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SUMMARY 

Various theoretical and practical aspects of a pressure
sensitive system for the measurement of gas temperatures in gas
turbine-engine combustion chambers are analyzed. An experimental 
setup was operated under controlled conditions of temperature, 
weight flow, and wa.J.l temperature. The gas temperature after com
bustion was 'obtained by application of a relation equating thermo
dynamic conditions before and after combustion. This method of gas 
temperature sensing appears practical for high-temperature appli
cations. The accuracy with which gas temperature may be determi ned 
by this method is wi thin ±2 percent. Measurements made by the 
thermodynamic method were used as a temperature standard for com
parison of temperature data obtained from conventional thermocouple 
probes. 

INTRODUCTION 

With the advent of gas-turbine engines, the controls designer 
has been confronted with the serious problem of operating engines 
not only at high temperatures for maximum efficiency, but also at 
temperatures low enough to be within the safe operating range for 
the materials used. 

It therefore becomes imperative to incorporated temperature
limiting controls to prevent engine failure by overheating. 
Temperature can be used both as a primary control parameter and as a 
temperature-sensing parameter. Any means of sensing gas temperature 
for application to controls must meet the following requirements: 
(1) have an output that is a simple function of true gas temperature 
under various conditions of weight flow, temperature of surrounding 
materials, density, composition of gas, and temperature level; 
(2 ) provide an output that is easily incorporated in a control; 
(3) have a rapid response to transient conditi onsj (4) have an 



2 NACA TN 2043 

extended temperature rangej (5) have a long life; and (6) be 
independent of material characteristics subject to change with 
time and use. 

The most commonly used methods for measuring temperature 
employ thermocouples or resistance-wire thermometers, both of which 
have the advantages of simplicity and durability. These devices, 
hcwever, do not ~rovide sufficiently ideal outputs when consider
ation is given to the inherent errors resulting from radiation, 
heat conduction, and velocity losses that occur at elevated gas 
temperatures. In addition, chemical action on instrument materials 
can result in a change of calibration as well as in a reduction in 
life, which is a particularly difficult factor to contend with 
because the mass of the unit must be large in order to lengthen life; 
whereas the requirement of rapid response to a transient demands that 
the mass be small. At temperatures below 10000 F these errors can 
be reasonably neglected in control work. At elevated temperatures, 
however, such errors cannot be neglected, particularly radiation 
errors, because these errors appear as the difference of the fourth
power functions of the two temperatures involved. 

As a possible means of circumventing ~resent difficulties, a 
theoretical analysis was conducted at the NACA Lewis laboratory 
using the thermodynamic properties of gases as basic parameters. An 
equation has been developed based on these properties (reference 1). 
This equation, based upon the expression for weight flow, correlates 
gas temperatures with measured pressures before and after combus
tion. Such pressure measurements are independent of radiation or 
heat-conduction effects, and therefore permit an evaluation of the 
true gas temperature (within the accuracy of pressure-measuring 
instrumentation) as long as the ideal gas laws apply. 

Various theoretical and practical aspects of the pressure
sensitive system for gas-temperature measurement are discussed herein. 
The system was applied to an experimental burner setup operating 
under controlled conditions of temperature level, weight flow, and 
test-section-wall temperature. Several methods of measuring weight 
flow were analyzed to determine their applicability to the system. 
Particular emphasis is given to a discussion of the pitot-static 
method of determining weight flow by analyzing the velocity profile 
across a test section at elevated temperatures. 

For comparison purposes, the pressure-sensitive method (refer
ence 1) is considered as a reference system for sensing temperature. 
Data obtained with several conventional thermocouple probes were 
compared with data from this reference system over a range of 
temperature levels, weight flows, and duct-wall temperatures. 
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ANALYSIS 

Various types of fluid meter7 including orifices, nozzles 7 
venturis, and pitot tubes, or combinations of .such units) may be 
employed to evaluate thermodynamic relations of reference 1 in 
terms of gas temperature. Experimental data reported herein were 
obtained using an orifice before combustion (station 1) and a 
pitot-static tube after combustion (station 2). The general 
weight-flow equation, which applies for all fluid meters) is 

3 

W = pAV (1) 

(Definitions of symbols used in this section are given in 
appendix A.) 

Orifice Equation 

The specific equation for flow through an orifice, developed 
from equation (1), is 

(2 ) 

The measurements required by equation (2) for the determination of 
weight flow at station 1 can be readily and accurately obtained 
using an orifice installation, as recommended in reference 2. 

Pitot-Tube Equation 

Discussion of pitot -tube method. - A pi tot -static tube was 
used at station 2 because of the convenience of this method when 
dealing with high-temperature gases, inasmuch as it offers negligible 
resistance to gas flow, has a rapid response (reference 3), and is 
simple in construction. The specific equation for weight flow when 
applying the pitot-static tube for flow measurement at station 2, as 
developed from equation (1), is 

(3) 

When using this method it is important to realize that the 
measured value of ~p (the total pressure minus the static pressure) 
is that of the specific point at which the pressure-sensing probe is 
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located. In general, the flow or' velocity profile across a section 
is not flat, therefore ~ is not constant across that section. In 
order to make the system applicable to the temperature equation, it 
is necessary that a single-point indication be proportional to the 
total weight flow through the section. It therefore becomes essential 
to determine the relation that exists between a measured value of 
6P, which is quite readily obtained, and the effective value of 6P, 
which is a function of the average velocity of the gas. If it is 
assumed that the effects of changes in boundary layer on weight flow 
over the range of temperature operation considered remain essentially 
constant, the ratio of the effective ~P to a measured ~P can be 
evaluated. 

In order to succeSSfully apply equation (3) for a given 
apparatus, whether it be an aircraft power plant or a simple straight
through pipe, the relation between a measured ~P and the effective 
~P must be consistent (~P ff/6P = C, a constant). If this e meas 
consistency does not exist, the method presented herein for gas
temperature evaluation cannot be applied. It should be noted, however, 
that a consistent ratio of ~eff/~Pmeas will be considered as such 
only in regard to the individual application and the accuracy of gas
temperature evaluation desired. For example, in one installation 
an evaluation of gas temperature to 'within:i:lO percent may be suf
fient; the ratio ~Peff/~Pmeas therefore may vary :i:lO percent and 
be considered consistent. In another installation, where a gas
temperature -evaluation accuracy of:i: 2 percent is deSired, a:i:3 percent 
variation in ~P ff/~P could not be considered consistent. For e meas 
the data presented, the evaluation of ~Peff/~Pmeas was made over 
an extended temperature range for fully developed turbulent flow in 
a pipe; furthermore, ~P was measured at the center of the gas stream 
so that ~Pmeas = 6Pmax • 

Evaluation of 6Peff/~max. - If a fully developed laminar
flow velocity profile is realized in the section, it is possible to 
determine the ratio ~Peff/~Pmax from theoretical considerations. 
Because experimental data were obtained for turbulent-flow conditions 
only, experimental methods had to be employed in order to evaluate 
the ratio. 

The velocity profile in a duct cannot be defined by a simple 
mathematical relation when turbulent-flow conditions are obtained. 
The profile is more nearly uniform under these conditions than for 
laminar flow. Figure 1 shows a typical curve of the velocity ratio 
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V/V as a function of Reynolds number. These data were recorded 
max 

by Stanton and Pannell in 1914 and were obtained from reference 4. 
The curve shows that in the laminar region A the velocity ratio 
is of the order 0.5. A very rapid change from 0.5 to 0.72 is noted 
in the transition region B. In the fully developed turbulent 
region C, the velocity ratio is nearly constant at a value of 
approximately 0.78. It should be noted, however, that these 
numerical values probably would not apply to flow conditions that 
exist in turbojet engines. The important point is that a consistant 
velocity ratio must exist before a single pitot tube can be used to 
determine ~Peff for any application. 

A direct method of evaluating ~Peff/~Pmax is to obtain 
actual ~P profile data by making a traverse of the section using 
a pitot tube. Particular attention must. be given to recording 
accurately data obtained near the pipe walls, because a steep 
gradient exists in that region. 

Inasmuch as 

W = p AV (1) 

where V, the average gas velocity, is a function of f\j~Peff 

when p is a function of p/RT (appendix B), and A is a function 
of radius squared, a value of ~Peff can be obtained from consider-

ations of ~P (measured). In order to obtain this value, it is 
necessary to plot the square root of the measured pressures against 
the square of the radius. Figure 2 shows that AJ ~P eff is propor-

tional to A f, the area under the curve, and Ai llPmax is propor-

tional to area AI 

or 

plus A" , 

~~Peff 

~~Pmax 

~Peff 

~Pmax 

the hatched area. Therefore 

A' 
= A' + Ail 

" (A' !'A') = C (4) 

The ratio of ~Peff/~Pmax can be determined quite readily 

from an analysis of measured pressures. 
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The average ~P , calculated from a traverse of the section 
w'ith a pressure probe, d.oes not have the same significance as the 
effective 6P based. on the consid.erations of an average velocity 
across that section . 

Another method. of evaluating the ratio 6Peff/6Pmax can be 
used. if the gas temperature after combustion (station 2) is known 
for at least part of the temperature range. For this case, the 
weight flow at stations 1 and. 2 can be equated. and. solved. for 
6Peff j the ratio can then be found. by using a measured. value of 

6Pmax • In orner to equate the 'fTeight flow at stations 1 and. 2, it 

is necessary to account for the ad.d.ition of fuel: 

W2 = Wl + f = 0 + :1) WI (5) 

The weight flow at station 2 (equation (3)) is equal to the 

weight flow at station 1 (equation (2)) times (1 + wf ~ . ,.,Then a 
1 / 

thermocouple is used. to d.etermine gas temperature at station 2, 
as it was for this experimental analysis, errors can be expected. at 
temperatures exceed.ing 1 000 0 F, at which temperature rad.iation errors 
of thermocouples become prominent . The weight-flow evaluation 
method. ,-ras used. as a check on the pressure -survey method. only in the 
range in 1vhich errors 0:' thermocouples could. be neglected.. A 
theoretical d.iscussion of thermocouples and. their inherent errors is 
given in append.ix C. 

Temperature EC1,l.lation 

General equation. - The orifice and. pitot-static-tube equations 
for weight flm. may be equated.: 

E2~qJ' 2 'li2gP211P2 = Al Kl E1 Y 1 r.J Pl "P1 2g ( 1 + :1) ( 6) 

When the d.ensity p is r e placed. by its equi valent ~ (append.ix B), 
Rr 

equation ( 6) can be solved. for T2 • 

N 
N 
N 
rl 
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Equation (7) represents the complete temperature equation with 
which experimental data discussed herein will be concerned. 

7 

(7) 

Simplified temperature equation. - In reference 1 it is shown 
thatJ based on analytical considerations, the term 

of equation (7) is very nearly constant. Considering the term as a 
constant, the temperature equation becomes 

( 8) 

For the results presented herein, each factor of the coefficient N 
bas been taken into consideration and the analytical conclusions 
substantiated. 

APPARATUS AND PROCEDURE 

A schematic representation of the apparatus used to obtain 
the data presented is given in figure 3 . Air was drawn from the 
atmosphere and compressed to a pressure of approximately 3.5 pounds 
per square inch gage by two commerical blowers connected in series, 
then ducted through the combustion chambers and test sections. The 
maximum air flow available was approximately 6.5 pounds per second 
at a pressure of 2.5 pounds per square inch gage in the test 
sections. An orifice designed and installed according to A.8.M.E. 
specifications- (reference 2) was located at station 1, downstream 
of the blowers, for the determination of air flows . Located down
stream of station 1 were four combustion chambers capable of heat
ing the maximum air f low to a temperature of 25000 F. A flame 
shield and gas mixer, installed to shield the thermocouples in 
test sections from radiation from the flame front and also to 
effect uniform gas mixing, was located immediately downstream of 
the combustion chambers. The gas leaving the flame shield and gas 

I 

J 
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mixer was ducted through a 10-inch-diameter Inconel pipe for 
approximately 15 feet, whereupon it entered test sections 1, 2, 
and 3, also 10 inches in ~iameter and arranged in series, and 
was finally discharged to the atmosphere. 

The instrumentation at test section 1 (fig. 4), designated 
station 2, consisted of: a six-tube static-pressure survey rake; a 
six-thermocouple survey rake incorporating single-shielded thermo
couples; three thermocouples embedded in the wall of the test 
section; and a total-pressure rake. A total-head tube of 0.030-
inch outside diameter, which could be positioned along the pipe 
diameter during a run for the purpose of obtaining a complete 
total-pressure-profile survey was also used. 

Test section 2, illustrated in figure 5, contained eight 
thermocouples having bead diameters of 3/8, 1/4, 3/16, 5/32, 1/8, 
3/32, 1/16, and 1/32 inch, which were arranged in a ring concentric 
with the pipe. Three additional thermocouples were embedded in the 
wall of the test section. 

Test section 3 (fig. 6) contained the following instrumentation: 
a thermocouple having an electrically heated shield; a commerical
type multiple-shield thermocouple; a gold-encased single-shield 
Bureau of Standards thermocouple (reference 5); three thermocouples 
embedded in the wall of the test section; and a pitot-static pressure 
tube in the gas stream. A cutaway drawing of the heated-shield 
thermocouple is presented in figure 7. During steady-state operation, 
the electric-heater coil supplied heat to the shield surrounding the 
thermocouple located in the gas stream until the indicated wall 
temperature of the shield equalled indicated gas temperature. When 
this equality existed, the gas temperature was recorded under the 
assumption that conduction and radiation losses were then minimized. 

Operating conditions were established by maintaining the weight 
flow at a constant level and varying the fuel flow to the combustion 
chambers, whereby the time required for changes from one steady-
state temperature level to another was held to a minimum. In order 
to present the effects of weight-flow variations on the operation of 
the various temperature-sensing probes, three weight flows were inves
tigated over a temperature range from approximately 9000 to 22000 F. 
The flows selected for these tests were approximately 4.5, 5, and 
6.5 pounds per second. A plot of weight-flow variations at station 2 
is presented in figure 8. For the temperature range considered, the 
gas velocities in the test sections varied between 300 and 800 feet 
per second with the various weight flows. The Mach number, however, 
varied only slightly for each setting, as can be seen from figure 9. 
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The effects of conduction and radiation losses on the thermo
couple indications of gas temperature at constant reference-gas
temperature settings were investigated by controlling the test
section-wall temperature with cooling-water sprays acting on the 
outside walls of the test sections. For runs in which water cooling 
was not used, there was no variation in indicated wall temperature 
at any given reference gas temperature during variations of weight 
flow. This effect is illustrated in figure 10. 

RESULTS AND DISCUSSION 

Evaluation of Constant C 

Profile survey. - The results of pressure-profile surveys 
taken at station 2 for reference gas temperatures of 5500 , 15000 , 

and 23000 R are presented in figure 11. A plot of C for all 
operating gas temperatures is given in figure 12. Any differences 
in boundary layer caused by differences in gas temperature (ref
erence 6) are small enough to cause a variation in C of less than 
0.5 percent. On the basis of these results, a value for C of 0.87 
was selected and used in the evaluation of the temperature equation 
(equation (7)) as applied to data presented herein. 

Weight-flow equations. - The evaluation of C obtained by 
equating the weight flow at stations 1 and 2, using thermocouple 
data taken at these stations, is presented in figure 13. As 
mentioned in the section ANALYSIS and discussed in appendix C, inherent 
errors of the thermocouple should be considered at temperatures of 
approximately 10000 F (14600 R) and above, which is shown by the data 
presented in figure 13. A comparison between the weight-flow and the 
pressure-survey evaluations of C is shown in figure 14. 

In view of the results obtained by the two methods of evalua
tion of C, and the simplicity of weight-flow method over the pro
file survey, the weight-flow method should be satisfactory for use 
in determining C in practical application of pressure-sensitive 
temperature-sensing systems, providing this determination is made 
at temperatures below 10000 F. 

Pressure-Sensitive System as Temperature Standard 

On the basis of the fundamental re.lations used in deriving the 
temperature equation (equation (7)) and the experimental evaluation 

I 

J 
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of the constant C, the ~ressure-sensitive system is hereinafter 
considered a temperature standard. This standard, based upon the 
application of equation (7), introduces only errors of instrument 
reading; the temperature-sensing accuracy is therefore considered 
to be wi thin ± 2 percent. 

Weighing is the fundamental method of fluid measurement and is 
the technique us~d by the A.S.M.E. to establish a flow-measurement 
standard for fluid meters, such as an orifice plate, pitot-static 
tube, nozzle, venturi, and so forth (reference 2). The A.S.M.E. 
has established flow-measurement accuracy of approximately ±l per
cent for these various flow-measurement units. Installation and 
instrumentation requirements, as established by the A.S.M.E. in 
order to obtain this accuracy, were used in obtaining the data for 
the evaluation of the flow equations presented. Inasmuch as the 
maximum error in weight-flow measurement is approximately±l percent, 
in effect, the maximum deviation of anyone parameter in equation (3) 
is limited to ±l percent, and as weight-flow is evaluated at two 
separate stations, the maximum error deviation between the two 
stations is ±2 percent. Because density, and therefore temperature, 
is one of the parameters in equation (3), the greatest deviation of 
temperature is ± 2 percent from a true absolute level. The state of 
development of pressure-measuring techniques is such as to insure a 
rapid response rate for the pressure-sensitive system (reference 3). 
The error involved in the use of the simplified form of the tempera
ture equation (equation (8)) is shown to be quite small in figure 15, 
where values of the dimensionless coefficient N, plotted against gas 
temperature for all operating conditions, fall within a band of ±1.5 
percent. Equation (8) was not used in connection with the temperature 
standard. 

COMPARISON OF THERMOCOUPLES WITH 

TEMPERATURE STANDARD 

No attempt is made to evaluate the various thermocouples" in 
this discussion. A general explanation of the performance of the 
various thermocouples is given in the theoretical discussion of 
thermocouple operation in appendix C. 

Radial Temperature Profile 

A typical plot of gas -temperature prOfile, as measured by the 
single-shielded-thermocouple survey rake in test section 1, is com
pared to the temperature standard in figure 16 for reference gas 
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temperatures of appro~imately 14500 and 20000 R. Because the gas 
temperature is uniform across the section, a comparison can be made 
between any thermocouple-temperature indication and the reference 
gas temperature given by the temperature standard or reference 
system. 

Performance of Thermocouples 

A performance plot is presented in figure 17, showing tempera
ture deviations from the reference temperature of (1) a commercial 
multiple shield, (2) a single -shield survey rake across the · pipe 
diameter (average of all temperatures), (3) a Bureau ·of Standards 
gold shield, (4) a NACA heated Shield, and (5) a 3/S-inch-diameter 
junction thermocouple for weight flows of 4.6, 5.3, and 6.6 pounds 
per second. Data for the Bureau of Standards thermocouple were not 
obtainable for the mass flow of 6.6 pounds per second because the 
thermocouple burned out during the performance run. 

A plot showing the percentage deviation from the calculated 
reference temperature for four of the five types of thermocouple is 
given in figure 18 for weight flows of 4.6, and 6.6 pounds per 
second. From the slope of the curves, it is apparent that increas
ing reference gas temperature considerably increases the percentage 
of error. 

Influence of Thermocouple-Bead Diameter 

Indications of gas temperature obtained from thermocouples of 
several bead diameters are compared with the reference temperature at 
25250 R in figure 19. The data were extrapolated in order to obtain 
an intersection with the reference temperature at a thermocouple
bead diameter of zero. Without a reference temperature to indicate 
the true end condition of gas t~perature at a thermocouple-bead 
diameter of zero, extrapolation of the data curves could be greatly 
in error. Also, the differences in temperature indication of the 
same thermocouple operating at a constant reference gas temperature 
but at various weight flows are quite apparent from the data. An 
equation representing the data curve would be impractical when added 
consideration is given to such factors as varying wall temperatures, 
Mach number, and reference levels. 

Effect of Wall Temperature on Thermocouple Indications 

The effect on thermocouple indication of changes in conduction 
and radiation losses at various reference gas temperatures were 

J 
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investigated by controlling test-section-wall temperatures with 
cooling-water sprays acting on the outside of the walls. A plot 
showing the deviation of several thermocouples from the tem~era
ture reference for a wall temperature of 7100 R is given in 
f i gure 20. (The effects on thermocouple indications of changes 
i n conduction and radiation losses may be seen when comparing 
f i gs. 20 and 17(c).) The percentage deviation is given in fig
ures 21(a) and 21(b) for weight flows of 4.6 and 6.6 pounds per 
second, respectively. The slope of the curves of figure 19 shows 
that large errors can be encountered at the higher reference gas 
temperatures. A tabulation of results giving the performance of 
t he temperature-sensing probes investigated at reference gas 
t emperatures of 2000 0 and 24000 R and various weight-flow con
ditions, is given in table I. 

CONCLUSIONS 

Various theoretical and practical aspects of the pressure
sensitive systems for the measurement of gas temperatures have been 
di scussed. The gas temperature after combustion was obtained by 
application of a relation equating thermodynamic gas conditions 
before ,and after combustion. The following conclusions may be 
drawn from this application: 

1. Determination of gas temperatures after combustion from 
measurements of gas temperatures before combustion and gas pressures 
before and after combustion appears practical for high-tem~erature 
applications. The temperature-sensing accuracy of this method is 
within ±2 percent. 

2. Temperature changes of the combustion gases are accompanied 
by pressure changes that are in effect instantaneous, are unaffected 
by errors associated with conventional thermocouples, and can be 
utilized in a control system. 

3. By using the thermodynamic method as a temperature standard 
for comparison of thermocouples, it is determined that conventional 
thermocouples can be a~preciably in error in their temperature indi
cations at gas temperatures above approximately 15000 R. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, JulY,29, 1949. 

C\J 
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APPENDIX A 

SYMBOIS 

The following symbols a.re used in the section ANALYSIS and 
in appendix B: 

A area, sq ft 

C constant, ~Peff/~Pmax 

E area multiplier for thermal expansion 

f fuel flow, lb/sec 

g acceleration due to gravity, ft/sec2 

K flow coefficient of orifice plate 

N constant, 

P total pressure, lb/sq ft absolute 

p static pressure, lb/sq ft absolute 

R gas constant 

r ratio of static to total pressure, pip 

T total temperature, ~ 

t static temperature, D:R 

V average velOCity, ft/sec 

W weight flow, lb/sec 

13 

Y ratio of flow coefficient of gas to that for liquid at same 
Reynolds number (reference 2) 

ratio of specific heats at constant pressure and constant 
volume 

~P total pressure minus static pressure, P - p, lb/sq ft 

I 
~ 
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~Peff pressure of average velocity, lb/sq ft 

~Pmax pressure of maximum velocity, Ib/sq ft 

~Pmea8 measured value of total minus static pressure, Ib/sq ft 

p density, p/RT, Ib/cu ft 

~ conversion factor of hydraulic equation to compressible-
flow equation 

~ ' particular value of ~ when p = p/RT (See equation B.) 

Subscripts: 

max maximum 

1 station 1 (before combustion) 

2 station 2 (after combustion) 

N 
N 
C\l 
rl 
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APPENDIX B 

COMPRESSIBLE-FLOW EQUATIONS 

The hydraulic equation for incompressible flow may be 
multiplied by an appropriate conversion factor ~ to obtain the 
exact equation for compressible flow. The expression for the 
conversion factor ~ may be derived from the compressible-flow 
equation by factoring out the hydraulio equation so that t he 
remaining factor is the expression for the conversion factor ~. 

Bernoul li's theorem for compressible flow may be written 
as 

15 

(Bl) 

The weight flow is 

(B2) 

Substitution of equation (Bl) in equation (B2) and replacement of 
stagnation density Pt with the equivalent adiabatic relation 

1 

Po (;) 1 gives 

W = A 2g (,. ~ 1) Po 
P 

1 
2" 

The free-stream dens i ty Po may be replaced by its equivalent 

~ and the equation simplified: 
Rt 
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W = A 2g (_l_) ~ l -1 Rt 

W = A (r V 2g l -1 Rt 

W=A 

P (l ~) _ E (l ~) 
1 

p l 

p (l-t) _ E 

p(l -~) 
(l~) 

1 
2 
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1 
2 

1 
2 

(B3) 

This expression for compressible flow may be written as 

W Acp~2gp (p - p) 

where 

cp = 

1 
2" 

(B4 ) 

(B5) 

This expression for cP involves the density P, which also appears 
in equation (B4) and may be arbitrarily selected as a ratio involv
ing total pressure P or static pressure p divided by total 
temperatur e T or static temperature t . For the case in which 
the density P is selected as p/RT, the conversion factor cp is 
designated cp' and equation (B5) is simplified as follows: 

(B 6") 
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The adiabatic relation of the temperatures is 

(B7) 

This relation may be substituted into equation (B6) to obtain 

(cp' )2 

If the pressure ratio pip is set equal to r this equation 
becomes 

J ( 1-7)( H 
(cp,)2 

r Y r Y Y 
;::: 

(~ - 1) (r - 1) 

or 

-J7 !o( H 
Y Y 

(cp' )2 
r r 

;::: 

(1 - r) (y - 1) 
(B8) 

Evaluation of the conversion factor cp' for various pressure 
ratios r show the error that may be expected from neglecting 
c:p in the hydraulic equation (B4) where the density p is p/Rr. 
The greatest deviation of the conversJon factor cp' from 1 occurs 
at the critical pressure ratio, at which ~' is approximately 
0.945 for the ratio of specific heats y equal to 1.3 for air at 
a temperature of 30000 R. 

J 
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APPENDIX C 

CHARACTERISTICS OF THERMOCOUPLES 

A brief summary of the significance of thermocouple indications 
is required in order to explain and to compare temperature data 
obtained from thermocouples with data obtained from the reference 
system. 

When dealing with thermocouples it must be noted that the 
indicated temperature is that of the junction itself and not nec
essarily that of the medium in which the junction is immersed. A 
thermocouple probe inserted in a hot gas stream indicates the 
temperature attained by the thermal element ~.,hen a condition of 
thermal equilibrium with its environment is reached. The indicated 
temperature is therefore a function of several modes of heat 
transfer, including convection, conduction, and radiation. 

Velocity effect. - Actual total temperature is also a function 
of gas -stream velocity. This relation can be expressed as 

\<I'here 

TO free-stream temperature 

temperature due to velocity, 

J mechanical equivalent of heat 

Cp specific heat at constant pressure 

Standard probes are designed to partly stagnate the gas stream 
around the junction and thereby r ecover a part of the temperature due 
to velocity. Because probes do not recover all this temperature, 
they must be calibrated for this effect so that the corrected 
expression is 

where r is the recovery factor. 

l 
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Inasnru.ch as the probe temperature is a function of "heat in" 
minus "heat out," these terms must be evaluated and analyzed to 
determine their effect on the final indicated temperature. 

Heat in is basically a function of heat transfer by convection 
from the gas to the solid material of the thermocouple, which can 
be expressed as 

where 

S surface area in contact with gas 

h heat-transfer coefficient 

Tp temperature indicated by probe 

The coefficient of heat transfer is an involved function of 
probe area and weight flow across the thermocouple as well as the 
viscosity and the composition of the gas. In order for the probe 
equilibrium temperature to approach total temperature, the difference 
(T - Tp) must be small. It therefore becomes evident that in order 

to insure sufficient heat transfer by convection, the weight flow 
over the junction must be high. 

Heat out (heat lost) is due to: (1) conduction of heat away 
from the junction through the leads of the thermocouple and, 
(2) radiation of heat to cooler surfaces. (It should be noted 
that if the walls of the duct containing the gas are at a higher 
temperature than the gas, then all heat flow is reversed.) 

where 

Conduction errors in indications are given by 

T - T P 

T - TL 
----:=== = 

~hCL2 cosh ~ 2LW cosh - -D k 

TL temperature at distance L from junction 

L some distance from junction along wires 

J 
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c circumference of wires 

k cross -sectional thermal conducti vi ty of thermocouple 'vires 

A cross-sectional area of wires 

D diameter of wires 

From this relation it follows that in order to keep the 
conduction error small the LID ratio and h must be large, 
whereas k must be small. 

Heat loss due to radiation may be one of the most serious 
errors encountered in using thermocouples for sensing elevated gas 
temperatures. This fact is readily appreciated wnen an expression 
governing radiation error is analyzed. 

The heat loss due to radiation may be expressed as 

where 

e emissivity of radiating body 

5 Stefan-Boltzman constant 

T wall temperature of radiating body 
w 

It should be noted that for a given installation of a thermo
couple probe, the only variables concerned with the radiation error 
are the temperature of the junction and the temperature of the wall 
or radiating body. Slight changes in temperature appear as the 
fourth -power, making the difference and the resulting radiation 
error quite appreciable. 
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Weight flow Mach Velocity Calcu-
(lb/sec) Number (ft/sec) lated 

average 
gaa 
tempera-
ture 
(~) 

4 . 60 0 .196 425 2000 
6 . 55 .280 610 2000 
4.50 .214 510 2400 
6.35 .300 715 2400 

TABLE I 

PERFORMANCE OF TEMPERATURE - SENSING PROBES ~ 
Deviation of thermocouple from calculated gas temperature percent 

Nonshielded Single-shielded Gold-shielded Multiple-shielded 
thermocouple thermocouple thermocouple thermocouple 

Without With wall Without With wall Without With wall Without With wall 
cooling cooling cooling cooling cooling cooling cooling cooling 

7.50 7.70 5.50 6.10 4.20 ----- 3.40 3.10 
6.65 8.50 4.60 7.30 ---- ----- 3.20 4.70 

10.70 13.00 8.20 10.60 6.30 ----- 5.00 6.60 
8.75 13.00 5.70 11.00 ---- ----- 3.50 7.00 
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Figure 1. - Effect of Reynolds number on ratio of average to maximum 
velocity vjvma4 for isothermal flow in smooth pipes. (Data obtained 
from reference 4.) 

z 
» 
n 
» 
--1 
z 

N 
o 
+> 
\>J 

N 
\>J 



24 NACA TN 2043 

t--
[\ 
[\ 
[\ 

~ 
,..> 

OJ 
H 
;J 
UJ 
UJ 
OJ 
H 
P-

o 
orl 
+' 
III 
+' 
UJ 

rn 
;J 
~ 

orl 
E 
rl 

cO 
+' 
0 

E-< 

o Pipe wa l l 
2 r , sq in. Pipe r adius, 

Figure 2 . - Effect of Reyno l ds number on flow profile for turbulent flow . 



L--

407 -1847 

A.S.M.E. orifice plate--~ 

motor 

'----Blowers ----' 

Combustion 
chambers ---~ 

and mixer 

1222 

Test section 
1 

{ r / n V'." i""" dj 

Cooling-water 
sprays 

~ 

Figure 3 . - Schematic representation of research apparatus . 

:z 
» 
n 
» 
-1 
:z 

N 
o ..,. 
\.>J 

N 
U1 



· I 



NACA TN 2043 

r 

( 

27 

~ 
C· 21245 
4-20-48 
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Figure 5. - Test section 2; varying thermocouple-bead diameter. 
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Figure 6. - Test section 3; (1 ) heated-shield thermocouple, (2) multiple-shield thermo
couple, (3) Bureau of Standards gold-shield thermocouple, (4) pitot-static tube. 
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Figure 20 . - Temperature deviat i on of conventional thermocouples from reference 
sys tem with wall coo ling . Weigh t flow, 6 .6 pounds per second i wall temperature, 
7100 R. 
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Figure 21 . - Percentage deviations of conventional - thermocouple temperature 
indications from reference system with water cooling on Vlal1s. Wall tempera
ture, 7100 R. 

51 



52 

..., 
I': 
CD 
() 

H 
CD 
Po 

CD 
H 
::l ..., 
as 
H 
CD 
Po 
~ 
CD .., 
'0 

CD ..., 
as ...... 
::l 
() 

...... 
as 
() 

E 
0 
H 
<.; 

I': 
0 ..... ..., 
as ..... 
:> 
CD 
~ 

o 

- 2 

-4 

- 6 

-8 

-10 

- 12 

- 14 -

- 16 

-18 
1600 

NACA TN 2043 

~'" 
~ "" "" ~ ""-

~ C\. 

'" ~ ~~ 
'\ '\ "0 

0"t ~ \.., 
'\ 

~"""" 
'-...... 

~ ~ 
'\ ""-

~ ~ '" "\ D 

1"\ ~ 
" '" \ "t ~ b 

~ ~ 
~ 

"'" ~ [~ 
Thermocouple 

~ !t\ 0 Multiple shield 
0 Average of thermocoup l e 

~ 0 su rvey rake 
0 3/8-in .~diam nonshielded 

f'q 
\ 
~ 

1800 2000 2200 2400 2600 2 800 3000 

Reference temperature , oR 

(b) Weight flow, 6 . 6 pounds per second. 

Figure 21 . - Concluded . Pe rcentage deviations of conventional - the rmocouple 
temperature indications fr om reference sys te m with water cooling on walls . 
Wall temperature. 7100 R. 
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