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SUMMARY 

The damping-in--roll parameter Clp is calculated theoretically 
f or triangular wings on cylindrical boaies and for a class of wings 
with swept-tack plan forms. The analysis is based on the usual assump-
tionsof linearized compressible-flow theory together with the added 
restrictions that at the free-stream Mach number N0 the product Of 
lMO2 and. the streamwise velocity gradient is small. The accuracy of 
the results is tested by a comparison with the exact solution of the 
linearized equation for a triangular wing and for such plan forms is 

shown to increase as reduced aspect ratio (A! Il_Mo2 I times aspect 
ratio) decreases.

P.M(SJ)1SISi*ti)i 

Theoretical advancements in the study of load distributions over 
three-dimensional wings in compressible-flow fields have been achieved 
almost entirely under assumptions leading to the linearization of the 
basic differential epiations of flow. In this maimer the analysis is 
resolved in general into the problem of determining solutions of elliptic 
and hyperbolic partial differential equations in three dimensions, the 
character of the equations being fixed by the magnitude of the free-stream 
Mach number N0. It is possible, however, to study also a class of prob-
lems associated with the parabolic form of the potential equation; namely, 
cases for which the product of 1_Mo2 and the chordwise perturbation-
velocity gradient is small in comparison with the gradients in their 
respective directions of the perturbation velbclties perpendicular to the 
chord. Such a method was developed in reference 1 for small 'values of 
aspect ratio and was used in reference 2 for swept-back lifting surfaces 
at sonic speeds. In the present report the method will be referred to 
as a slender-wing theory wherein the term slender imfers that the ratio 
of the reduced1 'span to the over-all length is small. Hence the results 

iReduced span is defined as 13 times the span, where 13 is equal to 

l-M0 . In general, the term reduced implies that any parameter 
which it modifies is multiplied by the factor '13.
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presented will apply most closely when the wing is long in terms of its 
span, or when the free-stream Mach number is close to unity and the wing 
and body do not violate the assumptions made. 

Previous investigations (references 3, 14., 5, and 6) corresponding 
to this method of approach include, respectively, a complete analysis of 
all the stability derivatives of a lou-aspect-ratio triangular wing, a 
lifting triangular wing with an arbitrary body of revolution, a lifting 
triangular cruciform combination on an arbitrary body of revolution, and 
a lifting swept-back constant-chord wing. In order to assess the accu-
racy of the results presented in these reports, it is necessary to com-
pare their approximate solutions with the exact solutions of the linear-
ized equation. For the case of the rolling triangular wing, this can 
easily be done since the exact solution has been derived in reference 7. 
The results of such a comparison are presented in figure 1 which indi-
cates that in this case the value of I3Clp for the approximate theory 
can be useful up to reduced aspect ratios as high as three. 

The object of the present report is three-fold: Fizst, to find the 
effect on the damping-in-roll parameter C1D of adding a body of revolu-
tion to a triangular wing in order to extenà the knowledge of wing-body 
interference into the field of lateral stability; second, to find C 
for a particular swept-back wing plan form; and third, to show how the 
damping due to roll can be found for swept wings with arbitrary trailing 
edges or how trailing edges can be calculated from prescribed span load. 
distributions. The examples to be given provide sufficient details to 
indicate how other cases can be calculated numerically. 

A list of important symbols is given in Appendix A. 

F	 F 

BESTJME OF THE ?€PHOD 

tinder the assumption that (l-MO2 )	 is small as comared to 
and	 the equation for compressible fluid motion, either subsonic 

or supersonic, becomes

=0	 (la) 

where	 is the perturbation-velocity potential and X is the free-




stream flow direction. The resulting differential equation (la) shows 
that although	 can be a function of X its value is a consequence of

boundary conditions given along lateral strips. We will seek solutions 
to equation (la) for which first, the perturbation velocities vanish at 
infinity; second, there is no discontinuity in potential except across 
a lifting surface or its trailing vortex sheet; and third, there is no 
discontinuity in the vertical velocity anywhere in the field (i.e., no 
airfoil with thickness). It is possible, by applying the two-dimensional 
form of Green's theorem, to write the solution to equation (la) which
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satisfies all of the aforementioned conditions and. relates Vt 
(z in the Z = 0 plane) to ivt0 (the jump in sidewash, y i the Z = 0 

plane). Under the added restriction that no point exists in or on the 

flow field such that lim €	 0, where € is the radial distance from 

the point, this solution can be written2 

fB(x) 
vt dY1 

Vt =---	 0	 (2a) 
0	 2	 Y—Yi 

-B (x) 

The integral equation (2a) will be solved for the case of rolling 
wings. First, however, it is convenient to introduce nondimensional 
lengths so that the results can be generalized as far as possible. A 
satisfactory nondiinensional form is obtained by using the equations 

Y y=	 u =Cu 
C tan e

V =CvttanO 

x-•
C	 V =Cwttan9	 (3) 

z	
vr=Cvrtan9 

Ctan6	
I_I =pC2tan2O 

where e Is the seinivertex angle of the wing, p is the rate of roll In 
radians per second, C is the root chord, Ut, vt, wt, and Vrt are true of 

velocity components, and. u, v, w,and. r are the transformed components. 
In addition cp(x,y,z) replaces Z(X,y,Z). 

TRIANGULAR WING WTTH BODY 

Consider a wing with an 'unswept trailing edge mounted on .a body of 
revolution as shown In figure 2. Applying the transformations given by 
equations (3) to equation (Ia), we find that in every plane perpendicular 
to the x axis it is necessary to satisfy the equation 

= 0	 (m) 

2This equation is developed in more detail in reference 2.
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subject to the boundary conditions 

Vr O for r=a,O<*<2it 

= py for z = 0, a< II <b (14) 

w=v=O for r=a,0<1V<2't

where a(x) and b(x) are replaced by a and b for convenience in 
notation and where r, 4 are polar coordinates in the yz plane and i 

is related to the rate of roll by equation (3). These boundary condi-
tions are not of a type such that they can be substituted directly into 
equation (2a), since one condition specifies a radial component which 
is, moreover, out o± lhe z = 0 plane. However, equation (1) is simply 
Laplace's equation so that by introducing complex variables it is not 
difficult to transform the wing and body section (fig. 3(a)) to a strip 
along the y axis (fig. 3(b)). Such a mapping function is provided by 
the Joukowski transformation, 3 which, if the subscript 1 denotes 
conditions in the transformed plane, can-be written:

(5) 

where	 and i are given by the express ions 

=y+iz	
(6) 

1=y1+iz1 

By means of equation (5) the wing in the	 plane (the portion of

the axis for which a<y <b, fig. 3) transforms into the section of 

the Yi axts in the	 plane for which 2a = ai <yi <bi = b + 

Further, the body in the	 plane (the curv& satisfying the equation r=a) 
transforms into the part of the yi axis for which 0 ^ yi <a1 = 2a. 
In this manner the boundary on which the data are specified has been 
transformed so that it lies entirely along the Yi axis. It is next 
necessary to inspect what the boundary conditions are in the ]. plane. 

• From the basic theory underlying the use of complex variables, induced 
velocities in the physical and transformed planes are related by the 
expression

	

v - i = (vj '.- 1w1)—	 (7) 

3See, for example, "The Elements of Aerofoil and Alrscrew Theory," 
Cambridge University Press, 19143, by H. Glauert. 
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from which, since in polar coordinates 

2 
= ni_) cos2]+i (	 sin2 

[	 r 

it follows innnediately that 

v = vi [1 _()2cos 2 ifr]+ 

w1 () 
sin 2 i 

w=w1[1_()2co;2]v1 
()2 

sin2 4r 

= [v1 cos r + w1 sin 
r] 

[i - ()2] + 2 w () sin 

Through the use of equation (9), the boundary conditions given by 
equation (4) for the	 plane. can be transformed to the	 plane with

the result (athce r = 0 or 

= 0 for 0 <	 a1 

= ____ 2y12 12 
+ y for a1 < 

J Y'! < b1	 } (iO JYi 
I	

y12—a12 

=	 = 0 for r1 = , 0 < 4r < 2g 

The problem has now become one of solving Laplace's equation for the bound-
ary conditions given by equation (10). But this problem can be immediately 
solved, provided we can invert the integral equation (2a), which in the new 
notation, 4 becomes 

•	 w,(y,) = -	
b1 v,(y2)dy2	

(2b) 

4Note that the subscrIpt o (indicatiug conditions in the Z, = 0 plane) 
has been dropped when in the , plane. This avoids a cumbersome 
notation and. should cause no confusion, since in the , plane only 
conditions on the y, axis are to be considered.

(8)

(9)
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Under the condition
b 

w1(y1)dy1 
= 0	 (U) 

-b1	 A/b2v2 1 —ji 

reference 8 gives an inversion to equation (2b) which can be written 

b1	 w1(y2)dy2	 +	 c0	
(12) v1 (y1 ) =	 b1_y1 f	 (y1_y2)b12_y22	 b12-y12 

where c 0 is an arbitrary constant. 

An inspection of w1 as given by the boundary conditions in equation 
(10) shows that it is an odd function of y and hence will satisfy equa-
tion (ii). Placing w1 in equation (12) and integrating gives 

v1 (y1 ) = - i(2y12-a12) (i-' 2L b12_y12 ( + arc cos 	 = 
b) 2 Iai2_yi2	 - 

Zn	
+ ai/bi2_y12 I +	 c0	

(13) 

	

y1 /bi2-ai2 - a1 /b12_y12	 A/bL2_y12 

where a = -1 for 0 <fy1 kai, and a = +1 for a1 .cZIy'.J< b1. 

Nov to find	 i on the z 1 = 0 plane, the relation 

rYi 
cpi = J	 tvj(y2)dy2	 (114) 

-b1 

in which Lv1 (y2 ) as given by equation (13) ie used with the result that, 
for a1<y1<b1,

= - !. (i + arc cos	 Yi/i-Yi - 

J± (y12_.a12 ) arc cosh Y:L Afb12-12	
(15) 2it	 b1 /y12.-a12
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where the constant c 0 has been evaluated, by the conditions that 
must vanish when y = b1 . This can be written in terms of the original 
coordinates (fig. 2(b)) and boundary conditions (equation ( Ii. )), by 
retransforniing In accordance with equation (5). Thus, for á<Zy<b, 

o =-	 (1_.arccos 2ab '\ (y+ç)Jb2+-_y2_.. - b2 +a2 )	 'b2	 y2 

2\	 (y24-a2)(b2-a2) J:L (y -	 1 arc cosh	 (16) 
2i	 y)	 (y2-a2) (b2+a2) 

Equation (16) represents the solution, in terms of the velocity poten-
tial, for a rolling wing with an unswept trailing edge on a body of revolu-
tion; both a and b are functions of x. The loading coefficient 
can be determined 'by taking the partial derivative of equation (16) 
with respect to x in order to find u, and then using the relation' 

q	 V0	 CV0
	 (17) 

However, it is not necessary to find the loading over the wing if interest 
is limited to the determination of the total rolling moment L. If a is 
independent of x (i.e., the body is a circular cylinder), then r =

	 E and the equation

= p V0 r dY 

where dl is the increment in span loading, can be used .to express 


dl = Ydl = p V0 'Yr dY 

Thus 

or	

L =2p v0 
jS	

dY 

L = 2p V0 C2 tan2 e f ycp0 )	 dy	 (18) 

where (L % )TE Is the value of % at the trailing edge or where 
x = 1 in fIgure 2(b). Substituting equation (16) in equation (18), one 
can derive, after some rather Involved Integration, the result
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2 
,2 2\ 

_L_ = - C4 tan e fl 1	 / arc tan	 + aj 

S a 2 2) (_6a2s2+s4 ) arc tan- - — s —a a 

___	
2 2 1r2a4 + 1	 (s2_a ) 

j.	
(19) 

2	 2 

The dempIng-in-roll coefficient C 1 based on the wing area including 

the part of the' wing masked by the body can now be written, If both 

sides of the equation are multiplied by 	 =Jt1_Mo2, in the form 

= _•	

{ [(i+2) arc tank] + (12)(R4R2+1) arc tank -. 

1t2B 4 + B2(1.B2) }
	

(20) 

where B = = (i.e., the ratio of the body diameter to the wing span) 

and Ar is reduced aspect ratio which is also based on the total wing 

area Inc luding that part masked by the body. 

When B equals zero, equation (20) represents the damping in roll 
for a wing without body. This value, which will be designated (Clp)w 
is given by

Ar	
(21) 

and agrees with the value given in reference 3. The ratio of equation 
(20) to equatIon (21) represents, finally, the effect of adding a circu-
lar cylinder about the line of symmetry of any pointed, low-reduced--aspect-
ratio wing with an 'unswept trailing edge. This effect is shown in figure ii-. 
The figure shows that the damping In roll Is increased a maximum of about 
1. percent at a value of B equal to 0.28. 

swEpr-BACK WING 

The study of the swept-back wing will be divided into two parts'. 
The first of these sections will be concerned with the development of a 
special plan form which Is relatively easy to treat analytically, while the
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second section will be devoted to the examination of plan forms with 
arbitrary trailing edges or with arbitrary span'load distributions. 


Special Plan Form 

Consider a wing with a plan form similar to that shown In figure 5. 
The analysis of such a wing is best presented by considering separately 
the three regions shown In figure 5(b) which correspond,respectively,to 
values of x for which x< 1, 1< x< s, and s<x. 

Region I (x^l).— Since the loading in each region is independent of 
the flow at all points downstream of it, the solution for the pressures 
in region I Is the same as that for a triangular wing. Hence region I 
is simply a special case of the preceding section for which the body 
diameter B equals zero. 

Region II (1 ^x ^ s) .- Although each region is certainly independent 
of subsequent ones, the vorticity of upstream regions must be transported 
downstream through all subsequent transverse planes. This increases 
somewhat the complexity of the problem. 

In order to find the solution for the loading in region II, it is 
again necessary to satisfy equation (1), but this time subject to the 
boundary conditions:

w0 =y for a< tyIb 

u = w = 0 for r=co,0<<2ir	 (22) 

uo = 0 for.	 lyka 
where 5 a(x) am,d b(x) are, as In the preceding section, replaced by a 
and b. 

It is apparent that no transformation of the plane is necessary for 
the use of the integral equation (2), since the boundary conditions are 
already specified in the z = 0 plane. Making use of the fact that cp 
must be an odd function of y, and hence its derivative v 0 even, 
equation (2b) can be written 

w0 - -	 1 

f G(x,i1)dt1	
(23) 

5 Wlaereas in the wing—body section a(x)represented the radius of the 
body, here a(x) represents the distance from the x axIs to the 
trailing edge. Since the two sections are entirely separate, this 
should cause no confusion.



10	 NACA TN 1950 

where

2 
1=y 

and	 S	 (21i.) 
tv0(x,y) 

G(x,T1) =
y 

Before the solution to equation (23) can be obtained, however, the behav-
ior of the flow in the vortex wake, the region for which -a< y< a, must 
be discussed.	 - - 

Since an increase in t,q 0 corresponds to a loading zcp0 at any 

point behind the wing must be the same as L(p0 at the trailing edge for 
the same y. If the equation of the trailing edge is written in either 
of the forms

	

y = a(x)	

1	
(25) 

x = a*(y) 

then &p0(x,y) equals Lcp0(a*,y) for x>a*. Taking the partial derivative 

of E,cpr(a*,y) with respect to y gives 

	

cpo(a*,y) =	 cp0 (a*,y) da*	 [±p0(x,y)] 

__________	 + L •y	 x=a* 

which can also be written in tha form 

________ = V0C da* ip(a*,y) + Lwo(a*,y) 	 (26) 

	

2 dy	 q 

Applying the Kutta condition, the value of the load coefficient at the 
trailing edge .AD(a*,y) must be zero. Equation (23) c5an now be written 

	

= - _i_. ra2G* ( l)l - 1	 rb2G(x,l)l	 (27) 

	

2ic J	 2it J 
a2 

where G*( i ) = G(a*,T 1 ).	 - 

The value of G*(i 1 ) depends, of course, on the equation of the 
trailing edge. It is convenient at this stage of the analysis to choose 
the value of Acp0 in the wake (since applying the Kutta condition to 

[p0(x,y) 1 
equation (26) yields G*( Tl ) = I	 I	 giving Po is equivalent 

	

YL	 y	 Jx=a*
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to specifying G*(rl i )) and find the resulting trailing edge rather than 
to proceed in the more straightforward way of first completely specifying 
the wing plan form. However, if	 is expressed in the form 

	

= By+ B2y2 + . . . +	 ( 28a) 
-4 

it will be shown that both the trailing edge and the final value of 
can be given in terms of the B'5, and, therefore, quite general types 
of plan forms can be analyzed. Our purpose is to present in some detail 
the simplest example in this section and to develop the general discussion 
later.

Figure 6 shows, the variation of Po in the wake behind a triangu-
lar wing (equation ( 15) with a = 0, b = 1). A reasonable first choice of 
A 0 1n the wake of a swept-back wing would seem to 'be the straight-line 
continuation of the slope at the origin of figure 6. This leads to the 
equations

B1=l, B2 = B3 = . . . = 0 

so that equation (28a) becomes 

	

G*(iu i ) = - i/ ART	 (28b) 

If G(x,T1i) is defined by the relation6

/T 
= G1 (x,,'1 1 ) + 11(x) 

j b2-q1	
(29) 

where 11(x) is a function to be determined independnt of 1,then 
equation ( 27) can be written

2 
a2 

-
	 I

d 1	 11(x)	 - 1	 f G1(x,11)dr1	 (30) 
(m-1)fT - 2 - 21( 

It is now possible to invert equation (30) by means of equation (12), 
wherin a2 now replaces -b 1 and b2 rep1ac 's b1 . First we notice 
that the condition imposed 'by equation (11) is satisfied if 

6	 . 
The choice of such a definition is, of course, not obvious. Its advis-
ability depends entirely on the simplification which it introduces 
into the subsequent analysis.
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b2	 a2 _______ 11(x)1	 = L H 2f	 - 2 

or, upon integrating, that

11(x) =(1r_) 

wheie K is the complete elliptic integral of the first kind, of modui,us 
k =	 The solution for Gi(x,T1), in the interval a <Iykb becomes 

a2 

r	
dr2 

b21 
G 1 (x,T) =	 (b2_l)(i_a2) f -
	 o (1-12) .T

2 
a	 (11-11) /(b2_,li)(iia ) 

The single integral evaluates to give zero, and. the order of the double 
integral can be reversed and integrated with respect to 	 so that 
finally there results 

G 1 (x,i1) =_/(b2_r)(i_a2) 
It

2 d'r2 

(2)2(b22)(a22) 

Using equation (29), we can now write 

a2	
2 A1(b 1 )(1)	 +	

- K	 ___	
(31) -	 G(x,i1) =E- [	 ___________ 

	

Jo	 It	 )jb2 

Now using the equality

a2 

T.E. r =

	

	 G(x,)d 
b2 

it is possible to derive, after some manipulation, the relation 

•F=_ib(k?2K_E+k)_(It_)b2kt2	 (32) 

where K and E are complete elliptical integrals of the first and 
second kind, respectively, of modulus k =dl - k' 2 =
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For the Kutta áondition to apply at the trailing edge, equation (32) 
must reduce to the expression r = - TE	 = - a.x in the interval 
-t<y<t (region II, fig. 5). This leads to the equation for the trail-
ing edge in region II given by

2kE a=—	 (33) 

Figure 7 shows a plot of the trailing edge derived from equation (33). 
The asymptotic slope of this edge is 1i.50 and the asymptotic width of the 
wing (i.e., b-a as b-co) ' can be shown to be 1/ic. By means of this 
plot, it is possible to find the relation between aspect ratio and semi-
span s, for wings of the type shown in figure 5. This was done nunieri-
cally and the results are shown for two different tip conditions in fig-
ure 8. 

Region III (z ^s) .- Consider for a moment that the wing plan form 
ends with region II; that is, the wing has the form designated as type 
b in figure 8. The downwash in any plane behind the straight portion 
of the trailing edge of such a wing is determined by substituting equa-
tions (31) and (28b) into equation (23) and integrating. Designating 
this value of w0 as wa,, there results for t< Jy	 6 

and for 0< Ii < t
(34) 

=[l+ (i)J]	 [KE ( -EF (] 

where E1 () and F1 () are the incomplete elliptic integrals with 

modulus k1 = t/s and argument y/t, and K1 is the complete form of 

F1 (f). It should be noticed that behind the straight portion the flow 

is turning as if the wing were continued. Hence, any surface behind the 
straight part of the trailing edges of the type b wing will support 
zero loading,provided, of course, this surface is also rotating at the 
rate w = y. Thus the solution for the t3rpe a wing is exactly the 
same as that for the type b wing with the added condition that the 
loading is zero over portions of the wing for which x>s. 

• Results for entire wing.- The results for the entire wing plan 
form can be summarized in the form of the total rolling moment and
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subsequently the value of C . The rolling moment for both types of 
-	 p 

wings is found from the expression 

L = 2pV0. C2 tan2 6 I yrdy	 . (35)

Jo 

Using the solution for r given by operating on equation (31), that is 
for 0 < fy < t

r = - py 

andfor tIyIs

r	 / ( s2— i) (—t2 )	 ____ r=--r
L	 1j1(s2...11)(t21) + •

	
S 

in equation (35) and reversing the order of integration, the value of the 
moment can be obtained in coefficient form as 

l3Clp	
i	 Ar	 5kj2 - 1	

k1'	 (36) + 
tan e	 ta 9 ( 

k1'	
6s	 3	 S / 

where again J3 has been. introduced as a multiplier of spanwise and. verti-

cal lengths and where k1 = t/s =. ./JL - k1 ' 2 . Equation (36) is plotted 
in figure 9 for the plan—form—aspect—ratio relation given in figure 8. 
When k1 is zero, equation (36) reduces to equation (21) for the triangu-
lar wing.

Arbitrary Plan Form 

- If all the terms in equation (28a) are considered then equation (28b) 
becomes

= - IA
	

(28c) 

and, using equation (29), equation (30) can be written
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+

2	 fl-a 
fa 

i1	 diU - 11(x) = - 1	 i2Gd
() 

n=1 0
2 2i	

a2

Now if

m
n—i K n_ 

11(x) = 2.i -	 nBa 
f 

sn u dii 

n=1	 o


then

____________	 b2	 a 
2	 -.inB r ii 2 G1(x,) = aI(b2)(2)	

() J(b2 2 )( 2 2) L 2 J 

	

il	 0

(38) 

and., finally, 

In	 K	 2 n+il	 m 
r = .
	

nBa	 f [(1+k2)snn_1k Sn U] du - .L	 Ba - 
0	

n=l n=1
m 

2j.i	 b2k'2 + bk'2iJ	 a	 [ Sn u d.0	 (39) nB	
K 

2
n1 

In. order to satisfy the Kutta condition, r in equation (39) must equal 

m 
-Ii.

	

	 Thus, the equation of the trailing edge becomes 

n=1
m 

2k 

	

a 
= itk' 2 i: flBna"'I	 (lO) 

n=1 

and, using equation (35), the expression for ro11in.g-noment coefficient 
becomes 

c2
p =	 Ar	

m 

tan 9	 1 sf3 tan e	
n—i n—i ' -.	 1-3k12	 3irk1'4 

nBk1 s	 (kiI^2 +	 I -	 (ii.i) 
2	 32 

I1 
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where

Sn U— Sfl U du= [T 

K	 n+. )

	

• 1 	 /l_k2 
= r	

J	 ,J ]_2 di-	 (11.2) 
Jo 

Values of the first six	 are given in Appendix B. 

Since the trailing edge must pass through the point a = 0 when 
x = 1, the value of B1 must always be 1. The other coefficients, 
however, are at our disposal. These can be determined by specifying the 
points through which the trailing edge must pass and. setting up a series 
of simultaneous equations using equation (11.0). 

Two examples have been considered which represent a wing with very 
little taper (fig. 10(a)) and a wing which tapers to a point (fig. 10(b)). 
The trailing edge for the former of these wings, type c, was found by 
finding the values of B2 in equation (11.0) which made a = 0.11 when 
b = 1.2 and all the B' s with higher subscripts were zero. The trailing 
edge of the latter of the two wings, type d, was determined by finding B2, 

B3 , B4 , and B5 such that the edge passed through four points which were 
on a straight line joining the root with the tip. Figure 11 shows the 
actual edge resulting for the type d wing together with the intended 
straight line and the points chosen. The slight scallop indicated in the 
trailing edge was found in the case of the triangular wing (i.e., when 
this method. was used to solve the delta—shaped wing and the results 
compared with the exact solution of the linearized equation)to give a 

13C1 
value of tane about 5 percent too low. However, this was considered 

to be sufficiently accurate to establish the trend which is shown for 
this type of wing in figure 12. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., July 22, 1911.9. 

APPKNDIX A 

TABLE OF IMPORTA SYMBOLS 

a, a(x)	 radius of cylindrical body in transformed space 
(in portion of report titled "Triangular Wing with 
Body") 

a, a(x), a*(y) equation of trailing edge of swept wing in transformed 
space (in portion of report titled "Swept-Back Wing," 
see equation (25))
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A(X)	 radius of cylindrical body or equation of trailing edge 

Ar	 reduced aspect ratio, /Il_Mo2 times aspect ratio 

b, b(x)	 equation of wing leading edge in transformed space 

B(X)	 equation of wing leading edge 

C	 root chord of wing 

rolling moment 
C2

(2q)(wing area)

I- __________ 
Cj	 damping—in—roll coefficient 

L (pS/V0) 

( C '\	 damping—in—roll coefficient of wing alone 
p,)

w 

E 1	 complete elliptic integral of the second kind with 
modulus k1 

E1 (x)	 incomplete elliptic integral (II l—k12t2 dt) 

G(x,i1)	 function Introduced in equation (21i.) 

complete elliptic integral of the first kind with modu-
lus k1 

F 1 (x)	 incomplete elliptic integral 	
dt 

L I (l—k12t2 ) (l—t2) 

k
b 

1,.	 t 
S 

2	 lift 

L	 rolling moment 

Mach number of free stream
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p rate of roll, radians per second 

q &ynamic pressure (v02) 

r radial length in polar coordinates. 

B ratio of body diameter to wing span 

s wing semispan in transformed space 

S wing semispan 

sn(u) Jacobian elliptic function 

T,t distance used in study of swept—back wing (see fig. 5) 

V0 free—stream velocity 

u, v, w transformed.perturbatiofl—VeloCltY components in x,y,z 
directions, respectively 

Vr radial component of velocity 

ut, vj, wt perturbation—velocity components in X,Y,Z directions, 
respectively 

x, y, z transformed Cartesian coordinates 

X, Y, Z Cartesian coordinates in physical plane 

IIl_Mo21 

loading coefficient, 
q (pressure on lower surface 	 pressure on upper surface 

q 

r spanwise distribution of circulation 

9 seiniapex angle of wing 

p. p(2tan29 

complex variable (y + iz) 

p free—stream density 

perturbation potential



NACA TN 1950	 19 

perturbation potential in transformed coordinates 

jump in potential in the z = 0 plane 

polar angle

APPENDIX B 

Exact expressions for I, 12, 	 • • I. 

Ii = E 

12	
k'2	 1-i-k 

= - + - in - 
2 4k	 1-Ic 

I3=Ô[kI2K_(1k2)EJ 

14_	
(i1+3k21l+k) 

4 8k2 \.	 2k	 1-Ic 

I	 [ a 2(1-14.k2 )(1+k2) 1 K-	 1-4k2 =	
+	 15k2	 ]i15k2 K 

(1+31c2 )(3-51c2 )	 (1-k2 )(1+2k 2^5k4 )	 1-i-k 
1 6 = -	 +	 in-

48ic	 32k5	 1-k


Notice that when k=l, I =
n. 

Series expansions for I, I2 • • 16 for k<1. 

=(l__Lk4_k	
) 1	 2	 4	 64	 - 

'2 = I _k2 
3	 15' 

- ( 1 - - k - - k4 - ____ 
8	 64	 '-1024 

14 =_t_k2 __k4_.!_k6_ 

I6 k2k4!Lk:... 
15 35	 315	 693
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Figure 4.- Effect on damping in roll of a cylindrical 
body mounted on. a pointed wing with unswept 
trailing edge.
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