as follows: 

1. The values of the forcing function a re  tabulated f o r  the  midpoint 
of each in terva l  and those of the  ind ic i a l  function a re  tabulated f o r  
each end point. - 

2. The values of the forcing function a r e  then multiplied by the  
D matrix (equations (4) and (ha) )  t o  obtain the  values of a matrix t h a t  
consists of As times the  values of  the derivative of the forcing 
function).  If n i s  the  l a s t  point of in te res t ,  the tabulation of the  
values of the  forcing function should be extended t o  the  value at  the 
midpoint of the  next in te rva l  G, 1. the values of G1 can then be 

T 
calculated up t o  G9,. 

3. The values of the  indic ia l  response a r e  multiplied by the  
f ac to r s  1/2, 1/3, 5/12, 5/4, a d  so for th  and tabulated i n  the  manner 
indicated by the A matrix of equation (6).  The A matrix has one 
more column than it has rows. If n is the last point of in te res t ,  
it w i l l  have n + 1 columns, which correspond t o  the  n + 1 values 
of Ga ( s t a r t ing  with GtO).  

4. The A matrix is postmultiplied by the  c o l m  As (G') obtained 
previously. The P:alues calculated i n  t h i s  manner a r e  the  values of the  
response at  the  end points of the  intervals,  provided Gg i a  zero. 
Only n values of R a re  calculated; RO is  zero. 

5 .  If Go is not zero, the  response is obtained by adding the  
t e r n  G&, G&2, GOA3' . . . t o  the  w l u e s  of R1, R2, R3, . . . 
calculated i n  the  preceding step. The i n i t i a l  value of the  response 
i s  then GOAOe 

Approximation of the  Forcing 'Function 

I n  the preceding section the  response t o  an arb i t ra ry  forcing 
function w a s  evaluated numerically by approximating the  integrmd 
~ ( s  - a ) ~ ~  (u )  of Duhamelqs in tegra l  by parabolic segments. Another 
method of calculating such a response consists of approximating the  
forcing function e i the r  by straight-line segments or  by parabolic-arc 
segments. The response is then calculated as the  l inea r  superposition 
of responses t o  t h e  uni t  gradient and uni t  parabolic forcing functions 
shown i n  f igure 1. 

Straight-line approximation. - I f  .the a rb i t ra ry  forcing function G( s ) 
is  app~oxima,te,d by straight-line segments as s h m  i n  f igure 3, the  values 
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of the response to that forcing function at different values of s c m  
be determined from the response ~ ( 8 )  to a unit gradient function (see 
fig. 4) as follows: 

This relation c m  be expressed in matrix form as 

A method for calculating the response to the unit gradient function 
~ ( s )  in terms of tlie indicia1 response ~ ( s )  is presented in the appendix, 
The steps required in computing responses by this method can then be 
summaxized as follows: 

1. Tne values of the function G are tabulated at the end points 
of the intervals from point 1 to point n, m d  those of the function A, 
at the midpoints as well as at the end points from point 0 to point n. 

2, The values of the function I3 at the end points of the intervals 
(from points 1 to n) are calculated from equation (~6) of the a2pendix. 
The mtrix of equation (~6) will have n rows and 2n + 1 columns, 
since 2n + 1 values of A axe used (at the n end points, at the n 
midpoints, and at 0) and n values of B are calculated. 
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3. The values of the f'unction B calculated in this m.mner are 
entered in a matrix as shown in equation (7a) and are postmultiplied 
by the Dl matrix to yield the Q1 matrix. Both the Dl an1 the Q1 
matrices Etra square and of order n. 

4. The reaponse to the forcing' function ~ ( s )  is found by post- 
multiplying the Q1 matrix by the G matrix as indicated in equation (7c), 
provided Go is zero. 

5 .  If Gg is not zero, it must be subtracted from every other value 
of G in tabulating the Gmatrix. The terms G A Y  G&, . . . must 
then be added to the values of the respone3 calculatsd In the precsding 
step for points 1, 2, . . . . The response at point 0 is then G&. 

Parabolic-asc approximation.- A clossr approximation to the forcing 
function than the straight-line approximation of the preceding section 
may be had by fitting parabolic-arc segments to the function. Y n  the 
first segtmnt 0 < s <_ As, for instancey the forcing function may be 
expressed approxi&teiy as 

provided Gg is zero. The constants M1 and N1 are selected in such 
a manner that the parabolic arc coincides with the true values of G at 

8 = 0 ,  s = p  Ae and s = &; theref ore, 

Ml = + 201 

~1 = 4~112 - GL I 
similarly, in the second internal 

where 
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and i n  further i n t e n d s ,  for  an-l 5 s 5 %, 

where 

These relations may be written i n  matrix form as 
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Once the M and N coefficients pertaining t o  the arbitrary 
forcing function ~ ( s )  have been evaluated, the response t o  that  forclng 
function at different values of s msy be determined from the 
response ~ ( s )  t o  a unit gradient function and the response ~ ( s )  t o  
a u n i t  parabolic function as follows: 
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or 

(lob) 

where the M,N column is calculated by means of equation (9c ) so that  

CR> PI El k} ( 1 0 ~  

which may a l so  be written as 

where the QQ matrix i n  effect performs the operations of DuhamelBs 
integral. 
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If values of R axe desired at only integral  multiples of As, 
a l termite  rows i n  equation (10a) may be omitted so tha t  the  equation 
is simplified t o  

Methods f o r  calculating t h e  responses ~ ( s )  and C(S) in terms of 
the  ind ic i a l  response ~ ( s )  a re  presented i n  the  appendix. The steps 
required i n  computing responses by the  method of parabolic-txrc approxi- 
mation t o  the  forcing function may then be summarized a s  follows: 

I. The values of the  forcing function a s  ~ m l l  a s  those of the 
ind ic i a l  response ~ ( s )  a r e  tabulated a t  the  end points and midpoints 
of the  intervals ;  there  w i l l  then be 2n values of G (from 5j2 
t o  %) as well as 2n + 1 values of A (from A. t o  &) . 

2. If v d x e s  of the  response a r e  desired only at the  end points of 
the  intervals ,  t he  Functions B and C can be calculated at those 
points from equations ( ~ 6 )  asd ( ~ 1 4 )  (disregarding a l te rna te  rows). If, 
on the  other hand, values of the  response a re  a l so  desired at the  mid- 
points, the  functions B and C must be calculated a t  those points as 
well; equations ( ~ 7 )  and ( ~ 1 4 )  may  be used f o r  t h i s  purpose. Equations ( ~ 8 )  
and (AJ.5) may be used t o  yield somewhat more accurate valuas of B 

1/2 
and C1/2 than furnished by equations ( ~ 7 )  and (~14), respectively. 

3 .  The values of B and C a re  tabulated i n  matrice~l a s  indicated 
i n  equation (10e) or equation (lea), depending on whether the  response i s  
t o  be calculated only at the end points or at both the end points m d  the  
midpoints . 

4. The'values of the coeff ic ients  M and N a re  calculated from 
the  values of G by mems of equation (9).  

5 .  The response t o  t h s  function G is  calc-dated from equations (10a) 
or (lee), provided Gg i s  zero. If Gg is  not zero, a t e r n  
( G ~ A ~ ,  G&, . . .) has t o  be added t o  each value of the response 
calculated from equation (10a) or  (10e) ; the  response a t  a = 0 is 
then G$o. 
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AIIALYSIS OF THE INVERSE PROBIEMS 

There a r e  two types of inverse problems. The one concerned with 
calculating the  forcing function from a known response and indic ia l  
response appears t o  be generally of hore in te res t .  It is  consequently 
t rea ted  i n  more d e t a i l  i n  t h i s  paper than the  second inverse problem, 
which consists of calculating ind ic i a l  responses from known forcing 
functions and responses. 

Calculation of the  Forcing Function 

For the  purpose of calculating responses t o  a rb i t ra ry  forcing 
functions the  numerical methods presented (equations (6c), (7c), 
and (10d) may be considered t o  consist  of summtion formulas involving 
the  indic ia l  response, the a rb i t ra ry  forcing function, a s  well as 
cer ta in  numerical factors .  For the  purpose of solving the inverse 
problem, however, the  same equations may be considered t o  be l inea r  
simultaneous equations with known responses on one side and unknown 
values of the  forcing function multiplied by cer ta in  coeff ic ients  on 
the  other side.  These coeff ic ients  a r e  the elements of the  Q matrices, 
The unknown values of the forcing Function may then be obtained by 
solving the  simultaneous equaticns i n  any convenient manner. There must, 
of course, be as many equations as -owns, or, i n  other words, the  Q 
matrices must be square i f  they a re  t o  be used f o r  the solution of the 
inverse problem. 

In  the following analysis Go is  assumed t o  be zero. When it is 
not zero it may be calculated from the  re la t ion  

and the  terms GOA1, G&, . . . must be subtracted from the  known values 
of the  response before they are  operated upon i n  the manner indicated i n  
the following sections i n  order t o  calculate the  forcing function. To 
the  values of the  forcing function calculated i n  t h i s  manner the value Go 
as calculated from equation (11) must then be added a t  each point. 

Numerical-integration method.- The numerical evaluation of Duhamelts 
in tegra l  leads t o  equation (6c). Ln the case of the  inverse problem, a 
unique solution f o r  the  values of G corresponding t o  a given s e t  of 
values of R can be obtained from t h i s  equation only if A0 is zero, 
since otherwise there a re  more unknown values of G than there a re  
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equations. Consequently, this method can be applied to the analysis of 
the inverse problem only if Ag is zero. In that special case the Q 
matrix is trim@=; the solution of equation (6c) can be performed by 
the following method: The Q matrix may be written in the form: 

where the coefficients a are obtained by postmultiplying the A 
matrix of equation (6) by the D matrix of equation (4).  he solution 
of equation (6c) is then 

If mimy response functions ase to be analyzed for the same indicia1 
response, it may be expedient to invert the Q matrix as follows: 
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where each column of k]-l is obtained successively by means of 
equation (13) from cul appropriate R column of the type 

and the values of G pertinent to the given problem. 

The steps required in calculating forcing functions by this method 
are : 

1. The n values of the response are tabulated at the end points 
of the intervals from points 1 to n. 

2. The A matrix is obtained from equation (6) as described in the 
section concerned with the direct problem; it is postmultiplied by the 
D matrix of equation (4) to yield the Q matrix. 

3. The elements of the Q matrix are considered to be the coeffi- 
cients of simultaneous equations for the unknown values of G from 
to Gn -- 1 in terms of the known values from R1 to . The solution 

2 
of these equations may be carried out as outlined in equation (13). 

4. If it is desired to invert the Q matrix, equation (14) can be 
-used. Tne values of the forcing function corresponding to any set of 
values of the response may then be obtained by premultiplying the values 
of the response by the inverse of the Q matrix. 

Straight-line approximation.- The straight-line approximation to 
the forcing function leads to equation (7c), which involves the 
triangular matrix 
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where 
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When there are n values of G (from G1 to k) and n values of R 
(fqom Rl to q), the Ql matrix is square and there are n equa- 

tions for the n unknown values of G. 

The aolution for these values is carried out very easily as a 
result of the triangular form of the Q1 matrix. In fact 

If the forcing functions for many known responses are to be obtained for 
the same system (with the same indicial response), it may be more expe- 
dient to calculate the inverse of the Q1 matrix than to solve for each 
forcing function separately. The inverse of the Q1 matrix may be 
written as 
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where 

The steps required in calculating forcing functions by this method 
are : 

1. The values of the response are tabulated at the end points of 
the intervals from points 1 to n. 

2. The Q1 matrix is calculated as indicated for the direct 
problem. 

3. A set of simultaneous equations having the elements of the Ql 
matrix as coefficients an& the values of R as hnowns is solved for 
the unknown values of the forcing function % to % as indicated 
in equation (17). 

4. If it is desired to invert the Q1 matrix, equations (18) 
and (19) c m  be used; the forcing functions may then be obtained by 
premultiplying the given sets of values of R by the inverse of the 
Q1 mtrix. 

Parabolic-arc approximation.- The Q2 matrix obtained for the 
parabolic-asc method (equation (10d)) is not quite triangular but msy 
be reduced to triangulas form by partitioning: 
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a;nd where the  c, d, e, and f v d ~ e ~  axe obtained by postmultiplying 
the  C matrix of equation (lob) by the  D2 matrix of equation (gd) t o  
y ie ld  the  Q2 matrix, If the  columnmatrix of response values i s  a lso  
parti t ioned in to  pa i r s  such t ha t  
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where 

then a solution of the  sMta rneous  equations having the  elements of 
the  Q2 m t r i x  as coeff icients  may be effected in the  manner indicated 
f o r  the  straight-line method, except t h a t  two4y-two martrices take the  
place of ordinary algebraic quantit ies.  Tile g matrices of 
equations (20a) take the place of the  coefficignts a (equations (15) 
and (16)),  the  $j matrices of equations (21a) take the  place of the  
values of R i n  equation (17) , and the  forcing function is computed i n  
t h e  form of _G matrices defined by 

7 
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which take the place of the values of G in equation (17). If the 
Q2 matrix is to be inverted, the resulting matrix has the form 

where the h matrices take the place of values of b in equation (18) 
and are calculated as indicated in equation (19). The quantity l/al 

" 
is replaced by the inverse of the gl matrix. The operations - 
called for in eqKtions (17) and (19) axe now, of course, matrix multi- 
plications, so that the order of the multiplicands must be preserved. 
The fact that the inversion of the Q matrix entails, with the 
exception of the inversion of the two--by-two matrix, only matrix 
multiplications and additions of low-order matrices facilitates the 
problem greatly. 

The steps required to calculated forcing functions by this method 
are : 

1. The values of the response are tabulated at the end points and 
midpoints of the intervals from R 1/2 %* 

2. The values of B and C are calculated at both the end points 
m d  the midpoints of the intervals and entered in a matrix as shown in 
equation (10a). This matrix is poetmultiplied by the D2 matrix shown 
in equation (gc) to yield the Q2 matrix. , 

3. A set of sirrmltmeous equations having the elements of the 
matrix as coefficients and the values of R as knowns 1% solved 

for the unknown values of the forcing function to % in the 

manner suggested in equation (171, where the submtrices indicated in 
equations (2Oa), (21a), and (22) are used instead of the tern a, R, 
and G of equation (17). 

4. If' it is preferred to solve the problem by inverting the Q2 
matrix, the inversion may be performed as indicated in equations (18) 
and (l9), where the submatrices indicated in equation (20a) are used 
instead of the values of a of equation (19) , however; the forcing 
functions may then be obtained by premultiplying the given sets of 
values of R by the inverse of the Q2 matrix. 
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Calculation of the Indic ia l  Response 

The numerical-integration method outlined f o r  the  d i rec t  problem 
may i n  cer ta in  cases be modified t o  obtain a solution t o  the  second 
inverse problem of calculating an indfcial  response from a known forcing 
function and response. Equation (6) 'may be rewritten i n  the  form: 

which permits a solution f o r  the  values of A fromknown values of R 
and Gt. m e  values of Gs may be obtained from the  values of G a t  
the  midpoint of the  chosen i n t e m a l s  by means of equation (4) .  A s  i n  
equation ( 6 ) ,  it is assumed t h a t  Gg is  zero. Furthermore unless 
e i the r  A0 o r  Gg i s  zero as well, equation (24) w i l l  have more 
unknown values of A t h m  equatims, so tha t  it cannot be solved. 

If these conditions are not met, it may be possible t o  use another 
approach which consists of using the  a l te rna te  form of Duhamelqa integral :  

The following equations may be obtained i n  a manner analogous t o  t h a t  
used i n  obtaining equation (6) : 
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This equation serves to solve for the values of A V n  tern of the 
known values of the response; the values of the forcing function appear 
as coefficients in the sixuulta;neous equations, as do the integrating 
factors. Equation (25) is valid wh'en Ag is zero; it does not imp ly  
any restriction on Gg. However, unless either Gg or A0 is zero 
there will be more unknown values OF A than equations in equation (26), 
so that the equation c m o t  be solved. A set of values of A may be 
obtained from the calculated values of A 9 y  meas of an integrating 
matrix: 

The integrating process indicated in equation (27) will tend to 
average out any discrepancies in the values of At calculated from 
equation (26). 

Since in the particular cases where equations (24) or (26) may be 
used the matrices of the values of G or Gg will be triangular, the 
methods indicated in the preceding sections in analyzing the numerical 
integration method will also be applicable to the solution of these 
equations or the inversion of these matrices. 

RF:SULTS APJD DISCUSSION 

Comparison of Numerical and Exact Results 

The direct problem,- The accuracy of the numerical results has been 
investigated for several casee by comparing their results with known 
exact solutions for simple indicial response srnd forcing functione. 
The indicial response selected is: 
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Two forcing functions have been considered 

%(a) = sin s 
24 

and 

%(a) = L(1 - cos & s) 
2 

The responses to the two forcing functions have been computed by 
Duhamel's integral exactly and by the numerical methods of this paper. 
The interval was chosen as AH = 2, which is one twenty-fourth of the 
period of the forcing f'unction. The response B( s )  to the unit gradient 
m d  the response ~ ( s )  to the unit parabolic function required in the 
second method (the straight-line or parabolic-arc approximations ) have 
been computed by the numerical methods indicated by equations (~7) 
and (~14) ; they are presented in table I with the exact values. , A 
comparison shows that the numerical methods for the evaluation of the 
unit responses ~ ( s )  and ~ ( s )  should yield results to an accuracy of 
better than 0.1 percent for reasonably small intervals. 

The res-ponse to the forcing function of equation (29) has been 
calculated by all three numerical methods and is presented in table 11. 

A comparison of the results indicates that the numerical-integmtion 
method and the straight-line approximation have the same accuracy, 
approximately 0.2 percent. The parabolic-asc approximation gives much 
better accuracy, approximately 0.01 percent in this example. 

The inverse problem.- The forcing functions which give rise to the 
responses may be calculated from these exact responses and the indicia1 
response given by equation (29 ) .  Since Ag is not zero, the approximate- 
integration method cannot be used. Therefore, only the other two methods 
have been used to calculate the forcing functions. 

An increment As = P was used and the required unit gradient and 
unit parabolic responses were taken from table I. The forcing functions 
calculated by these methods should check those given exactly by 
equations (30) and (31). The comparison is presented in table III. 
The average accuracy of the straight-line approximation applied to the 
inverse problem is approximately 0.3 percent; that of the parabolic-rz~c 
approximation, approximately 0.04 percent. No points have been calcu- 
lated at the midpoints of the intervals by means of the straight-line 
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approximation since they would simply be the average of the ordinates 
at the end points of the given intervals in view of the approximation 
inherent in that method. 

Factors Affecting the Accuracy of the Methods 

The comparisons of the numerical methods with known solutions 
show that, with intervals of the order of 1/20 to 1/30 of the period 
of the first natural frequency of the system or that of the forcing 
function, the numerical-integration method and the straight-line 
approximation yield results that have an accuracy of 1 percent or 
better; whereas the results of the parabolic-arc approximation are 
accurate to 0.1 percent or better. Similar calculations have indicated 
that an accuracy comparable to these values may be expected even when 
higher harmonics m e  present, provided those higher than the third are 
unimportant compared with the first few. 

In general, the accuracy of the numerical methods depends to some 
extent on the shape of the curve that is approxbated; the closer the 
approximate curve (which consists of straight-line or parabolic-arc 
semnts) fits the actual curve, the higher the accuracy. Consequently, 
the interval should be chosen s m a l l  enough that the degree of curvature 
of the approximated curve is anall within a segmnt; any reflexes in 
the approximated curve should be near end points of segments, if 
possible. 

In the case of the inverse problem, great care must be exercised 
in the case where both the indicial response and its first derivative 
vanish initially ( A ~  = At0 = 0). The determinant of the coefficients 
of the simiitaneous equations to be solved for the values of the 
forcing function tends to be relatively small for this case and the 
equations relatively ill-behaved. It is then difficult to obtain 
reliable results by numerical means unless very small increments are 
taken near s = 0. The accuracy of the values of the forcing function 
may, however, be improved by replacing the actual indicial response by 
a straight-line segment extending over the first two or three intervals 
for the purpose of computation; in this manner a nonmishing value is 
assigned to AtO and the simultaneous equations for the values of G 
can be solved more accurately, 

Factors Affecting Choice of Methods 

The accuracy of the numerical-integration method and straight-line 
approximation for both problems tends to be approximately the same. The 
numerical-integration method is less time consuming than the other method 
if only one response or one forcing function is to be analyzed, since the 
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straight-l ine approximation requires the  computation of the function 3 .  
If many cases a re  t o  be analyzed f o r  the  same ind ic i a l  response, the  
straight-line a2proximi;fon w i l l  tend t o  be the  more expedient, since 
it involves matrices which m a  somwhat more convenient t o  use. The 
numerical-approxjlnation method is, of course, applicable t o  the inveraa 
problea only when Ag is  zeso. 

The parabolic-arc approximahion i s  more accurate t ' nm the  other 
mathods but is  a lso  more time consuming. If by decreasing the  s i ze  
of the  segm~nts used i n  the other methods t h s i r  accuracy is  increased 
u n t i l  it is comparable t o  tha t  of the parabo1ic-a;t.c a;pproximtion, t'ne 
exgenditwe of time required becomes comparable as well. The shape of 
the fiulction t o  be a2proxba-ted w i l l  then determine whether any small 
advantage would be with the  parabolic-arc a ~ y r o x i m t i o n  a r  the other 
methods. 

Two matrix methods f o r  solving the problern of ca l c~ l l a t ing  forcing 
functions from known responses have been derived by means of a numerical 
analysis of the problea of calculating responses frc-,, -c ing 
functions. The f i r s t  method, which consists of an approximate evalu- 
a t ion of Dui-La;me18s integral ,  leads t o  a matrix tha t  can only be inverted 
w5en the  i n i t i a l  value of the indic ia l  response is zero. m e  matrices 
obtained i n  t'ne other inethod, which consists of approximating the  
forcing function by straight-line or parabolic-rtrc segments, ca.11 always 
be inverted readily.  Som r e s u l t s  obtained by the numerical mathods f o r  
simple e q l i c i t  frnlcti-ons have been compared with exact r e su l t s .  The 
accuracy of the  numerical methods was found t o  be adequate f o r  most 
prac t ica l  purposes. A brief discussion has been given of the  possi- 
b i l i t y  of calculating the inrlicial  response by the approximate- 
integration method i f  the forcing function a d  the response t o  it 
are  known. 

Lmgley Aeronautical Laboratory 
National Advisory Colmnittee f o r  Aeronautics 

Langley A i r  Force Base, Va., July 14, 1949 
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APPENDIX 

EVALUATIOR OF RESPONSES TO TJNIT GRADIENT 

AND TJNIT PARABOLIC' F O R C ~ G  FUEJCTIO~S 

The response to the unit gradient function can be determined from 
the indicial response by means of Duhamlts integral. For the unit 
gradient, for 0 5 s 5 As, 

for s 2 As, 

and 

~'(8) = 0 

so that, for 0 5 s AS, 

and, for s ZAs, 
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or, if i s  substi tuted f o r  s - a and is substi tuted 
f o r  -(a - h ) ,  f o r  0 I: - s <AS, - 

and, f o r  sn ,&, 

If epuationa ( ~ 3 )  and (A&) cannot be evaluated i n  closed form, 
numericd raathods can be used. Since the accuracy of the further calcu- 
l a t ions  (equation (7a))  depends on t h e  accuracy with which the function B 
has been calc-dated, increments As/2 should be used i n  p e r f o r ~ i n g  the 
integration indicated by equations ( ~ 3 )  and ( ~ 4 ) .  However, the values 
of B used need only be calculated at  in tegra l  mull ler As. If 
Simpsonqs integration n r l a  is  used t o  evaluate equation (A4), the 
f ollowins val-ues w e  obtained f o r  B: 

If f o r  some reason the  values of the  function S a re  needed at  the  
midpoints of the  intervals ,  they can be calculated i n  a similar manner. 
m e  value a t   AS/^ poses a special  problem i n  tha t  the  Simpson fac to r s  
a re  not d i rec t ly  applicable. However, the integration of function A 
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between 0 and As12 may be carried out approximately by replacing A 
by a parabolic segment between 0 and LIB but integrating the  parabola 
only between 0 and As/2. This procedure leads t o  the  fac tors  5/12, 
213, and -1112 which a re  used instead of the  S-lmpson factor8 1/3, 413, 
and 113. Thus, 

Should a more accurate vrtlue of B 1/2 be desired, it can be 

obtained from 

The response t o  the  forcing function as approximated by equation (8) 
is composed of two pasts,  One par t  is due t o  a uni t  gradient ~ ( s )  whfch 
has been described in the  preceding paragraphs. The second part  of the  
response, t h a t  due t o  the  uni t  parabolic function ~ ( s ) ,  may similarly 
be calculated from the  indicia3 response. For the  parabolic function, 
f o r  0 5 s 4 AB, 

and 

f o r  s ZAe, 
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and 

G ~ S )  = o 

So tha t ,  f o r  0 2 - a _<as, - 

f o r  s ,As, 

or, if f is substituted f o r  s - o and B i e  substi tuted f o r  -(o - As), 
f o r  0 5  s 5 h ,  

f o r  s ? A s ,  

IT equations (All)  and (UP) cannot be evaluated i n  closed form, 

numerical methods may be employed. The f ac to r  1 - - ' takes the  
As 

values 1, 112, and 0 when the  term s, - o is %-D %-5 and %, 

respectively, as does the  f ac to r  " - L f o r  s = ~s .   ow ever, 
As As 

f o r  s = t he  fac tor  - - 
2 

' assumes the values 1/2, 0, and -112 
AB As 

when o is &/2, 0, and 4 / 2 ;  t he  point at  o = -- As is f i c t i t i o u s  
2 

since it l i e s  beyond the  l i m i t s  of the integration and is used only t o  
furnish a be t t e r  description of the  c m e  i n  the  region of in te res t .  



30 NACA TN 1965 

These values may be combined with the integrating factors t o  yield 
\ 

C l  z 
( a 3  1 - 2 l6AlI2 + + (0)Agl2) 

C3/2 - 2 3 

c2 - z M  1 + Y3l2 + ( o ) ~ )  "as 2 3 

or, i n  matrix form, 

Again, as  i n  equation ( ~ 6 ) ,  the rows in equation ( ~ 1 4 )  for  the values 
of C a t  the midpoints of the intemals may be disregarded i f  these 
values are not of interest.  

A slightly more accurate value of C112 t h m  that given i n  

equations (~13) and (Al.4) is given by 
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1. Jones, Robert T.: Calculation of the MotIan of as Airplane under the 
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TABLE I.- COMPARISON OF TBE IKMFEUCAT; AND EXACT 

C ~ I O I P S  OF TBE RESPONSFS TO THE TRaT 

GRAD= AM> UNIT PARABOIZC FUNCTIONS 



TABILE 11.- CoMJ?ARLSON OF EXACT m APPROXIMATE 

VALUES OF TBE RESPOIBSE TO THE mCP10x 

~ ( s )  = ~ l i n  4 3  
24 

h c t  Approximate integration, 
equations (4) and (6) 

0 
.1498 
3287 
5072 

.6661 
7914 

,8689 
.8926 
.8577 
7679 
. 6259 . U32 
2303 

.0025 -. 2252 
-.4378 
-,6196 -. 7602 -. 8476 
- .8787 
-.a84 -. 7616 
-, 6226 
-.U04 -. 2284 

0 
2 
4 
6 
8 

10 
12  
14 
16 
18 
20 
22 
24 
26 
28 
30 

5 
36 
38 
40 
42 
44 
46 
48 

0 
.1522 
-3294 
5079 

.6677 
* 7927 
.8708 
.89U 
.8600 . 7693 
-6276 
.4441 
,2310 
.0026 --. 2257 

-.4385 -. 6212 -. 7615 
- 0  8499 -. 8803 -. 8506 -. 7629 
-.6233 
-.W -. 2289 

Straight l ine,  
equation (7a) 

0 
.1522 
3292 

9 5073 
-6671 
7912 

.8689 

.8921 

.8581 
7671 
6255 

. a 2 3  

.2296 

.0017 -. 2260 
-.4386 -. 6207 -. 7602 -. 8482 -. 8782 -. 8488 
-- 7639 -. 6214 
-04395 -. 2278 

Parabolic segment, 
equations (gc) and (10a) 

0 
.I522 
0 3293 - 5079 
.6678 
7927 

.8944 
* 8707 

.8600 \ 

.6276 
7693 

.4441 

.23LO 

.0@6 
-.2257 -. 4385 -. 6212 -. 7615 
-0  8499 -. 8804 
-.8506 -. 7629 
-.6233 -. 4411 
-.2290 
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III.- COMPARISOE OF THE FEEJETS OF T;IE IKTMEKCCAL CALCULATIONS 

OF TBE FORCING m c T I 0 m  WrPB TBE EXACT VALUES 

Exact 
value 

sin "- 
24 

Approximation 

Straight- Parabolic- 
line I 

Approximation 

value Straight- Parabolic- 
"& 
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fig1/e -2. - Arbifwry fun~fJbo, 12k1bI v s e ,  a& response 
b olnbf~ary fuocPbn. 
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Abstract Ab stract 

Two matrix methods for calculating forcing Two matrix methods for calculaking forcing 
functions from known responses are presented, one functions from known responses are presented, one 
consisting of a numerical evaluation of Duhamel's consisting of a numerical evaluation of Duhamel's 
integral and one consisting of straightrline or integral and one consisting of straight-line or 
parabolic-arc approximations to the forcing function. parabolic-arc approximtions to the forcing function. 
The methods are suitable for application to many The methogs are suitable for application to many 
dynamic and some static problems. dynamic and some static problems. 
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