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COMPRESSIBLE FLUID UNDER SIMULTANEOUS ACTION OF FRICTION AND 

HEAT TRANSFER - APPLICATION TO COMBUSTION -CHAMBER 

COOLING PASSAGES 

By Merwin Sibulkin and William K. Koffel 

SUMMARY 

A method for calculating the pressure drop of a high-speed 
compressible fluid in a const'ant-area duct under the simultaneous 
action of friction and heat transfer is developed. The method is 
based on the assumption of an exponential longitudinal temperature 
distribution. It is shOim that the temperature distributions found 
in combustion-chamber cooling passages can be approximated 'by the 
assumed temperature distribution, and that a working chart based 
on this method simplifies the calculation of pressure drops across 
these passages . An illustrative example is included. 

INTRODUCTION 

An investigation of the cooling of ram-jet and tail-pipe-burner 
combustion chambers by means of air flovTing through an annular cool­
ing passage is being conducted at the NACA Lewis laboratory. The 
design of a combustion-chamber cooling system includes the calculation 
of the mass flow of cooling air necessary to maintain permissible 
wall temperatures and the determination of the pressure drop across 
the cooling passage required to obtain the necessary mass flow of 
cooling air. 

The pressure drop in a cooling passage results from the 
siIlD.lltaneous action of friction and heat transfer. For 10"1. rates 
of heat transfer and a Mach number below 0.5, the pressure drop 
may be calculated by the simplified methods of references 1 to 3; 
these methods r esult in appreciable errors at higher Mach numbers. 
Accurate calculation of the pressure drop requires solution of a 
basic differential equation describing the variation of pressure 
of a compressible fluid under the simultaneous action of friction 
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and heat transfer. Unfortunately, this equation is not generally 
BlIlenable to formal integration. Tables and charts that reduce the 
labor of numerical solution are given in references 4 and 5 and a 
special solution (reference 6) has been developed for the case of 
constant wall temperature. 

For one-dimensional flow, the pressure at a point is uniquely 
defined when the corresponding values of mass flow, temperature, 
Mach number, and flow area are known. The pressure change between 
two points along a constant-area duct can be determined if the temper­
atures and Mach numbers at the two points are known. The differential 
equation relating Mach number variations and temperature distribution 
can be integrated in special cases. One of these cases occurs where 
the longitudinal temperature. distribution T is given by T = ceux 
(where c and n are constants and x is the distance along the 
passage). It is shown herein that the longitudinal distribution of 
air temperature in the cooling passages of ram-jet and tail-pipe­
burner combustion chambers can be closely approximated by the use of 
the foregoing equation in a series of steps, each step having dif­
ferent values for the constants c and n. This analysis develops 
a working chart that simplifies the determination of the Mach number 
change in a combustion-chamber cooling passage and, consequently, 
simplifies the calculation of pressure drops required across these 
passages to obtain the necessary mass flow of cooling air. The method. 
developed applies to the flow of air through straight ducts having any 
constant shape, cross-sectional area, and roughness. 

The solution is presented in the form of a working chart con­
structed for a ratio of specific heats equal to 1.40. The variables 
cover ranges sufficiently large to include almost all applications 
of engineering interest. An example illustrating the use of the 
chart for a typical problem is presented. 

A 

B = 

SYMBOIS 

The follOWing symbols are used in this report: 

flm., area, square feet 

y+l 

2 (Y+l+YlC) 
y+l+2YK 
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B* value of B when M = 1.0 

hydraulic diameter, 4 X flow area 
wetted perimeter' 

feet 

F friction drag, pounds 

f friction factor as defined by, 

f effective over-all value of friction factor f 

G 

g 

K = 

mass velocity of flUid, pounds per second per square foot 

acceleration of gravity, feet per second per second 

4f'l/Dh 

3 

L* distance from any given point to point where Mach number would 
theoretically equal 1.0 

M 

p 

p 

R 

T 

t 

v 

x 

r 

p 

length of passage, feet 

Mach number 

total pressure, pounds per square foot absolute 

static pressure, pounds per square foot absolute 

gas constant, foot-pounds per pound ~ 

total temperature, ~ 

static temperature, ~ 

fluid velocity, feet per second 

distance along passage, feet 

ratio of specific heats 

mass density, slugs per cubic foot 
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Subscripts: 

1 inlet 

2 outlet 

METHOD OF ANALYSIS 

For one-dimensional flow, the pressure at any point in a 
fluid is uniquely defined by the mass velocity, the temperature, 
and the Mach , number at that pOint. The following development 
deals with the variation of Mach number along a duct. If the 
variation of Mach numl1er is known, the corresponding pressure 
distribution is readily determined from the continuity equation 
for the one-dimensional flow of a perfect fluid as expressed by 

(1) 

or in terms of total temperature and total pressure 

(la) 

Equation (la) is graphically presented in figure 1. 

One form of the differential equation for the variation of 
Mach number of a compressible fluid under the simultaneous action 
of friction and heat transfer for constant area and specific heat 
is obtained from table 2 of reference 7. 

dM2 = 1+7M
2 

(1 + f M~ aT + 7M
2 

(1 + f M2 ) 4fdx (2) 

M2 I-M2 T l-M2 Dh 

The change in Mach number is dependent on the temperature dis­
tribution along the duct. One of the cases for which equation (2) 
is integrable occurs when the longitudinal temperature distribution 
is given by 
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(3) 

where K is an arbitrary constant (fig. 2). Then by differentiation 

(3a) 

If in equation (2) f equals f, 
equation (3a) into equation (2) gives 

the substitution of 

Integration of equation (4) (appendix A) gives 

When x = 1, T = T2; then from equation (3) 

and 

4fl 
-= 
KDh 

4fL* B* 
-KJ) = loge B-

h 1 

(4) 

(5) 

(5a) 

(5b) 
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where L* is the distance from any given point to the point where 
the Mach number would theoretically equal 1.0. Equation (Sb) is 
graphically presented in the chart (fig. 3) for various values of K 
and for 7=1.40. (A 16 by 16 inch working chart of this figure is 
enclosed.) When K=±CXl, by equation (3) T2/Tl :: 1, which reduces 
the problem to the case of isothermal flow with friction. 

The use of the choking-length parameter 4fL*/Dh is illustrated 
in the following example: 

station 1 
1----------------1 - - - - - - - - - - - --

I---------------i - - - - - - - - - - -

M = 1.0 

... ,. 

Given are Ml:: 0.200, K:: 1.0, Z:: 2.0 feet, and 4f/Dh 0.5. 

From figure 3, 

By subtraction 

and 

L* = 3.0 feet 
1 

L*2 = L*l - Z = 3.0 - 2.0 1.0 foot 

0.5 
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Then, from figure 3, 

Mz = 0.398 

For r = 1.350, the values of 4fL*/Dh are lower with a 
maximum difference of 5 percent; for r = 1.30, the maximum dif­
ference would be 10 percent. 

7 

If the Mach number along a duct is constant, according to its 
definition L* becomes infinite; if the Mach number along a duct 
decreases, its value never reaches 1.0 and L* has no positive 
value. Consequently, the results of this analysis can be applied 
only to flow systems in which the Mach number increases. 

For any initial Mach number, there is a critical value of K 
for which the Mach number along the duct is constant. This value 
can be determined by setting equation (4) equal to zero. The 
critical value of K is therefore 

K = ( 6) 

Consequently, for a given Mach number, if the value of the friction 
factor is known, the minimum value of T2/TI for which the Mach 
number increases, and therefore for which the chart can be applied, 
can be determined from equations (6) and (3). 

APPLICATION TO COMBUSTION-CHAMBER COOLING PASSAGES 

An annular cooling passage formed by a concentric liner inside 
a tail-pipe burner or ram-jet combustion chamber is shown in figure 4. 
If the rise in combustion-gas total temperature is approximately 
linear, the longitudinal temperature distribution of the cooling air 
may be similar to the distributions shown in figure 5. If the initial 
cooling-air and combustion-gas temperatures are equal and no heat 
losses occur through the outer wall of the cooling passage, the 
temperature distributions will be similar to those shown for case A 
(fig. 5(a». Such a case would be an insulated tail-pipe burner in 
which a portion of the turbine-discharge gases are used as the coolant. 
If the initial cooling-air and combustion-gas temperatures are equal, 
but the external heat losses are large, the temperature distributions 
will be similar to those shown for case B (fig. 5(b». This case 
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would correspond to an uninsulated tail-pipe burner in which the 
outside wall of the cooling annulus is cooled by ambient air. Any 
one of the temperature distributions of case A in figure 5(a) can 
be approximated (case A, fig. 6(a» by equation (3), where K is 
determIned by letting T = T2 and x = 2. The temperature distri­
butions for case A in figure 5(a), however, have an initial slope of 
zero because the initial cooling-air and comb~stion-gas temperatures 
were equal. If, at the cooling-passage entrance, the cooling air 
has a lower temperature than the combustion gas, the cooling-air 
temperature distribution will have a positive initial slope. Inas­
much as the assumed temperature distribution (given by equation (3» 
has a positive initial slope, it is noted that for two cases (zero 
and positive initial slopes) with the same entrance Mach number and 
over-all temperature ratio, the case with a positive initial slope 
can be more closely approximated in one step. 

Any of the distributions for case A in figure 5(a) can be 
matched more closely by a two-step approximation if the temperature 
at some intermediate station (preferably near the midpoint) is 
known. In this case a separate value of K is determined for each 
step, as illustrated in appendix B. Similarly, the temperature dis­
tributions for case B in figure 5(b) can be approached in two steps 
(fig.6(b». In this case an intermediate value of x near the 
mlnlmum cooling-gas temperature would be preferable; the value of K 
for the first step would then be negative. 

The variation of Mach number (fig. 7) along the cooling passage 
for both original and approximate temperature distributions shown 
in figure 6 were calculated by a step-by-step integration of 
equation (2) using the tables of reference 4. A sufficient number 
of steps were taken to insure that any increase in the number of 
steps would not affect the result. In case A (fig. 7(a», the 
important effect of small changes in the initial Mach number is shown. 
When the calculations show that sonic velocity is attained before the 
outlet of the cooling passage is reached, the chosen value of initial 
Mach number is greater than is physically possible. 

Case A (fig. 7(a» shows that the Mach number increases from 
0.5 to 1.0 in a very short distance. In spite of the fact that this 
analysis is exact for the temperature distribution of equation (3), 
and can be made to closely approximate temperature distributions 
similar to those in figure 5, in a physical case small inaccuracies 
in the values chosen for f or Dh may introduce appreciable errors 



~ 

V 
N 
o 

NACA TN 2067 9 

in the region of rapidly increasing Mach number. For example , if 
the length of the duct in figure 7(a) were 2.95 feet (fig. 8), the 
outlet Mach number based on the original temperature profile would 
be 1.0; if the value of F/Dh ,iaS then reduced by 10 percent, the 

outlet Mach number would be reduced to 0.75. At the point where 
the original value of F/Dh gives M = 0.50, however, a 10-percent 

reduction in the value of F/Dh would only reduce the Mach number 

to 0.46. These differences in outlet Mach number would give pro­
portionate discrepancies in outlet static pressure and smaller dis­
crepancies in outlet total pressure. Due to the uncertainty in 
choosing a friction factor or in determining the exact cross­
sectional area for any physical case, values of outlet static 
pressure based on an outlet Mach number between 1.0 and approxi­
mately 0.5 may therefore be subject to appreciable error. Equations 
for estimating the value of the friction factor are given in 
reference 8. The effect of the ratio of the inner to the outer 
diameter on the friction factor of an annulus is discussed in 
reference 9. 

The values of outlet Mach number obtained by the step-by­
step integration of equation (2) along a variety of temperature­
distribution curves similar to those of figure 5 were compared 
with the .values of outlet Mach number obtained by the use of 
figure 3 (in a manner similar to that shown in appendix B), with 
the following results: 

(1) When neither method indicated choking, the outlet Mach 
number based on a one-step approximation was 0 to 25 percent greater 
than the value obtained by step-by-step integration, with the greater 
differences occurring at the higher values of outlet Mach number. 
When both methods caused choking, the theoretical distance to choke 
based on a one-step approximation was 7 to 25 percent l ess than the 
distance obtained by step-by-step integration. Inasmuch as the 
temperature along these one-step-approximate curves was appreciably 
higher than the corresponding temperature on the original curves, 
this result was anticipated. 

(2) For a two-step approximation, the outlet Mach numbers 
(unchoked by either method) were ' within 2 percent; the difference 
in theoretical distance to cause choking (choked by either method) 
was within 2 percent. 

(3) For any value of outlet Mach number, the precentage change 
in outlet static or total pressure is equal to or less than the Mach 
number discrepancies mentioned in results land 2, but in the 
opposite sense. 
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CONCLUDING REMARKS 

A method is developed for calculating the pressure drop of a 
compressible fluid under the simultaneous action of friction and 
heat 'transfer, and is presented in the form of a working chart. 
It is shown that the temperature distribution assumed in the 
development of the working chart can be made to closely approximate, 
in one or two steps, the temperature distributions found in the 
cooling passages of ram-jet and tail-pipe-burner combustion chambers. 
When two steps were used, the outlet pressure was within 2 percent 
of the values that would be obtained by a step-by-step integration 
along the actual temperature-distribution curve. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for AeronautiCS, 

Cleveland, OhiO, October 17, 1949. 
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APPENDIX A 

INTEGRATION -OF-FLOW EQUATION 

One form of the differential equation for simultaneous friction 
and heat transfer (reference 7) for constant area and specific ' heat 
is (equation (2) of text) 

d}!2 _ 1+7M2(1 + ¥ M~ 
M2 - l-M2 

dT 
- 4-
T 

7M2(1 + ¥ M2) 

l-M2 
(Al) 

If the fluid temperature distribution is given by 

dT 4fdx 
(A2) 

substitution of equation (A2) in equation (Al) and factoring gives 

dT (1-M2) dM2 

T' M2~ + 7;1 M2) ~+7(1+K)M~ 
(A3) 

Let a = r-l and b = r(l+K). Equation (A3) can then be written as 
2 

dT (1-M2)dM2 

T' = M2(1+aM2 ) (1+bM2) 
(A3a) 

or by separating into partial fractions, equation (A3a) becomes 



Integration of equation (A4) results in 

12 dT =12 dM212 dM2 + .£(12 
T M2 b-a 

1 1 1 1 

dM2 M2~ b 2 dM2 M2dM2 12 ~ (1 2 

12 ~ 1+aM2 - 1 l+aM2 + a-b 1 l+bM2 - 1 l+bM2 

loge j: =loge M~~ ~~~ + b~ ~ loge(1+~2) <2 G+~2 -lOBe(1+~2J] I + 

a~: ~ lOge(1+bM
2

) - ~2 ~+bM2 - 10Be(l+bM2~} I 
log j2 = log M~2 -M~2 + a+l log (1+aM2~2 

e e b-a e 
III 1 

_ 1+aM
2
j2 _ b+l log (1+bM2~2 + l+bM~ 2 

b-a b-a e b-a 
III 

However, 

-M2 _ l+aM
2 

+ 1+bM2 = ...2..- = 0 
b-a b-a b-a 

1238 

(AS) 

(A6) 

(A 7) 

f--J 
(\) 

~ 

~ 
~ 

~ 
(\) 

o 
en 
-...J 
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Then 

By substituting the limits, 

a+l 2 

2 2 b-a 
M (l+aM ) 

loge b+l 

2 b-a 
(l+bM ) 1 

a+l 
2 2 b-a 

M2 (1+aM2 ) 

b+l 

(1+bM22) b-a 

a+l 

M12 (1+aM12) b-a 

b+l 

(1+bM12) b-a 

13 

(A8) 

(A9) 

• Taking the antilog of equation (A9) ' and substituting for a and 
b gives 

1'+1 
2 ( "'-1 2) 1'+1+21'K 

M2 1 L..::!:M + 2 2 

(AlO) 

- - - --------~-------
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Changing the fourth term on the right side of equation (A5) to 

a~!(f +f 
co 

dM2 M2~~ to 
N 

+ rl 
2 -1-bM2 -l-bM 

and integrating in a similar manner gives a form of equation (AlO) 
that can be evaluated for negative values of K. 
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APPENDIX B 

SAMPLE C.L\LCULATION 

The pressure drop in an annular cooling passage will be cal­
culated by the use of the large working chart in two steps. Given 
conditions: 

, I , , 
I I , 
I 

Station ' 1 c ' d 

x = 0 2.50 

T = 500 603 

Mass velocity, G, lb/sec/sq ft • . 
Inlet total pressure, Pl , lb/sq ft 
HydrE.uIic diameter, Dh, ft. • 

Average friction factor, f •• 

absolute •• 

, 
2 ' 

5.00 feet 

14.05 
1458 

0.0417 

0.00756 

Inlet Mach number. - The inlet Mach number is obtained from the 
weight-flow parameter and figure 1. 

G\Fl_ 14.05 ~500 _ 
0.2155 PI - 1458 -

Then from figure 1, for r = 1.40, MI = 0.242. 

Intermediate Mach number. - The Mach number at station c is 
determined from the working chart by the following steps: 

4f 
Dh = 

4 X 0.00756 
0.0417 

0.725 
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4f1
l

_
c 

K
l

_
c 

= __ D...,..h_ = 0.725 X 2.50 = 9.67 
Tc 603 

log -- loge 500 
e Tl 

Entering the working chart at M = 0.242 and K = 9.67 gives 

= 5.20 

which is solved for L*l: 

L*l 0:7~~ = 7.17 feet 

L*c : L*l - 21 -c = 7.17 - 2.50 = 4.67 feet 

Multiplication of L*c by 4f gives 
Dh 

4fL* 
D c = 0.725 X 4.67 3.38 

h 

Reentering the working chart at = 3.38 and K = 9.67, 

Outlet Mach number. - The outlet Mach number is found in the 
same manner as the intermediate Mach number. 

Ka.-2 = 

4I"2d _2 

Dh 0.725 X 2.50 - ::: :3.73 
T2 - 980 

loge if lo~ 603 
d 
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Enter the working chart at M = 0.298 and K::: 3.73 and read 

Solve for L*d 

and 

or 

L* 2 

2.18 = 3.01 feet 
0.725 

= 3.01 - 2.50 = 0.51 feet 

4fL*2 
-:-_ = 0.725 X 0.'51 = 0.37 

Dh 

17 

Reentering the chart at 4fL* -- = 0.37 
Dh 

and K = 3.73, M2 = 0.567. 

Pressure drop. - The total pressure at station 2 is obtained 
from the weight-flow parameter. The weight-flow parameter at station 2 
is found from figure 1 for r::: 1.40 and M = 0.567, 

0.431 

Solving for P2 gives 

p = 14.05 '\f98O ::: 1020 Ib/sq ft 
2 0.431 

The 10s8 in total pressure across the cooling passage is 

PI - P2 = 1458 - 1020 = 438 Ib/sq ft 

or if the loss in static pressure is desired 
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By use of reference 10, 

~l = 1458 X 0.9601 = 1400 Ib/sq ft 

~2 = 1020 X 0.8040 = 820 Ib/sq ft 

and the loss in static ~ressure is 

~l - ~2 = 580 Ib/sq ft 
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Figure 5. - Longitudinal distribution of cooling-air temperature in 
annular passage surrounding combustion chamber. 
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Figure 6. - Comparison of longitudinal cooling-air temperature distri­
bution from figure 5 with distribution obtained by use of equation 
(:3) • 
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of figure 6. 



NACA TN 206 7 

::IE .. 
~ 
~ 

§ 
~ 

..c1 
0 
Cd ::e 

1.0 

I 
I 

.8 

.6 //1 
(~)lj ?II 

.4 V I 
V V I ---- (D~)2 = 0.9 (D:)l I 

I 
.2 

o 1 2 3 
Distance x along cooling 

passage I f t 

~ 

Figure 8. - Effect of ~/Dh on Mac h number profile. 

NACA-Langley - 3- 30-50 - 1150 

27 




