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SUMMARY

The spanwise lift distributions of wings of low aspect ratio but of
arbitrary plan form and angle-of-attack distribution have been analyzed
by two well-established concepts: the virtual-mass concept and the
Weissinger method. Both concepts have been found to yield the same
simple integral expression for the spanwise 1ift distribution in terms
of the spanwise angle-of-attack distribution. Tables and figures of
1lift distributions of low-aspect-ratio wings have been presented.
Within certain limitations these distributions are independent of the
plan form. For plan forms with leading edges swept back behind the Mach
cone, the results of the amalysis are applicable at supersonic speeds.

INTRODUCTTION

For wings of very low aspect ratio, of the order of 1 or less, at
small angles of attack the flow may be assumed to be esentlially two-
dimensional in planes normal to the stream direction. (See reference 1.)
In the present paper this concept is shown to lead to a simple formula-
tion of the problem of calculating the spanwise 1lift distribution of
wings of very low aspect ratio for various angle-of-attack distributions
in terms of conditions at bthe widest section of the wing. The same
problem is also formulated as a limiting case of the Weissinger
L-method. (See reference 2.) Some comparisons are drawn between the
assumptions and limitations of the two approaches.

Spanwise 1lift distributions have been calculated for angle-of-
attack distributions which correspond to several symmetrical and
antisymuetrical twists, as well as to the deflection of flaps and
ailerons of various spans. The results are presented in a table and in
several figures.
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SYMBOLS

aspect ratio

wing span (at widest section)
aileron span (total for both wings)
flap span (total for both wings)

chord
dimensionless chord <B§§>
average chord <§>
b
local 1ift coefficient
wing 1ift coefficient (é%)
1ift coefficient on elther half of wing [ L2
e\#/2

induced drag coefficient

rolling-moment coefficient (Rolling moment

aSb

Bending moment

a(s/2)(p/2)

1ift

1ift on either half of wing

vertical momentum of virtual mass per unit length
dynamic pressure

wing aresa

airgspeed

downwash velocity
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oy

gpanwise distance
dimensionless spanwise distance (fraction of semispan)

dimensionless spanwise distance of center of pressure (fraction
of semispan) :

dimensionless spanwise distence at point of discontinuity in
angle of attack

angle of attack (slope of mean-cember surface), radians

angle of attack at tip, radians

501/58)
dcy/oa

flap or aileron effectiveness paramster (

circulation

dimsnsionless circulation (%% or c*cz>

ci1c
loading coefficient (—%r or %Ff)

flap or aileron deflection, radiams
variable of integration corresponding to y¥
trigonometric variable corresponding to y*(cos™l y¥)

variable of integration corresponding to 6

‘sweep angle

ANATYSIS

The Virtual-Mass Approach

According to the theory of reference 1 the disturbance set up by

wings of low aspect ratio at small angles of attack is essentially two-
dimensional in planes perpendicular to the free stream. Ths 1lift on a
spanwise strip of width dx may then be obtained from the time rate of
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change of the vertical momentum of the virtual mass associated with the
given two-dimensional flow

ar = M a4
at

= vaM gx
ax

vV aM

]

where M 1s the vertical momesntum of the virtual mass per unit length.
The 1ift on the entire wing is then

L=V Moy (1)

where Mbmax is the downward vertical momentum at the maximum widtn of

"the airfoil. Any portion of the wing behind the section of maximum
width is assumed to be alined with the wake so that it does not affect
the 1lift. '

Equation (1) indicates that the 1lift depends entirely on the
geometry of the widest section. A physical interpretation of this
equation is that the wake leaves the airfoil parallel to the surface at
the section of maximum width and that the vorticity distribution in the
wake 1s such as to produce the required downwash distribution in any

Plane perpendicular to the wake. The determination of the spanwise 1ift

distribution on the wing then reduces to a problem almost identical in
form with that of two-dimensional thin-airfoil theory and very similar
to but simpler than the classical lifting-line theory.

If the bound circulation on the wing at any spanwise location is
given by the parameter

7= et

end if the spanwise distance is given by the paramster

= _J
y* = 375

B
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and an assoclated variable of integration 1%, then the downwash angle
at any spanwise location y¥ in the wake is given by :

W

v = 2nA\/h dn* y* - n* @)

From the foregoing considerations this angle must be equal to a, the
slope of the mean-camber surface at the widest section. If, furthermorse,
~ the trigonometrical variables 6 and 9 are defined as

6 = cos~1 y*
3 = cos~1 n¥*
equation (2) becomes
L My ad = a (3)
2xA 0 dd% cos § - cos O

Equation (3) may be solved by means of an inversion integral:

ﬂ . 3 +6
o sin =5
= —A\/qa sin 3§ lOg-_—_ﬁTTTE]dﬂ (%)
T Jo sin —5—

For a constant angle of attack, for instance, equation (4) yields an
elliptic 1ift distribution with a 1lift coefficlent equal to g Ao in

agreement with the result of reference 1.

Three-Quarter-Chord Approach

Another approach to the problem of calculating spanwise lift dis-
tributions on wings of low aspect ratio is to consider the limit, as the
agpect ratio goes to zero, of the equations of the Weissinger L-method.
This method consists of concentrating the bound vorticity at the quarter-
chord line, calculating the downwash angle at the three-quarter-chord
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line, and setting that downwash angle equal to the slope of the mean-
camber surface at the three-quarter-chord line. This equation may be
written as '

1 1
Lx 81 *) = dn¥* =
1*ﬂf_l an* y* - n* * Bx a7§f_lF(y*,n ) ane an* = o (5)
where the dimensionless circulation I'* 1is defined as

= i

*
r bv

and the plen-form function F 1is defined, for 7% 2 0, as

F = °*_2n* \}E+(Z*§-}-2ﬂf) 'banA]2 +(;’%}2—’1§2 -1

and, for q*

P

A

0, as

p B i @

- ¥
¥ L 1+ 23£§§ tan A

\](1«»3{7"540@1\)2-»(;55)2 |

tan A

+ 2 tan A

14+ 2c* 2

and where o now represents the slope of the mean-camber surface at
the three-quarter-chord line.

As the aspect ratio approaches zero, the F function approaches
the value tan A, which is constant if the semispan quarter-chord line
ig straight. For instance, all plan forms of figure 1 except that of
figure 1(c) have straight quarter-chord lines. If ¥ 1is constant the
second integral in equation (5) vanishes. Furthermore, the dimen-
slonless chord c¢* approaches infinity and its reciprocal vanishes.
Conseguently, the second term of equation (5) may be expected to
approach zero quite rapidly as the aspect ratio approaches zero.
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If the parameter 7, which is related to the dimesnsionless
circulation I'* by

= Arx
7=5

and the trigonometric variables are substituted in equation (5) and if
the second term is neglected, equation (5) becomes identical with
equation (3), except that o now stands for the angle of attack at the
three-quarter-chord line. The solution for the circulation is then
given by equation (4) as before.

RESUILTS

In order to facilitate the application of equation (4) to cases of
practical interest, the integral of that equation has been evaluated
for several angle-of-attack distributions which can be expressed
analytically as follows: ’ '

(a) The constant angle-of -attack or additional-loading case
analyzed in reference 1

(b) The linear antisymmetrical-twist or damping-in-roll case
previously analyzed in reference 3

(c) The symmetrical- and antisymmetrical-twist-distribution

cages a = at]y*ln in which ai 1is the angle of attack at the tip and
18 considered to have equal and opposite values at the two tips in the
antisymmetrical case :

(d) The flap case in which a = agd from y* = -y.* to y¥ = y *
and o = O elsewhere, agd being the effective angle of attack due to
flap deflection (some considerations involved in the selection of the
value of a§ are outlined in the section entitled "Discussion')

(e) The aileron case in which a = zagd outboard of y* = +ys¥*
and o = 0 elsewhere

The resulting 1ift distributions for cases (a) to (e) are presented
in table 1 and in figures 2 to 5. All results are presented for unit
aspect ratio A and unit angle of attack «, where o« 1is the angle of
attack at the tip Tor the twist cases and is the effective angle of
attack due to control deflection agd for the flap and alleron cases.
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The twist distributions of case (c) may be useful in the analysis
of structural twists. If a structural twist distribution is of the
type considered in case (c), the corresponding 1lift distribution may be
taken from the table or the figures directly. Otherwise, a structural
twist distribution can usually be approximated by the linear super-
position of two or more of the twist distributions covered in case (c).
The 1ift distribution is then given by a superposition of the 1lift dis-
tributions corresvonding to those particular twist distributions.

The results for case (d) may be applied to the case of symmetrically
deflected ailerons by subtracting a flap distribution from the constant-
angle-of -attack distribution for the same angle. Similarly, the results
for case (e) may be used to calculate the 1ift distribution due to
inbeoard ailerons by subtracting the ailleron distribution for the given
value of yo ¥ from the alleron distribution for 100-percent-semispan
aileron.

From the 1ift distributions the 1ift, rolling, and bending moments,
as well as the lateral center of pressure of the wing, may be calculated
in the form of dimensionless coefficients:

]

b1
oL %fo 7 sin 6 48

Q
£
<
N
f

/2
—L/ﬂ 7 sin 6 48
0
n
czz%f 7 sin 26 @6
0]

1 nf2
CBM=-2-fO 7 sin 20 49
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The values of these coefficients for the various angle-of -attack
distributions are given in table 1; the 1ift coefficient due to flap
deflection and the rolling moment due to alleron deflection are also
given in figure 6 as functions of the flap or aileron span ratio.

The induced drag coefficient may be calculated from the conventional
1lifting-line equation since the drag is not affected by the longitudinal
distribution of the 1lift. Consequently,

. | |
CDi:ﬂl'fo ay sin 6 a9 | (6)

For the constant angle-of-attack case equation (6) becomss

c12
op; = 7A
as also given in reference 1.
DISCUSSION

The two approaches to the problem of calculating the spanwise Llift
distributions of wings of low aspect ratio presented in this paper have
in common a&ll the limitations of linear potential theory and are subject
to certain additional inherent limitations as well. These additional
limitations and the effect they have on the validity of the results of
the two approaches are discussed in the succeeding paragraphs.

The validity of the virtual-mass approach has been demonstrated
for the constant-angle-of-attack case in references 1 and 4 and for
the linear antisymmetric angle-of-attack case in reference 5 primarily
by comparison with more rigorous analytical methods. The validity of
the Welssinger L-method for plan forms of low aspect ratios has
similarly been demonstrated for the constant-angle-of-attack case in
references 2 and 4 and for the linear antisymmetric case in reference 5
by comparison with both analytical and experimental results. The
extension of the approach of reference 1 and the specialization of the
method of reference 2 presented in this paper may therefore also be
expected to be valid provided certain conditions of aspect ratio, plan
form, angle of attack, and Mach number are met. ‘

The aspect ratio has been assumed to be vanishingly small in the
enalysis. For the purpose of comparison the lift-curve slopes and
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additional 1lift distributions calculated by the method of reference 2
are shown in figure 7 for various plen forms of aspect ratio 1.5.
together with the values calculated by the low-aspect-ratio analysis of
the present paper, namely an elliptic 1ift distribution and a 1lift-

curve slope of %(1.5) = 2.356.- At en aspect ratio of 1.5 the lift dis-

tributions for the various plan forms -are in fair agreement with the
elliptic distribution and with each other. The lift-curve slopes of
the various plan forms are almost the same and sre about 15 percent
lower on the average than that calculated by the simplified analysis.
This type of agreement does not appear to be sufficient for most
practical purposes. In reference 1, however, the lift-curve slope is
shown to be overestimated by only a@bout 4 percent at an aspect ratio
of 1 as compared with a more exact lLifting-surface method. Consequently,
an aspect ratio of 1 may in general be regarded as the upper limit at
which the results of the analysis of this paper may be expected to
apply .

The virtual-mass concept utilized in reference 1 does not lmply any
plan-form or angle-of-attack restrictions except that the aspect ratio
must be low and that there cannot be any abrupt longitudinal changes in
the span or the slope of the surface. As pointed out in reference 1,
however, it is convenient to apply this concept only to pointed plan
forms such as those shown in figures 1(b), 1(d), 1(e), 1(f), 1(h), 1(i),
and 1(j). Wings with re-entrant trailing edges cannot be conveniently
treated by this method. Furthermore, any part of the wing downstream
of the widest section must be alined with the widest section. Any flaps
and ailerons (such as those shown in fig. 1(h)) must themselves be of low
agpect ratio in order for the low-aspect-ratio analysis to apply to the
wing. '

The Weissinger L-method, on the other hand, applies to all plan
forms except those with curved or discontinuous quarter-chord linss or
discontinuous chord distributions (it does not, for instance, apply to
an elliptic plan form). It has the disadvantage, however, of being
strictly applicable only to uncambered wings. This observation results
from the following reasoning: The Weissinger method is based on the
slope of the mean-camber surface at the three-quarter-chord line at all
agpect ratios. For wings of very low aspect ratio the virtual-mass
concept indicates that the widest section determines the 1ift on the
wing. Consequently, the application of the Weissinger method to wings
~ of low aspect ratio can give correct results only if the wing is
uncambered, so that the slope at the three-quarter-chord line is equal
to that at the widest section.

Consequently, the virtual-mass concept is (for practical purposes)
more restricted as to plan form but less restricted as to camber than
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the three-quarter-chord method. In view of the agreement of the two
concepts in the cases to which both apply, however, slight deviations
from the plan-form conditions of the one or the camber conditions of the
other may be expected to have little effect on the results.

If either concept is used to analyze a wing with deflected flaps
or ailerons, the question arises as to what value to choose for the
parameter ag. According to the virtual-mass concept a particular flap
or aileron angle will be Just as effective in producing 1ift as the same
angle imposed on the entire section; therefore the parameter ag is 1
and the flap or aileron chord ratio does not enter into the problem.
On the other hand, the three-quarter-chord concept is applicable oaly if
the flap or aileron occupies 100 percent of the chord, in which case ag
is again 1. In the more conventional case of partial-chord flaps and
ailerons it might be expected, by analogy to the trailing-edge concept,
that a value of ag between 1 and the two-dimensional value of
about 1/2 should be chosen rather than the two-dimensional value for
the given flap or aileron chord ratio; the determination of the exact
value would require either experimentation or a more refined theory.

The angle of attack has been assumed small in the analysis for
several reasons: At large angles of attack the flows in planes perpen-
dicular to the direction of flight cannot bs considered to be inde-
pendent of each other, the tralling vorticity is not shed substantlally
in the plane of the wing but more nearly parallel to the direction of
flight, and, finally, at large angles of attack the flow separates and
potential-flow considerations no longer apply.

If the leading edge and the sides of the wing (in the case of plan
forms of the type shown in figs. 1(a), 1(b), 1(e), and 1(f), for
instance) are sharp the flow may detach at very low angles of attack.
The flow separation affects both the total 1ift, which assumes a
parabolic variation with angle of attack rather than the usual linear
one, and the 1lift distribution. (See reference 6.) The theoretical
treatment of this phenomenon transcends the scope of this paper; an
analysis of a simple case is presented in reference 7. If the leading
edge and sides are well rounded, the flow separation and the resulting
parabolic variation of the 1lift coefficient and distortion of the 1lift
distribution tend to be postponed to higher angles of attack. At lower
angles of attack the analysis of this paper msy be applied to the
problem.

The virtual-mass approach has been shown to be valid for supersonic
speeds (reference 1), provided the leading edge is swept back suffi-
clently far behind the Mach cone, as well as for subsonic speeds.
Computation of the downwash in the manner utilized in this paper is also
valid at supersonic speeds because far downstream of the cross element
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of a horseshoe vortex the downwash is the same whether the vortex is in
subsonic or supersonic flow. Consequently, the three-quarter-chord
concept may also be expected to be valid at supersonic speeds provided
the leading edge 1s swept back far behind the Mach cone and provided
the angle-of-attack, camber, and plan-form conditions are such that the
analysis of this paper applies. )

CONCLUDING REMARKS

The spanwise lift distributions of wings of low aspect ratio but
of arbitrary plan form and angle-of-attack distribution have been
analyzed by two well-established concepts: the virtual-mass concept
and the Weissinger method. Both concepts have been found to yield the
same simple integral expression for the spanwise 1ift distribution in
terms of the spanwise angle-of-attack distribution. Tables and figures
of 1lift distributions of low-aspect-ratio wings have been presented.
Within certain limitations these distributions are independent of the
plan form. For plan forms with leading edges swept back far behind
the Mach cone, the results of the analysis are applicable at supersonic
Speeds.,

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., August 25, 1949
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TABIE 1.- LIFT DISTRIBUTIONS, LIFT COEFFICIENTS, AND MOMENT COEFFICIENTS FOR VARIOUS ANGILE-OF -ATTACK DISTRIBUTTONS
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Figure l.— Various plan forms of aspect ratio 1.
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