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NATIONAL ADVISORY COINITTEE FOR AERONAUTICS

TECHNICAL NOTE 2058 “

ON ~ CONTINUATION OF A POTENTIAL GAS

FLOW ACROSS THE SONIC LINE

By Lipman Bers

suMMARY

Simple, sufficient conditions are given under which a two+mensional
steady compressible flow csm be continued across the line of Mach number 1
as a continuous ,supersonicflow. Methods for the actusl computation of
the flow are described. The problem is of importance in the theoryof
43rsnsonicflows past airfoils.

INTRODUCTION

The theory of mixed subsonic and supersonic flows of a compressible
-fluid is as yet very incomplete. As a contribution +,0such a theoryj
the problem of continuing a two-dimensioned.subsonic gas flow across a
line slong which the speed of the flow reaches that of sound is consid-
ered in this paper. Rather simple, sufficient conditions under which
the continuation is possible and is uniquely determined sre given
(section 1). The problem is of interest in connection with transonic
flows past obstacles (see section 7).

The mathematical nucleus of the problem is the solution of a Cauchy
problem fora partial differential equation of mixed elliptico4yperbolic
type. This problem is solved in the appendix by a method which is
believed to be intrinsically s5mpler than the previous treatment by
Christianovitch in a paper unavailable in this countryl sndby Frankl
(reference 1). The ’theoreticaldiscussion contained in the appendix
(sections 5 and 6) yields methods for the actual computation of the flow
in the supersonic region.

This investigationwas carried out at Syracuse University under the
sponsorship and with the finsncisl assistance of the National Advisory
Committee for Aeronautics. .

lC&isti~otitchj S. A.: On Supersonic Gas Flows. CAHI Rep.
No. 543, 1941. (In Russian.)
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The following notation is

speed of sound

SYMBOLS

used in the ANALYSIS:

solution of hypergeometric

coefficient in Chaplygin;s
equation (20)

equation (2’7)

equation, defined bY

step function approximating function K

function defined ~y equation (38)

.

Mach number

normsl to the curve I’ pointing toward the domain A

speed

critical speed

qm~ maximum value “of q

s arc length measured on I’

s length of I’

t function of speed (see equation (18))

%x value of t for M = aJ

P

.?

.
.

*

— . . .——..
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u,v

x) Y

X(S),Y(S)

7

r

rh

A

e

P

T

u.)

4U

0

-.-— .

components of velocity vector

coordinates in physicsl plsne

coordinates of points on r

exponent in pressure4ensity relation

curve “in.physicalplane along which M = 1

3

image of r in hodograph plane

domain in which a subsonic flow is given

angle between velocity vector and x-axis

density

critical density

variable defined by equation (28)

value of 7 for M = 1

velocity potential

stream function

angle between tangent to I’ snd x-axis

used over symbol, value on I’

used as subscript, vslue for q = O

—— .- —... ——. __-— —..—.
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The following notation is used in the appendix:

a,’b end points of segnent along which Cauchy data are given

A,B,T,N,T’,N’,T’’,N” “constsnts de<ined in section 3 of the appendix

D(a,b)

K

Kn

W,w .

x,y

y(n),?(n)

z,~

~n,i.~(n)

AV

Z(K)

T> v

9

v

.

,.,

domain defined in section 1 of the appendix

coefficient in equation (Al)

functions approximating function K

complex-valued functions

independent variables

functions defined by equations (KL8) ,0

complex

“formal

variables .,

powers” defined in section 4 of the appendix

const~ts defined

matrix defined by

Wequations (A3k) “

equation (A9)

given initisl values of ~ and its normal derivative

function connected with V by equation (A7)

dependent variable in equation (Al) .

.

—- ——.——
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,

ANALYSIS

1. The Continuation Theorem

The main result of this investigation reads as follows:

Given a domain A in the x,~plane, whose boundary contains
a continuously curved arc I’ (see fig. 1); given a subsonic
potentisl gas flow in A; and if

(a) the Mach number of the flow on r is

(b) the components of the velocity vector
order derivatives are continuous on 17,

from

then

(c) the normal derivative of the speed on
zero, and

(d) no streamline of the flow cuts I’ at

equal to unity,

and their firsti

r is different

a right angle;
the flow cau be continued across any subarc of I’ as a

potential supersonic,flow without weal ’discontinuitiesand this
continuation is uniquely determined.

This theorem contains no general statement concerning the extent
of the supersonic region obtained; however, in each special.case the
method of continuation described as follows determines the extent.

By a compressiblepotential flow without weak discontinuities is
meant a flow described by two twice continuously differentiable
functions @(xjy) aud V(x,y) (potential and stream function)
satisfying the differential equations

g=poatf——’
ax pay

1 (1)
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where PO is the stagnation density and p the density given by

(2)

Here 7 is the exponent in the pressure-density relation; ~ is the
speed of sound at a stagnation point; smd q, the speed, is

.=.Jg@ (3)

.

It is well known that in the supersonic region flows with wesk
discontinuities (disconttiuitiesin the second derivatives of the
velocity potential) are possible. In fact, there is no good physical
reason to assume that in a supersonic flow the velocity”components

(4)

possess partial derivatives. (The continuity equationand the condition
for the existence of a potential maybe expressed in terms of integrsl
relations.) Under precisely which conditions flows with weak disconti-
nuities cam be obtained by continuing subsonic flows across the sonic
line seems to be a very important but rather delicate question; it is
intimately tied up with the question of the necessityof conditions (b)
to (d).

If condition (c) is violated along sn arc of r, then the velocity
vector is constsnt along this arc. This follows from equation (8). It
seems very probable that in such a case the velocity vector must be
constant everywhere. Whether the continuation theorem remains true if
condition (c) is violated at isolated points remains an open question.

.

}?

“

— .—.
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Condition (d) is probably essent,ialfor the uniqueness of the
continuation. If at some point P of r the”stresnline is normsl
to I’,then the Mach lines at this point are tangential to I’,for
at i’ the Mach angle is 90°. Such a situation arises.in a symmetrical
Laval nozzle if the transition from subsonic to supersonic speeds occurs
along a line extending across the nozzle (flow of Mayer type, see
fig. 2). In a remarkable paper (reference 2) Frankl investigated this
case and showed that the continuation of the subsonic flow into the
supersonic region is not uniquely determined. He showed also that in
this case the supersonic flow may exhibit weak discontinuities.

2. Reduction to

In order to prove

a Cauchy Problem in the Hodograph Plane

the theorem, let the equation of the curve !7 .be

x = x(s) 1
(5)y = Y(s)

o~~~s )
where s is the arc length of I’ measured in the direction of
traversing r with the domain A to the left. By hypothesis X“(s)
and Y“(s) exist ad are continuous, and X’2 + Y’2 = 1. It follows
that the angle

.(s) = tan-l ti

x’(a)

between the tangent to 17 at x=X(s), y=
x-directign is a continuously differentiable
fig. 1.)

Set

u— iv = qe–ie

(6)

Y(s) and the positive
function of s. (See

(71

-- ——-——---— ——-——— .__.. . . — ______ ._. —...-———.—_________ ——.— —..
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The value of any function F(x,y) at x = X(s), y= Y(s) will be

denoted by ~(s). Thus 3(s) = f3[X(s), Y(s)]. Nikolskii snd Taganov

(reference 3) showed that

.

.

(8)

where b/bn denotes differentiation in the direction of the normsl
to r pointing toward the domain A. ‘ (This formula follows easilY
from the equation of motion written with” q and e as.independent
variables.) Since M= 1 on r’ aud M<l in A (M = q/a being
the Mach num%er) it follows that aq/an<O, so that by hypotheses (c)

snd (d)

3’(s) <o (9)

It is no loss of generality to assume that

2X >3(0) >3(s) >0 (lo)

If this condition were not satisfied, r could be divided into a
finite number of overlapping arcs slong each of which 6 ‘would change
by less than 2Yr. Inequalities (9) snd (10) imply that I’ has a one-
to-one image in the hodograph plane, which is the circular arc rh
given by

q=c+ ;(s) Se<F(o) (11)

where qcr> the critical speed, is

Q .)r2.cr
. a.

y+l

..

—— .— ——
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By,the definition of the potential snd stream function,

}

On 17,

if= qcr Cos 8

*
% = qcr sin e

ax = ds COS m

*

()2P .pcr=—
7+1

so that

?(s), &-)’/2J’s.0s (3-- CD)d.s

?’+1 1

(12)

‘ (13)

These equations show that ~(s) -and ~(s)
differentiable. By hypothesis’ 0(s) is a
furmtion. By virtue of inequality (9) the

)’

are twice continuously .’
continuously differentiable
inverse function

——--.-—” ...L——.—.——.—.— . . . . . .. . .— ______ ____ . _
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s = ~*(e)

exists and hence is continuously differentiable. It follows that

(14)

sre continuously differentiable functions of 0,. 3(s) < e<%(o).

Assume now that the flow in A has been continued across I’.
Since

/

32A= J2LQ!2
a(x,y) a(x,y)

it follows that on r

In fact, on r

.

,,

.
(15)

snd aqfis = O, whereas &@s is given by equation (8). By
hypotheses (c) smd (d) expression (15)

a(u,-d <
# a(x,y)

cannot %ish. Hence

o

for all points stificiently close to r. lt follows that a sufficiently
small neighborhood of auy subarc of r has a one-t~ne image in the

hodograph plane, that is, a neighborhood U of a subarc of !2h. In”the

——-—.—...—
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hodograph plane the functions ~ and ~ satisfy the well-known
Chaplygin equations

while On rh they satisfy the initial conditions

for e(s) <e <e(o).

3. Existence and Uniqueness of the Solution

11

(16)

(17)

in the Hodograph Plsne

In the preceding section the continuation of a subsonic flow
across the sonic line has been reduced to the initial-vslue problem,
equations (16) and (17). Introduce the new independent variable

(18)

(Note that q = O corresponds to t = -m, q = qcr to t = O,

and q = qma = %- to some finite positive ~~ue of to)

In the e,t-plane, @ and v satisfy the equations

—-—.... _ ...— -—.. —.. .—. ——--.—. _—— ——.— — .————— ----- .,.— ——..- ———-----
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where

l-M?
K(t) = —

o

The
a Cauchy
is given

. NACA TN 2058

P=

initial-valueproblem, equations
problem for equations.(19). .~e

u

(16) smd (17),
theory of this

(19)

(20)

goes over into
Cauchy problem

in the appendix. From the theorems stated in section-3~of the, ..
appendix it follows that the initisl-vslue problem, equations (16)
and (17), possesses a unique solution in the domain .boundedby the
arc rh smd two characteristics of equations (16). As is well known,

these characteristics are epicycloid. In this domain (see fig. 3),
which is called the “characteristictriangle determined by rh>”

the functions @ snd ~ will be continuously differentiable,provided
that @(e) and ~*(e) have this property.

Remark.– Note that if ~ (considered as a fuuction of 0 snd t)
is twice continuously differentiable, then equations (19) imply that
~ satisfies Chaplygin’s equation

In this case the
a Cauchy problem

‘(21)

initisl-vslueproblem consider&l may be formulated as
for equation.: /

?

—..

“ V(e,())= T(e)

Vt(e,o)s v(e)

——,
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where

l-(e)= @(e)

v(e) = p*’(e)

In general, however, V need not be
differentiable function inthe supersonic

4. Existence and Uniqueness

a twice continuously
pat of the hodo”graphplane.

of the Solution

in the Physical Plane

In order to complete the proof of the continuation theorem, it .
must be shown that the functions ~“ and v obtained in the preceding ‘
section can be transferred,(in a unique way) to the physical plane
(more precisely, to a part of the physicsl pl~e adjacent to r snd
lying outside A) ad that-in the x,~plane these functions possess
continuous derivatives of the second order which assume the “correct”
values along r.

.
The functions @ and ~ obtained from the Cauchy problem coincide

slong r with the potentisl and stream function of the flow given
in A and transferred to the hodograph plaue by means of the mapping

u= U(x,y)

. .
\

‘v= P(x,y) J

(22)
.

It follows from equations (12) that the inverse mapping is given by

(23)

,’
__.._—_____..... .... .. ..-.—._ ____ _. .. ~ . .-—. __.._+___ -_.... -.—___ ____—— ———
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Since the functions @ and ~ have been continued into the”
supersonic psrt of the hodograph plane, this integrsl is meaningful -
even there. Moreover, it is pat&independent. Under the assumption
that the psrtisl derivatives $$e, @eq, . . . exist and ~ continuous,

this follows immediately’fromChaplygin’s equations (16). But, in the
case considered, this assumption cannot be made. Consider, however, the
mapping from the hodograph plane to the @j~—plme. By virtue of
equations (16)

w=&3G+() P

(J

92

a(e,q) Po~ & ,.(:- M?)

It follows (for instance, from relations (9) ~d (13)) that this
Jacobian is different from zero in some neighborhood of the ~c rho

Hence the mayping from the hodograph to the @~$–Pl~e is loc~lY one
to-one, so that it is sufficient to establish the path–independence of
the integral, equation (23), in the @,v~lane. This leads at once ‘
to the conditions

Using the relation

.

..—.——— —
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these condi-tionsmay be tm.nsfomned into

0

2$=-!?--.$

15

(24)

28_ ._Po(l - M2) a
alf P~ J

ag -

Interchangingthe dependent snd independent variables, it is seen that
system (24) is equivalent to equations (16). ‘I%USequations (16) insure
the pat&independence of the integral, “equation(23); even without any
assumption about the existence of second+rder derivatives of @ .

and V.

Thus equation (23) defines amapping also in the supersonic part
of the hodograph plane. The Jacobian of this mapping is easily
computed to be equal.to

so that for q = ~r

-Y-2

~=-+(+)= [@y@u2

But by equations (14)

so that

_ d&is* ()p“(e) _= 2 1/2-+0
ds de y+l B’(s)

*

$d#o

(25)

. ---- . ..._ .----- -.———-.______ . .... .. . . . .. —-——. . ... . ...-— ....._-—
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on the arc defined by equation (11) snd hence also in some neighborhood
of auy subarc of this arc. It follows,that such a neighborhood is
mapped onto a neighborhood of a subarc of r in a oneto-one msmner.
The functions @ aud v obtained by solving the initial-valueproblem,
equations (16) snd (17), can now be transferred to the x,~plane by
means of the mapping defined by equation (23)..

The derivatives of @ and ~ in the x,y=plane cau be computed
byusing equations (16) aud (23). (See reference 4.) This direct
though lengthy computation yields exactly equations (12). Thus @
and v satisfy equations (l). Finally, equation (23) shows that x
and y sre continuously differentiable functions of u ad v, so
that u ad v are continuously differentiable fuuctions of x
snd y. Thus @ and v possess continuous partial derivatives of the
second order in the x,y=pltie. The proof is now complete.

5. Computation of the Solution

The theorems proved in the appendix implicitly contain methods for
the effective computation of the solution. Thus theorem 2 shows that
the solution of the Cauchy problem may be.represented as in infinite
series of particular solutions of the Chaplygin type. (The idea of the
following proof is already contained in a remark by Frankl concerning
the Tricomi problem; see reference 5.) .

Chaplygin (reference 6) showed that a particular solution of the
second-order equation obtained from equations (16) by eliminating @
can be found by setting (for any positive constant a)

* ‘ ei&(@hnax)~a(~2/qk2)

where qm= is the msximum speed possible for the given gas:

,
and Fa(T) is any solution of the hypergeometric equation

(26)

●

b.

.

.

.

—. -—
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T(I – T)Fan(T) + [1 + a–

the constants ~ and ba

aa

. .

17

faa+ la+ l)T] Fa’(T) –aabaFa(T) = O (27)

being determinedly the equations

1+ba=a-—
71-.

It4is seen that the potentisl corresponding to equation (26) is
given by

1p=-iei@(po/p)(q/qm)a ~a(l-) - (2T/a)F’~’(T)

where

Let F~~T) and F~I(T) denote the particular integrals of

equation (27) which for

= qcr2
T = ‘cr

!l=2

satisfy the initial conditions

(28)

.

. . .. .. -_.—__ .-. .——._._.______ _._. ———.—. _ __ —---
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I?d=o

‘ciII= 1

()ay+l 2

‘OXI’ ‘–> y – 1

Set

then

me pairs of
conditions

ei@iaj(T )1
1-

~ei@B (T)
aj J

NACA TN 2058 .

!-

solutions of equations (16) satisfying the initial

(30)

. . — --
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.

. Pq = o, IJaj= 1 for
.

Consider now the Cauchy problem,
for the sake of simplicity that

e(s) =

e(o) =

O<T<X

Set

1 (31)

~=~r,j’~

equations (16) and (17), assuming

–T

T

aud expand the initial data @*(e) and V*(6) in Fourier series

P’(e) ‘~% cm a# + %n sin a#
n=O 1

m

I/F+(0)=~cncos a@+d= sina#
n=o

t

J
From the way the particular solutions, equations (30), have been
constructed it follows that the series

..

“

(32)

(33)

.- ...— —————.-.——.—.——... ——— —..— —..—.———. —.-. —.. .—-— ___ .._______________
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-s( Cn sin ~e — dn COS U#)&.JI(T )

n=l

-’l
(34)

v = Co + ~ .(cncos me + dn sin %@)B%II(T) +
n=l

m,

x( ~ sin a@ + bn cos ~~)B~I(T)
n=l

I

represent a formal solution of the initial-valueproblem considered.

Theorem 2 of the appendix not only shows that the series converge
absolutely and uniformly (within the “characteristictriangle”) to the ‘
desired solution but also permits an estimate of the error committedly
replacing the infinite series by finite partisl sums. Theorems 4 snd 5

.

of the appendix contain similar statements concerning the convergence
of the differentiated series. . .

Remark l.– While the theorems in the appendix refer to an
equation of the form of eauation (21), it is clear that these theorems
imply similar ones
of series (34) was
the hypergeometric

Remark 2.– It
initial values are

.

for s~-tem (16). It maybe noted that the convergence
proved by a general method; no special properties of
functions were used.

.-

should be noted that if the arc rh on which the
given exceeds

.(J~-1) “

then the epicycloid drawn from the extremities of the arc do not
intersect. In this case the characteristic triangle must be replaced
by the domain bounded by the initial arc, the two epicycloid, and m
arc of the circle q = qmu. (See fig. 4.)

.

——.— ——.



NACA TN 2058

.

.

21

6. Computation of the Solution bya Second Method

The expansion in a Chaplygin series may not be the most efficient
way of computing the solution of the initial-valueproblem in the
hodograph plane, since it requires the preliminary computation of the
functions & and Ba, and because of the possibility of slow

convergence. Another method is suggested by theorems 3 and 6 of the
appendix.

Let the equation satisfied by the stream function be transformed
into the form of equation (23). Divide the intervsl O< t< ~m
into subintervals

and set

The equation

twl<t’<t~ -

v =1,2 . ..n

o

~
=to<tl<.. .<tn=tm

K++(t)=min K(tr)

tv-l~t%,tv.-l<t’<tv

K*(t)l@e + ~tt = O

(35)

(36)

1

(37)

is an approximation to equation (21). Since K?+(t) is a pie,cewise
constant function (step function), it is equivalent to the one
dimensional wave equation in each strip tv <t <tV+l. A solution of
equation (37) will be required to ,possesscontinuous partisl derivatives
of the first order. The potential @ corresponding to a given
solution of equation (37) will be continuous but its first derivatives
will possess discontinuities. The characteristics of equation (37) are{
given by the equations

—...=.-..- ----- ._.. _. —___ ______ .— .—_______ _ _ ._ _____ .
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,- J’@G5.. =Co...t.t

.9. f {’j d. . .onstsnt

which represent polygonal arcs in the e,t=plane.

For eauation (37) the solution of the Cauchy

(See figs. 5 snd 6.)

problem,
equations (24), is-a trivisl matter. This solution maybe constructed
by repeated use of the classical D’Alembert formula (as described in
detail in section 6 of the appendix). Another possibility is to apply
the method of the preceding section.

Theorems 3 and
equations (35), the
close approximation
initial values.

6 assert that for a sufficiently fine subdivision,
solution of equation (37) will be an arbitrarily
to the solution of equations (24) with the same

Instead of using the approximating step function, equation (36),
one may use the function

I&(t) = max K(t’) (38)

In this case K&(t) s O for O <. <tl, so that in this strip v is

a linear function of t.

In some cases i. might be
coefficient a piecewise linear
approximating equation will be
equation

preferable to use as the approximating
function. In this case the
of the type of the Darboux-Tricomi

in each strip’ ~ < . < tv+l. The solution of the Cauchypro’blem

the Darboux-Tricomi equation canbe expressed eitherby integral.
formulas (see reference 7) or by infinite series involving Bessel
functions.

.

.-

.

.

(39)

for

—— —.._ -..
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7. Application to Trsmsonic Flows past Obstacles

The theorem stated in section 1 is of a purely local character.
While in the hodograph plane the flow can be continued throughout the
whole characteristic triangle, the trsmsition to the physical plane may
be possible only in the immediate neighborhood of the sonic line r.
This maybe due either to the existence of limiting lines or simplyto
the fact that a simply covered domain in the hodograph plane corre-
sponds .toa multiply covered domain in the physicai plane.

In some important cases, however, it canbe asserted that the .
continuation of the subsonic flow by the method described in sections 2
to S yields the whole supersonic region which is of relevance to the
problem considered. .

Consider a transonic flow past a closed body with a subsonic stream
Mach nuniber(and without shock waves). The supersonic regions S1

and S2 (see fig. 7) are bounded by solid walls and transition lines
slong which M . 1. For a supersonic region thus bounded, Nikolskii
and Taganov (reference 3) proved an important theorem stating that the
region S possesses a on+t~ne image in the hodograph plane.

In this proof, Nikolskii and Taganov make use of the remsrk that
all Mach lines in S must possess points in comon with the transition
line (the line M“= 1). While they give no formsl proof of this fact,
a proof csm be supplied without difficulty. The domain S is simply
covered by a family of smooth curves, the streamlines of the flow, and
the solid wall bounding S belongs to this family. A Mach line having
‘no points in common with the transition line would have to originate
and terminate at the solid wall. A simple argument, essentially equiva-
lent to Rolle~s theorem, shows that such a Mach-line would be tangent
to a streamline at at least one point P. But this is impossible
since at P the Mach angle would have’to be O, which corresponds
to M=w, p=O.

Consider now the hodograph image Sh of S. Xt is bounded by the
arc rh of the circle q = qcr (corresponding to the transition line

in the physical plane) snd the curve Wh (the hodograph image of the
solid boundary). Assume that Sh is not contained within the character-
istic triangle determined by rh which is bounded by rh and two

characteristics of the hodograph equations (i.e., two Busemann
epicycloid) . Then at least one of these Busemanriepicycloid
intersects Wh at two points, and Sh contains an arc of an
epicycloid which has no points in common with rho This, however, is

—-.—.—— . . . .. .. — - —.-.. .
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impossible since the epicycloid are the hodograph images of the Mach
.

lines. Thus Sh is contained within the characteristic triangle. By

virtue of the previous results, this implies the following uniqueness
theorem:

TWO trsnsonic (subsonic at infinity) flows past ~ obstacle
are identical if they are identical in the subsonic region.

Similar theorems are true for flows past curved wslls and for
Taylor type flows in nozzles (figs. 8 and 9). In the case of a Mayer
type nozzle flow, however, the subsonic flow does not determine the
supersonic flow uniquely.

The preceding remarks are of interest in connection with various
attempts to construct transonic flows by the “correspondencemethod.”

The correspondencemethod was first usedhy Chaplygin for jet
problems (where, however; it is identical with the solution of the so-
called direct problem). The correspondencemethod maybe expressed in
various analytical forms; however, except for the very original method
of Bergman (reference 8) the basic procedure is always the ssme, as is
clearly pointed out by Gelbart (reference 9). It consists of associ-
ating with a solution of the Cauch~Riemann equations (representing an
incompressible flow) a solution of Chaplygints hodograph equations.
In some cases the resulting compressible flow is of the ssme general
character as the initial incompressible flow. To date, the most
detailed application of this method to flows past obstacles is that
given byTsien andKuo (reference 10). The continuation of a sub- -
sonic flow across the sonic line invariably occurs in the application
of the correspondencemethods to transonic flows.

While the mathematical problems connected yith the correspondence
method are as yet largely unsolved, the results of the present investi-
gation show that once the solution of Chaplygin’s equation in the
subsonic part of the hodograph plane is determined> the continuation
of the solution in the supersonic region is uniquely determined and can
be effectively computed. If this continuation does nc$tyield the
desired result in the physical plane, the choice of the solution in the
subsonic domain must be abandoned.

CONCLUDING REMARKS

.

The continuation of a given subsonic flow into the supersonic
region has been discussed. The correspondingproblem in the subsonic “
region is of little interest, since in the subsonic region the

.

differential equations are of elliptic type with anslytic coefficients

.

.—— ——
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and have analytic solutions. Thus if the velocity potential @ is
known up to a line r, the continuation of @ across I’ is a
problem in analytic continuation. It seems improbable that any
interesting and general statements csn be made concerning this case.
In the supersonic region the equations are of hyperbolic type and the
continuation of a given flow across a line I’ reduces to the stsndard
Cauchy problem. The theory of this problem is known (see reference 11,
p. 326, and the literature quoted therein). It wouldbe very
interesting, however,-to obtain results concerning a problem “converseto
the one considered here; that is, assume that a supersonic flow ‘is
known up to the line I’ on which the Mach number is equsl to 1, and
determine under which conditions the flow can be continued into the
subsonic (elliptic) region.

Syracuse University
Syracuse, N. Y., September 1, 1947

,

.
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TEE CAUCHY PROBLEM FOR CHAPLYGIN’S EQUATION

,

This appendix contains the proofs of the theorems used to
establish the preceding results. For the convenience of the reader.the
notation standard in the theory of psrtial differential equations is
used. Note that x ad y no longer refer to the physicsl plsne~
Equation (Al) is essentially the same as equation (21).

1. Introduction

The aim of this investigation is to integrate the differential
equation

where

for

K(0) =

K(y) <

y<o

o

01
under the initial conditions

IJ(x,o)=

“1’
-T(x) -

,’

IlrY(x,o)= v(x)

~~x:~

(Al)

.

.

.

(A2)

“(A3)

.
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V being given functions.
D(a,b) consisting of the

27

The solution is required in the
segment a~x~b of the

axis y= O and of the part of the half plane y< O bounded by two
characteristics of equation (Al) passing througk-the points (a,O)
and (b,O).

Chaplygin’s equation for the stream function as a function of the
hodograph variables canbe brought into the form of equation (Al), the ~
domain y< O ‘correspondingto the supersonic region. In the following
considerations,however, no use will be made of the special form of the
function K.

The classical theory fails to treat the Cauchy problem, .

equations (Al) to (A3), except for analytic T and v, because the
initial.data are given &Long the line y = O where the equation ceases
tO be of hyperbolic type. For one speci~ case, that of’ the D~bo~_

Tricomi equation .

(A4)

the solution has been known for decades.” In a recent paper,

unavailable in this country, Christianovitch treated the case of the
Chaplygin equation. According to Frankl (reference 1) he had to
assume T(x) and V(x) to be analytic and had to use all their
derivatives in order to ’obtainthe solution. Frankl (reference 1)
considered the case of nonanalytical Cauchy data for the equation

fin + I!m+ 4X3Y)WX + ~(X,Y)Wy + c(x,Y)V =’0 (A5) ‘

assuming the coefficients a, b, apd c to be analytic. This
treatment is based on special properties of the Riemsnn function for
the Darboux-Tricoti equation and of the hypergeometric function snd
does not seem to lend itself easily to numericsl computations. Note
that if K(y) is snalytic and K’(O) ~0, equation (Al) canbe
brought to the form of equation (A5) by introducing

as a new independent variable.

(A6)
a

—.-— -.—..__ - . .______________
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The present treatment, while limited to equations of the form
of equation (Al), is of au entirely elementary character, requires only
very simple regularity conditions for the function K, snd remains
valid even where a reduction to the form of equation (A5) is impossible

(e.g., for K= yl/3). Besides establishing the existence, uniqueness,
continuity, and differentiability of the solution, it will be shown
that the solution depends continuously on the Cauchy data (as noticed
by Frankl), as well as on the coefficient K. These continuity
properties imply two effective methods for the approximate computation
‘of the solution: Either by representing it as a series of particular
solutions of the Chaplygin type or by replacing the coefficient K by
a piecewise constant function, in which case the determination of the
solution becomes quite trivisl. In fact, the approxtiation of K(y)
by step functions constitutes the main tool of this investigation.

.

2.

The function K(y)
conditions:

(1)

(2)

(3)
piecewise

Statement of the Problem

willbe assumed to satisfy the following

K(y) is defined snd nondecreasing for y< O

K(y) is continuous at y= O

K(y) is negative, piecewise continuous, and possesses
continuous derivative for y< O

Since the only interesting case is K(O) = O, the condition

a

that K(y) be nondecreasirig i~VOIVeS no serious ioSS Of generd-ity.
(It is satisfied in the case of Chaplygin’s equation.)

A function ~(x,y) will be called a regular solution of equa-
tion (Al) if ~ possesses continuous partial derivatives of the first .
order throughout its domain ot definition, and piecewise continuous
partial.derivatives of the-second order satisfying equation (Al).
The Cauchy problem mentioned in the Introduction maybe stated as
follows:

Problem A. Given two twice continuously differentiable
funct-x) smd V(X) for as x~b. To determine a
regular solution ~(x,y) of equation (Al.)defined in D(a,b)
and satisfying the initial conditions, equations (A3).

It will be convenient to consider instead a more general problem
(suggested by gas dynsmical applications). A regular solution ~ of
equation (Al) determines (except for sn additive const~t) a
function q(x,y) such that

.

.

.

.
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.

(Note that the derivative (pY might possess
complex-valued function

is cslled a

.
denotes the
that

1
w(z) =q)+iyf

z LX+iy

Z+nonogenic function, where

I II
11~=~(K)=1K(y)

coefficient-matrix

P

(A7)

discofitinuities.)The

(A8)

(A9)

of equations (A7). Equations (A7) imply

J(pax -K$dy=O
r

[
. Vax+(pay=o
r 1

(Ale)

J

for every closed rectifiable curve 1? contractible to a point. It will
be convenient to csll every continuous complex-vslued function,
equations (A8), satisfying equations (AIO) a Z-monogenic function.

Part of the theory of Z+nonogenic functions (references 12 and13)
(originally developed primarily in the elliptic case K > O) remains

..
.

—..--—..___ __ ____ . ... . . .._ ___—.. .. .. -+__ . ._____ _-
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valid with this
function w = (p

new definition. In particular,
+ it possesses a X-integral

!
z J

z

w(z) = w(c).d~c = (p&- K$dy+

Zo Z.

W(z) is again a .X+nonogenicfunction, and

V.%

ax

,

NACA TN 2058

e“veryZ-monogenic

i J‘llrax+q)d Y,(All)
Z.

(A12)

Now, if ~ is a solution of problem A, then (for a proper.
normalization of q)

This remark

(AJ-3)

.

.

q)(x,o)= rw.)a~~~<~<~
a

suggests the following problem: .-

Pro’blemB. Given two continuous functions T(X) and ~(x)
for a<x~b. To determine a~aonugenic function w = q + iv .
defined in D(a,b) snd satisfying the initial condition

,

J
x

w(x) = V(E) ~~+iT(x), ?3<X<b (A14)

a

It is easyto see that if w is the solution of problem B, and
if v possesses continuous first and piecewise continuous second
derivatives, then v is a solution of problem A.

,,3.Statement of the Results

The main results of this investigation are:

Theorem 1 (Existence and uniqueness of the solution).
Let T(x) and V(X) be arbitrarily given continuous functions

.

e

—. ,-
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defined for a ~ x< b. There
Z(K)-monogenic function’ w = q
satisfpng the Cauchy condition

The

the

exists one and only one
+ it defined in D(a,b) and

J
x

. w(x) = v(~) d~ + iT(x), a~x~b
o

31

Theorem 2 (Continuous dependence on the initial values).
function w = T + iv defined in theorem 1 satisfies in D(a,b)
inequalitiess

where

T =mE& lflX)l

N = m IV(X)I

B =B(x,y) =X– a+ IYIA(Y)

Theorem 3 (Continuous dependence on the coefficient of the
equation). Let Kn(y) be a sequence of functions satisfying
conditions (1) to (3). Let Wn . ~ + i~n be -the ~(Kn)+onogeni.c

function satisfying condition (A15), T and v“ being fixed
continuousfunctions. If

I

———----:—.. ———. — --—c --. ——”.-..-, . .. — . . .. ——.. —___________________ . _____ ._ __
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lim Kn(y) =K(y)
n+ m

w

uniformly for OZ y~~, where H is the least upper bound
of Iyl in D(a,b), then .

limwn(z) = w(z)
n~~

uniformly in D(a,b), w being the Z(K)-monogenic function
satisfying condition (A15). (Cf. the remark made after lemma 4.)

Assuming that theorems 1 to 3 hold, it is easy to establish
similar propositions for the derivatives of the function w.

Theorem 4. If T(x) and V(x) are continuously differen-
tiable, then, using the notation of theorems 1 and 2, the partial
deri~ati~es % *x} and Wy exist and are continuous in D(a,b),
whereas q)y exists snd is continuous in D(a,b)’, except for those

vslues of y for which K(y) is discontinuous. Furthermore

II!f.X<T’ + lylN’

where T’ = max IT’! and N’ = max Iv’l.

Theorem 5. If T(x) and V(X) possess continuous
derivatives of the second order, then, using the notation of
theorems 1, 2, and 4, the partial derivatives pxx~ wxy~

and ~xx exist and are continuous in D(a,b), whereas the

derivatives Pxy, ~yy, ad
in D(a,b), except for those
or K’(y) is discontinuous.

~n exist and are continuous
values of y for which K(y)
Furthermore

.

I

—..— — —
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1%X1= PLYls‘T” +‘N”

.

1%1 = pbi <*2TW +A21ylN”

pd ~ IK’(Y)I (*Tt + lYIN~)+A3T~ + A2BN”

where T“ = max IT”I and N“ =max v“!.

Theorem 6. Under the hypotheses of theorems 3 and 4 the
partial derivatives of the first order of ~ and ~n co~Verge

(uniformly in D(a,b)) toward those of q &d ~. Under the
hypotheses of theorems 3 and 5 the partial derivatives of the
second order of ~ and ~n (except perhaps ~,m) converge

(uniformly in D(a,b)) toward those of q) snd ~. The
same is true for pn,m provided that Ktn(y)~ K’(y) uniformly

for O?y?d.

The proof of theorems 4 and 5 is based on the fact that “
if w,= cp+ it is ax+nonogenic function, then the functions @
and ~ defined by

possess continuous derivatives (except for possible discontinuities
,

of @y) satisfying
m

and ~ are defined

equations (A7), so that if the functions &

by

.
then ~ is a regular

Hence theorems 4

solution of equation (Al.).

snd 5 follow immediately from
applying the latter theorems to the Cauchy pr~blems
data T’(x), V’(x) and T“(x), V“(X). me proof

proceeds along similar lines ad maybe left to the

theorems 1 and 2 by
with the initial
of theorem 6
reader.

. .. .. . . .. .._.. ——.—.—.._ . ..-. _____._ ——.-———. -——--- —..+.—-.-——— —
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It is clear that the functions and derivatives whose existence is
asserted in theorems 1, 2Y 4> ad 5 exist and are continuous (or Piece-
wise continuous) also &Long the characteristicsbounding D(a,b). In
fact, the functioris T(x) snd V(X) and their derivatives have been
assumed to be continuous in the closed.interval (a,b), so that in
order to establish the continuity of p, t, $x, smd so forth in the

closwe of D(a,b)’ it is necessary only to continue T and V in sn

appropriate manner over the intervsl (a–c; +bej e), 6>0, and
apply the theorems to the domain D(a — e} . ~eorems I to 6,
however, remain valid if T and V and their derivatives are merely
assumed to be continuous smd bounded in the open interval (a,b).

It is rather obvious what modifications would be necessary if T
were assumed to be piecewise’continuous. The functio”n V may be
assumed to be bounded snd measurable without endangering the vslidity
of theorems 1 to 3, as will be seen from the proof.

:.
.-

4. Formsl Powers.
,

. . .
A significagtclass of X&onogenic functions is obtained by

setting

. ...

Jo(z)=;

.

and,-for n=l, 2, . . . ,

z(n)(~)=n c1’zz(n-l)(~) dzc

0

J
z

j-z(n)(Z) =n i.z(n-l)(~) d~~

o

These “formal powers” adnit the representation (see reference 12)

.

.

.

.

-——— 1.. —— — —.——
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.

.

‘z(n)-(z)=~ (t.)XbivY(v)(Y)

V=o

i.~(n)(~) = is (:)xn-viv?tv)(y)
v=0 .1

where

y(o)(y) = y(o)(y) = 1

and, forn=l,2, ..o ,

Y(%l+l)(y) =(%+1)

r
Y(h)(q) an

o.

J
Y(=)(y) =2n “Oy K(~)Y(2n–1)(~) dq

J

Y.
7$m+1)(y)= (2n+l) o K(q)?(~)(q)

#an)(y) = 2n ~ ?@@(,) d,

(A17)

(N8)

Note that the imaginary &rts of Z(n) snd iOZ(n) possess continuous
derivatives even if K(y) possesses discontinuities.

It follows ‘fromthe preceding formulas that (for a real x)

\’

. .. ..—. ______ _.. _ ._. _ ___
————-— - --- –-—___ ———. .— —r_.
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Z(d(x) =+

This implies

Lemma 1. If

then, for every real number a,

NACA TN 2058

.

5 1a3i=Z(3)(z) + ~ -~.~(3+1)(z) - Z(S+l)(a)w(z) =
(A19)

j=o j=03+1

.

is a Z+nonogenic function satisfying the initial condition

J
x

w(x) = V(g) d~ + iT(x) “
a

Formula (A19)is the anslog of D’Alembert’s solution of the
equation of the vibrating string. In fact, if K(y) . _A2 = Constsmt,

equation (Al) becomes

.

.

.—— .——

.

.

..”—
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and a simple computation shows that in this case

~(n) = 1
[

~ + ~~x +AY)n - (X-Ay)n]~ (X + Ay)n + (X – Ay)n

Iii.z(n) .4 x+ Ay)n _
2

so that the imaginary part

J

x+Ay
q. T(X + Ay) +T(x– AY) 1

2 + z x~y
V(E) d~

(X - Ay)n]+ :~x +Ay)n + (X - Ay)~

of equation (A19) is given by

37

The smalog of Bernoulli’s solution is the one obtained by supe%
imposing particular solutions of the Chaplygin type. (See section 5 of
the ANALYSIS.)

Consider now two functions, K1(Y) ad %(Y), snd denote

functions (A18) formed with K = Ki by yi(n) ~d ~i(n)

where i = 1, 2. Similarly, let the Z(Ki)+nonogenic formal powers
be~~~ote~by ~i(n) ~~ i.Zi(n).

Lemma 2. Set

a= a(H) =max

There exist constants
and n) such that

lK1(y)l, O“>y>h, i.1,2

lKl(y)-~(Y)l, O~Y~~

~‘ = Mn’(a) (depending only on a

-.
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The proof’follows easily by induction on n, using the definition
of the function Y.

Lemma 3. There exist constants ~ = Mn(~) (depending only
on a ad n) such that

‘n)(Z)l ~bMnlz/nIi“zl(n)(z)- i.zz

for O?y?d.
lemma 2.

The proof follows

Here a and b have the same meaning as in

immediately from lemma 2 snd from equations (A17).

5. Main Lemma

The lemma to be established in this section accomplishes a two-
fold purpose. In the first place, it shows that theorem 3 holds
whenever theorems ,1and 2 hold,for the functions K=

,,
snd K. In the

second place, it shows that, if theorems 1 and 2 hold for a sequence of
functions Kn possessing a uniform limit K, then theorems 1 and 2
hold for K. Since every piecewise continuous function is a uniform
limit of piecewise constant tunctions (step functions), it follows
that theorems 1 to 3 are vslid if theorems 1 and 2 hold for the case
when K is a step function.

.

Lemma k. Hypotheses: (a) For n = 1, 2, ‘.. ~ the f~c-
tion~ satisfies c~nditions (1) to (3). (b) For each ~(y)

—-—
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theorems 1 snd 2 hold, as well as similar theorems concerning the
Cauchy problem with initisl data on the line y . c <0.
(C) For O ~ y ~ = the sequence %(y) converges uniformly to ‘a
function ~(y) satisfying conditions (1) to (3).

Conclusion: Let T(X) and V(X) “be-continuousfunctions
defined for a< x~b. It is assumed that IYI<H in D(a,b).

‘Let Wn(z) be a Z(Kn)-monogenic function satisfying the condition

1
x

Wn(x) = v(~) d +i?(x),” a~x~b (A20)

Then, (a) in D(a,b) the sequence Wn converges ~ifo~yto a
(continuous) function W(z); (b) w(z) is a Z(K)-monogenic;
(c) W(z) satisfies the initisl condition (A15); (d) W(z)
satisfies the inequalities (~6); and (e) w(z) is the only
function in D(a,b) satisfying assertions (b) snd (c).

Remark.- The functions wn me defined, not in D(a,b), but in

domain Dn(a,b) defined in the following proof. In view of

equation (A22), one may speak of the cotivergenceof the sequence Wn

in D(a,b), since each point of D(a,b) belongs to all but a finite
nuniberof the regions Dn(a,b).

Proof.– At first it will be assumed that assertion (a) holds.
Set Wn = ~ + i$n and w . q + iv. For every closed c~ve r

in D(a,b) the relations

[
Jn3x

‘}”
–Kvdy=O

s

(A21)

#%+qdy=O “

must hold in order that W(Z) be Z(K)+nonogenic. Let Dn(a,b) denote

the set defined with respect to Kn(y) in the same way as D(a,b) was

defined with respect to K(y). Hypothesis (c) implies that

lim Dn(a,b) = D(a,b) (A22)

n~~

——— —-—.–—-—.--—. --—.————--—————————. ——..— ——
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Hence, for sufficiently large vslues of n the curve I’ is
in Dn(a,b). Then

J’ I
.

q)n&-I$J!ndy=o
r

J
.~ax+$lnciY=c)
r.

(A23)

so that equations (A21) follow from hypothesis (c) and assertion (a).
Assertion (c) follows tiediately from equation (A20). Assertion (d)
is true, for the estimates, expressions (KL6), hold for each .
function wn according to hypothesis (a). In order to prove the

uniform convergence of the sequence ‘n> choose a positive G Snd

determine two polynomials

t(x) = f a~xj

j=o

such that

.-1
It(x) - T(X)I < i

In(x) V(x)l< E

a~x~b

(A24)

(This is possible by virtue of Weierstrass’s approximation theorem.)
Let Wn(z) be the X(Kn)-monogenic function satisfying the condition



,

.
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‘n(x) )
x

n(E) cI&
o

+ it(x) , a

Since theorem 2 is assumed to hold for K = Kn,
conditions (A20), (A24), and (A25) that-for all

41

<X<b - (A25)

it follows from
points in I&(a,b)

I%(z) -wn(z)l ‘~’, n=l,z, ● ● ●
(A26)

where L is a constant independent of z, n, and e. Denote by

~(m) and iO~(m) the Z(Kn)+nonogenic formal powers (formed with

respect to the function Kn). Since Wn is uniquely determined by

condition (A26)Y it follows from lemma 1 that

Hence lemma 3
the existence

and the uniform convergence of the sequence Kn @ly
of a numiber & such that for all.vslues of z in D(a,b)

Ib+p(z) -Wm(z)l <e, m>Me, P=1,2, . . . (~7)
..

By virtue of expressions (A26) and,(A27)

~.p(a -

for all points of

Wm(Z)l <(2L+ l)G, m>M~, p=l,2,. . .

the intersection D(a,b)n~+p(a,b) ~Dm(a,b).

Since L is fixed and e arbitrary and since Dn(a,b)~D(a,b),
assertion (a) follows.

It remains to prove assertion (e). It mustbe shown that,
if g(z) is Z(K)aonogenic and g(x) = O, as x ~ b, g vanishes

,

—.——...... _.——.-.. —. —..—.— ——.— .—..— ---- ——. ——---- .—-—— — -——-——--
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identically in D(a,b). It is no loss of generality
that g(z) is continuous in the closure of D(a,b)

NACA TN 2058

to assume
( since it would be

sufficient to consider g in D(a+e, b–c),” ~>0). Then

limmax ]g(x+ ic)l =0, (x+ ic)eI)(a,h) (A28)
C*O

Furthermore, no loss of generality is involved in assuming that the
real.and hginarypsrts of g(z) are continuously differentiable (for
otherwise g(z) could be replaced by its X(K)–integral). The argument
leading to the proof of assertions (a) to (d) maybe repeated to
establish the existence of a Z(K)-mc@ogenic function G=(Z) satisfying
the condition

Gc(x+ iC) = g(x+ it), (x+ ic)eD(a,b)

smd such that for x + iy= zcD(a,b) and y< c

GC(Z) = Mm Gc.n(z)

Gc,n(z) being a Z(Kn)-monogenic

Gc,n(x + iC) = g(x

(A29)

(A30) .
n+m -‘

function with .

+ it), (x+ ic)cD(a,b) (A31)

of D(a,b) with y. < c. It followsLet 20 = ~ + iyo be any point

from hypothesis (b) and theorem 2 that there exists a nwber L such
that

lGc,n~’o)/ ~ L IWLX ~g(x + ic)l

so that by equation (A30)

pc(zo)l <Lmax Ig(x+ic)l
.

*

-..

,

—— —..
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and by equation (A28)

Gc(zo) = O

43

To show that g s O it will suffice to show that Gc(z) s g(z) for all

values of c. Set, c being fixed,

f(z) =g(z)-Gc(z) .

and

F(z) =Q+iy

rz

where d is such that d +ic lies on the characteristicpassing
through (a,O). The function F(z) is Z(lt)+nonogenicand

F(x+ iC) =0, ‘(X+ ic)eD(a,b) (A32)

The function ~ possesses continuous derivatives & and Ixy snd’

an at least piecewise continuous derivative Yyy” It Ss’tisfi’=s
equation (Al) and, in view of equation (A32), the initial condition

y(x,c) = ~y(x,c) = 0, (x,c)@(a,b) . (A33)

But for y <c, equation (Al) is a hyperbolic type and the classical
theory yields the result ~s O in D(a,b), for y< c. (The fact
that K and Kt are permitted to have discontinuities does not
impair the validity of this argument.) Thus @ z O and,
since f = %F/~x2, g SGc. This completes the proof.
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6. The StepFunction Case
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In this section K(y) is assumed to be a step function (cf.
figs. 5 and 6; the latter shows the characteristics and the
domain D(a,b)).

Set

K(y) =-Av2, Y&lZY~YV (A34)

.

where

o =Yo>Yl>y2 ”””

1

(A35)

o<~< &..
. J

Theorems 1 and 2 will be proved under this assmnption. In view of the
results of the preceding section, this insures the validity of
theorems 1 to 3 in the general case. .

Lemma 5. If K is givenby equation (A34), a complex-valued
continuous function w = p + iv is Z(K)+nonogenic if and only if .
it is continuous and admits the representation

[
W =Av fv(x+A@ –gv(x–Avyj] +

(Formulas connecting
discussion.)

+A@) + gv(x- >y?yvw)]> ~v+l- (A36)

fv with fv+l are given in the following

ikoof.– It is easyto see that the condition is always sufficient
and that it is necessary when 4 possesses continuous derivatives of
the first order and piecewise continuous derivatives of the second
order. Hence, if w is &monogenic, the function

.

.

— — .——.
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D

f(z) =

admits a representation of
the assertion follows.

45

the,formof equation (A36). Since W= f=

Lemma 6. If K is givenby equation (A34), theorem 1 holds.

Proof.- Set

w=(p+i~

9 =f+v(x+w) – f%(x-fw] “1(A37)w= fv(x+ A@+ gv(x-” AvY)> Yv_l %~Yv

,.
where

.

(A38)

. /

-———.-...— .. ——-.——..—.—.—.—-~. _ -——-—-.-. -—--.-.—.—.———.—.. -.-——. —. .—._.. .________
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.

and for v = 1, 2, . . .

.

(A39) ,

It is easy to check that w is Z-monogenic in D(a,b) and that
condition (~~) is satisfied. The uniqueness of this solution
follows from lemma 5.

Lemma 7. If K is given by equation (A34), theorem 2 holds.

Proof.– Because of the linearity of the problem and because of the
special form of inequ~ities (A16) it will suffice to prove these
inequalities under the assumption that at least one of the functions T
and V vsnishes identically. Assume first that v ~ O. Using the
representation of the solution given by equations (A37) to (A3~), it
is seen that

-(lfv+ll’la+ll) ~-(lfvl>l al), ,= 1,2, ● ● . 0

and that .

.

.

.

——
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Hence

snd by equations (A37)

(A40)

“ (A41)

are Z+nonogenic functions determined by the initial conditions

47

since for K given by equation (34), A(Y) GAv for Y> Yv_l.
Now suppose that T ~ O. In this case the solution admits the
representation

v–l
w(z) = %~Yvw~(z) +~.wj(z)> Yv_l ,

j=l

where

.. ----- ..-— .——-. ._-_+_ ____+ -. _______________ — —. —...— - .. ______ __. _.+_
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Iqx,o)= o

.

@v+l(x,y-v)=%(W’J

VV(X,YJ = %(4

av~x~bv, V=l,2, . . .

Here av or bv denotes the abscissa of the point of intersection of

the line y = yv with the left or right characteristic, respectively,
bounding D(a,b). Note that when K is giyenby equation (34) the
characteristics of equation (Al) are polygonal paths having,

‘ Y2YV>for yV_l– the slopes AV-l and -M–l. It is -syto

verify that

.

.
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,. al- a=-A.lyl

av–awl = %&-l - Yv)> V = 2, 3, . . . “ (A42)

For OZyZyl,

/’-!L.3!J%Y) =+ Xx;lyyv(E) dg

Hence

IQ1(X,Y)I~ (x - a)~ (A43)

so that, in particular,

and .

Also

5 IYI N (A46)

For Yv_1?Y3q, v= 2,3,...

. .

-... —______ .._. .__. -____________ —-, _____ .—_ —__ __---- ---- __ .- _
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sX+AV+l(Y–YV )
@v+l(&Y) =@v(=+Y~) +* @v,x(E,Yv) d~ +

a

1 1
-V+l(Y-YV )

F @v,&Yv) d~
‘%

S
)

q++jY) =
X+AV+l(Y–YV ~

-V,X(E,YV) d~

%1+1 X4V+1(Y-Y-V)

Hence

p’v+Jx+~ pv(avq)l+(x -@ - pv,x(wv)l (A47)

so that, in ~icular, “

I%+1,X(%+1)1~-~v,x(LYv)l (A49)

Also , .

IU+I(XSY)I ~ IY - I (A50)y“ - l%,x(E>Yv)

From inequalities (A45) and (A49) it follows that

l%x(~sYv)l 5~, v=l,2, . . ●

(A51)
9

—
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Using this and inequsllities(A44) ud (A~), it is seen that

51

so that by inequalities (A43) and (A47)

]@v(x,Y)l~(x-a)~> Y*l~Y~Yvsv=ls 2>*.. (A52)

Also, by inequalities (A46),(A50), and (A51)

. IIV(X,Y)ISIY-YW1lN, Y%lZYZYV, V=1,2, . . . (A53)

so that in

,.

Using this
it follows

,

particular

pv(%Yv)/ +v - Yv_J’i v = 1,2, . . . (A54)

last inequality and the previous result on the case v ~ O,
that

(A55)

—————— -—.—--— –-—-———.—_ . . _ . . . ________ __________
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Collecting inequalities (A52), (A53), and (A55), it is clear that,

IT(x,Y)I< Ix-a)+ lYIA(Y~N=B(x,Y)N

This completes

pf(x,Y)/~ lYt~

the proof.

.

-.

.

— —.—
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Y

Figure l.– Continuously curved arc r contained in bound&y of domain A.

II
1

I
I

Figure 2.– Flow through Laval nozzle
supersonic flow occurring along a

=s=’
with transition from subsonic to
line extending across the nozzle.
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Figure 3.–Hodographdomain
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Figure 4.– Hodograph domain
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S1
(M > 1)

s~
(M> 1)

Figure 7.- Subsonicflowpast a closedbodywith localizedsupersonicregions.

NI<l

T
Figure 8.- Flow throughLavalnozzlewith localizedsupersonicregions.

Mel

‘%v
NACA

Figure 9.– Flow past a curvedsurfacewith a locslsupersonicregion.
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