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SD1M.RY 

The problem of the oscillating lifting eurface of finite span in, 
subsonic compressible flow is reduced to an integral equation. The 
kernel of the integral equation is approximated by a simpler expred-
sion, on the basis of the assumption of sufficiently large aspect / 
ratio. With this approximation the double inteal occurring in the 
formulation of the problem is reduced to two single integrals, one of 
which is taken over the chord and. the other over the span of the 
lifting surface. On the basis of this reduction the three—dimensional 
problem appears separated Into two two—dimensional problems, one of 
them being effectively the problem of two—dimensional flow and the 
other being the problem of spanwise—circulation distribution. Earlier 
results concerning the oscillating lifting surface of finite span in 
incompressible flow are contained, in the present more general results. 

INTRODUCTION 

The present report is concerned with the problem of the osciflating 
airfoil of finite span, within the frame of the linearized lifting—
surface theory. The aim of this study is the development of a theory 
which incorporates simultaneously the effects of three—diniensionality 
of the flow and of compressibility of.the fluid. As an exact solution 
of this problem, even within the limitations of the linearized theory, 
presents very great difficulties, it •is worth while to work toward an 
approximate theory which is valid provided the aspect ratio of the 
lifting surface Is not too smc11. 

-. The author has previously obtained results of this nature for the 
case of Incompressible flow (references 1 and 2). In this earlier 
work the known results for the problem of two .-4imnensional incompressible 
flow were contained as a special case. The present work generalizes 
these results so as to take account of compressibility in the subsonic 
range. Thus the results of this report consist of a system of equations 
which contain as special cases both the author's results for the wing
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of finite span in Incompressible flow and. the results of Posslo's theory 
of two-dimensional compressible flow (reference 3). 

The scope of the present results may briefly be described as 
follows. The starting point of the work Is an Integral-equation 
formulation of the problem of the lifting surface of finite span. 
The integrals which occur are double integrals and. the functions to 
be determined are functions of two independent variables. The essential 
step of the present work Is to replace the actual kernel of the integral 
equation by an approximate kernel in such a way that the double integrals 
are reduced to single integrals over the range of either one of the two 
independent variables. In this way the problem is reduced to two 
problems which are to be solved separately. The first of these two 
problems Is of the same nature as the Posslo problem of two-dimensional 
compressible flow. The second of these problems ie of the same nature 
as the problem of the Prandtl lifting-line theory for the wing of 
finite span in uniform motion. 

As in the theory of incompressible flow, this reduction of the 
double-integral problem to two single-integral problems depends 
crucially on the assumption of 'sufficiently large aspect ratio. While 
9sufflciently large" aspect ratios might be thought to be aspect ratios 
of about three, definite statements of this nature must be based on 
experimental evidence,' as long as no exact solutions exist for the 
three-dimensional problem of the oscillating lifting surface in coim-
pressible flow. 

It Is perhaps worth while to state explicitly that the present 
problem is quite, different from the corresponding problem for supersonic 
flow.

It might also be added that there are reasons to believe that It 
Is not satisfactory, even approximately, to superimpose aspect-ratio 
corrections for incompressible flow and compressibility corrections 
f or two-dimensional flow in order to obtain corrections for the combined 
effect. This latter point Is one of the reasons for the present study. 

In this first report the work Is carried to the point where the 
double-integral equation is reduced to an equation containing single 
integrals only over the quantities to be determined. Further develop-
ments wi3l be given in a subsequent report. 

This work was conducted at the Massachusetts Institute of Technoloy 
under the sponsorship anxl with the financial assistance of the National 
Advisory Committee for Aeronautics'.
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X,Y,Z Cartesian coordinates 

U main-stream velocity in X-direct ion 

t time 

H defined by equation of lifting surface 	 Z = E(X,Y,t) 

u,v,w components of velocity change caused by presence 
of lifting surface 

Ra region in X,Y—plane occupied by projection of 
lifting surface 

p0 density of stream flowing with velocity 	 U 

p,p density and pressure changes, respectively, 
associated with velocity changes	 u, v, and	 w 

a velocity of sound in main stream 	 (a2 = dp/dp0) 

Xrr(Y) coordinate of trailing edge of Pa 

0 potentIal of velocity changes	 u, v, and	 w 

w circular frequency of oscillation 

M Mach number of main stream	 (M = U/a) 

Re real part of 

b a length to be identified with the semichord 
of	 Ra	 at midepan 

k reduced—frequency parameter	 (k = a)b/TJ) 

x,y,z densionless coordinates defined by equation (19) 

function defined by equation (21) 

parameter defined as	 i =
1 -
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parameter defined as i = 

parameter defined as v = k, 
1—N2 

region in x,y—plane corresponding to region Ra 

in X,Y—plané 

coordinate of trailing edge of Ra* 

coordinate of leading edge.of Ra* 

region in x,y—plane consisting of the strip to the 
right of the trailing edge of 

entire x,y--plane except for regions Ra* and R,,* 

function defined by equations (36) 

function defined by equation (37) 

variables of integration in accordance with 
equation (li.0) 

defined by equation (14.1) 

Eankel functions of second kind, and of zeroth and 
first order, respectively 

auxiliary variable of integration 

function defined by equation (51) 

function defined by equation (52) 

functions defined by equations (514.), (55), and (56) 

order of maitude of 

function defined by equation (38) 

function defined by equations (73) and (83)

14. 

V 

Ra* 

xT 

XL 

Rr* 

A 

r

(2) ,1(2) 

K 

G 

In 

On 

x
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a	 auxiliary variable of Integration 

T	 auxiliary variable of integration 

function defined, by equation (6) 

s	 ratio of semispan to send.chord. at midspan 

defined, as	 = i/s\J1 - 

b*	 local semichord divided by seinichord b at nildepan 

a quantity indicating amount of sweep and defined by 
equation (86) 

dimensionless coordinate defined as x = (x - xn*)/b* 

quantities defined by equation (87) 

quantities defined as g*(x*,y*) = g(x,y); X*(x*,y*) = X(x,y) 

N	 function defined. by equation (89) 

SM	 function defined by equation (9O) 

TH BOU1WARY—V.ALUE PROBLEM OF TBE

OSCILLATING LIFTIN3 SURFACE 

It is assumed that a nearly plane, impenetrable surface is put Into 
the path of an inviscid flowing fluid which, except for the effect of 
this surface, possesses a uniform velocity U in the dfrecion of the 
positive X—axis. The impenetrable surface, henceforth calle lifting 
surface, is taken to lie nearly in the X,Y—plane and its equation Is 
written in the form Z = H(X,Y,t).. When H 0 no, disturbance is 
caused. When the lifting surface is not exactly plane and parallel to 
the direction of U the velocity components (u,o,o) are changed 
into (U + u,v,w) where u, v, and w depend on the form of the 
function H and on the shape of the region Ra which is the projection 
of the lifting surface onto the X,Y—plane. 

The disturbances caueed by the presence of the lifting surface 
are assumed to be Rm1 1, in the sense that the differential equations 
and'bouMary conditions of the problem. are linearized with respect to
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the disturbance velocity components 
the pressure and density changes p 
the lifting surface.

u, v, and w and.with respect to 
and. p caused by the presence of - 

Under these conditions the differential equations of the problem 
are the following:

(P 
-	 x'Po 

^U= _uia 

!. +u= __i'L 
Z'PO 

E^E+ o\	 y	 zJ - 

p = a2p 

The quantity p0 in equations (1) to ( ii) is the density in the fluid. 
flowing without disturbance and. the quantity a in equation (5) is the 
velocity of sound. in the undisturbed fluid, that is, a 2 = d.p/dp0. 

The boundary condition of no relative normal flow at the lifting 
surface is satisfied, within the frame of the linearized theory, instead. 
of on the lifting surface itself, on the projection of this surface onto 
the X,Y—plane,

X,Y inside a, w =	 + U
	

(6) 

The form of condition (6) (which holds on both sides of the lifting 
surface) indicates that w is an even function of Z. From equation (3), 
It follows then that p is an odd function of Z and the condition

(1)

(2)

(3) 

(4)

(5)
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that the pressure disturbance p is continuous, except when passing 
across the lifting surface, means that for Z = 0 and. 

X,Y outside Ra, p = 0	 (7) 

On the basis of conditions (7) and (6) the problem may be considered 
to consist in the determination of u, v, w, and p in the half 
space Z 0 with the boundary Z 0. 

In addition to conditions (6) and (7) the following further 
conditions are prescribed In order to obtain an unambiguous solution. 
At the trailing edge of the lifting surface, 

x = (y), p Is finite	 (8) 

Finally, it is postulated as a condition "at infinity" that enerr is 
traveling outward without reflection, in a manner to be defined more 
precisely in what follows for the case of simple harmonic motion. 

VELOCITY—POTEITI.AL FQRMULATION OF ThE PROBLEM 

It can be shown that the problem may be solved as stated In 
equations (1) to (8) by means of a velocity potential 0, in terms 
of which

u=

.(9) 

Combination or equations (9), (i), (2), and (3) results In the following 
expression for the pressure change p: - 

°\t	 x)

	
(10)
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Combination of equations (10), (5), (9), and (4) results in the 
following differential equation for 0:

2
= 0	 (ii) 

x2 	 y2	 z2 a2't	 XJ 

Equation (ii) is to be solved in the half space Z > 0 subJect to the 
following boundary cOnditions at Z= 0: 

X,Y inside. Ba,	 =	 + U	 (12) 

	

z	 t 

X,Y outside Ra,	 + U	 0	 (13) 

x. =	 (y),	 ^ U	 is finite	 - (i4) 

and subject to the condition of no enerr reflection "at iafinity." 

In what follows attention' is restricted to the case of simple 
harmonic motion and the following equation is written: 

Ø(x, y,z,t) = eØ(X,Y,)	 (35) 

with corresponding. expressions for fl and p.1 

11t is perhaps not entirely superfluous to indicate 'that this, is 

1neant in the sense that, corresponding to a surface equation Re(etH), 

there is a pressure distribution Re(ei0)t).



NACA TN 1953 

Equation (U) now assunies tlie form 

32Ø	
_JJiLJ+	 2._ 

a2,	
u)Ø=o	 (16) 

Equation (10) becomes

=_Po(iiCØ-fU)	 (17) 

Now the following d.imenBionless variables and. parameters are 
introduced:

a

(i8) 

k -
U 

b 

y=fi_M2	 (19) 

z = Ii - M2 z 
Y	 b 

The differential equation (16) then assunies the form 

- _____	 0 = 0	 (20) 
i_142 x 1—M2



10	 NACA TN 1953 

Equation (20) is reduced further, for the purpose of eliminajing 
first—derivative terms, by the following substitution: 

0 = e 4 ir	 (21) 

Choose

2 Mk	 (22) 
1M2 

and obtain as the equation for Ir,

(23) 

where

(2k) 
1_N2 

Now	 and the boundary conditions must be expressed in ternis of 
the new independent variables x, y, and z and in tern's of the new 
dependent variable- 4c. 

Proni equations (17) and (19), it follows first that 

pUt—	 "' 
= __2_(.i +
	

(25) 
-	 b 

Combination of equatIons (25) and (21) gives

(26)
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where V is defined as

(27) 
1—M2 

The boundary con1ition (12) becomes 

-	 U	 e_tki +	 (28) 

	

x,y inside Pa*,	 -	 - 

where Ra* is the region in the x,y—plane corresponding to Ha in 

the X,Y—plane. 

The boundary condition (13) becomes 

x,y outside Ra*, ivp +	 = 0	 (29) 

The condition of finite pressure at the trailing edge is now, 

x = x(y), iV* +	 is finite	 (30) 

Finally, the condition of no ener reflection at infinity is written 
ir the form

—iicr 

	

z-oo,	 fx,y,z)e	 (31) 

where r2 =	 +	 + z2 and where f tends to zero as z tends to 

infinity.2 

2lhis ensures that Ø fet1') as z tends to infinity 
and therewith that waves are traveling away from the source of the 
disturbance.
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The boundary condition (29) is made more specific in the following 
manner. From condition (29), 

*(x,y,O) = c(y)e 1'	 (32) 

For any line y = Constant which does not pass through Ra*, it can be 
concluded from the condition of undisturbed flow at c = - 
that c(y) = 0. The same can be said for that portion of any 
line y = Constant which Is situated in front of the leading edge 
of the airfoil region. The situation is diff.erent for portions of 
lines y = Constant which do pass through Ra* and which are to the 

rear of the trailing edge of Ra*• The region to the rear of the 

trailing edge and bounded by lines y = Constant which are tangent 
to Ra* is called the wake region and is desiiated by Rv*. The 
exterior of the region Ra* and. R* Is called the remaining region 
and Is designated by R.*. Then c(y) = 0 in R1.* and, in general, 
c(y)	 o in :R*. 

Equation (29) is thus seen to be equivalent to the following two 
equations:

x,y inside Rr*, r =	 (33a) 

x,y inside Rw*, 4r = c(y)e_iVX	 (33b) 

There is now introduced a function A defined by 

A(y) = 2'If[p(y),y,O]	 (34) 

Equation (33b) can then be written in the form 

x,y inside Rw*,	 = _!A(y)e1\)kNx)	 (35) 2
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In view of equations (33a), there may also be written 

A(Y) = 2 I	
41(x,y,O) dx	 (36) 

JIL 

where XL(y) is the coordinate of the leading edge of the airfoil 

region Ra*

SUNMARY OF THE HESULTAI1T BOUNDARY—VALUE PROBLEM 

Before proceeding with the solution of the pro11em as reduced in 
the foregoing section of this report Its fin.al formulation is reca-
pitulated. as follows. 

Determine the solution of the differential equation 

V2V+ C2* O	 (23) 

in the half space z ).O subject to the following conditions at z = 0: 

x,y inside Ra*,	 = g(x,y)	 (28a) 

x,y inside	 = _.A(y)e1Vt_1)	 () 

x,y inside Rr*	 =	 (32b) ,	 •	 V 

x = xrj (y),	 ! is finite	 •	 (29a) 

and subject to the following condition at infinity: 

•11f 
= fe	 (31a) 

where f = 0(z) and where r2 =	 +	 + z2.
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Various quantities occurring in these equations are defined as 
follows:

g(x,y) = Ue	 (i +
	

(37) 
i—N2	 I 

A(y) = f X(x,y) dx	 (36a) 
JXL 

X(x,y) = 
2 V(x,y,O)	

(38) 

The parameters c, L, and V are defined by equations (211. ), (22), 
and. (27), respectively. The region Ra* follows from the airfoil 

region a by multiplication with a scale factor 1/b In the 

x—direction and by multiplication with a scale factor 	 -	 in 
the y—direction. The region R* is the strip extending from the 

trailing edge x = xrr to x = 00, and the region R..* is the 

remainder of the x,y—plane. 

The solution of the bound.ary—value problem is to be used to 
calculate the pressure—change amplitude a at the lifting urface 

in accordance with the relation 

= _.e	 e411(iv4r +

	 )Ra*	
(39) 

which follows from equation (26). 

The srlution of the problem as summarized will be approached 
through its reduction to an integral equation for the quantity X as 
defined by equation (38).
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AN flITRAL REPRESEWTATION FOR TBE VALuES OF '/z 

In this section it is proposed to derive a formula for the values 
of */z, for the purpose of setting up the basic integral eqi.ation 
of the problem under consideration. To begin, results are taken which 
in essence are known and then are transformed in a way designed to 
facilitate the subsequent transition from the exact double—integral 
equation of the problem to the approximate integral equation containing 
single inte.grals only. 

The first formula is a representation of the values of I'/x in 
the interior of the half space. z >0 in terms of the values of I'/x 
on the boundary z = 0 of the half space, as follows: 

*= 1	 ___ 

r )	
(4o) 

In equation (40) and in all that follows, 

r2 = (x -	 ^ (y .)2 ^ z2	 (41) 

and the quantity X is according to equation (38) given by 
2 f(,ii3 O)/ . It is noted that this representation of	 V/x 
ensures that the conditions at infinity as expressed in equations (31) 
are satisfied. 

From equation (40), it follows that 

____ 

1	 _____ 
____	 —itr\1 

	

= 

-Jj X(,)(e 
r	

d. drj	 (42) 

If it is now observed that the quantity. r- e—iKr is a solution of 
the differential equation (23) for r, then equation (42) may be 
written in the alternate form 

____ —1	 PP 
x(,1. )(; + 

= 4i	 tiLl	 \x
+ 

2 c1	 dr	 (14.3) r ,, -	 XZ
/
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In equation (li.3), it Is noted that 2/y2 = 	 and the term in 
question is integrated by parts ith respect to i. In addition to 
this, by making use of the obvious Identity 

= X(,y) + [X(,r1) - 

equation (11.3) is written as follows: 

	

____ —1	 ____ 

	

xaz =	 di	
+ 2)(e) &	 - 

[A.(,i) -	 ,)](_ + 2)(e1'') d dt1 - 
- 

	

1	 x (e"\ d i;:;JJ .	 r )	 th	 (1) 

In the first integral on the right of equation (14.11) the integration 
with respect to	 may be carried out explicitly. When the remaining 
two integrals are absent, there is thereby obtained the appropriate form 
of the integral relation (11.11.) which would follow If two—dimensional flow 
had been assumed from the beginning. 

The following formula expresses the integral in question in terms 
of a Eankel function

+z fl°°	 _i4(x_-)2+(y—t)2 2
	

(2)[4	 2	 2 1 

	

e	 d = infl0	 (x -	 + z j (11.5) 

d_ (x -	 + ( - ) 2	 2 +z 

The next step isto reduce the second integral on the right of 
equation (1i1t) to an integral involving. 3X/r1. To this end, there is 
written

[x() - X(,y)1	 d =f +f	 (6)
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The two integrals on the right of equation (li.6) are integrated. by parts 
and. the constants of integration are chosen in such a way that the 
integrated portions vanish. Mter some elementary transformations, 
this leads to the fo1lowiiig formula: 

- X(,y)] 
e_i	 _2^(y_2^z2 d. 

= 

J + (y -	 ^ z2 

Iy—gI 
y — T	 -

e_1(x_)2+z22	 1 d () 
\/(x_)2^z2+2 j 

Equations ( li-5) and. (11.7) are introduced, into equation ('i ll.) and. the 
following relation is obtained: 

!f	 + 2)[i1t (2)(( -	 + 2)] a + 
- 2ii 

1 rr	 _________ ,2)	 e_1_2+z22 
________________ d + 

JJ 

[eX+Z+ 
- )2 +	 + (Y -

	
d &	 (8) 

The final step now consists in integrating equation (8) with 
respect to x between the limits —oo and x. The condition of
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Undisturbed flow far in front of the lifting surface makes 	 */z)	 = 0. 

There is then obtained the relation 

r --1 p 
- J 

x(Y)(f	 (2)[J( -i + 2]} + 

-	 + z2]	 d + 

•1 PP	 -	 flH-I
_________________ + 

JJ	 -,	 (_ )2
	 2•+ 2 

=	
2 

P [-1-1	
d] dx' + 

+	 + 

flx [ 14(Is_)2+z2+(y_)2 ] 
dx' d di	 (49) J	 L _(xIL)2+z2+(y_)2	 J 

Equation (li.9) expresses the values of f/z for z > 0 in terms 
of the values of x(,i1) = 2 f(,rj,O)/	 and. is thus the result, the 
attainment of which was the aim in the present section. 

T INrRAL EQUATION OF THE osCIr.LATn LITfl SURFACE 

The inte'al equation of the problem is obtained by substituting 
the information contained in equations (28), (32), and (35) in 
equation (49) and. by then letting z tend to zero. In so doing the 
integrals which contain infinities in the injegranLl are to be 
interpreted as Cauchy principal values. This latter step has been 
discussed in detail for the case of incompressible flow in reference 1. 
No additional difficulties in this regard are encountered for the 
present problem of compressible subsonic flow and the explicit 
justification for this step is therefore omitted. in the present report.
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The integral equation of the oscillating lifting surface in 
subsonic compressible flow is thus of the following fOrm: 

pxT(Y) 

g(x,y) =

	

	 X(,y)K[(x - ); ] d + 
2i

LJ'L(Y)

flco 
A(Y)e1TT) I	 -iv 

	

2ii	
e	 K[(x - ); ] d. + 

JXT(y) 

	

1	 G[(x—), (y—); K]dd_ 

Ra* 

PP	 iVJ)	 Gx - ), (y - ); ] d	 (50) Ae	 e 

Rw*	 - 

The kernels K and G are of the following form: 

K=-[-!.U2)(Ix_ i)] + 
x L2 

2	 - I) c?	 (i)
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P-Iy-iil	 1	 2 2 

	

G =	 - __	 I	 e'V	
d + 

Y- 1I [X 
J	 Vx-)2+2 

N r-i-i e_1(_)22 d
	 + 2 

j j	 V(x' - )2	
j 

rx ______________ 

_)2 (y)2 

	

J	
clx'	 (52) 

Equation (o) holds when x and y are inside Ra* and. is to be 
solved for X, in terms of A and g, where A and g are defined 
by equations (36) and (37), respectively. 

For the case of two-dimensional flow, ?)X/)i1 = 0 and the last two 
integrals in equation (50) are absent. The remainder of the present 
work has as its object the derivation of a procedure to take account of 
these last two integrals in an approximate manner which permits the 
calculation of the effect of three-diinensionality of the flow in a 
simpler way than by actually solving the complete equation (50). In 
the derivation of this procedure the integral over the airfoil 
region Ra* and the integral over the wake region P* are treated 
separately.

REDUJTION OF TEE DOUBLE II1TEGRAL OVER THE

AIRFOIL REGION Ra* 

Write

	

J	 -11	
[Y=iIl^I2)^I3] G d d 

	

j11	
-	 ___ 

LitJ

	

Ra*	 Ra*

(53)
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where

	

-Iy-tI e_1	 )22 d
	 (54) 

' =	 - )2 

rx	 -Iy-I	
d	 (55) 12 = 2

	

-	 (x' -	 + 2 j 

	

I _	 t_)2+(y_)21	
t	 (56) 13 

= LI
- 

)2 + (y - )2j 

When dealing with lifting surfaces of sufficiently elongated 
form, that is, with surfaces of sufficiently high aspect ratio, 

-	 >> k -	 over the major portion of the surface. When this 
latter inequality holds, the terms I can, as will be seen, be 

written in such a way that a relatively simple dominant term can be 
separated in each of them. These dominant terms will be used for the 
approximation to be developed. There remains then the question 
concerning the validity of the approximat.on over that portion of Ra* 

where the inequality x - 	 <<	 -	 does not hold. This question 

is answered as follows. It is assumed. that X/r varies sufficiently 
slowly with	 so that in this portion of the' region :Ra* it is 

effectively constant. If this is the case, all that is necessary is to 
take account of the fact that both the kernel G and the approximation 
to G to be obtained are odd functions of y -. r, so that in both 
cases the contribution to the value of the integral coming from this 
portion of	 can be neglected. 

The aforementioned argument is also Implicit in the earlier 
derivations for the corresponding problem for incompressible flow 
(references 1 and 2). There appears to be no reason to..believe that 
this particular argument should be less applicable to the problem of 
subsonic compressible flow than to the problem of incompressible flow.
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Equ.tion (514.) is written In the form 
_j /(_)2+ 2	 -	

+ iK(x - '1 

=	 (x - )2 + 2 [ -	 + 2	 j —Co. 

and. this implies the follovin€ order—of--gnitude relations: 

Ii —(x - ) 
ti—Co	

2	
(i-h- 

+ 1K) 

/ _1KIy_1I\l 
'1	

- ) [(e	 +	 (Ke	
2	 (57) 

L	 /	 \I-I Jj 
Equation (55) is written in the form 

i1_ I Y_) l[i/ 1)0	 x_ e_1(1)22	 1 
'2 

= K2 

J	 +	 )	
tt)2 + 2.	 j _____________ 

dx" J d. 

—Co 

r-I-1 px	 It)22 dc"l d (58) I	 e'' '2 K	 [^2KIl) 

+ Jo	 (x,,)2 + 2	
J J—Co 

In equation (58), note that, when K is not too m11 and. 
when	 - >> -

= ____
(59)



	

J	
_i4(x)2+2 
e _________ dx''

	

0	 V'(xht)2 + (_iI')( - 

-	 e 
-	 II (60) 

12	
2 

J-
it	 (2)() ' (61) 
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Neglect the term in equation (60) compared with the term in 
equation (59); then, 

Note that this approximation ceases to be correct as ' becomes 
smaller and sin11er. HcNever, when this is the case the contribution 
to the total conLin€ from 12 becomes negligible because of the 

factor 2 in front of the integral in 12. 

Finally, write for 13

r-\ _it/(xtt)2+(y_)2 
___________ dx" 

	

'3 
=	 + Jo 

)V(xtt)2 + (y - 2 
- 

	

I -	 (2)(KI -
	 + I	

1 

	

T) 
ix"i	 (62) 

	

-	 Jo	 1(x 1)2 + (y - )2	 J 

Now, when	 y -	 is sufficiently large, 

[(2) (Ky -	 = o11 ( 1	 (63)
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flX_.	
_ilc\kx" )2.(._,)2	 (x - e	

2
J tJO	 -

=	 H111	 (64) 
j 

Neglecting the terni in equation (64) compared. with the terms In 
equation (63), 

'	 - ni)] =
	 - I R()(y -

	 (65) 3[-- 2	 •y-t 

Comparison of expressions (57), (61), and. (65) shows that the 
contribution of Ii to the total may also be neglected. Introducing 

then expreBsions (61) and. (65) into equation (53), the following 
approxiinat ion Is obtained 

ffG dd	 f1(2)(i) + 

Ra*	 Ra*

H1	 (i - ) d di1	 (66) 

Equation (66) contains the fundamental simplification of the 1erne1 G 
in the region Ra*•

21 

anI
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Noting that the factor of x/	 in equation (66) does not 
depend on , there is written further 

f 
XT(T) 

XL(t)	
d =	 I	 X d - (x )	 + (x)	 (6) 

JX](ll) 

Take for ()XL its value zero immediately in front of the leading 

edge and for (x)	 its value —ivA which follows troin equations (35) 

and (38). Therewith, and with equations (36), equation (6) becomes 

rr(11) 

I	

d = e_V(1	 (Ae")	 (68) 

JXL(T) 

By introducing equation (68) into equation (66), the following equation 
is obtained:

r 1 K2 I	 (2)(tI)d + G d th =Je_1 °r (AeT) =	 2 LJ 
a

(69) 

Equation (69) represents the final result of the present section. 

REDUCTION OF THE DOUBLE INTEGRAL O1IR 

THE WAKE REGION 

In reducing the double inteal over the airfoil region R a* to 

a simpler approximate form, use has been made of the fact that the span
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of Ra* is appreciably larger than the chord of Ra* Evidently this 

is not the situation for the wake region R* and thus additional 

consi.deratjons are necessary for the integral extenied over Ru.. 

Proceed as follows. Write the last integral on the right of 
equation (50) in the form 

rr	 r r	 1) 1 
c1 dr = J ix d -	 dj dr	 (70) 

The second of the two inner integrals on the right of equation (70) 
may be treated exactly like the integral over Ra*. The first of the 
integrals has the property, as will be seen, that it is dependent 
on x in a simple explicit form. 

Taking the second integral first, there results, in analor to 
equation (56), 

J (e1) (J () 

e_iG d) d 

I-	 f1-1Y-'ii 
d(iVJ) I -	 2	 i	 (2) 

--o .	 (It) d + 
J 

dr	 TT1 

(JY - DI)]	 d d	 (i) 

The remaining integral with respect to 	 in expression (71) will be 
introduced In evaluated form in the final collected form of the results.
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Next the remaining integral in equation (70) is transformed as 
follows

[C d. (r)	 —iv 
e	 G(x - , y - ) d] d 

Jx 

d (Ae) 
r 
I I	 _iv(x+a)G(, y - ) da] d LJ0e. 

	

= e_1 fF(Ae 1V )FM(y - ) d	 (72) 

It may be noted that the function FM reduces to the function F 
first introduced by Cicala when M = 0, that is, when the fluid Is 
incompressible (references 14 and 5). Combination of equations (72) 
and (52) resultsIn the following form of 

=	 eG(, y - ; K) da 

- IY -	 r eV	
—i—I _j4a2^2 

____	 a	 ae	 /	 +1K 

J°	 {J	
a2+2 a2+2	

)d+ 
- y-1 

K2	 (I 
J —co \1J-0

_iK\/T2+2 \ 
8 ____ d1dT+ 

T2+2	 ,J 

_I KT2+(y) 2 ____________ 
+ i1 dT da (73). 

Iy—Ie	
[2	 2	 I 

U	
T2+(y_)2	 +(y—) -
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Nowequations (71) and (72) a-re combined in accordance with 
equation (o) in order to obtain the following approximation to the 
double integral over 

PP —(Ae 1'°T )e 1"G d dt 
Jjdii 

Rw*

ef (

Ae1 )FN(y - ) d + 

e	 .-.(AeiXT) IY - 711 < 5 elfl0T - —ivx iv	 cl-il	 Y—ii 

[

I	 (2)(II) d + LJ-	 2 

ff(2)(J I iiJ)] d71	 (7k)
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TEE APPROIEMATE IITEGRAL EQUATION OF THE PROBLEM 

Equations (711-) and (69) are substituted into equation (50) and. 
the fo1lowin approximate integral equation is obtained: 

g(x,y) = --	 X(,y)K(x - ; ) d + 

JXL

flco 
! A(y)e' T 	 eK(x - ; ) d + 

r	
e1) l y - I.l2 e	 ___ 

j d1	 - L L	 lo(2II)	 + 

1(2) (I - I)] d -	 e	 reiV)FMd	 (75) Il•t	 Jdii 

Equation (75) represents in preliminary form the result to be 
obtained in this report. This result is reduced to a somewhat simpler 
form as follows. 

Set

=
	

(i6) 

and introduce a new dimensionless spanwise coordinate y* defined by 

y 

s\Jl -
(77)
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If b represents the semichord 'at niidspan and. sb the senhispan, 
then it follows froni the definitions of x and. - y in equation (19) 
that the coordinate y* assumes values in the interval (-1,1) only. 

Further, set

XL(y) = XL*(37), 	 r(Y) '=	 *(y*)	 (78) 

and note that xL*(o) = —1, xT(0) = 1. For a rectangular lifting 

surface,. _XL* =	 = 1 throughout. 

From' equations (51) and (65), there follows for the first inte'al 
on the right of equation (75), 

d =	
[ i	 Ix - 

J XL 	 JXL*	 x -	
Hl(2)(x_ i) + 

P (x-) 
j itK	 I (2)(II) d]d	 (79) 

- 

The second integral on the right of equation (75) becomes 

d =
	

[	

ix = i Hl(2)(Ix -
	 + 

'	 (2)(II) d	 d	 (80)
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The third. integral on the rlht of equation (75) becomes, 
with i froni equation (21k-), 

-_IL2 

r-i-I 

J Ui	 y - [ J-0°	

y (2)()	 + 

lit	 (2) 
KH1 

((Y_I)1d=

ksM 

	

ri	
Iy*_l	 - 

	

J-1	 I*[1_M2j	
2 

th) Iy*	 11*1	 1d4	
(2)(II) d +

	

______	
(2) ( ksN	 -	 d*	 (81) 

l-M2 2	 \Vi-M2	 - 

Finally, there is written for the fourth integral on the right of 
equation (75),

5 
(Ae)FMy - ) d =

(82)
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where the function FM, as defined by equation (73), may be written 

in the foflowin alternate form: 

PC0 

	

FM(x) = J.L I	 —ic	 _iW/a2+2 _______ 

+ i14 d + e	 ___ 

	

j	 J	
^ 2	 +	 ) 

—lxi 
e_T22d\ dT 

+ M2 I	
T2+2 ) 

J-00 _0O 

Ixie	 ________ 
_T2+X2	

1	

) 

dTJ da	 (83) 2	 T2 + x + 
2 

T + 
-00
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Now collect equations (82), (81), (80), ath (79) ami. substitute 
the result in equation (75). This gives 

	

11	 ___ Hl(2)(Ix_ ) + g(x,y*) = -	 P JXL* 

-	 —(x—)	 1 

	

(2) (ii) d	 d + 

_iv	 I	 - i) + 

	

y )	 e	
2	 I 

JZr*

(2) (II)	 + 

I 

	

5—ivx	
ksM lit	 _______ 

	

__	 __	 (ksN 

	

- M2 J d* l - N2	 (2)	 - N2	 -	 + 

	

- keN	 1 
(2.) (lI) dJ - 

-	 V1_M2 FM[ks N2	 -	
()
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Finafly, there are introduced dimensionless coordinates JCM 

afld.	 as follows:

2x_(oi+x	 - .1-i,	
(85 

so that the interval XL X X)p goes over into the 
interval —1 x	 1. Further, 

XT_XL=2b* 1 
1	

(86) 

+ XL) = Xm*J 

where b* is the ratio of localsemnichord to semichord b at m1dsn. 
Finally, the following quantities are introduced: 

= bv
(87) 

Note that, for the rectangular plan form, b* = 1, xm* = 0 and, for 

the efl1pticaJ. plan form., b* = \Ji1.. y*2, Xm* = 0.
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Equation ( 814. ) then assumes the following form: 

= - 5 X*(*,)*N[*(x* -	 d* + 

	

*()e_)*11* 

Lii e
	 *i[*(II	 *)]	 * + 

	

e_iV*(+*) C 1 d*	 ks (y* - 
s1 - M2	

SM[	

M2	 - j 
Comparison of equations (88) and. ( 81i. ) gives for the kernels N 

and. SN the . following expressions: 

Nx =

	

R(2)(,,) - i:2)(11) d] 

P-Mix 
(x) -	 kaM	 l(2)(NIxt) + I	 (2)(,I) - Vi_M2 XL 

ks F(x)
	

(90) 
1—N 

The taslç from here on is the following. Equation (88) must be 
solved for X, in terms of g* and fZ. This part of the problem 
is exactly as in the two—dimensional theory. The function c2* is 
then to be determined by an inte'odifferential equation which is 
obtained by expressing fl3 in terms of X* in accordance with the 
definition of cl*. This part of the problem is similar to the earlier

(88) 

(89)
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work on incompressible flow of references 1, 2, and. 6. Finally the 
solution of the integral equation for * must be used. to obtain 
expressions for the pressure distribution at the airfoil, as affected. 
by the three.-diinensionality of the flow about a wing of finite span. 

The results, as expressed by equations (88), (89), (90), and. (83), 
include the special case of two--dimensional flow for which dc*/dT* = 0, 
and the special case of inconipresèible flow for which M = 0. They 
also include essentially known results on compressible steady flow for. 
which k = 0. 

Massachusetts Institute of Technoloy 
Cambridge, Mass., May 18, l98
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