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By Bernard Mazelsky
SUMMARY

The equation of vertical motion for an airplane flying in gusty air
is simplified in order that its solution is a function of only two
parameters, namely, the mass parameter of the airplane and the shape of
the gust the airplane i1s penetrating. The solutions of the equation are
presented 1n the form of charts that can be used for estimating rapidly
and eagily the acceleration ratios encountered by airplanes with
different mass parameters penetrating a sharp—edge gust, a gust of
arbitrary shape, or a triangular gust.

INTRODUCTION

For many problems of gust loads it has been found practical to
calculate the loads as if they were for a rigid airplane restrained in
pitch under the action of the gust. Although previous investigations
have presented solutions for particular mass parameters and gust shapes,
they have not been found sufficiently accurate. In the present paper
the equation of motion has therefore been solved for a large range of
mass parameters to obtaln charts of airplane reactions to specific
gusts and to provide a means for obtaining loads on airplane wings for
arbltrary gust shapes. The charts presented are based on two—
dimensional unsteady—lift curves and a numerical solution of the
equation of motion.

SYMBOLS
dCq,
E_— slope of wing 1ift curve, per radian
Lo}
o} mass density of air, slugs per cubic foot

v forward velocity, feet per second




An(s)/ﬁns
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airplane weight, pounds
area of wing, square feet

mean aerodynamic chord, feet

acceleration due to gravity, feet per second per
gecond

penetration into gust, chords
increment of g wused in numerical solution

normalized unsteady—lift function due to penetration
of a sharp—edge gust

forcing function in recurrence formula due to
pentration of gust

normelized unsteady—lift function for a unit change
of angle of attack

transformed unsteady—lift function (1 — CLa(s))

gust velocity, feet per second

gradient distances of gusts, chords

oW
dac
—Ls
o cg
load—factor increment
load—factor increment as computed by the gust—load
dc
> g Ve

oW

formula

acceleration ratio
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(éﬁiél) acceleration ratio for penetration of a sharp—edge

8 seg gust

T integral of acceleration ratio An/Ang

Subscripts:

max maximum value

m integer denoting m increments of s 1n recurrence

formula (s/As)

it denotes point at which solution applles

DERIVATION AND USE OF CHARTS

The following assumptions are made for stating the equation of
motion:

(1) The gust velocity is uniform across the span and parallel to
the vertical axls of the airplane at any instant.

(2) The airplane is in steady level flight prior to entry into
the gust.

(3) The airplane can rise but does not pitch under the action of
the gust.

(4) The airplane is rigid.

(5) The 1ift increment of the horizontal tail due to the gust and
the ailrplane motions is negligible as compared to the wing 1lift
increment.

The followlng equation for describing the vertical motion of the
airplane 1s written in terms of acceleration ratios:

An(sl) -_ 8, N d(g;:})c) 1 81 An(s)
Ang i 5 Lg(sl - 8) i ds — L_J-EA CI_U'(S]_ - 8) —An—s_ ds (1)

The first term on the right represents the force due to the gust and
the second, the alleviation due to the vertical motion of the airplane.



The values of the load—factor increment Mng

eter Hg may be obtained from the characteristics
its flight conditions by the followlng equations:

and

1
=C (s)__..
LS K

dc
P 75 SUnax
Ay = ———
4 oW
ol oW
g = ————
aCq
B da oL

Sharp—Edge Gust

g
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and mags param—

of the airplane and

(2)

(3)

For a sharp—edge gust (fig. 1(a)), equation (1) can be rewritten

lgl CLa(sl - 8) a(s) da Lkl

Ang

Equation (1) has been solved by a numerical method according to

reference 1 and the solution 1s written in the form of a recurrence

formula.

Utilizing the procedure in this reference and making sub—

stitutions for the unsteady—lift functions gives the numerical solution
of equation (4) in recurrence form; thus,

(=

K ET + Kol 4 K QEL? & CQQ—)

8 8

= W o W 1

S)

(5)
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where

Ty =

B = CLg(m) - CLg(s)

A8 |o/on) 19 (Ao ~5(6n (A_n_
Im—l i 2k l%(AnS)m + . (Ans)m—l y <Ans>m—2 [ Ang

3
K| =
E Y <_9._A_0>]
Hg 2k 3
3
AN
K> e
KlAB (LLA]_ 19)
e Sy (sl T
3 8 ok

(7a)

(7p)

(7¢)

(7d)

(Te)

(7¢)
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b AK)As
K7 = T (78)
Ky = — 16 ()
3ug
and
A =1-0g(s) (8)

Equation (5) 1s evaluated for a range of mass parameters from 10
to 100 and the results are shown in figure 2. In the calculations, the
unsteady-lift functions derived for the two—dimensional wing are
assumed to be made applicable to the finite wing by replacing the slope
of the 1ift curve for the two—dimensional wing by the slope of the 1ift
curve for the finite wing. These unsteady—l1ift functions due to
penetration of a sharp—edge gust CLg(s) and an instantaneous unit

angle—of—attack change Clu(s) for a two—dimensional wing were normalized

from thogse given in reference 2.

Although equation (4) can be solved in closed form by means of
operators, the solution is unwieldy and the numerical method was
adopted for ease in computation.

The inaccuracies incurred in the solution by the numerical method
are principally a function of the mass parameter ug and the
increment As. TFor high values of “g and small values of As the

accuracy of the calculation is increased, conversely for low values
of “g and large values of As the accuracy 1s decreased. When the

recurrence equation was evaluated, the value of As was appropriately
changed for the range of Hg congidered.
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Arbitrary Gust Shape

In order to calculate the response to an arbitrary gust shape, the
response to a sharp—edge gust may be used as an indicial response with
the gust shape as a forcing function in Duhamel's integral. (See
reference 3.) Thus,

(51) d(U(_—)>
anfer) _ 1 fan N\ a gy Nmaxd o
Ang g/O ( s)seg( 5 ) ds ; (9)

Various methods are given in reference 4 for evaluating equation (9)
numerically; however, if the forcing function consists of a series of
straight lines, equation (9) can be modified by the following procedure;
For a linear disturbance starting from s = O with a slope 1/E and
extending to infinity (fig. 1(b)), equation (9) can be rewritten as
follows:

g

An

(s) _ ;/s (An_i_s)) 5 (10)
0 seg

s H Ang

This equation can be evaluated for different mass parameters by merely

integrating the function (QELEQ) for different values of mass param—
Ang seg

eter and multiplying the result by the constant 1/H. In figure 3 the

integrations of the (éﬁ&i%) responses are given for a range of mass
Ang  [seg

parameters. When the ordinates for a curve are multiplied by the

slope 1/H, the resulting response is the solution of equation (10). By

superposition of a series of functions of the type given by equation (10),

this approach may be extended to predict the responses to disturbances of

the type shown in figure 1(c) where the disturbance is composed of

straight—line segments. Figure 3 1s used to evaluate this response by

the following steps:




8 NACA TN 2036

(a) Evaluate the following integrals in a manner similar to that
used for equation (10), with the aid of figure 3:

L1(s) 8

B
L1(e)

E (11)
L1(8)
s

L1(s)
|

(b) Superpose the time histories obtained from step (&) so that the
disturbance function shown in figure 1l(c) will be formed by the addition
of the slopes 1/H;, 1/H,, 1/H,, and 1/H,. Note that in the course

of this superposition, the functions corresponding to the slopes

1/8,, l/H3, and 1/H), must be displaced by the intervals H, for the
slope l/HE’ H + H, for the slope l/H3, and H, + H, + H3 for the
slope 1/H,. The final response for the disturbance shown in figure 1(c)

may then be obtained from the following equation:
on(e) _ ly(g) — Li(s — 7)) - 2I(s - H)
Ang L:5 H H

1 1 1
+ =I(s - H - H,) — =I(s — B — H) + =—I(s — H — Hy — Hy)
i, s , 5 Sl

+H—]LI(S-H1—H2—H3)—ﬁI(s—Hl—HQ—H3—Hh) (12)
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Although equation (12) appears very lengthy, the actual
computations are relatively simple since all the integrals for a
particular mass parameter have already been determined (fig. 3). The
values of each integral multiplied by its appropriate constant can be
tabulated In separate columns displaced by 1ts corresponding interval.
The addition of the elements in each row of these columns will determine

the final response éEiEl.
Ang

Triangular Gust

Since the triangular gust shown in figure 1(d) was used in many
calculations, a chart was prepared for this specific shape. The
response to thig type of disturbance for a range of mass parameters ug

and gradient distances H was obtained by the method previously
described for gust shapes approximated by stralght lines. Plotting the

maximum values of these responses (éE— as a function of H with
Anslmu:

M as a parameter gives the chart shown in figure L. As a matter of

g

interest the values of CQE;> are plotted as a function of “g
s /max

with the gradient distance H as the parameter in figure 5. When the
mass parameter of the airplane (equation (3)) and the gradient distance

H are known, the value of (éE—> is regadily obtained directly.
Ang /max

Evaluating Ang by equation (2) permits the value of fn.. dne
triangular gust to be determined from the acceleration ratio (QE—)
8 /max

CONCLUDING REMARKS

The simplified equation of vertical motion of an airplane has been
solved to obtain charts of acceleration ratio for different gust shapes.
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The results permit the rapid estimation of maximum acceleration ratios
for gusts of arbltrary shape.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., August 1, 1949
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Figure 1.- Gust shapes.
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Figure 3.- Integration of acceleration ratio for a wing penetrating a sharp-edge gust for various
mass parameters.
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Figure 5.- Maximum acceleration ratio for a triangular gust as a function of mass parameter.







