
CASE FILE 

NATIONAL ADVISORY COMMITTEE 

FOR AERONAUTICS 

TECHNICAL NOTE 1970 

METHODS OF DESIGNING CASCADE LADES WITH PRESCRIBED

VELOCITY DISTRIBUTIONS IN COMPRESSIBLE

POTENTIAL FLOWS

By George R. Costello 

Lewis Flight Propulsion Lab oratory
Cleveland, Ohio 

Washington 
October 1949

-I



NATIONAL ADVISORY CO4ITI'EE FOR AEEONAIJTICS

TECHNICAL NOTE 1970 

ML'rHOD OF DESIGNING CASCADE BLADES WITH PRESCRIBED VElOCITY 

DISTRIBUTIONS IN COMPRESSIBLE POTENTIAL FLOWS

By George B. Costello

SUIARy 

By use of the assumption that the pressure-volume relation is 
linear, a solution to the problem of designing a cascade for a 
given turning and with a prescribed velocity distribution along 
the blade in a potential flow of a compressible perfect fluid was 
obtained by a method of correspondence between potential flows of 
ccmpressible and incompressible fluids. 

If the prescribed velocity distribution is not theoretically 
attainable, the method gives a way of modifying the distribution so 
as to obtain a physically significant blade shape. 	 - 

TNTRODUCTION 

In order to control boundary-layer growth, transition, and 
separation in the design of a cascade for a given turning, it is 
advantageous to prescribe the velocity along the blade as a func-
tion of the arc length along the blade and then to compute the 
blade shape. For the case of an incompressible fluid, several 
solutions to this problem have been obtained. (See references 1 
to3.) 

A similar solution for the two-dimensional potential flow of 
a compressible perfect fluid has. been developed at the NACA Lewis 
laboratory. This solution is based on the assumption that the 
pressure-volume relation is given by a linear approximation to the 
isentropic curve instead of the true curve. The flow pattern of 
the compressible fluid is obtained by a transformation from a cor-
responding flow of an incompressible fluid using the transformation 
developed by Lin (reference 4). 

The method of solution consists in using the free-stream 
velocities upstream and downstream of the cascade and the prescribed 
dimensionless velocity distribution along the blade to select a 
suitable incompressible potential flow about the unit circle and
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then to determine the mapping function that transforms this incom-
pressible flow into a compressible flow about a cascade of airfoils. 
The image of the unit circle under this mapping gives the cascade 
with the prescribed velocity distribution along the blade, provided 
the velocity distribution is theoretically attainable. If the veloc-
ity distribution is unattainable, methods are given for modifying the 
distribution so that a physically significant profile is obtained. 

SYMBOLS 

The following symbols are used in this report: 

A,B,C1 ,C2 ,D complex constants 

a1,a2 location of complex sources in 	 -plane 

c() function of	 defined by equation (44) 

d spacing of cascad.e 

F() complex potential function (incompressible flow) 

f() regular function of 

g(	 ) regular function of 

u(	 ) regular function of 

Re H() function of	 defined by equation (59) 

Im imaginary part 

K(e) function of	 e	 defined by equation (49) 

2q1 
K constant equal to

l+l+q1 

_______ 

2q2 
K constant equal to _______ 

l+1+q2

k	 constant defined by equation (33) 

n	 number determined by included trailing-edge angle 
of blade 
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p	 pressure 

Q(s)	 auxiliary function of s 

q magnitude of dimensionless velocity in compressible-
flow plane (ratio of actual velocity to stagnation 
velocity of sound) 

q1e	 dimensionless velocity upstream of cascade 

q2e	 dimensionless velocity downstream of cascade 

B region in	 -plane	 defined by	 RI ^ 1 

Re real part 

r number defined by equation (23) 

s arc length along blade 

v(9) velocity on unit circle (incompressible flow) 

z = x + iy complex variable (compressible-flow plane) 

a angle of velocity in compressible flow (measured from 
positive	 x-axis) 

r circulation (positive counterclockwise) 

y ratio of specific heats 

8 included trailing-edge angle of blade 

=	 + ii complex variable (incompressible-flow plane) 

9 circle angle (incompressible-flow plane) 

auxiliary variable defined by equation (37) 

p density 

I var..ab1e of integration 

velocity potential 

* stream function
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Subscripts: 

c	 compressible flow 

I	 Incompressible flow 

n	 leading edge 

t	 trailing edge 

Prime Indicates a derivative. 

THEORY OF METHOD 

In reference 4, LIn has shown that if the pressure-density 
relation is

C2 
p=C1 --	 (1) 

then the compressible potential flow about a cascade of blades can 
be obtained by transforming the incompressible flow about the unit 
circle In the following manner. The complex potential function F() 
for the incompressible flow due to two complex sources at 	 = a1 
and	 = a2 outside the unit circle.	 = 1 is 

F() =.A log(-ai ) + loge .
	

+ B log(-a2 ) + B loge	

,)+ 
D 

(2) 

where A and B are complex constants with Re A ^ 0 and 
Re A = - Re B, and D is an arbitrary complex constant. The bar 
indicates the complex conjugate. The mapping between the z-plene 
and the -plane defined by 

= g() (-aii' (a2 ) 1 d	 t(2 L( )i 1 (-ai) (-a2) d 

gives a compressible flow with the linear pressure-volume relation 
past a straight cascade of identical blades In the z-plane with 
the velocity potential	 and stream function '

	 given by 

+	 = F()	 .	 (4)

r-. 
I-I
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provided that g( ) is chosen to satisfy the following require-
ments:

(a) The function g() is regular in closed region R 
defined by	 ^ 1. 

(b) The function g() 0 in R, except possibly at 
one point on the circle where F'() = 0. (The order of 
the zero not to exceed 1.)	 (5) 

(c) Along the circle RI = 1,	 dz = 0. 

(d) The function g() satisfies the inequality 
1 

( al) (-a2) <2	 in B. 

The magnitude q and the direction a. of the dimensionless 
velocity at any point in the z-plane are given by 

2q	 -icx. _______________ 

I	 2	 =	 g()	 (6)

1 +\/l + q 

In order to use this transformation in designing a blade with 
a prescribed dimensionless velocity distribution along the blade 
in a cascade, the prescribed conditions are used to select a suit-
able incompressible flow about the unit circle and to determine the 
function g(). 

The prescribed conditions are the velocity distribution on the 
ia.1 

airfoil, the upstream velocity q1e	 ad the downstream velocity 
ia.2 

q2e . The upstream and downstream velocities are related: by the 

isentropic-flow equations with y = -1. This relation is 

q22 cos2a.2 - q12 cc2 

2	 -	 2	 .	 (7) 
1+q2	 l+q1 

where the axis of the cascade has been taken along the y-axis for 
convenience and the flow is from left to right. (See fig. 1.)
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Flow in Circle Plane 

The flow of an incompressible fluid about the unit circle is 
selected by determining the constants A, B, a 1 , and a2 in 
the complex potential 

F() = A log(-a1) + loge	 + B log(-a2 ) + loge (-	 + D 

	

\ alj	 \a2/ 

(8) 

from the given conditions. The constants A and B are obtained 
from the upstream and downstream velocities and the circulation 
and then a1 and a2 are determined by the range of the potential 

on the airfoil. 

Circulation and cascade spacing. - The magnitude of the pre-
scribed dimensionless velocity q along the airfoil is given as a 
function of the arc lengths [q = q(s)] where the total arc length 
is taken to be 2it and Is measured from the trailing edge along the 
lower surface. If Q(s) is defined by 

Q(s) = - q(s)	 0	 n
(9) 

Q(s) = q(s)	 5n <	 2 ) 

where s Is the leading-edge stagnation point, then 

() =f Q(s) ds	 (10) 

1_'C =	 Q(s) ds	 (11) 
Jo 

The circulation and the spacing of the cascade are related by 

F 
d=— •	 C	 (12) 

q1 sin a1 - q2 sin a2 

where d is the spacing. The quantities c' q1 , q2 , a-i , and 
a2 are known so that the spacing is determined.
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Determination of A. - The value of . d from equation (12) is 
used to evaluate A and B because the spacing is also given by 
the absolute value of 'dz taken along a path around a 1 or a2. 

(See fig. 2.) The axis of the cascade has been taken along the 
y-axis so that

id=	 dz=-	 dz	 (13) 
tJa1	 Ua2 

The second equality comes from the fact that the residues at imf in-
ityof

g()(-a1)1 (-a2) 

and

[F'(i]2 [g()] 1 (_a)(_a3) 

in the expression for dz in equation (3) are zero and consequently 

cdz+{ dZ+c dz=o	 (14) 

where c is the unit circle. But by equation 5(c) 

dz=0 

so that

cdZ=_cdZ	 (15) 

The evaluation of equation (13) in terms of the potential F() 
is

r	 g() -
	

d -	
[F'(2 (-a1)(-a2) 

id =	 ______________________ 

'a	
a1)( a2	 4J	 g()	 d (16) 

1	 a1
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But

	

= A +
	

+ B	 _____	
(17) -a1	 _=_	 -a2	 _=_ 

a1	 a2 

so that equation (16) reduces to 	 - 

g(a1)	 1 [A i_a2)1 2i
	 (is) id=2,d.	 -- ______ 

(a1-a2 )	 4 [g(a1) j 

[ g(a1)	 f (al_a2)1 
=21ci1,	 '+--	 (19). Ll_a2) 	 g (a1) j 

At	 =a1, equation (6). becomes 

2q1	 - A(a1-a2) 

I	 2	 - g(a1) 
l+rtjl+q1 

which on writing
2q1 

reduces to

g(a1) = -±-
	 (20)

(a1-a2 ) K1 

Substitution of the values from equation (20) in equation . (19) 
gives

id= 2i	 elal +	 e)	 (21) 

Hence,the bracketed expression in equation (21) must be a real 
number and	 .

4A+AK 2	 -i	 . 

1
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-	 'where

2 f4+K12	
2 

1/4-K12	
2 

r =	 Re A) + 4K Im A)	 (23) 

From equation (22)

(4-K12) Lu A - 

(4+K12 ) 
Re A - - tan a1 

or

4+K2 
Im A = -

	

	 2 Re A tan a.1	 (24) 
4-K1 

mi A = - ,ji 2 Re A tan cx2	 (25) 

which gives the relation between Re A and. Lu A. 

Substitution of the value of Lu A from equation (24) in 
equation (23) yields

2	 2 
2 (4+K12'\	 2	 (4+K12'\	 2	 2 
r = k 4K1 ) Re A + 4K1 ) 

Re A tan a2 

/ATP2\2 
_____	 2	 2 

Asec a2 

or

4i-K,
BeA sec 

4K1 

• Hence 
•	 4+K12 

d = 2	 Re A Isec a2I)	 (26)
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Substitution of the value of d from equation (26) in equa-
tion (12) gives 

	

2 ç

/4+K12	 ______________________

	

____	 r 
4K1 Re A I sec a1 = q1 sin	 - q2 sin 

or

4K1 r 1 c0s a.jj 
ReA=

	

	 (27) 
2n (4+1(12 ) (q1 sin a1 - q2 sin a2) 

and. Re A is now determined. By use of this value of Re A in 
equation (25), Im A is obtained. Hence A is completely given 
by equatIons (27) and (25). 

Determination of B. -. From equation (13) 

id=ycdz 

g(a2)	 1	 (a2-a1) 
id=-2,ri	 - 

(a2-a1 )	 '*	 g (a2) 

2	 2t 
=-	 --	 2e 

= - 2I [K2 ) ei 

where

2q2
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The bracketed expression must be real, so that 

(4-K22 ) Im B - 

(4+K22 ) Re B - - tan ci.
2	 (28) 

But

BeB=-ReA	 (29) 

and equation (28) can be written 

4+K22 
ImB=	 ReAtanct2 

4-K22

(30) 

Consequently, B is determined by equations (29) and. (30) because 
Re A is known from equation (27). 

Determination of a1 and a. - After A and B are known, 

the points a1 and a2 are to be selected to satisfy the single 

condition that the range of potential on the circle must equal the 
range of potential on the airfoil, that is, 

(2) - q(s) = F (6t+2 ] - F(e")	 (31) 

where 9j and 8n are the trailing-edge and leading-edge stagna-

tion angles, respectively. This condition is only one equation in 
two unknowns, a1 and a2 ; consequently, the values of a 1 and 

a2 are not uniquely determined. By imposing an additional restric-

tion that a1 and a2 are real and 

a1 = - a2
	

(32) 

unique values are obtained for a1 and a2 in all cases. In 

particular problems, however, some other restriction may be more 
useful, such as assigning a definite value for a1 and computing 
a2.
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With the restriction given in equation (32), it is possible 
to express e and 0 in terms of a1 and substitute these 

values in equation (31), but the resulting equation cannot be 
solved explicitly for a1. 

One method for obtaining a1 is as follows: Let

(33) 

a2 =e'	 J 
where k> 0. Then equation (8) becomes 

F()=A 1og (_ek) + 1og(_e_k)+B 1og( é1 )+ 1og(-e).+ D 

.	 10 

	

or, for points on the unit circle 	 = e

16 k 10(e -e)(e -e F(e10 ) =	 (e) + ii1 (e) = Re A loge	
10 k ) iO _k) (e +e (e +e 

10 k	 10 k 
e -e	 e +e 

I Lu A log5 eiO_e_k + I Im B 1O eie+e + D	 (34) 

Hence, cp(e) may be written in the form 

1 cos 0. 
(0) = -2 Re A tanh cosh k + ( A + Im B) tan tan e 

tanhk 

(Im A - 1mB) tan1 	
0	 1 COS 

+2ReAtanh	 - 
sixth k	 cosh k 

(Lu A + Lu B) tan tan 0 - (Lu A - liii B) tan sin 6t 
tanh k	 sinh k

(35) 

where D has been chosen to make q.(e) = 0 and the angle con-
vention is

<tan15lflO <! 
2	 slnhk 2
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and tan	 is taken in the same quadrant and. same direction 

as 9. 

The velocity on the circle v(9) Is 

v(9) = 2Re A sinO cosh k + LLnA + 1mB) tanh k sec 2 9 +

cosh2 k - cos2 e	 tanh2 k + tan2 9 

sinhkcos9 
(Lu A - mi B)

k + sin2 9 

2 
= 

(cosh 2k - cos 29) [aIe A sin 9 cosh k + 

(Lu A-Im B) cos 9 sixth k+ (Lu A+ Im B) sinlik cosh

(36) 

Equation (36) can be further simplified by defining	 as 

-	 tn _(LuA-ImB)slnhk a	 -	 2fleAcoshk 

Then 

v(9) 
= 2r\J4Be2A cosh2k + (Lu A-Im B) 2 sinli2 k r 

cosh 2k - cos 29	 e cos + 

(LuA^ImB) sinhkcoshk cos e sin ? + _______________________________________ 
4Be2A cosh2 k + (Lu A - Lu B) 2 slnh2k] 

- 2 \J4Re2A cosh2 k + (La A - Lu B) 2 auth2 k 
-	 cosh 2k - cos 2e	 (9 + X) + 

(La A liii B) . cosh k sixth 

4 Be2A cosh2 k + (Lu A - Lu B) 2 sinh2 k]	

(38) 

The staiation angles e. and	 are therefore the roots of the

equation
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sin(6+) =	 -(Lu A + Lu B) sinh k cosh k	 (39) 

A14 Be2A cosh2 k + (Lu A - 1111 B) 2 sinh2 k 

The desired value of k is obtained as follows: 

(1)Assume a value of k. 

(2)Compute X by. equation (37). 

(3)Obtain	 and	 from equation (39). 

(4)Compute q 1 (e+2) - cp1(e). 

(5)Repeat (1) to (4) several times to obtain a plot of 
cpj( e +2n ) - q 1 (0) as a function of k.. 

(6)Interpolate to obtain k such that 

it+2 ) -	 = %(2t) - 

With k determined the flow about the circle Is known. The 
potential q,1 (e) and velocity v(e) for points on the circle are 
given by equations (35) and (38), respectively. 

Function g() 

The function g() can be computed for points on the unit 
circle by usingthe prescribed velocity on the airfoil end the 
velocity on the unit circle to determine the real part of g(). 
The imaginary part of g() can then be computed by Poisson's 
integral. Because of the restrictions imposed by the given con-
ditions, however, g() is actually obtained in a slightly dif-
ferent manner, as shown in the following sections. 

Airfoil with pointed trailing edge. - If an airfoil with a 
pointed trailing edge is desired, then g() must vanish at the 

iet trailing-edge staatIon point 	 = e . Hence, g() can be 
written In the form

ie 
g)	

(l e 

t\ f() =	 -	 ,,)e	 (40)

H 
H
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where f() is regular in the exterior of the unit circle and 

-	 n=l-	 (41) 

where B is the included trailing-edge angle of the airfoil. 
(See reference 4.) 

Values of g(±ek). - Because the velocities are given for the 
compressible flow upstream and. dxwnstreazn of the cascade, the 

	

value of g() at	 = ±ek is determined from equation (6), 

k	 2ekAe1 g(e)=

(42) 

k	 - 2ekBe2 g(-e)= 

In order that g() have these values, f() is written in 
the form

/ 2k	 -2k 
f) = c() + e -	 2 

-e	 I H()	 (43) 

where

	

c()	 1(%	 e = - 1 + 
T) 

loge	
(l_et_k)flj + 

e	 E 2Beia2 + k - 
(1 - )l0e 

L 
(l+et k)n 

iand H( ) is regular in the exterior of the unit circle with 

urn u() = 0	 (45) 

The restriction on H() imposed. by equation (45) is neces-
sai so that f() (equation (43)) will be regular. By use of 
equation (43), g() is expressed as
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/	 i6t\	 it	 2k 2 2 -2k 

	

g() = (i - e	 ) 
eC	 + (e - )( -e	 ) H()	 (46) 

\ 

and. g() will be known when H() is determined. For the actual 
computation of the blade shape, only the values of g() on the 
unit circle are needed. Hence, it is only necessary to compute H () 
for points on the circle. If desired, the values of H () for any 
point in the exterior of the circle can be obtained from the values 
on the circle by Poisson's integral. 

Determination of Be H on the circle. - By equation (4), the 
potentials cpa(s) and cp1 (e) are equal at. corresponding points. 

Thus, by matching these potentials a correspondence is established. 
between points along the airfoil arc and the circle angles; that is, 
s = s(0). By use of this correspondence, the magnitude of the pre-
scribed velocity along the airfoil is obtained as a function of the 
circle angle q = q(9). Hence, by taking absolute values of equa-
tion (6)	 - 

	

2q(e)	 = Ip'(e8) 10 k	 ie k I 

	

_______	 Ce -e )(e +e )I 

1 + Ajl+q(9)2 

for points on the circle. Substitution of the value of g() from 
equation (46) with	 = e 0 and replacing F' (eiO) by the velocity 
v(0) (equation (38)) on the circle give 

2g(e)	 = 

1+ ,/1+(e)2

IV()I (2cosh 2k - 2 cos 20)2 

[2_ 2 cos ( e_e )] 2 e[ C(e
18 ) + (2 cosh 2k - 2 cos 20) Be H(ei0 

or, with the equation solved for Be u(e), 

Iv(8)t (2 cosh 2k-2 cos 20)21 - Be C(eiO ) + 

LK( 0 ) L2 - 2 cos (° - e)]2 J Be H(e10) =
	 2 cosh 2k - 2 cos 29

(48)
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where

2q(e) 
K(e) =	 _______	 (49) 

1 + ,Ji+q(e)2 

Restrictions on Re H(e). - Equation (45) imposes restric-

tions on the values of Re H(e10 ), as shown by writing H() in 
the form

a() =b0 +++ . . .	 (50) 

For points on the circle, equation (50) becomes 

H(e'0 ) = Re E(e19 ) + I Im 

	

= Re h0 +	 (Re hj cos J8 + liii hj sin Je) + 
j=1 

	

i [im	 +	 ( h cos j6 - Re hj sin ie]	 (51) 

EquatIon (51) is a Fourier expansion and 

Re	 =	 Be H(eiø) ae	 (52) 

Re h1 =f2Be 

fl(ele )	 e dB	 (53) 

mi h1 = - f Be H(e16 ) sin e ae	 (54) 

But equation (45) requires that 

Beh0 =Imh0 =Reh1 =Imh,=0	 (55)
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Consequently, Re H(e') must satisfy the equations 

LI 
Re H(e)d6. 0	 (56) 

2ir 

/	 Re H(ele)cos e ae = 0	 (57) 
LJO

Re H(eiO)sin e ae = 0	 (58) 

Adjustment of Re H(e). - If the values of Re H(e) from 
equation (48) do not satisfy equations (56), (57), and (58), the 
values must be adjusted until the conditions are satisfied. One 
method for adjusting the function Is to define ReE(e18) by 

Re ff(e) = Re ll(e iO ) - Re h0 - 2 Re h1 cos 6 - 2 Im h1 sin 6 

(59) 

where Re h0, Re h1, and Im h1 are given by equations (52), 

(53), and (54), respectively. The modified function Re 
will then satisfy equations (56), (57), and (58). This method of 
modifying Re H(elO ), however, changes the velocity distribution 
all along the profile and, if the correction terms in equation (59) 
are not small, these changes in the velocity may be extensive 
because 

	

-	 (1Reh +2fleh1cos9+2Ixnh1sin6) 

	

2q	 =	 2q	 e"2	
0 

1+	 1+ 

where	 denotes the new velocity. In some cases, consequently, 

Re H(ei6) can best be adjusted to satisfy the requirements by 
adding to Re H(e'0 ) odd and even functions that have nonzero 
values only in small neighborhoods of the points 6 = 0 and 
9 = -7t. The particular functions to be added to Re H(e 19 ) and 
their range of values depends on the specific problem; no general 
method can be given for determining the functions.
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Determination of Lu H(e). - After Re E(e) satisfying 

equations (56), (57), and (58) is obtained, the function Im E(ele) 
is given by Poisson's integral (reference 5) 

liii H(e)	 1	
1 

=I Jo i-1

Re E(e) cot (.Ij!)dT	 (60) 

where the constant term in Poisson's integral has been taken as 
zero so that

2ir 
1 Im h0 

= T f flu H(e) de = 0 

as required by equation (55). Hence, H(e) is determined for 
points on the unit circle by 

= Re H(e-) + i fin H(e) 

Adjustment of g(e). - By use of these values of H(e) 
in equation (46), g() is determined for points on the circle, 

g(e19 ) = [i_e e_e)] e[C(e'9) + (2 cosh 2k - 2 cos 2e) H(e10I1 

(61) 

Because of the adjustments in- H(e), g(eie) may no longer 

satisfy condition (5d). If g(eie ) does not satisfy the inequality 
for points on the circle, then the values of g() can be adjusted 
to satisfy the inequality by changing the second or higher harmonic 
terms in H() or by other methods. It should be noted that if 
the velocity along the profile is finite then g() satisfies the 
inequality. In fact, if the prescribed conditions are theoretically 
attainable, then no modification is necessary, not even in Re H(ele). 

Blade Coordinates 

By use of the values of g(e) that satisfy all conditions, 
the blade coordinates are obtained from integration of equation (3), 
that is	 -
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g() 
z Ig(	 k	 k -1	 1	 Ft()2(ek)(+ek) =	 )(-e ) (^e )	 d 

which on replacing Ft(ele) by v(e)e_i(9-I) and writing
I-, 
I-' 

g(e)= g1(e) ig
2 (e)-

reduces to 

= [ [g1 (e) (e2 _e2k ) l - vie )2 aie 2k1 e1 [e++g2(e
ae 4g1 (6) (e	 -e

(62) 

COMPUTATIONAL PROCEDURE 

An outline of the procedure for computing the blade shape is 
as follows:	 - 

(1) Obtain q(s) and	 from equations (10) and (ii), 
respectively. 

(2) Compute Re A, Im A, and Lu B by equations (27), (25), 
and. (30), respectively. 

(3) Obtain k as outlined in the text. Compute q 1 (e) and 
v(e) by equations (35) and (38), respectively. 

(4) Plot %(s) and q,1 (e). By comparing the abscissas for 

equal values of these potentials, obtain s as a function of e, 
which permits writing the prescribed velocity q as a function of 
e, q=q(9).	 -: 

(5) Compute Re H(e-6) by equation (48) and. determine Re h, 
Re h1, and Im h1 by equations (52), (53), and (54), respectively. 
If these values are not zero, then adjust Re H(e) either by 
equation (59) or by addition of functions so that Re H(e 16 ) satis-
fies equatIons (56), (57), and (58). 

(6) Obtain Lu H(e) by equation (60) using the adjusted 

values of Re E(e).
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(7) Obtain g(e) by equation (61). The function g(e) 

must satisfy inequality (5d) for points on the circle. If g(e) 

does not satisfy the inequality, adjust g(ei8), as suggested in 
the text. 

'-4

(8) After g(e) has been adjusted to satisfy all conditions, 
the blade shape is obtained by integrating equation (62). 

DISCUSSION 

The magnitude of the dimensionless velocity along the blade 
cannot be entirely prescribed arbitrarily as a function of the arc 
length, but is subject to some restrictions in addition to the con-
ditions imposed on u() previously discussed. The magnitude 
must be finite everywhere along the profile and by the method given 
here the velocity can be zero in at most two places - the leading-
edge and trailing-edge stagnation points. By a limiting process, 
however, the method can be extended to provide for additional stag-

nation points. The zero of q at the trailing edge is of the 

order , where	 is the included trailing-edge angle of the 

blade. Thus, for a. cusp at the tail,	 is zero and q. need not
be zero at the trailing edge. 

Another restriction is imposed on the velocity distribution 
when the spacing of the cascade, as well as the turning, is speci-
fied in advance because the distribution must be selected so that 

will satisfy equation (12). 

If a velocity distribution is selected to satisfy these con-
ditions but otherwise is arbitrary, the resulting profile may not 
be a physically real blade but may result in a blade with zero or 
negative thickness in some portions of the blade. The negative 
or zero thickness is caused by specifying too low velocities along 
parts of the blade and a physically real blade can be obtained by 
increasing the prescribed velocity along the blade. 

CONCLUSION 

By use of the assumption that the pressure-volume relation 
is linear, a method has been given for computing the blade shape 
in a straight cascade of identical blades having a prescribed 
velocity distribution along the blade and given upstream and
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downstream velocities in a potential flow of a compressible per-
fect fluid. If the prescribed velocity is not theoretically 
realizable, the method gives a way of modifying the distribution 
so as to obtain a blade shape. Whether the resulting blade is 
practical will depend on other considerations. The applicability 
of the method is limited only by the accuracy of the linear approxi-
mation to the pressure-volume relation. 

Levis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, June 7, 1949. 
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Figure I. - Cascade in z—plane.

Figure 2.— Paths of integration 	 —pIane. 
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