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STABILITY OF ALCLAD PLATES

By Kenneth P. Buchert

SUMMARY

On the basis of plasticity theory a theoretical solution for the
buckling of Alclad plates has been developed. Both the differential
equation of equilibrium of the buckled plate and the energy expression
are derived. Results are presented for the buckling of long simply
supported plates under longitudinal compression and under shear, and
for a plate-column. Good agreement is shown between the theoretical
values for a simply supported plate and available experimental results,
which are for channel and Z-sections in compression. A comparison of
the theoretical and experimental results for a strip or narrow column
shows good agreement in the high stress region and shows that in the
low stress region the theoretical results tend to overestimate the
buckling stress.

INTRODUCTION

Most of the sheet used in aircraft is Alclad sheet. An Alclad or
aluminum-covered sheet has a high-strength sluminum-alloy core, which
is covered on each side with a coating of almost pure aluminum with a
high resistance to corrosion but a very low strength. (See fig. 1.)
Although the combined thickness of this soft coating on the two sides is
generally only from 5 to 10 percent of the total thickness of the plate,
its location at the outer fibers causes the buckling stress of an Alclad
plate to be considerably less than that of a plate of the same thickness
made of all core material,

Because the elastic limit of the cladding materisl occurs at a
relatively low stress, elastic theory is generally inadequate for the
prediction of buckling stresses and a plasticity theory should be used.
In the present paper, Ilyushin's general relations (reference 1) for
the plastic state of stress have been used to derive the differential
equation of equilibrium and the energy expression of s plate under
combined loads.
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THEORETICAL RESULTS

Equation for Critical Stress

The compressive stress o, or shear stress T.,., which 1is the
average stress on the gross cross section, at which buckling occurs is
given by the expression

2 2
Oep OF Top = _DRLE__e_ t_2
12(1 - W ) b

where

n plasticity reduction factor that takes into account the reduction
of the modulus of elasticity for stresses above the elastic
range of the cladding material; depends upon the stress and
the type of plate

k = nondimensionsl critical-stress coefficient as used in the elastic
range

E initial tangent modulus of core and cladding material in
combination, ksi

t total plate thickness, inches

7} value of Poisson's ratio of the composite sheet at the buckling
stress

b width of plate, inches

By use of the gymbols in appendix A and the theoretical derivations in
appendix B, expressions for 1n are derived in appendix C for both
compression and shear for Alclad plates with different edge conditions
and are given in table I.

Calculation of 1

In order to calculate the value of 17 for a given buckling stress,
values of the tangent and secant moduli of both the core and the
cladding as functions of stress must be known. Since stress-strain
curves of both the core and the cladding are necessary for calculating
these values, two methods of arriving at these curves are discussed
in the following paragraphs. ;
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One method is to assume approximate curves for both the core and
the cladding material. For most engineering purposes, satisfactory
results can be ¢obtained by this method. As an illustration, the curve
for the core of Alclad 245-T sheet can be assumed to be the same as the
stress-strain curve of bare 24S-T sheet. The cladding stress-strain
curve can be assumed to be the same as the stress-strain curve for one-
half hard aluminum. (See solid-line curve in fig. 2.)

A second and generally more accurate method of obtaining the stress-
strain curves of the core and the cladding is to adopt an approximate
stress-strain curve of the cladding only, and with a stress-strain curve
of the composite sheet determined from a simple compression or tension
test and the percent of cladding given, calculate the stress-strain
curve of the core. Since the cladding is a small percentage of the
total plate thickness, errors in the selection of the cladding stress-
strain curve will have a very small effect on the calculated stress-
strain curve of the core. For example, the dotted-line conservative
stress-strain curve for the cladding shown in figure 2 gives practically
the same stress-strain curve for the core material of Alclad 24S-T84
sheet with 5.7 percent cladding as the solid-line curve. (See fig. 3
for calculated stress-strain curve of core.)

The error in the calculated value of 1n for a given error in the
assumed cladding stress-strain curve will generally be small for plates
but may be appreciable for columns. To illustrate, the solid-line and
dash-line 1 curves for plates shown in figure 4 and for columns shown
-in figure 5 were calculated by using the solid- and dash-line stress-
strain curves, respectively, for the cladding (2S-Hl4) given in
figure 2. The large difference in the theoretical values of 1n for
columns is due to the fact that 7 varies almost directly as the
tangent modulus and, for strains between 0.001 and 0.002, the tangent
moduli of the two assumed stress-strain curves of the cladding differ
considerably.

For the evaluation of 1 by the formulas presented, the percentage
of cladding is needed. If the percentage of cladding is not known, it
can be determined from the stress-strain curve of the composite sheet
by the approximate equation

E
Percent Cladding = 100 (1 L -El-)
where E 1is the primary modulus of elasticity, or the initial slope of
the composite stress-strain curve, and E; 1is the secondary modulus of
elasticity or the slope of the composite stress-strain curve after the
cladding material has become plastic and the core material is still
elastic.
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COMPARISON OF THEORY AND EXPERIMENT

Experimental data available for the buckling of flat Alclad plates
in compression and for Alclad strip or narrow columns are compared in
the following paragraphs with the corresponding theoretical values
calculated by the formulas derived in appendix C.

Flat plates in compression.- Studies of the plastic buckling of
flat plates in either compression or shear (references 2 and 3) show
that the curve of 1 plotted against plastic buckling stress is almost
independent of the amount of restraint against rotation at the side
edges of the plate. The same relationship might reasonably be expected
to be true for an Alclad plate. Compression tests were therefore made
on channel and Z-sections formed from Alclad 24S-T84 with 5.7 percent
cladding in the manner described in reference 4 for the determination
of plate buckling strength. The results are given in table II and
plotted in figure 4 where theoretically computed curves are also
plotted. The experimental points follow the trend and agree fairly
well with the theoretical curves based upon estimates that are believed
to be reasonable estimates for the properties of the cladding materisl
(stress-strain curves of fig. 2).

Strip columns.- The results of the strip-column tests reported in
reference 5 are plotted in figure 5 where theoretical curves for this
case based upon the composite stress-strain curves of reference 6 are
also plotted. For values of g,y above about 20 ksi the experimental
points agree well with the theoretical curves based upon the cladding
stress-strain properties of figure 2. For stresses below this point
the separation of the solid and dash-line theoretical curves and the
trend of the plotted experimental data suggest the importance of knowing
accurately the stress-strain curve for the cladding if accurate predic-
tions are to be made of the strip-column strength in this stress range.

CONCLUSIONS

The theoretical results of this paper, two of which were checked
experimentally, show that the buckling stress of an Alclad plate
can be calculated by using the same type formula as that which was used
in NACA Rep. 898 to find the plastic buckling stress of a plate made of
one material. The buckling-stress formula contains a plasticity
reduction factor that takes into account the reduction of the modulus of
elasticity for stresses above the elastic range of the cladding material.
This factor is a function of the percentage of cladding and the tangent
and secant moduli of both the core and the cladding. If the
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stress-strain curves of both the core and the cladding are known,
therefore, the critical buckling stress of the Alclad plate may

be calculated.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., September 15, 1949
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APPENDIX A
SYMBOLS
ratio of cladding thickness to core thickness
(see fig. 1)
width of plate or column
width of flange of channel or Z-section

width of web of channel or Z-section

plasticity coefficients (See pp. 15 and 16.)

plasticity coefficients for pure compression
(see p. 18.)

ok, )

plasticity coefficients for pure shear (See p.

flexural rigidity of the core using Poisson's

ratio as %

2 2

2
ef = — |€x~ + € + € +
\F3\I SO A

g= (1 + 2a)3 . )

72
strain intensity

initial tangent modulus of core and cladding
material in combination

tangent modulus of core material at a stress equal
to oj3

secant modulus of core material at s stress equal
to o3

tangent modulus of cladding material at a stress
equal to o4

secant modulus of cladding material at a stress
equal to 03

 secondary modulus of elasticity of the composite

Alclad sheet
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thickness of core

nondimensional critical-stress coefficient as used

in elastic range

nondimensional critical-stress coefficient for

channel or Z-section
length of column or plate
bending moment per inch about y-axis
bending moment per inch about x-axis
twisting moment per inch
force per inch in x-direction at buckling
force per inch in y-direction at buckling

shear force per inch at buckling

total plate thickness
strain energy in plate during buckling
deflection of plate normal to xy-plane

rectangular coordinates

distance measured normal to plate from middle

surface

distance from middle surface of plate to neutral

axis
shear strain in xy-plane
used as variation in parameter at buckling

strain in x direction
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strain in y-direction

middle-surface strain variations in x- and y-
directions, respectively, at buckling

middle-surface shear-strain variation at buckling

plasticity reduction factor that takes into account
reduction of modulus of elasticity for stresses
above elastic range of cladding material;
depends upon stress and type of plate

half wave length of buckle

value of Poisson's ratio of composite sheet at
buckling stress

stress in x-direction in core material
stress in x-direction in cladding material
stress in y-direction in core materisl

stress in y-directlon in cladding material

Gi = Jﬁxe + Uye

- OxOy + 3T2 stress intensity in core material

T3 = \[Ox? + Ty?

o (o a i
Xe12%e12%1s"el
Oy I¥ eproders Tor
¥

?

Xl, Xe

X3

- OxOy + 372  gtress intensity in cladding materisl

critical stresses if both core and cladding material
are elastic

critical stresses in Alclad sheet at buckling

shear stress in Xy-plane in core material
shear stress in xy-plane in cladding material

curvatures developed in x- and y-directions,
respectively, at buckling

twist developed in buckling
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APPENDIX B
THEORETICAL DERIVATIONS

The same procedure may be used to derive the plastic buckling
stress of a plate as that which was used in deriving the elastic
buckling stress if suitable polyasxial stress-strain relations are used.
These stress-strain relations replace Hooke's law in the plastic stress
region and reduce to Hooke's law in the elastic stress region. In this
appendix the two-dimensional plastic polyaxial stress-strain relations
of the Hencky theory are described and then used to derive the differ-
ential equation of equilibrium and the energy expression of a buckled
Alclad plate, These stress-strain relations are the same as those
used in references 2 and 3.

Stress-strain relations.- The Hencky deformation theory of
plasticity is based on the hypothesis that if a certain function of the
stresses at a point (the stress intensity)

gi = \IO’XE + D'ye = O'_KO"Y + 3_]_9 (l)

is plotted against a certain function of the strains at the same point
(the strain intensity)

2 2
e; = G €2 + ey2 + exey + T (2)

a unique curve for all combinations of stresses and compatible strains
is obtained. This relation as used in the present derivations is
assumed to hold for both loading (increasing Ui) and unloading
(decreasing o4). The material is assumed to be incompressible, for
which case Poisson's ratio is 1/2.
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The relations between the individual stpesses and strains are

1
%% - 5% SD
EETTE By
1
€y = KA EUX SY
y Eg ”E3>
(3)
& oL
y_ES
O
1
Fgim ==
4

where Eg is the secant modulus taken from the uniaxial compressive
stress-strain curve at a stress equal to o0j.

When buckling occurs let ex, €y, and 7y vary slightly from their
values before buckling. These variations ©0e€x, deéy, and ®y will arise

partly from the varistions of middle-surface strains and partly from
strains due to bending. If €7 and ¢€p are middle-surface strain
variations, €3 is the middle-surface shear-strain variation, X3

and X»o are the changes in curvature, X3 is the change in twist, and 2z
is the distance out from the middle of the plate, then

b S
BEX = Gl - Z'Xl
bey = € - o ( (1)
&y = 2€q - 2zX
3 3/

As buckling occurs, these variations in strain &ex, B¢y, and By cause
corresponding variations in the stress quantities Sy, Sy, and T.

The calculation of the variation in Sy will be shown in detail.
From equations (3)

Sx = ESEK
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and the variation in Sy therefore becomes

08y = E5 86y + € 5(2)
. &, 5 % X ei
€xf0i doj
Ui d(]'i
Since oy is the secant modulus Eg and F:TYy is the tangent
modulus .Et,
€x
58 = B, Bog = EICES - Et)bdei (5)

In this equation for &Sy it is convenient to express ©®ej in terms
of the coordinate 2z and also 2zg, the distance from the middle
surface of the plate to the neutral axis. From equations (1), (2),
and (3) it can be shown that

oijei = Ox€x + Oy€y + Ty (6)
and

(07 + 803)(e; + Bey) = (o + Boy)(ey + Bey) + (Uy + ch)(ey + Bey)

+ (7 + 87)(y + 87) (7)
Subtracting equation (6) from equation (7), substituting for the

variations B804, 80y, B0y, and ©7, their values obtained from equa-
tion (3), and neglecting second order terms gives

oy Bex + 0y Dey + T By

Bei =
s ¢

Substituting the values of the variations ©Oey, Bey, and ©y from

equation (4) into this equation gives

Ux€l + Oy€ + 2763 - z(oxX1 + OyXp + 27X3)
sy = - (8)
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If dej = 0, this equation will give the coordinate of the neutral
surface

0yx€1 + O'y€2 + 2T€3

Gxxl =+ G}"XE G 2‘1"}(3

Zo =

and equation (8) may be written

(o‘x){l +‘ nya + 27X3)(ZO - Z)

dej = o1

Substituting this value for ©Odej and the value of &€y given in
equation (4) into equation (5) gives

x (Es - Et)(oxxl + oyXp + 27&3)(2 - ZO) (9)

85x = Eg (Gl - zX]_) + 1ol

Similarly the values of the variation of the stress quantities Sy
and T are

BSy = Es(EE - Zxé) * EEEI(ES - Et)(“xxl ¥ UyXQ » 2TX3)(Z N ZO) (10)

and

o7 = SB5(e3 - 25) + 37 (Bs - Be)(0x0 + oy + 21g)(z - z) (11)

The variations in the stresses ox and oy in terms of the
variations in the stress quantities Sy and Sy are, from equations (3)

-

_ 4 l)
dox = §(BSX + 3 SSy

and > (12)

L 1
By = §(asy + 5)asx
-

In order to use these stress-strain relations to derive the
differential equation and the energy expression for an Alclad plate,
the quantities o0j, 0x, Oy, T, Eg, and Et designate the quantities
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that apply to the core material, whereas 0ji, Ox, Oy, T, Eg, and Et

designate the corresponding quantities that apply to the cladding
material.

Differential equation of buckled plate.- In order to derive the
differential equation of equilibrium of the plate, the values of the
variations of the moments My, My, and Myxy due to the strain varia-
tions ©Oex, B¢y, and Oy, which are obtained by integration of the
product of stress and moment arm over the thickness of the plate, are
substituted into the equilibrium equation (reference 2, equation (15))

¥ 3°(aM > g i
éigx) " ng §)+ éjgy) :Nx.g_x_‘é’.+emxya§ay+ny§:; (13)

In this equation &My, ®My, and OMyy are the variations in My, My,
and Myy during buckling and w 1is the deflection of the plate.

Each integration for a variation of moment consists of three
integrals: one over the thickness of the core, and one over each thick-
ness of the cladding. The variations of the moments My, My, and Mxy
are '

E E*ah _E “\
2 2
oMy = Boxz dz + doxz dz + 60xz dz
! h ' -(§+ah)
£ 2 2
h h h
2 gtah "2
My = doyz dz + 83yz dz + 5Gyz dz (14)
h h (2 )
V-5 5 2+a.h
h h h
2 prad =
OMxy = otz dz + &tz dz + 5Tz dz
-h h ‘ _(H+ah)
2 2 2
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Substituting the values of the stress variations given by equations (11)
and (12) into the equations for the moment variations given by equa-
tions (14) gives, with the aid of equations (9) and (10),

‘ 0y \2 B \ ]‘ 040 E \
- 3(x t o e %
SMX i _DCI<] = E(_;) (] = ....;.) X] + - ey T .__iX( - ._.;> }(2

b2 - B - 2256 - B =

o4 0i
NP M B LY PR B'al (B (16)
2 2 5,2V "Eg/|" T2 G2\ Eg/73

where Dc' =

The differential equation of equilibrium cen now be written by
substituting the moment variations given by equations (15), (16),
and (17) into equation (13) and recognizing that the changes in
curvature X; and Xp and the change in twist X3 are, respectively,
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-
2

v
)(2=_....
doy?
¥
*3 T X oy

Thus the differential equation of equilibrium becomes

Stk Pw
ot il e o

. _leék v
D. 3x2

where
2 E
() (2 - 52)
Cil=1-#—=]\1 =)+
1 o4 Eg
o s o Et E
Co = S ( >+ o=
2 E;Q Eg /T Eg €
3 0,0, + 272
C3=1-§——7—\-
o1
a.,.T E E
B _L( = t)+_s_
h=3 012 Eg X ©
2 E
SR
05_1_H<Ui 1~E5+

given in reference T, is

P = - % Jﬁyq(amx g;g

+ 2C

v o, O
S P2 o Dy

2w Pw
QN}W + Ny __>
dy?

N
"o k-

op - 202

Energy expression.- The strain energy in the plate during buckling,

P

+ 2 SMX;Y W + SMy

S o

15

(18)

(19)

(20)

(21)
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Substituting the values of &My, 8My, and B®Mxy given in equations (15);
(16), and (17) into this equation gives

S o B B o)

oy B, o]

where
0x0: + - 3 Ox0y Et
C = 1 - i ( - —'—) + e B ( i
2 ™ 2 TR\
cr=1 -3L(1 Et) Bs gl - -?jf—(l -E)

Cg + Cp = 2C3

The difference between the strain energy in the plate and the work
done on the plate by the external forces, provided that external
restraining forces do no work during buckling, is

Dc' d2w\2 Pw 2w 32w 2w 2w 32w R
ffTEl('éF) 'ngg_zm‘“%gggz‘”?(m) " O 3oy 2

+ 05(%)2] - %|N}(%§) + 2Nxy % % + Ny(-g%ﬂ dx dy (22)

If no cladding is used, this expression differs slightly from that given
in references 2 and 3. The difference between the two expressions is a
quantity proportional to :

2
/ (2% (el w

which can be shown to be identically zero for plates with supported edges.
The two expressions will therefore give identical results for such plates.
Other cases in which the two expressions give identical results occur




NACA TN 1986 L5

when Cgs and C7 are equal to C3 (for example, single compressive
loading), in which cases the coefficient of the above quantity is zero.

If the integral (22) is set equal to zero the resulting equation
mey be solved for Nx, Ny, or Nxy and minimized to obtain the critical

force per inch at buckling. This minimization is equivalent to
minimizing the integral (22). The average critical stresses are

_ 3 A
%ry =TT + 2a)n

N
J

Ucry = T + 2a)n > (23)

N

er = T + 2a)n
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APPENDIX C

APPLICATIONS

The *theory will now be applied to the following cases: long simply
supported plate in compression, plate-column, and long simply supported
plate in shear.

Long simply supported plate in compression.- The plastic buckling
of a long Alclad plate subject to longitudinal compression with the
edges hinged is solved by using the energy method. If the plate is
compressed in the x-direction only

Uyza-ys'r =T=Ny=ny=0

Ui‘—‘Ux

and the coefficients reduce to

(]
no
I

Q
=
]

o

Il
Q
=)
Il
Q
e,
Q
I
i
+
t‘jl |
o]
m

C3U C5U

With these substitutions the energy expression when solved for Ny
becomes

2\ 2y \2 | Rv Pw P\
IO RN R Y

S @ o

If the deflection surface is

s Xy 3=
W = cos 3% cos -
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where y = ig are the unloaded edges which are simply supported and A

is the half wave length of buckle, equation (24) reduces to

 2py e \ 12
NX. = b2 ClO’(I) e 2030_ + 050_('.5) (25)

The average critical stress is obtained by dividing the smallest
value of the load per inch Ny by the total thickness (1 + 2a)h. In
order to find the minimum value of Ny

ON.
s o 15
b
A
which gives
(2) -2
A Cq

2
Substitution of this value of (%) into equation (25) and dividing

by (1 + 2a)h gives for the critical stress

U- EﬁQD ; Cq C + C
- "—
&L (1 + 28)hb° 2 3

The corresponding critical stress if both core and cladding material
are elastic is

45 2Eh° be %1}

o g +
*el T 9(1 + 2a)02

If n 1is defined as the ratio of the actual critical stress to

the critical stress obtained on the assumption of perfect elasticity OXa1
then
_ _oer _ d o ‘0 g (26)

oxe1  2(g +1) E
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Since Poisson's ratio is taken as 1/2 in the computation of each of
these stresses, an error is ordinarily present in both stresses, but
most of this error is eliminated in the process of division to obtain 1.
If both the core and the cladding material are elastic, 7n = 1.

Plate loaded as a column.- Th.s problem of the plastic buckling of
a rectangular Alclad plate in compression with the unloaded edges free
is solved by using the differential-equation method. If the plate is
compressed in the x-direction only, the differential equation given in
equation (21) reduces to

Stw ol vy Ny Pw
G, i 2030 MxRoy2 t B, oyt Dc' ox2

where Clg, 030, and 050 are the same as in the preceeding example.

The boundary conditions are

2 =3
Pw) olomg)] e 3 )
el 2" 53 T2 5By, 27 °
y=%5 Tyt
ocw 1 aew) =
(Bx) oo, (Clo' 2@ "2 30 %2l

3 (st ) oy : G}l Bu 3, O ) S
o % x=0,1 o x3 2 Yoo aye x=0,1

where y = i% are the unloaded edges that are free and x = 0,1 are

the ends of the column where the bending moment and shear are zero.
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A deflection function that satisfies the differential equation and
satisfies the first, third, and fourth of these boundary conditions 1is

. B conh EEX)E‘.‘.
W= (q cos 5 cosh 4= + p cosh 5 COS 3-)cos =

where

In order to satisfy the second boundary condition it is required that

“tanh & B
o - (3] T o (B] -0 e

which is the buckling criterion the solution of which gives the buckling
stress.

In solving equation (27) it is convenient to let the quanity
that appears in the definition of o and B

o (- 2)- (- e

030
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where 52 is a quantity that will depend on the length-width
ratio (% ) of the plate. Then

Qn)
Il
—
A
""‘ID"
S
—_
=
+
'_I
1
uww
no
e

el
|
A
~|2
a—
no
.
|-
+
'_l
1
T
no
—

()3 V- )

()

and the buckling criterion given by equation (27) becomes

fe
I
M|

I

Di= A

tanh & tan &
€2 +(%I'§2)(l+\ﬁ"—§2) —m7—2—2— Z +(%-§2)(l-mﬂwa—2=o

(29)

This stability criterion is the same as that obtained in reference 2,
equation (33). Although a separate solution of equation (29) is required

for each value of l, only the three solutions given in reference 2 are

considered here: for short columns (% << l), e 0; for a square plate
(% = 1), ég = 0.15375; and for a long column (% >> l), §2 = %. With

the values of §2 known, the value of the nondimensional critical-stress
coefficient k given by equation (28) is substituted into the expression
for the load per inch Ny and the result divided by the thickness of

the plate (1 + 2a)h to give the critical stress in terms of t° as

Clg 2)
Sy
Ox » = ' - % “3g “2ES
cr (1 + 2a)h (1 + 2a) ,31(3)2
P
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where p = =

V12

The corresponding critical stress if both core and cladding material
are elastic is

2 2

“E(1 - &<) 2
o = (1 + 2a)
G

K\p
The plasticity reduction factor mn, which is the ratio of the

actual critical stress to the critical stress Ox.7 Obtained on the
assumption of perfect elasticity, 1s

C AL £2
Xer 3 30 C3g Eg

Oxe1 (1 - E2)(g+1) E

T|=

For & short plate-column (-‘T'- < l), £ ~ 0 end

b
Cly Eg
L (g + 1) i 3

For a square plate-column (% = 1), e 0.15375 and

c (ClU 0 15375)
3 bl -
_\G3, Es
1 =70.8625 (g + 1) E

For a long plate-column (% >>-1),

23
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Long simply supported plate in shear.- The plastic buckling of a
long Alclad plate subject to shear with the edges hinged is solved by
using the energy method. If the plate is under pure shear

Ux?o'y:ax:ay:Nx:Ny:O

oy = V3r
oy = V37
Eg
Cly =C5; =C6, =1 + ﬁ; g
CQT =0y =0
Tr Eg & Eg
o = 0n % 1 1B Fs [1 18
3377 2 SeTRE.VE B2 2§B

With these substitutions the energy expression when solved for Nxy
becomes:

oot J) [ el + o6 Ey B o, (]
: TETs

If the approximate deflection surface which was used in the elastic
stress region (see reference T)

w=sm%mﬂ(x_-¢u

A

Nyy = dx dy

(30)

where y = 0,b are the long sides of the plate, A is the half wave
length of buckle, and a is the slope of the nodel lines, is assumed
satisfactory for the plastic stress region and is substituted into
equation (30), the load per inch Nyy becomes

Ny = ;%%l[h@)e * BC3y # 057(%)2 + C5T(§)2 (ﬂ-l‘ + 2 %;—I o + lﬂ (31)

T
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The critical stress is obtained by dividing the smallest value
of the load per inch ny by the total thickness (1 + 2a)h. In order
to find the minimum velue of Nxy

ey o
(5)
and

The first minimization gives

) et gt 2

The second minimization gives

C L
5 =
\/Gf4+2'a—-1(1.2+l=—'1"—'26_ (32)
o1 3&2 —.;iI
Cs5
o T
Substitution of the value of (%) into equation (31) and dividing

by (1 + 2a)h gives for the critical stress

1 C c C
__xB, 5T2 (3w2+517-+\j@“+20—31m2+1)
(1 + 2a)hab 5y 5r

TCI‘

where o is determined by equation (32). The critical shear
stress Tg1 when both the core material and the cladding material are
elastic is :
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As in the preceding cases, the plasticity reduction factor n 1is the
ratio of the actual critical stress to the critical stress obtained on
the assumption of perfect elasticity or

C ¢ e =
= Jer o 2 3m2+_?31+\/c,l‘+2_§lc,2+1 Zs
Tel W3(g + 1) Cs, Cs., L

where o 1is given by equation (32).
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TABLE II
DIMENSIONS AND TEST RESULTS FOR 24S-T84 ALCLAD CHANNEL- AND Z-SECTION

COLUMNS THAT DEVELOP LOCAL INSTABILITY

A t | bw | bF 1 L O 12(1 - 4) |%cr/N| er
SRecien (in.)|(in.) [(in.) [(in) | By | & | By T Ky (ksi) [(ksi)
Channel section
1 0.127|1.8% [1.067|6.67 [3.63|14.49]0.580(2.33 31.37 110.0 |64.5
2 J127]1.8% [1.067(9.06 |4.92|1k.49| .580(2.33 31.37 110.0 [61.7
3 .091]1.39 | .863[4.77 [3.43|15.27| .621(2.08 34.99 86.2(63.7
o .091(1,39 | .875|4.83 |3.47|15.27| .628|2.04 35.33 8L.6(63.0
5 .091(1.39 | .875(Lk.88 [3.51]|15.27| .629|2.04 35.33 84.6160.8
6 .0641.41 | .586(4.98 [3.53|22.03| .416(3.62 38.26 T1.9(56.3
T .064{1.41 | .588(L4.98 [3.53|22.03| .M1T(3.61 38.31 T1.9 {54.3
8 L06h{1,k1 | .591 [4.98 |3.53|22.03| .419|3.54 38.k42 L5530 T
9 L063[1.41 | .669(5.29 |3.75(22.38| .u7k|3.12 41,87 60.3|51.1
10 LO6h|1.41 | .671(5.30 |3.76|22.03| .476|3.09 1.k 61,5 |49. 4
11 .063[1.41 | .674(5.29 |3.75|22.38| .478|3.07 4o 21 59.2 (48.6
12 L063|1.41 | .713(5.67 |k.02|22.38| .506(2.85 43,81 54.9 [46.T
13 L063|1.41 | .719(5.67 |4.02]|22.38| .510]2.82 4l ok 54, 4|48, 4
14 .062]1.92 | .58216.78 [3.53(30.97| .303|4.38 48.90 4y, 2139.1
15 .062(1.92 | .58916.78 [3.53[30.97| .307|4.35 kg.07 43.9|41.1
16 .062|1.93 | .592(6.78 |3.51(31.13( .307!k.35 hg.32 43.4140.3
17 .062(1.92 | .777(8.18 |4.26|30.97| .h405(3.70 53.21 37.3[3%.5
18 .062(1.92 | .779(8.17 |4.26(30.97| .k406(3.70 53.21 3T3133.3
19 .062]1.92 | .782(8.17 |4.26(30.97| .k4OT(3.70 53.21 37.3(35.5
20 ohifi,41 | .718|6.77 |4.80(34.39( .509(2.82 67.55 23,1(20,2
21 .0kof1.4k | .513]5.77 |4.01(36.00| .356|4.06 59.0L 30.3|27.0
22 .040|1.43 | .518(5.77 [4.03(35.75| .362(k.02 58.92 30.4)26.3
23 .obof1.4k | .523(5.77 |4.01(36.00| .363|k.02 59.33 30.0(26.8
2l .040(1.43 | .625(6.27 [4.38]35.75] .437|3.43 63.79 26.0(24.3
25 .0k0| 1.4 | ,633|6.26 [4.35[36.00( .440|3.41 64, 42 25.4 (24,5
26 .040[1.4k | .633]6.27 [4.35/36.00| .kkO|3.M1 6k k2 25.5|23.9
27 .0ko|1.42 | .720]6.78 [4.77|38.50| .507(2.83 69.73 21.7|20.0
28 .obof1.42 | .728|6.77 |4.77|38.50| .513]|2.83 69.98 21.6(20.9
29 .0k9l1.92 | .609|7.30 |3.80[39.18| .317|L4.31 62.36 27.2|27.1
30 .okgl1.91 | .611(7.38 |3.86|38.98| .320|k4.30 62.12 27.4(2k.0
31 .04gl1.91 | .61h4[7.36 |3.85(|38.98] .321|4.30 62.12 27.4(23.6
32 .049]1.91 | .694(T7.99 [4.18|38.92| .363|L4.0L 64,32 25.6(21.9
33 .0k9|1.,90 | .696|8.00 |L4.21]|38.78| .366|L4.00 64.08 25.7(23.9
34 L0h9l1.91 | .699(7.99 |4.18]|38.98| .366|L.00 6h. 41 25,4 (21.1
Z-section
1 .092|11.91 | .724(6.59 |3.45]/20.70| .379|3.90 3h.Th 87.5(60.1
2 .091(1.90 | .725|6.58 |3.46|20.88| .382(3.88 35.03 86.0(62.1
3 ,091|1.90 | .725(6.58 [3.46|20.88| .382|3.88 35.03 86.0(62.3
i .069(1.43 | .606(4.98 |3.48|20.72| .424|3.53 36. 44 79.5(59.0
5 .069|1.43 | .606]|4.98 [3.48|20.72| .424|3.53 36. 44 79.5|60.1
6 O41|1.45 | .450(5.78 [3.99(35.37| .310(4.3% 56.10 33.6|31.3
T .0bo|1.46 | .465|6.56 |4.h9[36.50| .318|L4.28 58,10 31.2|27.8
8 L0k0|1.45 | .468|6.60 |4.55[36.25| .323(4.30 57.90 31.5(31.1
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Figure |.-Alclad sheet.
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Figure 2- Assumed stress-strain curves of cladding.
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Figure 3.- Stress-strain curves of Alclad 24S-T84 aluminum-
alloy sheet with 5.7 percent cladding.
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Figure 4- Theoretical values of 7) for a simply supported
plate in compression and experimental points for Z-ond
channel sections made of Alclad 24S-T84 aluminum-
alloy sheet with 5.7 percent clodding.
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Figure 5.-Theoretical and experimental values of m

for o long column made of Alclad 24S-T sheet
with Il percent cladding.





