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SUMMARY

The damping—in-roll parameter C} is calculated theoretically
for triangular wings on cylindrical bodies and for a class of wings-
with swept-back plan forms. The analysis is based on the usual assump—
tions of linearized compressible—flow theory together with the added
restrictions that at the free—stream Mach number M, the product of
1-My2 and the streamwise velocity gradient is small. The accuracy of
the results is tested by a comparison with the exact solution of the
linearized equation for a triangular wing and for such plan forms is

shown to increase as reduced aspect ratio (W [1rM02| times aspect
ratio) decreases.

INTRODUCTION

Theoretical advancements in the study of load distributions over
three-dimensional wings in compressible—flow fields have been achieved
almost entirely under assumptions leading to the linearization of the
basic differential equations of flow. In this manner the analysis is
resolved in general into the problem of determining solutions of elliptic .
and hyperbolic partial differential equations in three dimensions, the
character of the equations being fixed by the magnitude of the free—stream
Mach number My. It is possible, however, to study also a class of prob—
" lems associated with the parabolic form of the potential equation; namely,
cases for which the product of l—Mo2 and the chordwise perturbation—
velocity gradient is small in comparison with the gradients in their .

- respective directions of the perturbation velocities perpendicular to the
chord. -Such a method was developed in reference 1 for small values of
aspect ratio and was used in reference 2 for swept—back lifting surfaces
-at sonic speeds. In the present report the method will be referred to

as a slender-wing theory wherein the term slender infers that the ratio
of the reduced! span to the over—all length is small. Hence the results

1Reducéd span is defined as B times the span, where B 1is equal to

¥ |1Mo2 | . In general, the term reduced implies that any parameter
which it modifies is multiplied by the factor ' B. .
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presented will apply most closely when the wing is long in terms of its
span, or when the free—stream Mach number is close to unity and the w1ng
and body do not violate the assumptions made.

Previous investigations (references 3, 4, 5, and 6) corresponding
to this method of approach include, respectively, a complete analysis of
all the stability derivatives of a low—aspect-ratio triangular wing, a
lifting triangular wing with an arbitrary body of revolution, a lifting
triangular cruciform combination on an arbitrary body of revolution, and

" a lifting swept—back constant—chord wing. In order to assess the accu—
racy of the results presented in these reports, it is necessary to com—
pare their approximate solutions with the exact solutions of the linear—
ized equation. For the case of the rolling triangular wing, this can
easily be done since the exact solution has been derived in reference 7.
The results of such a comparison are presented in figure 1 which indi-
cates that in this case the value of BCy for the approximate theory
can be useful up to reduced aspect ratios as high as three.

The obJject of the present report is three—fold: First, to find the
effect on the damping—in-roll parameter Cj of adding a body of revolu-—
tion to a triangular wing in order to extend the knowledge of wing-body
interference into the field of lateral stability; second, to find C3
for a particular swept-back wing plan form; and third, to show how the
damping due to roll can be found for swept wings with arbitrary trailing
edges or how trailing edges can be calculated from prescribed span load
distributions. The examples to be given provide sufficient details to
indicate how other cases can be calculated numerically.

A list of important symbols is given in Appendix A.

RESUME OF THE METHOD

Under the assumption that (1-My2)ogy is small as compared to Ovy

and ®y7, the equation for compressible fluld motion, either sdbsonlc
or supersonlc, becomes :

Oyy + Oy =0 . (1a)

where @ 1is the perturbation-velocity potential and X is the free—
stream flow direction. The resulting differential equation (la) shows
that although ¢ can be a function of X 1its value is a consequence of
boundary conditions given along lateral strips. We will seek solutions
to equation (la) for which first, the perturbation velocities vanish at
infinity; second, there is no discontinuity in potential except across

a lifting surface or its trailing vortex sheet; and third, there is no
discontinuity in the vertical velocity anywhere in the field (i.e., no
airfoil with thickness). It is possible, by applying the two—dimensional
form of Green's theorem, to write the solution to equation (la) which
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satisfies all of the aforementioned conditions and relates Vt :
(07 in the Z = 0 plane) to Avg, (the Jump in sidewash, oy in the Z 0

plane). Under the added restriction that no point exists in or on the

flow field such that ¢ >0 € ?74 0, where € is the radial distance from.
. — €

the point, this solution can be writtenZ

’

B(X
" _ -]I__ ( ) Avtole (2a)
to on Y-Y,

B(X)

The integral equation (2a) will be solved for the case of rolling
wings. First, however, it is convenient to introduce nondimensional
lengths so that the results can be generalized as far as possible. A
satisfactory nondimensional form is obtained by using the equations

b4 u C )
y:—_—_— =
C tan 6 it
v =C vy tan 6
= X
x= C w =C wy tan 6 > (3)_
. vr=Cvrtta.n6
7 = ce——
C tan 6

7

p C2 tan® @ J
where € 1is the semivertex angle of the wing, p is the rate of roll in
radians per second, C 1is the root chord, uy, vy, wi,and v,. are true of

velocity components, and u, v, w,and vy are the transformed components.
In addition ¢(x,y,z) replaces ¢ (X Y,Z).

TRIANGULAR WING WITH BODY

Consider a wing with an unswept trailing edge mounted on a body of
revolution as shown in figure 2. Applying the transformations given by
equations (3) to equation (la), we find that in every plane perpendicular
to the x axis it 1s necessary to satisfy the equation

Pyy + Pzy =0 (1b)

2This equation is developed in more detail in reference 2.




L ' NACA TN 1950

subject to the boundary conditions

\

vr=0 for r

a, 0<Vy<2n

Wo = Uy for =z

0, a< |y[<b . (4)

w=v=0 for r=o, 0<V¥<2n

where a(x) and b(x) are replaced by a and b for convenience in
notation and where r,¥ are polar coordinates in the yz plane and 4
is related to the rate of roll by equation (3). These boundary condi-
tions are not of a type such that they can be substituted directly into
equation (2a), since one condition specifies a radial component which
is, moreover, out of the 2z = O plane. However, equation (1) is simply
Laplace's equation so that by introducing complex variables it is not
difficult to transform the wing and body section (fig. 3(a)) to a strip
along the y axis (fig. 3(b)). Such a mapping function is provided by
the Joukowski transformation,3 which, if the subscript 1 denotes
conditions in the transformed plane, can ‘be written:

§1=§+-a—'" (5)

" where ¢ and §&; are given by the expressions

g

y + iz
- (6)

€1 =y1 + 1iz3

By means of equation (5) the wing in the & plane (the portion of
the axis for which a5|y| <b, fig. 3) transforms into the section of

the y, axis in the ¢ plame for which 2a = a;<|yi|g<by =b + %?- .
Further, the body in the ¢ plane (thé curve satisfying the equation r=a)

transforms into the part of the yi1 axis for which 0g| yi|<a1 = 2a.
In this menner the boundary on which the data are specified has been
transformed so that it lies entirely along the y:1 axis. It is next
necessery to inspect what the boundary conditions are in the &, plane.

From the basic theory underlying the use of caomplex variables, induced
velocities in the physical and transformed planes are related by the
expression ‘

ag,

v —iw = (v — ivl)Eg— ' (7)

35ee, for example, "The Elements of Aerofoil and Airscrew Theory,"
Cambridge University Press, 1943, by H. Glauert.
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from which, since in polar coordinates

- [1_<> cos”]u() smey  (8)

it follows immediately that

2 2 '
v=vl[1..<§> cos 2 \yjl+ Wy (%) sin 2 ¥ )
by
2 2 .
Vo= W, [1 —-(%) cos 2 W] -V <%> sin 2 ¥ . }(9)
' , s 2 2
Vy = [vl cos ¥ + wy sin \y:l [1 - <%):| + 2wy ‘ <%> sin )

Through the use of equation (9), the bounda.ry conditions given by
equation (4) for the ¢ plane can be transformed to the £; plane with
the result (since V¥ = O or =)

v, =0 for 0< |yil< &

Y1 2Y1,2—8.12 » 'y V
Wy = i + By, for a3 < |yl < ® 10
1 lyll Y12 512 2 - 12 ] l| =7 > ( )‘

vy, =wy =0 for ry =»,0< ¥ < 2g

The problem has now became one of solving Laplacé's equation for the bound-— ‘
ary conditions given by equation (10). But this problem can be immediately

solved, provided we can invert the integral equation (2a), which in the new
notatlon, becomes

by '
) = - & f avy (72)dyz (2b)
=D, Y1—Y2

*Note that the subscript o (indicating conditions in the Z; = O plane)
has been dropped when in the ¢ ; plane. This gvoids a cumbersome
notation and should cause no confusion,since in the £; plane only
conditions on the 'y; axis are to be considered.
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Under' the condition
b .
f P owi(yn)dy,
by N 612-Y12

reference 8 gives an inversion to equation (2b) which can be written

=0 | (11)

' | by w1 (y2)dyz Co
vy (1) = 2 /by, f : + (12)

(ya32)W b12-y22 W b,y

where co 1is an a.rbitraI:y constant.

An inspection of w; as given by the boundary conditions in equation.‘
(10) shows that it is an odd function of y; and hence will satisfy equa—
tion (11). Placing w, in equation (12) and integrating gives

(D2 a2
avy(y1) = - k(27" ®) 1—6>— %‘_ by®~y:° G + arc cos ﬂ) -

Y2 30 |3 Vb1%-a:2 + a; W' by%y,2 + o (13)
7
y1¥01%-8;2 ~ a; Wb, 25,2 Vb Z—y,2 :

where o = -1 for O <|yi1|<a;, and o = +1 for a; <|y1]< ba.
Now to find A¢,; on the 2z, = O plane, the relation
‘ 2 .
AQ; = f Aavy (y2)dys (1k4)
by '

in which Av,(yz) as given by equation (13) is used with the result that,
for a1< Y1 < bl’

AP, = _% <l + % arc cos %)yp/ bla—ylz
vslz—G.IZ

B 2 2 Y2
-8, arc cosh
.3 (¥12-2,2) by /71502 (15).
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where the constant Co has been evaluated by the conditions that AD,

must vanish when y; = b;. This can be written in terms of the origingl
coordinates (fig. 2(b)) and boundary conditions (equation (%)), by
retransforming in accordance with equation (5). Thus, for a<y<b,

_ B 2 _2ab a2 2 gt at _
A@O ——é' (l—;r—arccosth-—+—a.2> <y+-i->/b +'l-)3- -;E
2 2\ (2 .2
o <y-i-> arc cosh (2+0%) (0%a )A (16)
21 y (7°—e2) (b2+a?)

Equation (16) represents the solution, in terms of the velocity poten—
tial, for a rolling wing with an unswept trailing edge on a body of revolu—
tion; both a and b are functions of x. The loading coefficient AR

q
can be determined by teking the partial derivative of equation (16)
with respect to x in order to find Au, and then using the relation-
Ap _ 2Auy  2mu
T T, T, D

However, it is not necessary to find the loading over the wing if interest

is limited to the determination of the total rolling moment L. If a 1is
independent of x (i.e., the body is a circular cylinder), then T = (Acp)T E. .
and the equation , ' . o

dl = p VoI dY
where 41 is the increment in span loading, can be used to express
dL = Ydl = p Vo, YT 4y
Thus
: g
L=2p7, f Y(Ao)p 5 A
A

or

5 ‘
L =2p Vo C2 tan® @ f y(ACPO)T E dy . (18)
a L] L ]

where .(Aq)g)T.E. 1s the value of AQ,
x = 1 in figure 2(b). Substituting equa
can .derive, after some rather involved i

at the trailing edge or where
tion (16) in equation (18), one
ntegration, the result
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: 2
1 a " 1 (a2+82)2 :

L =_C tan 8 2 {2 | ~——=—~"— arc tan £ +
pvo . ‘ ! L {2 l: 5 . a

a . -
= (s®—a2) <a4—6a.2$2+s4> arc ta.n% -
s

et +% :_2_ (Sz_az)z } | '(1?)

The damping—in—-roll coefficient Clp based on the wing area including
the part of the wing masked by the body can now be written, if both

sides of the equation are multiplied by B =s|1M7|, in the form

: 2
BCZP = _4% { [(l+112)2 arc tan %} + ER(l-Rz)(R4-f6R2+l) arc tani}- -

@R* + R2(1-82)° } - - (20)

where R = & = g (i.e., the ratio of the body diameter to the wing span) |

and Ar is reduced aspect ratio which is also based on the total wing
area including that part masked by the body.

nie

When R equals zero, equation (20) represents the damping in roll
for a wing without body. This value, which will be designated (Cig)ws
is given by ‘ p

b (C1p), = - (21)

and agrees with the value given in reference 3. The ratio of equation

(20) to equation (21) represents, finally, the effect of adding a circu—
lar cylinder about the line of symmetry of any pointed, low—reduced—aspect—
" ratio wing with an unswept trailing edge. This effect is shown in figure h,
The figure shows that the damping in roll is increased a maximum of about

4 percent at a valus of R equal to 0.28.

SWEPT-BACK WING

The study of the swept—back wing will be divided into two parts.
The first of these sections will be concerned with the development of a

special plan form which is relatively easy to treat analytically, while the
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.

second section will be devoted to the examination of plan forms with
arbitrary trailing edges or with arbitrary span-load distributions.

Special Plan Form .

Consider a wing with a plan form similar to that shown in figure 5.
The analysis of such a wing is best presented by considering separately
the three regions shown in figure 5(b) which correspond,respectively,to
values of x for wvhich x<1, 1<x<s, and 8<x., -

Region I (x<1).— Sirce the loading in each region is independent of
the flow at all points downstream of it, the solution for the pressures
in region I is the same as that for a triangular wing. Hence region I
is simply a special case of the preceding section for which the body
diameter R equals zero.

Region IT (1<x< s).— Although each region is certainly independent
of subsequent ones, the vorticity of upstream regions must be transported
downstream through all subsequent transverse planes. This increases
somewhat the complexity of the problemn.

In order to find the solution for the loading in region II, it is
again necessary to satisfy equation (1), but this time subject to the
boundary conditions: S

Wo =py for a< |y|<b
u =w=0 for r=w, 0< ¥ <2r - (22)
AMug = 0 .for. 0< |y|§a

where ° a(x) and b(x) are, as in the preceding section, replaced by a
and b.

It is epparent that no transformation of the plane is necessary for
the use of the integral equation (2), since the boundary conditions are
" already specified in the 2z = O plane. Making use of the fact that AQ
must be an odd function of y, and hence its derivative Av, even,
equation (2b) can be written '

> Glamy) |
10..=‘ =—i/ GX,T]]_ dnl
el > — B (23)

SWhereas in the wing-body section a(x) represented the radius of the
body, here a(x) represents the distance from the x axis to the
trailing edge. Since the two sections are entirely separate, this
should cause no confusion. ‘
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where
2
n=7
and ) ( ) . (2’4)
Av (X,y
G(X,T\) ] __Oy_f_

Before the solution to equation (23) can be obtained, however, the behav—
jor of the flow in the vortex wake, the region for which -a< y<a, must
be discussed. -

Since an increase in AQ, corresponds to a loading AQ, at any
point behind the wing must be the same as A9 at the trailing edge for
the same y. If the equation of the trailing edge is written in either
of the forms T, .

a(x)

a*(y)

y
(25)

X

then Ap,(x,y) equals Agy(a*,y) for x>a*. Taking the partial derivative
of Ago(a*,y) with respect to y gives

AP (a*,y) _ WPo(ax,y) dax {aﬁ%(x,y)}
By dax oy ‘ay x=a%

which can also be written in the form

Mgy (a*,y) _ VL da* Ap(ax,y) | Avo(a*,y) (26)
oy 2 dy q ’ ' .

Applying the Kutta condition, the value of the load coefficient at the
trailing edge ,%p(a*,y) must be zero. Equation (23) can now be written

p, = - l_ fazg*_("l.l)—du — L fb2G(x)||l)gll (27)
v J oM @ L, -

where G*(n,) = G(a*,n,).

The value of G¥(n,) depends, of course, on the equation of the
trailing edge. It is convenient at this stage of the analysis to choose
the value of A, in the wake (since applying the Kutta condition to

equation (26)’yields G*(ny) = 1 { S
: y

3 ] o’ giving A9, is equivalent
x=8



NACA TN 1950 11

to specifying G*(n,)) and find the resulting trailing edge rather than
to proceed in the more straightforward way of first completely specifying
the wing plan form. However, if AQ, 1s expressed in the form

N .
2% _ BiY + Boy® + . . . + Bpyo (28a)

it will be shown that both the trailing edge and the final value of Ci
can be given in terms of the Bp's, and, therefore, quite general types
of plan forms can be analyzed. Our purpose is to present in some detail

the simplest example in this section and to develop the general discussion
later. ’

Figure 6 shows. the variation of A9, in the wake behind a triangu—
lar wing (equation (15) with a = 0, b = 1). A reasonable first choice of
AP, in the wake of a swept—back wing would seem to be the straight-line
continuation of the slope at the origin of figure 6. This leads to the
equations :

By=1, Bo=Bg=...=0
so that equation (28a) becomes

G(ny) = —w/ N (28b)

8
If G(x,n,) is defined by the relation
n1—a2
G(x,m1) = Gi(x,my) + H(x) [ (29)
b -y '

where H(x) is a function to be determined independent of 1n,, then
equation (27) can be written

b=l

2 ’ <L

a b
u o B Jf dn, _ H(x) N \/P Gy(x,n1)dny (30)
2% & (nmilfm: 2 an 2 Tm

It is now possible to invert equation (30) by means of equation (12),
wheréein a2 now replaces -b; and b2 replaces b;. First we notice
that the condition imposed by equation (11) is satisfied if

s .
The choice of such a definition is, of course, not obvious. Its advis—

ability depends entirely on the simplification which it introduces
into the subsequent analysis.
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b2 ' 2

f I:u-—-eu;fa (Tl—ﬂjT)llJ;l_H(EX)] J(beii:)(n?-)— -0

&2 fe)

or, upon integrating, that

i -3 («-E)

where K 1is the complete elliptic integral of the first kind of modulus
k = %. The solution for G;(x,n) in the interval a <|y|<b becomes

. a2 :
uE _ B dn2 }d,h
P b 2%
G1(x,n) =?2r V(b2—) (n-e?) [ » jﬁ" (ﬂlﬂa) Wiz 4.
: ' a® .(n_“l) “/(bz‘ﬂl)('ﬂl—&a)

The single integral evaluates fo give zero, and the order of the double
integral can be reversed and 1ntegrated with respect to 1n; so that
finally there results

2

Ga(x,m) = ‘—‘/(bz—n)(n—& ) f =
(n—nz)v/ n2(b2-n2) (a°2)

Using equation (29), we can now write

- 8% ano V(2 (n-e2)
G(x,n) =-_;r“— f il Bl +— :t——) / (31)
_ (n=n_) A/Tll(bz—ﬂz)(az-ﬂz)

(o]

Now using the equality

2

\ o ,
(6@) g g =T = % f G(x,m)dn
. v2

it is possible to derive, after some manipulation, the relation

. ,
. I'=—qb{ =x'2K - E k>-<:t—§>&b2k'2 2
" (2 ‘ £) 41 BNED

where K and E are complete elliptical integrals of the first and
N1 - k2 .

second kind, respectively, of modulus k = = %.
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For the Kutta condition to apply at the'trailing edge, equation (32)
must reduce to the expression I' = — Jp.g. H = —a8g in the interval

-t <y <t (region II, fig. 5). This leads to the equation for the trail-
ing edge in region II given by

2KE
8 = —

— (33)

Figure T shows a plot of the trailing edge derived from equation (33).
The asymptotic slope of this edge is 45° and the asymptotic width of the
wing (i.e., b~ as b—>w) can be shown to be 1/x. By means of this
plot, it is possible to find the relation between aspect ratio and semi-
span s, for wings of the type shown in figure 5. This was done numeri-—
cally and the results are shown for two different tip conditions in fig—
ure 8. )

Region III (X>25).— Consider for a moment that the wing plan form

ends with region IT; that is, the wing has the form designated as type
b 1in figure 8. The downwash in any plane behind the straight portion
of the trailing edge of such a wing is determined by substituting equa-—
tions (31) and (28b) into equation (23) and integrating. Designating
this value of w, as w_, there results for t< lyl <s

s
Vo = JH

and for 0< |y| <t

v (&) /EE] -2mn () -nn ()]

7

) (34)

where E, (%) and F, <%> are the incomplete elliptic integrals with

modulus k; = t/s and argument y/t, and K, is the complete form of

Fy <%> . It should be noticed that behind the straight portion the flow

is turning as if the wing were continued. Hence , any surface behind the
straight part of the trailing edges of the type b wing will support
zero loading,provided, of course, this surface is also rotating at the
rate w = puy. Thus the solution for the type a wing is exactly the
same as that for the type b wing with the added condition that the
loading is zero over portions of the wing for which x>s. ’

‘Results for entire wing.— The resﬁlts for the entire wing plan
form can be summarized in the form of the total rolling moment and
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subsequently the value of CZ . The rolling moment for both types of

wings is found from the expression

2 2 s
L = 2pV, C* tan” 6 f yrdy - (35)
o

" Using the solution for I given by operating on equation (31), that is
for 0< |yl <t

T = —uy
and for t < lyl <s
2 2 2 2.
r=—f-fy /(S—“)(“—t) +Efy 1% an
_oen Jsy 1114 n1(s2=n1) (t2—,) 2 §Z-n

S s2

in equation (35) and reversing the order of integration, the value of the
moment can be obtained in coefficient form as

. ' s ' —
—-—-—=‘—l————<§-nkl' +Zlili__l,El_£k1:21& (36)
8 6s 3 S .

where again B has been. introduced as a multiplier of spanwise and verti-

cal lengths and where k, = t/s = /1 — k;'°. Equation (36) is plotted

in figure 9 for the plan—form—aspect-ratio relation given in figure 8.
When k; 1s zero, equation (36) reduces to equation (21) for the triangu—
lar wing. . ' X

Arbitrary Plan Form.

If all the terms in equation (28a) are considered then equation (28b)
becomes

n—2

m .
G*(n1) = —u Z nBmy (28¢c)
n=1

and, using equation (29), equation (30) can be written
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m ae 22_—2- b2
—unB N1 < dyy  H(x) 1 Gy (x,ny)dn,
Lo+ n - = —_— (37)

Now if
n K
n—1 n—
H(x)=2p.—§%2n3na f sn u du
n=1 ’ o
then
b2
(‘_—- . 2
Gl(x’n) = _ (b2‘ﬂ)('ﬂ—6 ) f d% f nl d“l
a2 (1—n2) /(b%n2) (n2—a?) 22
(38)
and,finally ,,
pb n-1 pK | 2. n— > N+l = n
r= ana f [ (14" )sn~ u-Pk"sn u] du —p Z Bpa -
n=1
2 o K
2u 1’:%b2k'2 + 1-’%—li Z nBpa™ f st Mu du (39)

n=l °

In order to satisfy the Kutta condition, I in equation (39) must equal

— Z Bnan. Thus, the equation of the trailing edge becomes

. n=1 m ‘
_ 2k n—1 L
a = o Z nBpa Ip (40)
n=1

and, using equation (35), the expression for rolling-moment coefficient
becomes .

4
1 &

m 2
A ‘Ne1 n—1 13k, 3nk,
P ___ T Z mBpk; s <k121n+2 + Ir> - (k1)
B tan 6 k4sp tan 6 : 2 32

BCy
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where

Ip = f <s‘nn—lu—kzsnn+lu> du = f R -—]-_-J-'?Z— ar _ (42)

(o] (o]
Values of the first six I, are given in Appendix B.

Since the trailing edge must pass through the point a = 0 when
x = 1, the value of B; must always be l. The other coefficients,
however, are at our disposal. These can be determined by specifying the
points through which the trailing edge must .pass and setting up a series
of simultaneous equations using equation (40).

Two examples have been considered which represent a wing with very
little taper (fig. 10(a)) and a wing which tapers to a point (fig. 10(b)).
The trailing edge for the former of these wings, type ¢, was found by
finding the values of Bz 1in equation (L40) which made 'a = 0.4 when
b = 1.2 and all the B*s with higher subscripts were zero. The trailing
edge of the latter of the two wings, type 4, was determined by finding Bo,
By, By, and Bs such that the edge passed through four points which were
on a straight line joining the root with the tip. Figure 11 shows the
actual edge resulting for the type d .wing together with the intended
straight line and the points chosen. The slight scallop indicated in the
trailing edge was found in the case of the triangular wing (i.e., when
" this method. was used to solve the delta—shaped wing and the results
compared with the exact ‘solution of the linearized equation)to give a

BCZ ’

S
B tan 6 _
to be sufficiently accurate to establish the trend which is shown for
this type of wing in figure 12.

value of about 5 percent too low. However, this was considered

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., July 22, 1949,
APPENDIX A

TABLE OF IMPORTANT SYMBOLS

a, a(x) radius of cylindrical body in transformed space
(in portion of report titled "Trisngular Wing with
Body") ‘ . :

a, a(x), a*(y) equation of trailing edge of swept wing in transformed
"space (in portion of report titled "Swept-Back Wing,"
see equation (25))
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CA(X)

Ap

b,‘b(x)
. B(X)

C

Cy

&

17 -
radius of cylindrical body or equation of trailing edge

reduced aspect ratio, » ‘1—Moz| times aspect ratio
equat'ion of wing 1eadihg edge in transformed space
equation of wing leading edge

root chord of wing

rolling moment
(2gS) (wing area)

o

1
d ing—in-roll coefficient [———— }
srpTne 3(o5/V,)

damping—in-roll coefficient of wing alone

complete elliptlc integral of the second kind with
modulus k;

l—k12t2
incomplete elliptic integra.l —
1-t

flmctlon introduced in equation (2h)

complete elliptic integral of the first kind with modu-—
1lus kl

dt

X
[ J (1-%,242) (142)

incomplete elliptic integral

0+ o

1ift
rolling moment

Mach number of free stream
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ut, Vi, Wt

X, ¥, 2

X, Y, %2

™

NACA TN 1950

rate of roll, radians per second

dynamic pressure < %pV02>

radial length in polar coordinates .

ratio of body diameter to wing span

wing semispan in transformed space

wing semispgn _ |

Jacobian elliptic function

distance used in study of swept-back wing (see fig. 5)

free—stream velocity

transformed . perturbation-velocity components in Xx,y,z
directions, respectively

radial component of velbcity

perturbation—vélocity components in X,Y,Z directions,
respectively

transformed Cartesian coordinates
Cartesian coordinates in physical plane'

J| 1—M°2‘

loading coefficlent, '
pressure on lower surface — pressure_on upper surface>
q = -

spanwise distribution of circulation

72

semiapex angle of wing
pC2 tan2 6

complex varisble (y + iz)
4free—stream density

perturbation potential
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V) perturbation potential in transformed coordinates
Acpo Jump . in potential in the 2z =0 plé.ne |
v - polar angle

APPENDIX B

Exact expressions for I, Iz, . . . Is'

td

I, =

1
Io = = + = g =¥%
275

2 2 '
I -Ll_1lxk <l_l+3k i Lk
2k 1%k

= _ | 3, 2(1-4k2)(1+4k%) |K-E  1-4k®
Is = [ 5 * 15k2 % " 5xz K
I - (1+3k%) (3-5k%) s (1%2) (1+2k24+5Kk4) g 1K
8 LK 30k 5 1%k
Notice that when k=1, I, = 3’—1.

Series expansions for I, Ié, « « « Igfor k<1,

11=£<1_1i2__§_k4 2 ye . . >

e\t TR T E S T
PO B
12=1__]:k2__,ld_& 4_}_:1{6_
3 15~ 35 e
@if:d*

(1322 a_ 3 e >
Ia u(l 8k 6l © 1024
I4=?._.{+_k2_g__k4__8._k6_h_

3 15 35 315

= D yxa_ 3 s _ 63 e >
Is 16(3 PR e M T o
Te=-0-8y2_16 ye 16 15 )

15 35 315 693
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Figure 4.- Effect on damping in roll of a cylindrical
body mounted on a pointed wing with unswéept
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