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ANALYTICAL A_[D EXPER_"rAL INVESTIGATION OF ADIABATIC

TURBULENT FLOW IN SMOOTH TUB_

By Robert G. Deissler

SD_MARY

Equations were derived for the prediction of velocity distribu-

tions for fully developed adiabatic turbulent flow in smooth tubes:

both the incompressible- and ccmpresslble-flow cases were treated.

The analysis produced a single equation that represents flow in both

the conventional buffer layer add the laminar layer. By graphical

integration of the velocity-dlstributlon equations developed, a

dimensionless flow-rate parameter was obtained and plotted. Use

of the flow-rate parameter permits the prediction of pressure

gradients along a tube for various flow rates.

In order to check the ar_lysls and to determine values for

the constants appearing in the equations, tests were conducted to

determine velocity distributions in air flowing without heat transfer

_n a smooth tube having an inside diameter of 0.87 inch and a length

of 87 inches. Data were obtained for fully developed velocity dis-

tributions and for developin_ velocity distributions at various

distances from the entrance of the tube.

The results for fully developed flow were ccrrglated by using

conventional dimensionless velocity and distance parameters, and

agreed closely with those of Nikuradse and other investigators.

The plots of the equations and of the flow-rate parameter agreed

well with the data when appropriate values of the two experimental

constants appearing in the equations were used.

INTRODUCTION

Much empirical work has been done on the flow of fluids in

tubes, and it has long been possible to predict fluid-flow pressure

drops with a fair degree of accuracy by using experimentally deter-

mined friction factors (reference l, pp. Z_2-_7_). Somewhat less

work has been done in an effort to understand the mechanism of
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turbulent flow in tubes and to develop a theory that Is in complete
d •

a_reement with the measurements. Ths Karman sLmllarity theory, which

is perhapg the best-known contribution, satisfactorily predicts

the velocity distributions for fully developed incompressible flow

except in the vicinity of the wall (reference 2).

In an investigation made at the NACA Lewis laboratory, a new

equation was developed that gives the relation between velocity and

distance from the wall for both the laminar and the so-called buffer

regions. For completeness, the K_n-Prandtl development for the

velocity distribution at a distance from a wall (turbulent region)

Is also included. In the present analysis, this development is ex-

terL_ed to compressible flow, that Is, to the case in which variation

of temperature across the tube due to high velocities is appreciable.

Because of the scarcity of velocity-distribution data,

especially for conditions under which compressibility might be

appreciable, investigations were made to determine velocity dis-
tributions In a tube at various distances from the entrance and

for fully developed flow. The results of these investigations,

reported herein, are used to check the analysis.

ANALYSIS

General Turbulence Theory

During turbulent flow through a tube, portions of the fluid

move about In random fashion. Inasmuch as a transverse-velocity

gradient exlsts, some portions enter reglons of various mean axial

velocities. Momentum is then transferred from one portion to

another and a shear stress, in addition to the viscous shear stress,
Is produced.

By analogy with the law for viscous shear stress 7v = _ du/dy,

the equation for the shear stress produced by turbulence is often

given in the following form:

t t - o( du (1)
dy

e

0¢ is comparable to the viscosity for viscous shear _,

is the coefficient of eddy dlffuslvlty, the value for which
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is detel_nined by the amotunt and the kind of turbulent mixing at a

point. (The symbols used in this report are defined in the appendlx.)

The analogy between shear stresses produced by viscosity and

those produced by turbulence is not quite exact because the mechan/am

for momentum transfer is somewhat difforent for the two conditio:_.

The chief difference probably is that in the case of viscous shear

momentum transfer takes place suddenly at the instant the molecules

collide; whereas in the case of turbulence, portior_s of the fluid

can continuously transfer their momentum as they travel transversely

inasmuch as they continuously act on one another. This difference

can, however, be absorbed In the value of ¢, which is descriptive

of the turbulence mechanism, so that equation (1) should still be
valid.

The total shear stress 7 may be obtained by adding the vis-

cous shear stress to the turbulent shear stress as follows:

q

T =, d__u+ p_ d___u (Z)
dy dy

In order to make practical use of equation (2), ¢ must be
evaluated for each portion of the flow. Because the actual mech-

anism of turbulent exchange of momentum is very ccmplicated, the

method of dimensional analysis is used and the constants obtained

in the analysis are evaluated by experiment. From consideration

of the various factors on which ¢ m_ght depend, the following
functional relation is assumed:

c -_z _u. z. _. as dZu d3u ._
\ dy dy /

Although the turbulence mechanism might conceivably depend on _/0,

the influence of this factor is assumed negligible and the validity
of thl8 assumption is experimentally checked.

Flow at a distance from wall. - It is shown by yon Karm_n

(reference 2) that for flow at a distance y from a wall the

shear stress is given by
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4
T = o_2 \d_/ C3)

1,0
I'M
1,0
Pl

where _2 is a constant of proportionality experLmentally deter-

mined. Viscous shear stress is neglected in the derivation of this

equation. Combi_tlon of thle equation and equation (2), with the

viscous shear stress neglected because It is small except in the

region close to the wall, gives the follc_Ing expression for local

eddy dlffuslvlty for flo_ at a distance from the wall:

d__u_5

c = \dy/

2

(4)

Equation (4) could also have been obtained from the general func-

tlonal relation for ¢ by assuming that only the first and second

derivatives of the velocity with respect to distance are important

in determining the value of ¢, and by applying dimensional anal-

ysls. This fact indicates that the eddy dlffuslvlty, or turbulent

transfer of momentum, at a point away frcm the wall is chiefly

dependent on the velocities in the vlclnlty of the point relative

to the velocity at the point and ls independent of the magnitudes

of u and y. The fact that ¢ at a point away from the wall Is

dependent more on the velocity distribution than on the magnitude of

the velocity u at the point may be illustrated by noting that at the

smooth entrance to a tube, where the velocity profile is uniform over

most of the cross section, turbulence at a point away from the wall

ls negligible compared wlth that farther down the tube at a point at

which the m_an axial veloclty is equal to that at the entrance, but

at whlch the flow proflle is fully developed. Thls change from zero

eddy dlffusivlty at the entrance to an appreciable degree of turbu-

lence farther down the tube has been clearly shown by experiments

wlth dye in a stream (reference l, (Frontispiece.)). In the remainder

of the analysis, equation (3) Is used In calculating flow at points
dlstant from the wall.
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Flow in viclnitz of wall. - Althou_h the effects of the magni-

tudes of u ar_ y on ¢ can be neglected in cormlderlng flow at

points distant from the wall, It appears that they must be accounted

for In considering flow close to the wall. The experimental data
available indicate that the turbulent transfer of momentum and thus

the turbulent shear stress become very small In the region close to

the wall, so that near the wall practically all shear stress Is

produced by viscous action and the velocity u is very nearly a

linear function of y (reference 5). The second and possibly

higher velocity derivatives therefore approach the constant value

zero In the vicinity of the wall and the first derivative approaches

a constant, which is defined when u and y are given. As pre-

vlously stated, the effect of _/0 on ¢ is assumed negligible.

As a first approximation, the functional relation for ¢ Is there-
fore written as

¢ = z (u,y)

The range of values of y for which thls approximation is suffi-

cient wlll be experimentally determined. From dimensional analysis,

( = nZ_ (s)

where n2 is a constant of proportionality to be determined

experimentally. Substitution of equation (5) Into equation (2)

gives

'r. _ a..._u+ nSpu_a..._u
dy dy

(8)

In the remainder of the analysis, equation (8) is used in calculating

velocity distributions close to the wall.

.C



6 NACA TN 2138

Equations for Incompressible Flow

Flow in vicinity of wall. - In order to obtain equations that

are _n dimersionless form, the following commonly used dimensionless

quantities are employed:

!

u+__ u (7)
4 o/oo

y+=   o/Vo

Then

____u= To du+ , (9)

dy _0 dy +

and

On substitution of equations (7) to (9), equation (6) becomes

(io)

where o and g have been replaced by 00 and _0' respectively,

because the density and the viscosit_ are the same at all points for
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incompressible flow. The shear stress T has been approximated by

T0 because only the region close to the _all is being considered

and the variation in T for this region is slight.

By rearrangement and cancellation of like terms, the preceding

equation simplifies _o

dY+ - n2u+y + = 1 (ii)

du +

This equation Is a first-order linear differential equation having

the solution

. u+

I "(nu+)2
y+ --Ce 2 + e 2 e 2 du +

When y+ = 0, then u+ = 0 and

-(nu+) 2

2
8 du+ = 0

Therefore C : 0 and

(nu+) 2

y+ = e 2

0

-(nu+) z

e 2 du +
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This equation can be rewritten as
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I Pnu÷ __
e 2 d(nu• )

y+ : _ 0

h (12)

__I e 2

-(nu÷12
i 2

where _ e is the normal error function of nu +. (See

reference 4.) The relation between u+ ar_ y+ for incompressible
flow near the wall is given in equation (12).

Flow at a distance from _all with shear stress uniform across

the tube. - For flow at a distance from the wall, the analysis that

was developed by yon K_rm_n for the region near a _all (effect of

viscosity neglected) and applied by Prar_itl to the region at a dis-

tance from a wall is presented here. This application involves the

assumption that the shear stress is constant across the t_oe, an

assumption that _i!l later be shown to be sufficiently accurate for

this application. If this ass_nption is made and expressions (9)
and (10) are substituted into equation (3)_

2

+2 Rdy \dy+/
(_3)

This equation can be integrated to give

dY___+ = y+ + C I
du +
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At the wall, the velocity gradient iB very large compared with that

at a distance from the wall so that dy+/du + can be considered

equal to zero when y+ = 0, giving C1 = 0 and

y+ _ ! _ (i4)
du +

After the variables are separated,

again to give

this equation can be integrated

u+ =I__ log e y+ + C (15)

where C is a constant of integration, the valu9 of which may be

found when the ranges of applicability of the equations for flow

close to a wall and at a distance from a wall are known. The ranges

of applicability fcr the equations are to be experimentally deter-

mined. The relation between u+ and y+ for incompressible flow

at a distance from the wall when constant shear stress across the

tube is assumed is given in equation (15).

Flow at distance from wall with variable shear stress across

the tube. - A result that avoids the assumption of uniformity of
/ f

shear stress across the tube was derived by von Ka_nan substantially

as follows: The relation for the variation of shear stress with

radius for fully developed flow is obtained by equating the shear

forces to the pressure forces acting on a cylinder of fluid of

arbitrary radius ani differential ler_th (reference 5). This rela-

tion is

r To = (1 - _Z.)To
7 = r-_ r0

or

T--(i- L-+ ) To
+

r 0

(1_)
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where

_O/O0 r 0
r0+ . ;do0

(17)

On substitution of equations (7) to (i0) and (16), equation (5)

becc_es, in dimensionless form,

r0 + _d2u+

ay+2

(le)

where the negative sign was selected on taking thesquare root in

order to make _ positive.

The first integration gives

_ =. 2_ rA_-+o+_ro + - y+ + C 1

du +

As previously stated, the velocity gradient at the wall is very
large compared with that at a distance from the wall and dy+/du +

can be considered to be zero at the wall (that Is, at y+ = 0).

Hence

C I - 2_ro+

and

dY+--- 2_ r_r0+_ro+ - y+ + 2_r0+

du +

(19)
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By substitution of

to give

X 2 = ro + - y+ equation (19) can be integrated

E_.+=! 1 Z__+log e - 1-

ro+ r0

+ c (2o)

Equation (20), which is substantially the equation obtained by

yon K_a_m_n, relates u + to y+ for various values of r0+. Taking

the variation of shear stress into account introduces the additional

dimensionless parameter r0+ , which will be called the tube-radius

parameter. The equations developed by von K_n for the flow

distant from the wall will be extended for compressible flow by a

method subsequently developed herein.

Equations for Compressible Flow

In the derivation of the compresslble-flow equations, unifcrmity
of shear stress across the tubels assumed and the error introduced

is discussed in the section "Effect of Variable Shear Stress."

Flow _n vicinitz of wall. - For compressible flow in a tube,

the static temperature and thus the density and the viscosity vary

across the tube. For flow without exter_%l heat transfer, the total

temperature at any point across the tube is practically the same as

the wall temperature, so that the static temperature is given by

u2 (21)
t = T O 2gJcp

This relation is exact for a Prandtl number of i.

By use of the perfect gas law, the density o may be expressed
as

0=-2--- , P = Pf
I 2gJcpT0_ )o z_c _ro _I\
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or

o0

u2
i

2gJcpT 0

(22)

_o

bo.
rW

where the statlc pressure p has been assumed uniform across the
tube.

Viscosity is a function of temperature and can be represented
by an equation of the form

where

= Kt d

K is some constant. Then

(23)

or

_ u__ _ u__
_ = K 0- 2gJcpJ = KT0d _l " 2gJCpToj

2gJOp_o# (24)

Substituting these values for the density and the viscosity into

equation (6) and letting T = 70 result in

_1 .I u2 __d du 0 0To _ _o - 2gJCp_o/ _ + _u
1 - l u2 n2uy_

2gJcpT 0

(25)
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Substituting values from equatlor_ (7) to (9) into equation (25), in
order to convert it to a dimensionless form, gives

/

n2 u'_" du_ _- _l- (_u_ d du_" _ 1

l_c_u+2 dy + - dy+

(2G)

where

To

2gJcpToo 0

The dimensionless parameter _ will be called the compressibility

parameter. After rearrangement, equation (26) becomes

dy + nZu +

du+ i - mu +2

y+ = <l - _u+2_ d (28)

which is a flrst-order linear differential equation with variable

coefficients. Solving equation (28) and setting the constant of

integration equal to zero, as was done in the solution of equa-

tion (ii), gives

+d

au+ (29)

For compressible flow in the vicinity of the wall, equation (29)

gives the relation between u+ and y+ for various values of m.

Flow at a distance from wall. - With the assumption of uniform

shear stress, equation (3) can be written for compressible flow as
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PO 2_

TO u 2 d(_._l 2 mi - 2gJCpT 0

When written in dimensionless form, th_s equation becomes

2 u÷

d_r÷2

(30)

One integration of equation (50) can be made by substituting

v = du+/dy + and dy + = du+/v and then separating the variables.

After one integration, equation (50) becomes

C du+h . K__ sin. I (_u +)

or

K

Cl du+ - _sln'l (_u +)

_-.;=e
(31)

or

,_ (_u+)
_+ = Ole_ sin'1 au+ (3z)

If ___Ksin-i (_+)

integrated to yield

is set equal to Z, equation (32) can be
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y+ = C1 sin -I (_u +-- _!- _u+2 + _u+_ +C

! sin-i (4&u+)
By substituting dy+/du + from equation (51) for CI e_

in the immediately preceding equation and letting dy+/du + equal

zero when y+ and u+ equal zero, C equals zero and thus

2+>+ CI sin-i (_u +
y =__ - _u +_u (33)

For compressible flow at a distance from the wall, equation (35)
shews the relation between u+ and y+ for various values of _.

Su_nary of Velocity-DistributicnEquations

The important equations that have been derived are assembled

here for convenience:

For incompressible flow close to the wall,

y+ =!
n

nu+ _(nu+)2
-!-1 e 2

JO

_(nu+)

1 Z
-- e

(lZ)

_(nu+) _

1 Z

where _ e
is the normal error function of nu +.
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For incompressible flow at a dlstance frcm the wall, with shear

stress uniform across the tube,

u+ =! loge y+ ÷ c (is)
K

For incompressible flow at a distance from the wall with shear

stress variable across.the tube,

u+ -- i - y+ + log e - I - + C

ro+ r 0

(20)

For compressible flow close tc the wall,

: /ou+ . _ ÷

-n--_2 n2 d

y+ (i _u+2_2_ (i _u+ du+ (29)

For compressible flow at a distance from the wall with shear stress

uniform across the tube,

_÷ c_ _-_(_u÷ d_ _u÷_=- - + _u (33)
_2+_

APPARATOB

A schematic diagram of the experimen%_l apparatus used is showr

in figure 1. Air at a pressure of about 40 pounds per square inch

g_ge and at approximately room temperature flowed through two con-

trol valves in parallel, then through a filter, an orifice, a calming

tank, a test section, and into the atmosphere.
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Test section. - The test section consisted of a smooth Inconel

tube having an inside diameter of 0.87 inch, an outside diameter of

1.0 inch, and a lep_th of 87 inches° The calming tank was so con-

structed that either a ro_ndod or a right-anemic-edge entrance to the

tube could be used; the rounded entrance consisted of a standard

A.S.M.E. long-radius nozzle. Static presst_es were measured through

0.03-inch holes drilled in the tube at the positions shown in

figure 1. Air total temperatures were measured by thermocouples

located at the inlet and outlet of the tube; these measurements

provided a check on whether heat transfer took place through the

tube wall.

Total-presstu'e measurements. - Openings fcr taking total-

pressure measurements across the tube were located as shown in

f_gure 1. Holes having 0.15-inch diameters through which a total-

pressure probe entered the tube were drilled in the tube wall.

These holes were located at right angles to the static-pressure

taps. A probe actuator to move the probe across the tube and to

measure its distance into the tube was fitted into a short length

of tubing at each opening. The location of the total-pressure

probe with respect to the opening in the tube is shown in the insert

in figure 1. The total-pressure probe used for the measurements had

a 0.O16-inch-diameter opening and a @.002-inch wall at the tip. The

probe was flattened out for some of the runs so that the width of

the opening was 0.005 inch. The probe was made sc that the tip

Just cleared the edge of the 0.15-1nch hole In the test section.

The total projected area of the orobe in the direction of flow

with the tip at the center of the tube was about 1½ percent of

the area of the tube, but the effective blocking area at the tip

was considerably less because the main portion of the probe was

downstream of the tip.

METHODS

Procedure

In order to establish the applicability of the equations derived

for fully developed flow, velocity distributions at various dis-

tances from the tube entrance were first determined. Measurements

were made at Reynolds numbers of approximately 40,000, 160,000, and

580,000 with both rounded and rlght-angle-edge entrances and with

corresponding tube-exit Mach numbers up to I. The flow rate in

each case was obtained by adjusting the inlet pressure.
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A more extensive series of investigations was then conducted to
determine velocity distributions for fully developed flow including
distributions for the region close to the wall. Runs were madeat
about 20 different Reynolds numbersbetween 10,O0©ar_ 200,000 and
with Machnumbers up to 0.5 with the tctal-pressure probe near the
exit of the tube where the flow was practically fully developed.
Runs were madewith both the rounded and the rlght-angle-edge
entrances. Total-pressure readings were taken at points between
the wall in which the probe opening was located and the center of
the tube. Readings near the opposite wall were Irmccurate because
of disturbance due to the probe.

Measurementswere made with both the round and the flattened

probe tips in order to determine whether presence of the probe had

any effect on the measured velocity distributions in the viclnit_

of the wall. Because no appreciable difference could be noticed

between the measurements made with the two t_pes of tip, it was

concluded that the presence of the prcbe did not affect the meas-

urements and that the aerodsnamic and geometric centers of the hole

coincide.

Preliminary runs at high and at low flow rates showed that the

total temperature of the air was uniform along the ler_th of the

tube, indicating that no heat transfer occurred. The air total

temperature was therefore measured only at the outlet.

The following quantities were measured for each run: air flow,

static press_mes at the wall, air total temperature, total pressure

at various positions across the tube, and distance of the probe tip

from the wall.

Reduction of Experimental Data

Velocities. - For low air-flow rates, incompresslble-flow

theory was used; the velocities were calculated from the equation

1 pu 2
P-P=_

where o was found from the equation of state for perfect gases

p -- _gRt



NACA _ 2138 19

[O
b_

and t was taken equal to the total temperature. In thls and in all

succeeding calculations, the st_tlc pressure was assumed to be uni-

form across the tube.

For Mach numbers greater than 0.2, velocities were calculated

from the relation

_Z_

P-:<1+7-Ip _ ZgRt/uz-_-I

zz!

where t = T (P) T

Shear stress. - The shear stress at the wall for fully dev-

eloped flow is related to the frlctlon-pressure gradient by the

equation

TO = - _ fr

The friction-pressure gradients were obtained by subtracting

calculated momentum-pressure gradients from the measured static-

pressure gradients along the tube; the mcmentum-pressure gradients

were calculated from

(d_) = w2 dOb
d mom Ob2A2g2 dx

where 0b was found from the equation of state

p = b

!
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and

tb =

w2R2 T
-i + i + 2 gJcpA2p 2

w2R 2

gJcpA2p 2

The last equation was obtained from the equations of energy, con-

t!nulty, a_i state. The pressure ar_ density _radlents were

graphically determlned by plottln_ pressure and density agalnst

distance along the tube and drawing a tangent to the curve at the

polnt in question.

Distance from wall. - The zero readlng of the probe actuator

was found by plotting velocity agalnst distance reading on the

probe actuator for a number of runs and extrapolating the curves

to zero velocity where all the curves intersected. This extrapola-

tlon gave the probe-actuator reading with the probe tip at the wall.

The distance of the tip from the wall for each re_di_4 could then

be easily calculated.

Bulk velocity. - In order to obtain ratios of local to bulk

velocity u/u b at various positions across the tube, the bulk

velocity ub was obtained by plotting u against cross-sectlonal

area _r 2 measurlng t_e area under the curve, and dividing by

the total'cross-sect_onal area of the tube _roZ. This procedure

Is equlvalent to solving the equation

Ub _"

2
_r 0

and gave more accurate values of u/u b than would have been

obtained by use cf orifice measurements of weight flow for the

determination of Ub, inasmuch as errors in u due to errors

in statlc-pressure measurements were also contained in ub and

any systematic errors tended to cancel.
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R_BULTS AND D]LSCU_SION

Variation of Velocity Distribution a!on_ Tube

The results of the tests in which variation of the velocity

distribution along the tube was determined are summarized in

figures 2 and 3. Typical radial velocity distributions at various
tube diameters from the rounded entrance of the tube are shown in

dimensionless form in figure 2.

In figure 3, which is somew_hat mcre descriptive than figure 2,

the variation of velocity along the tube at the center and at

r/r 0 = 0.9 is shown for both a rounded and a right-angle-edge
entrance. The curves show that the development of the velocity

distribution was more rapid for the right-angle-edge entrance than

for the rounded entrance; with the right-angle-edge entrance fully

developed flow was obtained after about 45 tube diameters from the

entrance, but with the rounded entrance the distribution was still

developing slightly at i00 tube diameters from the entrance. This

difference in rate of development was apparently caused by the vena

contracta formed at the entrance of the tube with the right-angle-

edge entrance, and indicated on figure 3(b) by the points close to

the entrance. The presence of the vena contracta accelerated the

flow at the center of the tube and thus hastened the development of

the distribution.

The curves also show that Reynolds number affected the dis-

tribution near the center of the tube because u/u b decreases as

Reynolds number increases. This variation is in agreement with

previous findings (reference 6). Difference in Reynolds number

has, however, little or no effect on the distribution close to

the wall.

A significant observation can be made from figure 3 concern-

ing the difference between the rates of development of velocity

distribution at the center of the tube and near the wall. Figure 3

indicates that with both entrances the fin_l distribution is

attained much sooner in the vicinity of the wall than at the

center of the tube. This fact might explain why, in the present

investigation, the static-pressure gradients along the tube caused

by friction were only slightly affected by entrance effects. The

static-pressure gradient is determined by the velocity gradient

at the wall and is unaffected bj the distribution in the remainder

of the tube.
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As will be shown in the discussion of fully developed flow in
the section "Effect of V_iable Shear Stress," the effect of com-

pressibility on velocity distribution is slight; although some of

the determinations were made at high subsonic Mach numbers, it is

therefore believed that the results are also applicable to incom-

pressible flow.

oa

Velocity Distributions for Fully Developed Flow

Correlation of exper_menta_ data. - The variation of u+ with

y+ for data obtained near the exit of the test section (that is,

for x/D = i00) where the flow is fully developed is shown on

rectangular coordinates in figure 4(a). The data obtained near

the wall are plotted to two y+ scales. The data are plotted

semilogarlthmlcally in figure 4(b). Data for flow close to the

wall are shown for only the low flow rates because at high flow

rates the severe velocity gradients and the presence of the hole

in the tube wall make the accuracy of the measul'ements doubtful.

The data shown were taken with both rounded and rlght-angle-edge

entrances, but the velocity distributions with the two types of

entrance were the same within the error of the measurements.

Comparison of the data in figure 4(b) with those of Nikuradse

ar_i of Reichardt (reference 3) shows close agreement for all values

of y+ up to about 600. For higher values of y+, the corres-

pondlng values of u+ are slightly higher than those obtained

by Nikuradse (reference l, p. 242); the maximum deviation, however,

is only about 5 percent.

A method of using figure 4 to obtain the velocity distribution

for a particular tube when the flow rate is given is indicated in

the discussion of figure 8.

Incompressible-flow equations. - The curve corresponding to

equation (12) for incompressible flow near the tube wall is in-

cluded in figure 4 and is in good agreement with the experimental

res'_ts for values of y+ from 0 to 2S. The value of the con-

stant n in the equation is 0.109, as determined from the
ezperLmental data.

An important property of equation (12) is that for small

values of y+, u+ and y÷ are approximately equal, that is,

_he flow predicted by the equation Ls nearly laminar. This approach
to equality of u+ and y+ is due to the fact that as the wall

:_ approached the eddy diffusivity ¢ becomes very small and is

1
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zero at the wall (equation (5)). _e accuracy with which equa-

tlon (12) predicts the experiment_l data for j from 0 to 26

obviates the necessity of ass_%mlng _he oxlstence of a separate

layer near the wall that is p{_ely l_mlnar, but does not eliminate

the posslbilitj of its existence, as has usually been done !n pre-

vious investigations. A sir_le _quation has therefore been obtained

that, for adiabatic incompressible flow, adequately represents the

two regions, which are commonly called the l_ml:_r layer and the

buffer layer. The buffer layer has previously been represented only

by empirical equations.

The agreement of equation (12) with the data for values of

y+ from 0 to 2_ does not eliminate the possibillt_ of the exist-

ence of a very thln layer that is purely laminar, for ex_mp!e, for

the region 0 < y+ < 3. It is possible that a finite layer exists

in which adjacency of the wall complebely d_mps out turbulence.

The thlcMusss of the layer then corresponds to some critical wall

Reynolds n_er OUeYe/_ where ue is the velocity at the edge

of the layer and Je is the thickness of the layer. Velocity

distributions for 0 < y+ < 5 given by equation (12) are prac-

tically l_minar, however, so that it makes little difference, for

calculating velocity distributions, whether the layer is taken

Into consideration. The only case in which presence of the layer

may become important Is that of heat transfer in fluids having

high Prandtl n_oer, where the turbulence predicted by equation (5),

though It may be slight, Is important because of the small amount

of heat transferred by conduction.

The agreement of equation (12) wlth the data, tcgether with

the discussion precedi_E the derfvaticn of the equation, indicate

that In the region close to the wall the mechanism of turbulent

transfer of mcment_n can be considered affected mainly by quanti-

ties that are dete_nlned relativ_ to the wall; that Is, by the

distance of the point fro_ the wall aml by the velocity at the

point relative to the wall. As was shown in the discussion pre-

ceding the derivation of equation (12), the velocity distribution

about the point Is known to a first approximation when the two

quantities u and y are known at the point.

The general form of the equation that is usually employed to

represent the turbulent regime was obtained by yon K_rm_n and Is,

as shown In the analysis section,

u+ =! loge y+ + C (15)
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The values of the constants C aI_ g, obtained from

Nik_adse's data (refsrence i), aro 8.5 a_i C.4O, respectively.

Correspondi_ values that represent the present d_ta somewhat

better are C = 3.8 and _ = 0.3_. The curve representing

equation (15) usln_ these values is plotted in fig'_'e 4, in which

gocd agreement with the experimental data Is i_licated for y+ = 0

to y+ = 26. The curves corresponding to the equations for flow

near the wall (equation (12)) and flow at a dlstance from the wall

(equation (15)) cross at y+ = 26.

The agreem,_nt of equation (IS) with the data, to, ether with

the discussion preceding the derivation of the equation, indicate

that For a region distant from the wall the mechanism of t,&_bulent

transfer of moment'&m can be considered dependent m_inly on the flow

conditions in the vicinity of the point considered: that _s, on the

velocities in the vicinity of the point relative to th_ velocity at

the point and not on the position of the point in the tube (the

distance from the wall) or on the velocity relative to the wall.

The curves representing equations (12) and (15) have slopes

that are not quite equal at their Intersection at y+ = 26: this

disparity would, however, be expected because the two eq_ations

were derived with the assumption that the turbulence mechanism in

the two regions is domin,ated by different factors: hence an abrupt

change in turbulence mechanism at the intersection is implied in

the equations. Actually, there is probably a gradual chancre that

could not be investigated by the simplified methods used herein.

Inasmuch as the actual error in the vicinity of the intersection

is insignificant, the present treatment is considered adequate for

adiabatic flow.

The value for _ (in equation (15)), which is known as the

K_rm_n constant, was checked by calculating friction factors and

Reynolds nmnbers and plotting 1/_-f against Re_/_ as shown

in figure 5. The line drawn through the data corresponds to the

K_rm_n relation between friction factor and Reynolds number, which
is

--_-l = C2 +--

This equation is derived in reference 2 directly from the

equation for velocity dlstr_bution. The value of _ was 0.38
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as before, and C2 is found from the data to be - 1.84. Both
velocity-distribution and friction-factor data therefore indicate
that a value for _ of 0.36 _s reasonable, at least for the
present tube.

The variation of the ratio of velocity at the center of the tube
to bulk velocity with Reynolds n_mber, as indicated in figares 3(a)
and (b), can be explained by the plots of the equations in fig-
ure 4(a). As y+ increases the curve becomesflatter. Increasing
values of Reynolds number correspond to increasin_ values of 2 +

in the central portion of the tube, so that for high values of

Reynolds number the velocity profile in the central portion of the

tube becomes flat; thus the ratio of velocity at the center of the

tube to bulk velocity becomes less than for low Reynolds numbers.

Effect of variable shear stress. - Neither u+ nor y+ are

functions of the tube radius. Neglecting the radius in the correla-

tion is equivalent to ass_mir4 uniform shear stress across the tube.

(See equations (15) and (20) in the section "Analysis.") The

results can be correlated by assumin_ uniform shear stress across

the tube because the greatest rate of velocity change with dis-

tance from the wall occurs near the wall where the cP_nge in shear

stress is very small. A c(xnparlson between equation (20), which

takes into account the variation in shear stress across the tube,

and equation (15). which ass_%mes uniform shear stress, is shown in

figure 6. The constant C is so determined for each value of

r0+ that u+ = 13 when y+ = 2_. These values were selected
in order to make the mean deviation of equation (2C) from equa-

tion (15) a minimum. The maximum difference between the values

u+ determined by the two equations is about _ percent, whichof

is the same as the scatter of the experimental data points. Equa-

tion (15) therefore gives an accuracy comparable to that obtained

in most flow measurements so that consideration of the variation

in shear stress across the tube does not seem necessary.

Equations for compressible fl_w. - The equations for com-

pressible flow are presented in figure 7. For graphing equation (29),

the value of the integral was found b_ plotting the integrand against

u+ and planimetering the area unler the curve. The constant n

was again set equal to 0.109 and d for air was found from vis-

cosity data to have an average value of 0.684 for temperatures

between 0° and 2000 ° F. For plotting equation (53), C I was deter-

mined for each value of _ from the value of u+ at y+ = 26

found from equation (29). From the definitions of M, T, u+,
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and _, it can be shown that the relation between u+, M, 7,

and m is

u+2 = 1

M2(7-I)

For M = i, 7 = 1.4, and m = 0.00025, u + is found to be 25.8.

This point is marked on the curve.

As _ increases, u+ decreases for constant values of y+

(fig. 7). For local Mach numbers up to i, hovever, the deviation

is slight and, in general, is not more than 2_ percent from the

value of u+ given by the Incompressible-flow equation. A single

llne is used to represent equation (29) because the compressibility

effect is so small that it cannot be seen when the equation is

plotted to the scale used in this figure.

It therefore appears that with respect to c_npresslbillty

effects and tube radius or shear-stress variation, the simplified

Incompresslble-flow equations (12) and (15) give an accuracy com-

parable to that of flow measurements. The fluid properties used

in u+ and y+ are evaluated at the wall or total temperature.

Flow Rates

The flow rates corresponding to various pressure gradients

along the tube can be obtained from the veloclty-dlstrlbution

equations by a graphical integration. For this integration,

(O/00) u+ was _lotted against (r0+ _ y+)2, where

O/O 0 = 1/(1-mu+_).____It can easily_ be shown that the area under

this curve is w [_Vo/O0- O0)/_g_02. If this dimensionless

group is divided by r0+ and multiplied by _ in order to

eliminate v0, there results w/(g_0r0). This parameter is

plotted against r0+ for various values of a in figure 8.

Figure 8 gives the flow rate to be expected for a given shear

stress or frlction-pressure gradient. The data of figure 8 also

provide a means for obtaining the velocity distribution in a

particular tube from the generalized velocity distributions in

flgumes 4 and 7 when the flow rate and the fluid properties are
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known. Measured flow rates for conditions where compressibility

effects are small are also plotted in figure 8 and agree closely

with the curve for a=0. The curves i_ica_e that at a Mach number

of l, compressibility effects increase the flo_-rate parameter

w/(g_0r0) by about 12 percent. Several data points corresponding
to hi_her values of a are also plotted in the figure and the trends

corresponding to increasing values of m appear to be similar to

the predicted trends, although no definite conclusion can be drawn

from the limited range of values of m shown. Data corresponding

to higher values of m are not plotted because reliable measure-

ments of the severe pressure gradients involved could not be

obtained.

CONCLUDING R_UrhKS

The results obtained in this investigation should be applicable

to any gas to which the perfect gas law applies and for which the

Prandtl number is close to 1. The value of the exponent d for

viscosity variation with temperature was obtained specifically for

air, but it occurs only in the equation for compressible flow close

to the wall where compressibility effects are negligible. The

equations arzl the curves for incomprossible flow should, of course,

also be applicable to liquids, inasmuch as the fluid properties

that determine the flow phenomena are common to liquids and gases.

S_Y OF RESULTS

The following results were obtained from the analytical and

experimental investigation of the adiabatic flow of air through a

smooth tube having an inside diameter of 0.87 inch and a length of

87 inches:

I. The length of tube required for obtaining fully developed

flow was greater with a rounded entrance than with a right-angle-

edge entrance. Wlth a rounded entrance, the flow at the axis of

the tube was still developing slig_htly at lO0 diameters from the

entrance. For both entrances, however, _he flow close to the wall

developed in a much shorter distance than did the flow in the center

of the tube. The flow close to the wall determines the shear stress

or pressure gradient along the tube, so that the effect of entrance

on these factors is slight except for very short tubes.
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2. A good correlation cf velocity-dlstribution data for fully

dgveloped flow was obtained by using the well-kncwn dimensionless

velocity and distance parameters. The data agreed closely with

those of Ni_aradse and other investigators.

5. The equation derived for adiabatic _ncompressible flow close

to a wall represented well the relation between the velocity and

dlstance parameters found experimentally for the two regions

that have generally been called the laminar layer and the buffer

layer.

4. The analysis and experimental investigations indicated that

the effect of variable shear s_ress on velocity distributions is

slight; the maximum variation i_ the velocity parameter caused by

this effect was approximately 2_ percent.

5. The compressible-flc_ equations showed that the effects

of c_npressibility on velocity distributions are small for 5_ch

numbers up to l: the maximum variation in the velocit_ parameter

caused by compressibility effects was approximately _ percent.

8. The simplified incompress!ble-flcw equatlcns derived on

the assumption of uniformity of shear stress across the tube pre-

dicted velocity distributions in smooth tubes for _ch numbers up

to 1 with an accuracy comparable to that of flc_ ar_ pressure

measurements.

7. Graphical integration of the velccity-distributlon equa-

tions gave flow rates that agreed clcsely with flcw rates from

crifice measurements.

r_
c_
_D

Lewis Flight Propulsion Laboratory,

National Advisory Committee for Aeronautics,

Cleveland, Ohio, January 9, 1950.
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Tile following s_bols ere used In the report:

internal cross-sectlonal area of tube, sq ft

constants of integration

specific heat of fluid at constant pressure, Btu/(ib)(°F)

Inslde diameter of tube, ft

exponent that dsscribes variation of viscosity of fluid

with temperature

acceleration due to gravlt_, 32.2 ft/sec 2

mechanical equivalent of heat, 778 ft-lb/Btu

constant

total pressure, lb/sq ft absolute

static pressure, lb/sq ft absolute

perfect gas constant, ft-lb/(ib)(°R)

radius, distance from tube center, ft

inside tube radius, ft

total temperature, OR

absolute wall total temperature, OR

absolute static temperature, OR

bulk or average static temperature of fluid at cross

section of tube, °R

velocity parallel to axis of tube, ft/sec

bulk or average velocity at cross section of tube, ft/sec

velcclty at center of tube, ft/sec
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W

X

Y

7

£

_0

0

%

PO

7

7t

Tv

To

fluld-flow rate, ib/sec

axial distance from tube entrance, ft

distance from tube wall, ft

ratio of specific heat at constant pressure to specific

heat at constant volume

coefficient of eddy diffusivity, sq ft/sec

K_rm_n constant

absolute viscosity of fluid, lb-sec/sq ft

absolute viscosity of fluid at wall, lb-sec/sq ft

mass density, lb-sec2/ft 4

bulk or average density at cross section of tube,

lb-secZ/ft 4

mass density of fluid at wall, Ib-secY/ft 4

shear stress in fluid, lb/sq ft

shear stress produced by turbulence, lb/sq ft

shear stress produced by viscosity, lb/sq ft

shear stress in fluid at wall, lb/sq ft

Subscripts :

fr on friction pressure gradient

morn on momentum pressure gradient

Dimensionless parameters :

7o

compressibility parameter, 2gJcpT0°o
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f friction factor,

M Mach number, u
_--gRt

Re Reynolds number, ObUb D

_0

r0+ tube-radius parameter, _J-J0 r0

u+ velocity parameter, u

y+ wail-distance parameter, PO_0 Y
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