aWwWeaea aaev SN NN

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 1953

ON THE THEORY OF OSCILLATING AIRFOILS OF FINITE SPAN
IN SUBSONIC COMPRESSIBLE FLOW
By Eric Reissner

Massachusetts Institute of Technology

Washington
September 1949




NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 1953

ON THE THEORY OF OSCILLATING AIRFOILS OF FINITE SPAN
IN SUBSONIC CQMPRESSIBLE FLOW

By Eric Reissner
SUMMARY

The problem of the oscillating lifting surface of finite span in
subsonic compressible flow 1s reduced to an integral equation. The
kernel of the integral equation is approximated by a simpler expres—
gion, on the basis of the assumption of sufficiently large aspect
ratio. With this approximation the double integral occurring in the
formulation of the problem is reduced to two single integrals, one of
which is taken over the chord and the other over the span of the
1ifting surface. On the basis of this reduction the three—dimensional
problem appears separated into two two—dimensional problems, one of
them being effectively the problem of two—dimensional flow and the
other being the problem of spanwise—circulation distribution. ZEarlier
results concerning the oscillating 1lifting surface of finite span in
incompressible flow are contained in the present more general results.

INTRODUCTION

The present report is concerned with the problem of the oscillating
airfoil of finite span, within the frame of the linearized lifting—
surface theory. The aim of this study is the development of a theory
which incorporates simultaneously the effects of three—dimensionality
of the flow and of compressibility of . the fluid. As an exact solution
of this problem, even within the limitations of the linearized theory,
presents very great difficulties, 1t is worth while to work toward an
approximate theory which is valid provided the aspect ratio of the
1lifting surface is not too small. .

- The author has previously obtalned results of this nature for the
"cage of incompressible flow (references 1 and 2).  In this earlier:
work the known results for the problem of two-dimensional incompressible
flow were contained as a special case. The present work generalizes :
these results so as to take account of compressibility in the subsonic
range. Thus the results of this report consist of a system of equations
.which contain as special cases both the authorts results for the wing
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- of finite span in inbompressible flow and the results of Possio's theory
of two—dimensional compressible flow (reference 3).

The scope of the present results may briefly be described as
follows. The starting point of the work is an integral-equation
formulation of the problem of the lifting surface of finite span.

The integrals which occur are double integrals and the functions to

be determined are functions of two independent variables. The essential
step of the present work is to replace the actual kernel of the integral
equation by an approximate kernel in such a way that the double integrals
are reduced to single integrals over the range of either one of the two
independent variables. In this way the problem is reduced to two
problems which are to be solved separately. The first of these two
problems is of the same nature as the Possio problem of two—dimensional
compressible flow. The second of these problems is of the same nature
as the problem of the Prandtl 1lifting-line theory for the wing of

finite span in uniform motion.

As in the theory of incompressible flow, this reduction of the
double—integral problem to two single—integral problems depends
crucially on the assumption of sufficiently large aspect ratio. While
“sufficiently large™ aspect ratios might be thought to be aspect ratios
of about three, definite statements of this nature must be based on
experimental evidence, as long as no exact solutions exist for the °
three—dimensional problem of the oscillating lifting surface in com—
pressible flow. :

. It is perhaps worth while to state explicitly that the present
problem is quite different from the corresponding problem for supersonic
flow. '

It might also be added that there are reasons to believe that it
is not satisfactory, even approximately, to superimpose aspect-ratio
corrections for incompressible flow and compressibility corrections
for two-dimensional flow in order to obtain corrections for the combined
effect. This latter point is one of the reasons for the present study.

In this first report the work is carried to the point where the
double—integral equation 1s reduced to an equation containing single
integrals only over the quantities to be determined. Further develop—
ments will be given in a subsequent report.

This work was conducted at the Massachusetts Institute of Technology
under the sponsorship and with the financial assistance of the National
" Advisory Committee for Aeronautics.
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SYMBOLS
X,Y,2 Cartesian coordinates
U main—gtream velocity in X—dipection
t time
H ‘ defined by equation of lifting surface Z = H(X,Y,t)
U,v,w - components of velocity change caused by presence

of lifting surface

Ry region.in X,Y-plane occupied by proJjectdon of
1ifting surface

Po density of stream flowing with velocity U

P,D | density and pressure changes, respectively,
agsocliated with velocity changes‘ u, v, and w

a ‘ , velocity of sound in main stream (a2 = dp/dp,)

Xp(Y) ‘coordinate of trailing edge of Ry

¢ potential of velocity changes wu, v, and  w

o .circular frequency of oscillétion

M Mach number of main stream (M = U/af

Re real part of

b . a length to be ldentified with the semichord

: of Ry at midspan _

k \ reduced—frequency paramster (k = wb/U)

X,¥52 dimensionless coordinates defined by equation (19)

v | function defined ﬁy equation (21)

kM2

M paramster defined as pun =

1 - M°
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K parameter defined as k = IM
2
. l1-M
v parameter defined as v = k’Me
. l_
Ra* ' region in x,y-plane corresponding to region Ra
in X,Y-plane
Xip coordinate of trailing edge of Ra*
X1, _ coordinate of leadlng edge. of .Ra*
R * : region in x,y—plane consisting of the strip to the
right of the tralling edge of Ra*
R,.* entire x,y—plane except for regions Rg* and Ry*
A function defined by equations (36)
g function defined by equation (37)
P variables of integration in accordance with
equation (40)
r defined by equation (A1)
Hb(z),Hl(z) . Hankel functions of second kind, and of zeroth and

first order, respectively

auxiliary varlable of integratiocn

K function defined by equation (51)

G function defined by equation (52) _

.In ~ functions defined by equations (54), (55.), and (56)
Op , order of magnitude of

A | function defined by equation (38)

Fy ' ‘ function defined by equations (73) and (83)
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o o auxiliary variable of integration
T auxiliary variable of integration
Q function defined by eguation (76)
8 ratio of semispan to semichord at midspan
™ defined as n* = q/s\}l -
b¥* local semichord divided by semichord b at midspan
Xpp* ' " a quantity indicating amount of sweep and defined by
‘ equation (86)
x* dimensionless coordinate defined as x* = (x — xo*)fo*
k¥, V¥, Q% quantities defined by equation (87) |
g* A* quantities defined as g*(x*,y*) = g(x,y); M (x*,y*) = AM(x,y)
N - function defined by equation (89)
SM | function defined by equation {90)

THE BOUNDARY-VALUE PROBLEM OF THE

OSCILLATING LIFTING SURFACE

It is assumed that a nearly plane, impenetrable surface is put Into
the path of an inviscid flowing fluid which, except for the effect of
this surface, possesses a uniform velocity U 1in the direction of the
positive X-axis. The impenetrable surface, henceforth callqg lifting
surface, is taken to lie nearly in the X,Y-plane and its equation is
written in the form 2 = H(X,Y,t).. When H = O no disturbance is
caused. When the lifting surface 1s not exactly plane and parallel to
the direction of U the velocity components (U,0,0) are changed
into (U + u,v,w) where u, v, and w depend on the form of the
function H and on the shape of the region Rg which 1s the proJjection

of the lifting surface onto the X,Y;plane.

The disturbances caused by the presence of the 1ifting surface
are assumed to be small, in the sense that the differential equations
and -boundary conditions of the problem are linearized with respect to
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the disturbance velocity components u, v, and w and with respect to
the pressure and density changes p and o _caused by the presence of .
the lifting surface.

: Under these conditions the differential equations of the problem
are the following:

'%+u§;_%%) (3)
BoZo@zPo o

pea2o | o (s)

The quantity p, in equations (1) to (4) is the density in the fluid
(0] .

flowing without disturbance and the qﬁantity a in equation (5) is the
velocity of sound in the undisturbed fluid, that is, a2 = dp/dp,.

The boundary condition of no relative normal flow at the lifting
surface is satisfied, within the frame of.the linearized theory, instead
of on the 1lifting surface itself, on the projection of this surface onto
the X,Y-plane,

_OH OH
X,Y inegide Ry, w =5t U= X (6)

The form of condition (6)A(which holds on both sides of the lifting
surface) indicates that w is an even function of Z. From equation (3),
it follows then that p is an odd function of Z and the condition
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that the pressure disturbance p is continuous, except when passing
acrogss the lifting surface; means that for Z =0 and

X,Y outside Ry, p =0 (7)

On the basis of conditions (7) and (6) the problem may be considersd
to consist in the determination of u, v, w, and p in the half
space Z > O with the boundary Z = O.

In addition to conditions (6) and (7) the following further
conditions are prescribed in order to obtain an unambiguous solution.
At the trailing edge of the lifting surface,

X = Xp(Y), p 1is finite (8)

Finally, it is postulated as a condition "at infinity" that energy is
traveling outward without reflection, in a manner to be defined more
precisely in what follows for the case of simple harmonic motion.

VELOCITY—POTENTTAL FORMULATION OF THE PROBLEM

It can be shown that the problem may be solved as stated in
equations (1) to (8) by means of a velocity potential @, in terms
of which : , .

i
T X
v‘=%gi'> N (9)
_ o8
Y %

-

Combination of equations (9), (1), (2), and (3) results in the following
expression for the pressure change .p: .
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Combination of equations (10), (5), (9), and (4) results in the

following differential equation for

52¢
ax2

52¢
6Y2

3°¢

3z

Equation (11) is to be solved in the half space Z
following boundary conditions at Z-= 0:

. o _ y OF
id » -
X,Y inside. Ry, > at BX
. og o¢
X tside Ry, - <=0
Y outside Ry St + U X
X = Xp(Y), g% +U of is finite

y 2 2¢-d
'Va2<gt * Sf) -

(11)

> 0 sublect to the

(12)
(13)

(1)

and subject to the'condition of no energy reflection "at infinity."

In what follows attention 1s restricted to the case of simple
harmonlc motion and the following equation is written:

1

¢(X:Y_:Z:t) =» eiwt‘a'(X,Y:Z)

with corresponding. expressions for H eand p.l

(15)

11t is perhaps not entirely superfluous to indicate that this is

meant in the sense that, corresponding to a surface equation Re(eiwtﬁ) '

there is a pressure distribution Re(eimtﬁ).

3
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Equation (11) now assumes the form

o7 = 2_‘ 2_
S a8 < COLESLEL a9

Equation (10) becomes

7 = ..p?(mﬁ_ +'U 2-%) | ‘ (17)

Now the following dimensionless variables and parameters are
introduced:

M=U
a
(18)
= %
k U
=X
=y
y=\1-M2 » ‘ (19)
- -MRZ
z =\|1 - M 5
-
The differential equation (16) then assumes the form
— ) A o - .
Vg 12 B W g (20)

1-M2 X 3 _ M2
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Equation (20) is reduced further, for the purpose of eliminating
firgt—derivative terms, by the following substitution

¢ = eluxy (21)
Choose
w2
p= 2K  (22)
1 - M

Praedy-o (23)

wheore

KM
K = (2&)
1-M .

Now P and the boundary conditions must be expressed in terms of
the new independent variebles x, y, and 2z  and in terms of the new
dependent variable- V.

From equations (17) and (19), it follows first that

P = —-§—<1k¢.+ gg;) (25)

Combination of equations (25) and (21) gives

pe -ty By 4-
p{ = | vy + = (26).
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where VvV 1s deflned as

"k
1 - M

The boundary condition (12) becomes

x,y 1inside Rg¥*, ¥ _ T inx <1kﬁ + —-ﬁ) (28)

—B-;—‘/I_MQ ox

where Ra* is the region in the x,y—plane corresponding to Ra in
the X,Y-plane.

The boundary condition (13) becomes

x,y outside Rg*, 1ivV + ¥_o (29)

ox

- The condition of finite pressure at the trailing edge 1s now,

x = xp(y), 1w + %% is finite . (30)

Finﬁlly, the condition of no energy reflection at infinity is written
in the form .

z-3>w, ¥ £(x,y,2)6 T (31)

where r2 = x2 + y2 + z2 and where f +tends to zero as 'z tends to

infinity.2

2This ensures that @ = pol(wt=KT) 55 2 -tends to infinity
and therewith that waves are traveling away from the source of the
disturbance.
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The boundary condition (29) is made more specific in the following
manner. From condition (29),

¥(x,5,0) = c(y)e™1VX | _ (32)

For any line y = Constant which does not pass through Rg*, it can be
concluded from the condition of undisturbed flow at X = —w

that c(y) = 0. The same can be sald for that portion of any

line y = Constant which is situated in front of the leading edge

of the airfoil region. The situation is different for portions of
lines y = Constant which do pass through Ra* and which are to the

rear of the tralling edge of R_*. The region to the rear of the

trailing edge and bounded by lines y = Constant which are tangent
to Rg* 1s called the wake reglon and is designated by Ry*. The

exterior of the region Ry* and R* 1s called the remaining region
and 1is designated by R.*. Then c(y) =0 in R.* and, in general,
c(y) #0 1in Ry*.

Equation (29) 1s thus seen to be equivalent to the following two
equations: -
X,y inside Re*, V =0 © (33a)

X,y inside Ry*, V = c(y)e~ivX (33b)

There is now introduced & function A defined by
Aly) = 2¥[xp(3),7,9] (34)
Equation (33b) can then be written in the form

X,y 1inside Ry¥, %I = —-%; A(y)eiv(xT-xy | (35)
X
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In view of equations (33a), there may also be written

| xp
Ap) =2 | - Hzr0) o : (36)
I,

where xL(y) is the coordinate of the leading edge of the alrfoil
region Rg¥*.

SUMMARY OF THE RESULTANT BOUNDARY-VALUE PROBLEM

Before proceeding with the solutlon of the problem as reduced in
the foregoing section of this report its final formulation is reca-
pitulated as follows.

Determine the solution of the differential equation

v+ k% = 0 | (23)

in the half space 2z > O subJect to the following conditions at 2z = O:

x,y inside Re¥, o - g(x,y) (28a)
x,y inside Ry¥, %:_ —iQ—VAA(y)eiv(mr_x) (35)
x,y 1inside R.¥, %%: 0 , (32b)
| x = xp(y), g—i 1s finite | (29a)
anc subJject fo the following condition at infinity:
z->w, § = fe T | . (31a)

where f = 0(z) and where re = x2 + y° '+ 22,
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Various quantities occurring in these equations are defined as
follows:

I A o

g(x,y) = V—ZL_——TQ_GKH bx). ) (37)
X ' .

aly) = A(x,y) ax (362)
Xy,

Mx,y) = 2 Wx9,0) (38)

ox

The parameters x, p, and Vv are defined by equations (24), (22),
and (27), respectively. The region Ry* follows from the airfoil

region R, by multiplication with a scale factor l/b in the

x—direction and by multiplication with a scale factor Vl - M2/b in
the y—direction. The region R* 1s the strip extending from the

trailing edge x = Xp to x = w, and the region R.* is the
remainder of the x,y-plane. -

The solution of the béundary—value problem is to be used to
calculate the pressure-~change amplitude ﬁa at the lifting surface

in accordance with the relatipn
_ poU |
Po = —— otH* (iw + 5*) - (39)
b OX/R_x . |

which follows from equation (26).

The solution of the problem as swmarized will be approached
through its reduction 4o an integral equation for the quantity A as
defined by equation (38).
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AN INTEGRAL REPRESENTATION FOR THE VALUES OF OV /oz

In this section it is proposed to derive a formula for the values
of BW/BZ, for the purpose of setting up the basic integral equation
of the problem under consideration. To beglin, results are taken which
in essence are known and then are transformed in a way designed to
facilitate the subsequent transition from the exact double—integral
equation of the problem to the approximate integral equation containing
single integrals only.

The first formula is a representation of the values of ° BW/BX in
the interior of the half space . z >0 in terms of the values of oV/ox
on the boundary z = O of the half space, as follows:

oV _ 1 19
X-Hffl(ﬁ.ﬂ)-a-z-

In equation (40) and in all that follows,

e“rnr) 4t an . (40)

=@ -2+ (y-mf+f | (51)

and the quantity A 1is according to equation (38) given by
23¥(&,7,0) /3t. It is noted that this representation of oV/dx
ensures that the conditions at infinity as expressed in equations (31)
are satisfled.

From equation (40), it follows that

v _ 1 i ( —ler |
S Hff X(E;"l)g;g g — ) dt dnq (42)

If it is now observed that the quantity r—1 e—1kT 1g a solution of
the differential equation (23) for V, then equation (42) may be
written in the alternate form

2 2 -
ot .2 ff (g,n) 3 ' z_y_ 4 K2)(9_§.’if) as dn (43)
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In equation (43), it 1s noted that 32 /3y2 = 32/3n° and the term in
question is integrated by parts with respect to 1n. In addition to
this, by making use of the obvious identity

AE,m) = ME,y) + [M(Em) = A(E,5)]

equation (43) is written as follows:

32V ; 1 QE_ A <?—inr)
axaz-u_ﬁ'ff A'(gay) x2+K-> T dg dn -
)-l»_ﬂ f [k(E,n);l(E,y)]<é—;§+ K.> - >d§ dn_

)] st

In the first integral on the right of equation (44) the integration
with respect to n may be carried out explicitly. When the remaining
two integrals are absent, there is thereby obtained the appropriate form

of the integral relation (L4) which would follow if two—dimensional flow
had been assumed from the beginning.

)ug an (1)

The following formula expresses the integral in question in terms
of a Hankel function

e—in\[( x'—§)2+(y-n)2+z2

—w‘@c-—g)2+(y-—n)2+z2

an = m;,(e) [K\/(x ~6)° . 22] (45)

The next step is to reduce the second integral on the right of
equation (4k4) to an integral 1nvolv1ng OA/On. To this end, there is

wrltten
° —ikr ¥ ” |
e - amen| e an = |+ (46)
—o0 -0 y -
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The two integrals on the right of equation (46) are integrated by parts
and the constants of integration are chosen in such a way that the
integrated portions vanish. After some elementary transformations,
this leads to the following formula:

o<}

o—16\/(x=€) 2+ (y-1) 2422

[r(e,m) = A(e,y)] an =
e | [(x = €)% + (y - )2 + 2°
o ~|y-n
Y] B e vty
AL AL [ Wx - £)2 + 22 + (2

Equations (45) and (47) are introduced into equation (44) and the
following relation is obtained:

gigfz =§ﬂk , x(g,y)@_% * "2>[i2—“ ]5‘<)(2)(»'¢\I(?c — €)%+ Zz)] at +

- -— y.—
1 N Iy — nl@z N K'2> | n' e_in\/(x_§)2+z2+g2 dg
L oh 41y = nifo” .
hx af] J 1 x2 —~ \/(X _ 5)2 + 22 + gg
—ir\f(x—8) 222+ (3—1) 2
S| / 2 at dn (48)
n .

Vix - 02+ 22+ (7 - 02|

The final step now consists in integrating equation (48) with
respect to x -between the limits —eo and x. The condition of
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undisturbed flow far in front of the lifting surface makes (B‘I’/Bz)x= =0
- There 1s then obtained the relation ‘

%1{ = 22'—3(: x(g,y) %{' 125 Ho(z)L\](x —‘§)2 + ze:l} +

X N .
KE 1_2“, HO(Q) Ec\l(xl - §)2 + z2] dx?| d¢ +
, B Lt 2
[ alals [P e at +
UM TTY S L Vs e2e e
B L I L o | Y RS-
_I.g.{_;ll-'ne e in\/(x £) “+25+¢ at| axr +
o | \/(x' - 824224 ¢2
X 2,2 2
-1 Y—8)"+z%+(y—
o |-l | atan s

0 on Vixt = )2 + 2+ (y - n)2

Equation (49) expresses the values of oV/dz for z >0 in terms
of the values of A(g,n) = 20V(¢,n,0)/0t and is thus the result, the
attainment of which was the aim in the present section.

THE INTEGRAL EQUATION OF THE OSCILLATING LIFTING SURFACE

The integral equation of the problem is obtained by substituting
the information contained in equations (28), (32), and (35) in
equation (49) and by then letting 2z tend to zero. In so doing the
integrals which contain infinities in the integrand are to be
interpreted as Cauchy principal values. This latter step has been
discussed in detail for the case of incompressible flow in reference 1.
No additional difficulties in this regard are encountered for the
present problem of compressible subsonic flow and the explicit . _
Justification for this step is therefore omitted in the present report.
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- The integral equation of the oscillating lifting surface in
subsonic compressible flow is thus of the following form:

xp(y)
a(x,y) = - ME,TE(x - &) «] at +
XL(y)

v A(y)eivx‘l'(y) f“
2%

‘ o V8 K[(x - £); n] d€ +
xp(y)

1 ] &
Ln on

Gl(x— &), (y —n); ] at an —
4¥ d’—(Aeivx‘l')e_:wg’ G Kx - t), (y —n); r| at d'q“ (50)
by an ? ’ :

R *

The kernels K and G are of the-following form:

-3 fr w2 )

e | Zr®(e -t )

—c0
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ly =l J3 ~lnl o~ 1rV(x—8) 242

e at +
yoa |ox Vix - 62+ ¢2

el

| [P el at
\/G. _ §)2 +.§2

—o0 | {J—oo

- X

3 —in\RX‘—g)2+(y—n)2
a“ V(x' — €)2 + (y = n)2

(52)

Equation (50) holds when x and y are inside Ry* and is to be

golved for A, in terms of A and g, where A and g are defined
by equations (36) and (37), respectively.

For the case of two—dimensional flow, OA/On = O and the last two
integrals in equation (50) are absent. The remainder of the present
work has as its object the derivation of a procedure to take account of
these last two integrals in an approximate manner which permits the
calculation of the effect of three—dimensionality of the flow in a
simpler way than by actually solving the complete equation (50). In
the derivation of this procedure the integral over the airfoil ,
region R * and the integral over the wake region R ¥ are treated

separately.

REDUCTION OF THE DOUBLE INTEGRAL OVER THE
ATRFOIL REGION R,*
Write
G dt dn B_XIZI«V (Il + 1:2) + 13] ag dn - (53)

Fax
onLy — 1
L

Ra* A Ra* .
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where

|yl o) 22 - _
ST Y e s Y: NS
ox : Wx — £)2 +¢2 - ‘

-—00

X ~ |yl —iK“(x‘—§)2+§2
I, = & : 2 at| axt (55)
ol Vixt — 6)2 + ¢2

x 3 e—inqzi'—§)2+(yan)2
—man Vi — 82 + (3 - )2

1, - (56)

When dealing with lifting surfaces of sufficiently elongated
form, that is, with surfaces of sufficlently high aspect ratio,
|y = a] > |x - ¢| over the major portion of the surface. When this
latter inequality holds, the terms I, can, as will be seen, be

written in such a way that a relatively simple dominant term can be
separated in each of them. These dominant terms will be used for the
approximation to be developed. There remains then the question
concerning the validity of the approximation over that portion of Rg*

where the inequality |[x — &l << |y — ql does not hold. This question

is answered as follows. It is assumed that OA/dn varies sufficiently
slowly with 17 so that in this portion of the region Ry* it is

effectively constant. If this is the case, all that is necessary is to
take account of the fact that both the kernel G and the approximation
to G to be obtained are odd functions of y — 17, so that in both
cases the contribution to the value of the integral coming from this
portion of _Ra* can be neglected. o ' .

The aforementioned argument is also implicit in the earlier
derivations for the corresponding problem for incompressible flow
(references 1 and 2). There appears to be no reason to,believe that
this particular argument should be less applicable to the problem of
subsonic compressible flow than to the problem of incompressible flow.
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' Equation (54) is written in the form

|y o _1K\[(;—§_)T§5|‘ x-—-§ 1k ( £) §
L + 1k(x —
1 R . (2 Lm ]

and this implies the following oi‘der—of—mgnitude relations:

_ =|y-n]- _4 ¢l
I; 8 —(x - 8) °§Zl G—z-l-+‘1n> at

~1k|y— ~ik|y—n )
I, s H{x-¢) 0m<9——-—| 3| + om<ﬁ____| 2') (57)
| “\ly = n] |y =
Equation (55) 1s written in the form

= |7 § — ; 2 5 N
2 ik x') + x| at
x")2+ §2

= \’ T |
Is = Ra I l i“ (2) K g ) +§2 dx'l dg
—oo (xt)< +

H
no
]

In equation (58), note that, when &k 1e not too small and
when ly - 'ql >> lx - §|,

(2) ' —1K|§|>
Hy k(t]) = 0gl2 : (59)
(1) - 2
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x—§
lRV( ") +§ —i KICI

= Op|&——(x - (60)

0 V )2 §2 I¢l

Neglect the term in equation (60) compared with the term in
equation (59); then,

, — || (2) :
Ip % k5 iz &, ( |C|) (61)

s

Note that this approximation ceases to be correct as K becomes
smaller and smaller. However, when this is the case the contribution
to the total comlng from I, becomes negligible because of the

factor k2 in front of the integral in Ip.

Fina;ly, write for I3
LY f x_g\ ‘1"‘/("") e I
on }\/(X")2 + (y - n)?

X—£

8—in\/(x")2+(y—n)2
o Vx™2+(y-9)?

I3 ____%_le_ﬁo(e)(ly ) + ax'! ' (62)

Now, when n'y - n| is sufficiently large,

LR O] -afm ) o



o L NACA TN 1953

and
'—g s 11 'I ' [,
L [ Rt
R | -l
. o afesgeo] @

Neglectlng the terms in equation (6&) compared with the terms in
equation (63),

2 3 @l i) - 2RO o) (e

Comparison of expressions (57), (61), and (65) shows that the
contribution of Ij to the total may also be neglected. Introducing

then expressions (61) and (65) into equation (53), the following
approximation is obtained

AN

1’ | e ~|y-n| ~
o ~ oA ly -2 in 5 (2) .
St G df dn . Sty f\q F 5 Ho (KICI) at +
R * R *
o) ’ .
e 18 (3 (o5 )| at an (66)

Equation (66) contains the fundemental simplification of the kernel G
in the region Ra*'
\
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Noting that the factor of OA/On in equation (66) does not
depend on ¢, there is written further

xp(n) xp(n) .
g_ldg=.g_ xaé—(x)mg"n—(’rqu(n&?— (67)
xz,(n) b k x,(1) ‘ !

Teke for (X)XL its value zero immediately in front of the leading
edge and for ()‘)XT its value —ivA which follows from equations (35)
and (38). Therewith, and with equations (36), equation (67) becomes
xp(n)
. —ivxp(n) —iv
oM xpln Q-(Ae x’l‘) (68)

s;l-d.§=e dTl
XL(U)

By introducing equation (68) into equation (66), the following equation
is obtained: :

: — v
o - ~ivop d_(, ivep) 1Y —1|{ .2 | in o (2)
S G dt qu e dn(Ae )———y —|* > Ho (nlél) at +

L : —c0

R _*

ink

e Hl(g) Qc|y - nl) an | (69)

Equation'(69) represents the final result of the present section.

REDUCTION OF THE DOUBLE INTEGRAIL OVER

THE WAKE REGION R *

In reducing the double integral over the airfoil region Ra* to
a simpler‘approximate form, use has been made of the fact that the span
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of Rg* 1is appreciably larger than the chord of R_¥. Evidently this
is not the situation for the wake region Ry* and thus additional
considerations are necessary for the integral extended over Rw‘

Proceed as follows. Write the last integral on the right of
equation (50) in the form A '

‘ | © xp(n) o :
. fdg dq:ff dé—f dt| dn "~ (70)
x x -
RS

The second of the two inner integrals on the right of equation (70)
may be treated exactly like the integral over R_*. The first of the

integrals has the property, as will be seen, that it is dependent
on x 1in a simple explicit form.

- Taking the second integral first, there results, in analogy to
equation (56),

xp(n)
4 _(peV¥r) o1V at| dn ~
dn- . .
v [T
d (piver) 1y = n|| 2 in o (2
Sl ) el L g, (,;m) at +
1 [xrp(n) |

x 2 53 (517 - ) coehatan - (72)

X

The remaining integral with fespéct to £ in expression (71) will be
introduced in evaluated form in the final collected form of the results.
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Next the remaining integral in equation (70) is transformed as
follows

g—n(AeivxT) » e—ing(x —t, y—17) da¢| dy

X

4 (Aeivxr) " o1V (x+0)

an G(-0, y = n) do| dy

0

e_ivxf%;(\eivxT>FM(y - 1) dn . (72).

It may be noted that the function FM reduces to the function F

first introduced by Cicala when M =0, that is, when the fluid is
incompressible (references 4 and 5). Combination of equations (72)

and (52) results\in the following form of Fy, .
0
Fy = 'iw’(}(—c, ¥y - n; n) do
L= _aeyfolee
= —!ﬁ_ll-l- E?._é._.._.c_ ._.._...l_._ + iK.> d; +
n . o + §2 Vol + gé
I —Iy—"ll 1n\/‘r2+§
K2 J______— ar +
N R .
- nle—i"J72+(y—”)2 1

+ 1g| Aty do  (73).
. T -m? [\ﬁz v (y - n)° j‘
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Now-equations (71) and (72) are combined in accordance with
equation (70) in order to obtain the followmg approximation to the

double integral over Rw*
%__(Aelvmr)e—ivé(} at an %
M

e~ ivx %T—](Aeivmr) Fu(y — m) dn +

e—ivmr _ g lvx 9__( ivxT) (y - 'r||
iv dq y |

_‘yqnl -
k? i_2n Ho(2)(nl§|) a€ +
.

" = Hl(e)(KIY - n])| an (74)
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THE APPROXIMATE INTEGRAL EQUATION OF THE PROBLEM

Equations (74) and (69) are substituted into equation (50) and
the following approximate integral equation is obtained:

- T
glx,y) = -2 AME,Y)E(x — &5 k) & +

21
XT,
1% A(y)eivxT —ing(x — &; k) dt +
Jrr

~
. ~ 1y |
T ¢ LheMmlioale | 58 (g ¢]) at +

Lx ' y—n

\J —o0

1 2 ~1 & (polVXT) ~ |

Equation (75) represents in preliminary form the result to be
obtained in this report. This result is reduced to a somewhat simpler
form as follows.

Set
ivxp 4 \
Ae =Q (76)

and introduce a new dimensionless spanwise coordinate y* defined by -

y* = R A \ (77)

a1 - M2



30 ' ' - NACA TN 1953

If b represents the semichord at midspan and sb the semispan,
then it follows from the definitions of x and  y - in equation (19)
that the coordinate y* assumes values in the interval (-1,1) only.

Further, set
x,(y) = xp*(y%), XT(y5'= ap*(y*) , (78)

and note that xL*(O) = -1, XT(O) = 1. TFor a rectangular lifting
surface, —xp¥ = xp¥ =1 throughout. .

From equations (51) and (65), there follows for the first integral
on the right of equation (75),

Xq xre -
AMeEas - ¢ ey |-l Eo g @, gy
X1, X1,
. k(x—t) . -
= ¢ )(IEI) at| at (79)

The second integral on the right of equation (75) Ttecomes

e 00

—ive —ivE _ |
e l\})Kdi = e __i_;r_lc_lz_cc___eé_lHl(E)@lx_._ E,l) +
xp xr*
. o(x-¢) _
ime B ANEIES (80)
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The third integral on the right of equation (75) becomes,
. with k from equation (24),

—|y-nl
om0l 2 1% 5, (e1t1) at +

: 1—2" H]_(e)(nly ~ np)| an =

ksM

: —

|7*—
ag |y* — n*|{ xM “Ho(e)(ICD at +

dn* y* — ¥ |1 _ M2

XM

e 1(2)<v—“'°’*"“~") s e

Finally, there is written for the fourth integral on the right of
equation (75),

%ﬁ(/\eivxr)Fm(y -1 .dTl =

1
dQ : [ -___.(y* - n*)] an* (82)

1-
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where the function FM, as defined by equation (73), may be written
in the following alternate form:

x| 5
4 |x] ; —io g M 0%+¢2 1
Fy(x) = — e = + 1M\ at +
' 02 + 2 \[;2
0 —00 + C
{
< /N_ A
. x| ~iMfr2g2
M 2 at) dr +
2 .
— \U—o T+t e
- ) .
1| — MV 2452 1
> 5 .+ jM> dr| do (83)
—o0 T +X T2 + JC2 ) ) .
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Now collect equations (82), (81), (80), and (79) and substitute
the result in equation (75). This gives

25 2 3
XL*

—k(x—¢)
f . HO(Q) (lgl) at| at +

- ~ivE 1x -8 - (2)
EnQ(y) f ° L,atﬁ Er T ( —§,I)+
xr* .

—(x—¢) :
Ho(e)(kl) abl at +

=00

X ,
‘ 's(x,y*) - -L (g, y)iz8 |:—'§: El Hl(z) (le— E.I) +

1

o lVvX aQ keM _ ix

|y*—n*|
e (2)(| () at| -

—00

Vl - \/1 - M2

33

1, (?)
—— y* n*l) +
R M-I Al [ A 2 (\/1 Y |

iks FM[ ks (g% ,l*il . dn | (8%)
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Fi'na]_'l.y, there are introduced dimensionless coordinates x*
and ¢¥ ag follows:

2x—(m11+xI:)

x* = (85)
: *p = X,
80 that the interval x1 < x'< xp goes over into the
interval -1< x*< 1. Further,
Xp — X1, = 2b*
(86)

S(xp + F) = x*

where Db* 1is the ratio of local “semichord to semichord b at midspan,
Finally, the following quantities are introduced:

K* =A b*g
VE = DRy

(87)
@ = ofb*

~Note that, for the rectangular plan form, b* =1, xg* = O and, for
the elliptical plan form, b* = \1 — y*2, x*=0.
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Equation (84) then assumes the following form:

l B
gx(x,y*) = = f AM(ex, X [x(ox — 9] aex 4
' J—1 .
% r()e VO [T (e - )] age s

1
o1V (x*+x¥) ao* { ks

M|~ {y* — n*)| dn* (88)
s\l — M2 P ol {1 Y-

Comparison of equations (88) and (84) gives for the kernels N
and Sy the following expressions:

N(x) = —ix[ixl g (2)(|x|) I 8
= -F|x & By (I¢]) at (89)
M| x|
sy() = 3 AR Lle Buia) 8¢l at| -
1- —00
1 __1.<B_E Fy(x) ' | (90)
1-M

The task from here on is the following. Equation (88) must be
solved for A¥, in terms of g% and Q%. This part of the problem
is exactly as 1n the two—dimensional theory. The function aq* is

~ then to be determined by an integrodifferential equation which is
obtained by expressing 0% 1in terms of A¥* in accordance with the
definition of @¢¥. This part of the problem is similar to the earlier
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work on incompressible flow of references 1, 2, and 6. Finally the
golution of the integral equation for O* must be used to obtain
expressions for the pressure distribution at the airfoil, as affected

" by the three—dimensionality of the flow about & wing of finite span.

The results, as expressed by equations (88), (89), (90), and (83),
include the special case of two—dimensional flow for which dQ*/dn* =
and the special case of incompressible flow for which M = 0. They
also include essentially known results on compressible steady flow for.
which k = 0.

Massachusetts Institute of Technology
Cambridge, Mass., May 18, 1948
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