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SUMMARY 

An analysis and calculations on the stability of the free laminar 
boundary layer between parallel streams were made for an incompress-
Ible fluid using the Tollmien-Sch].ichtlng theory of small disturbances. 
Because the boundary conditions are at infinity, two solutions of the 
Orr-Sommerfeld stability equation need not be considered, and the 
remaining two solutions are exponential in character at the infinite 
boundaries. 

The solution of the stability equation is obtained in powers 
of (-i/aR), where B is Reynolds number and a. is disturbance 
wave number. With an asymptotic solution as a start, the stability 
equation is numerically Integrated. The eigenvalue problem between 
a., B, and the disturbance phase velocity c was thus explored by 
trial-and-error process. 

The calculations show that the flow is unstable except for very 
low Reynolds numbers. The regions of stability and instability in 
the a., B plane were checked by obtaining damped and amplified 
solutions on opposite sides of the neutrally stable solution. 

IITBODUCT ION 

Some of the classical problems that have been of interest to 
many investigators in the field of the stability of parallel flows 
are the stability of Couette-type motion, Polseuille-type motion, 
and boundary-layer flows. Couètte flow between rotating cylinders 
was successfully treated by G. I. Taylor (reference 1). The prob-
lem of plane Couette flow, however, has not been decisively settled. 
Plane Poiseuille flow was treated by Eeisenberg (reference2), 
Pekeris (references 3 and 4), Goldstein, and Lin (references 5 and 6) 
and highly controversial results were obtained. Poiseuille motion 
in a circular pipe was treated by Sexi (references 7 and 8) who, 
after an Incomplete investigation, concluded that the flow was
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stable. The problem of boundary-layer stability was treated by 
Tol].mien (references 9 to ii), Schlichting (references 12 to 15) 
Lin, and others, and an experimental verification of the results 
was obtained by Schubauer and Skramstad (reference 16). 

In all of the previous investigations, the problem of the 
stability of parallel flows was treated for a case in which there 
was at least one solid boundary. In the investigation discussed 
herein, a flow that has no solid boundaries is treated, the case 
of the stability of the laminar, free boundary layer between two 
parallel streamB of semi-infinite extent in plane flow. In the 
analysis, the fluid medium is considered incompressible. After the 
steady-state flow configuration is determined, the stability of 
that flow configuration is investigated. The solution is carried 
out for only the case of flow in which one of the streams is con-
sidered at rest. 

Most of the analysis for this report was done before June 1948 
in the form of a doctorate thesis in the Mechanical Engineering 
Department at Massachusetts Institute of Technology. Acknowledg-
ment is made to Professor W. ' P. Hawthorne of the Mechanical Engineer-
ing Department at M. I. T. for his general supervision of the work, 
to Professor C. C. Lin of the Mathematics Department at M. I. T. 
for his valuable assistance and. suggestions, to Dr. L. H. Thomas of 
the Watson Scientific Computing Laboratory at Columbia University 
for his assistance in setting up the problem for machine solution, 
and to the International Business Machines Corporation for donating 
the use of the Selective Sequence Electronic Calculator for the 
numerous calculations.

SYMBOLS 

The following symbols are used in the theoretical development: 

x	 positional coordinate in directioii of principal flow 

y	 positional coordinate perpendicular to principal flow 

t	 time coordinate 

u	 velocity component In x-d.irectlon 

v	 velocity component In y-dlrection 

stream function 

vorticity
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p	 mass density of fluid medium 

absolute viscosity of fluid medium 

= ti/p	 kinematic viscosity of fluid medium 

characteristic measure of boundary-layer thickness 

U1	 free-stream velocity of one of the parallel streams 
(taken as characteristic velocity) 

U2	 free-stream velocity of other parallel stream, 
U1 > U2 

B = 6U1/v Reynolds number of boundary-layer flow 

y/ #Jp x/U1 

function defining form of boundary-layer stream func-
tion for time-independent flow 

= x/	 dimensionless positional coordinate in direction of 
principal flow	 - 

= y/	 dimensionless positional coordinate perpendicular to 
principal flow 

U1 
= t -- dimensionless time coordinate 

= u/U1	 dimensionless velocity component in x-direction 

= v/U1	 dimensionless velocity component in y*_direction 

17*	 dimensionless stream function 
icx.(x*ct*) = cZ(y*) + q,(y*)e 

steady-state part of dimensionless stream function 

cp(y*)	 amplitude of disturbance part of dimensionless stream 
function
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= 

a	 wave number of disturbance (always real) 

a6	 eigenvalue of a. when B - 

c	 dimensionless phase velocity of disturbance 

c5 	 eigenvalue of c when R - 

Erfc z =•	 fe_t2 dt 

k1, k2 , k3 constants of integration 

Im	 imaginary part of 

exp	 base of Napierlan logarithmic system e raised to 
power in parentheses following exp 

TBEORETICAL CONSIDERATIONS 

The Steady-State, Laminar, Boundary-Layer Flow 

between Parallel Streams 

The equations for the steady-state incompressible boundary-
layer flow with no body forces and no pressure gradient over the 
flow field are

(1) u+v=	
y2 

u v_ - + -. - 
dx dy 

From continuity considerations (equation (2)), a stream function lit 

can be so introduced that

U = oy 

V = - ox

(2)



NACA TN 1929	 5 

If the form of V be specified as 

V = v'vxU1 f(q) 

-	 = y/vx/U1 

then

u = U1 f'(i) 

v = */LU1/x (f'-f) 

and equation (1) simplifies to 

ff'' + 2f"' = 0	 (3) 

From the physical flow coEfiguration (fig. 1), the boundary 
conditions are

u-*U 

u-*U2 

or, in terms of the variables of equation (3), 

U2 

1 

Because equation (3) is of the third order, a third boundary condi-
tion must be specified. The third boundary condition is arbitrarily 
selected as

-	 f=0 

It is of interest to discuss the as'mptotic behavior of the 
boundary-layer equation (equation (3)). 

When
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and

f ( TI) - 11 

Therefore, as a first approximation for large positive values of TI, 
equation (3) can be written as 

	

TIE '' + 2f 1 ''	 0 

and it therefore follows that 

1-f' k1 Erfc()	 (4) 

Similarly, for large negative values of TI,

(5) 

Equation (5) degenerates for U2/U1 = 0. For that case, if it is 

assumed that when	 - 

V ( TI) —p0 

and 

then

e 

It is also of interest to discuss the position of the boundary 
between the fluid of both streams. This boundary must be a stream-
line and also pass through the point (x = 0, y = 0). From the 
form of the stream function iT, it can then be seen that '1 = 0 is 
the boundary streamline. In order for this condition to hold at 
any value of x, it is necessary that f (TI) = 0 along the stream-
line. The boundary streamline Is therefore 

- __ 

AJU1
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The significance of the 	 line can also be demonstrated from 
momentum considerations. If, for a fixed value of x, the boundary 
streamline Is located at y1, the momentum principle can be formu-
lated as follows:

ri 
pu(U-u) d,y +
	

'pu(U2-u) dy = 0	 (6) 

Jyl 	 J.OD 

If f and i are then substituted Into equation (6), the follow-
ing equation is obtained: 

ff'l_f')d+ff'(f')d=o 

where	 is the boundary between the two streams. 

Then

+ 

- (i -
	

f(1) -	 f(-) -L (f') 2 d = 0	 (7) 

However,

= if f,, dt 

From equation (3)

fft t = -2f' ' 

Therefore,

(f')2 th = if' + 2f'' 

When the preceding relation is substituted into equation (7), 

f()	 -	 -	 f(-) - f() f'() + f(-) f'(-) - 

2f''() + 2f''(_c4 = 0 	 (8)
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However,

f''(cx) _ftt(.) =0 

Equation (8) therefore reduces to 

	

f(o) [l_f'(cc5] - f(-a)	 - f t (_)] - (1 -	 )f) = 0 

From the asimptotic behavior of f (equations (4) and (5)) 

f(o) [i_r'()] = 0 

ru 

	

f()	 - ft(_)j = 0 U1 

Therefore

f(T1) = 0 

and	 = i, as previously demonstrated. 

The Stability of the Laminar Boundary Layer 

between Parallel Streams 

The criterion used in the investigation of the stability of 
the laminar-flow configuration is the behavior with respect to time 
of a small periodic disturbance introduced into the flow field. If 
the disturbance is dsmped. with respect to time, the flow configura-
tion is said to be stable with respect to that disturbance. If the 
disturbance grows with respect to time, the flow is said to be 
unstable. If the disturbance remains unchanged with time, the flow 
is considered as neutrally stable. 

In reference 17, Squire demonstrates that two-dimensional die-
turbances are more destabilizing than three-dimensional disturbances 
for two-dimensional parallel flows. Only two-dimensional disturbances 
are therefore considered in this discussion. 

The equation of vorticity for an incompressible viscous fluid 
in plane flow can be stated as 

	

t+ux+yy=u	 (9)
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where

p_V	 U 
S 

tt	 XX	 •Yy 
2t	 2 

=	 + 

Now, let , u, and. v consist of steady-state (time-independent) 
and disturbance (time-dependent) parts. 

Then

= r(,) + '(x,y,t) 

u =ii(x,y) + u'(x,y,t) 

v = (x,y) + v'(x,y,t) 

where

If the expressions for , U, and v are substituted in 
equation (9), the steady-state terms. cancel out as satisfying them-
selves. Because the disturbance is considered very small compared 
with the steady-state flow, all terms nonlinear in the disturbance 
are neglected. Equation (9) then becomes 

+	 + U	 +	 + v'ç = 

It is assumed that u' and v' are of the same order of 
magnitude and that	 and	 are of the same order of magni-

tude. If it is now considered that the steady-state flow is of the 
boundary-layer variety and that the principal direction of flow is 
the x-direction, then

and
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Equation (9) then reduces to 

	

+	 + v'	 =	 (10) 
t	 x	 y 

If a stream function of the form

la.(x" - ct*) r*	 +p(y*) e	 (11) 

is introduced into equation (10) after the dimensionless variables u*, 
v*, xli , and y* are substituted for the corresponding dimensional 
variables, the Orr-Sommerfeld equation is then obtained (ref er-
ences 18 and 19). 

	

'-c)(cp''-cx.2cp) -	 tttcp 	 - -- (cp-2a,2cp'' + cx.4cp)	 (12) 

where

c' _.t_u*_Lf'(i') 

A more rigorous and det:ailed derivation of the Orr-Sommerfeld equa-
tion may be found in reference 20. 

If the characteristic 1eigth 8 is set equal to A	
then 

1 

and -	
- d3' 

	

d31*	 dli 

The Orr-Sommerfeld eqation for the laminar boundary layer therefore 
becomes

(ft_c)(cptt_a,2cp) - f'''cp = - 2;_ (p" - 2a2cp'' + asp) 	 (13) 

For boundary conditions on equation (13), it suffices to specify 
that q is bounded throughout the flow field. 

Because equation (13) is of the fourth order, a set of four 
linearly independent solutions to the equation exists.
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cp =cp1 +cp2 + cp3 + c4cp4 

The nature of the solutions cp3 and. cp4 can be investigated by 
introducing the following transformation into equation (13): 

cp=exp (fdt1) 

Equation (13) then becomes 

(ft_c) [(g2+gt)_,2J_fttt = -	 [g4 + 6g2g' + 3g' 2 + 4gg'' + 

g''' _2cL2(g2+gt)_c4] 

If g is expanded as follows:

U 

the following set of equations is then obtained by equating like 
powers of aR.

(f'-c) g02 = - I g04

(f'-c)(g0 ' + 2g0g1 ) = -i(4g03g1 + 6g,2g0') 

U • • S S • S U S S S • S S S 

The successive • approximations can then be obtained. without 
integration

=± jji(ft_c) 

5 g0 
12g 

[S - - - I



12
	

NACA TN 1929 - 

Finally

5 

(p3 (f'-c)4.exp [_ fji aR(f'-c) 
(p4 = (f'c) exp [+ f ji x(f!-c) 

It should be noted that when 

Because (p3 and (p4 are each unbounded somewhere in th flow field, 

they cannot be considered in the solution of equation (13). 

and	 can be solved for in the following manner: 

Let

P =	
( j•)k (k)	

(14) 

Ir equation (14) is substituted into equation (13) andlike orders 

of (-	 ) are equated.,.the following system of equations isobtained: 

(f _ c )( 1	 ' _2k)_f I I(p(k)Q(k_1) ... 2 2(k_l) '+ 4(,(k-1)

(15) 

For k = 0, equation (15), after being rearranged, becomes 

- (a2 + __
	 = 0	 (16) 

The asymptotic behavior of (0) can now be investigated. Where 

± Co 

fl,t 
f'-c --+0
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Therefore,

(o)(*)c e	 + C2 e' 

Because the solution must remain bounded, 

C1 =O	 when 1)-9.+c

C20 

(o)	 (1) 
In the region where p 	 is exponential, p	 is also expo-
nential, as can be shown by substitution into equation (15). It 

(k) can thus be demonstrated that p 	 is also exponential in the 
aforementioned region. The proper boundary conditions on p are 
therefore

cp'-3cLcp 

cp'--ctcp 

From the boundary conditions and the general form of the solu-
tion, the secular relation formally stating the eigenvalue problem 
can be easily obtained.

- '—°°)

= 0	 (17) 

+ asp,(+o) 

From equation (17), it can be seen that only particular coinbina-
tions of the parameters a, c, and. B allow the boundary condi-
tions on p to be satisfied. 

For a rigorous treatment of the asymptotic expansions for cp1, 
'2 p3, and cp4, see reference 21.
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SOLUT ION OF TEE BOUNDARY LAYER AND OIR-SO}4MERFELD 

EQUAP IONS FOR TEE LAMINAR BOUNDARY LAYER 

BMTwKgN PARALLEL STREAMS 

The general plan of solution of the boundary layer and Orr-
Sommerfeld equations is to carry the analytical methods only far 
enough to reduce the problem to a routine numerical solution. In 
the problem under cons id.eratión, it is necessary to investigate the 
asymptotic behavior of the solutions so that boundary conditions 
at finite values of the independent variable are known in terms of 
the infinite boundary conditions. After boundary conditions at 
finite points are obtained, the soluti.on can be continued by ordi-
nary numerical methods. 

Asymptotic Behavior of Steady-State 

Boundary-Layer Equation 

The following transformation of equation (3) ff'' + 2f' '= 0 
is permissible without altering the form of the equation: 

q(x) =f(i) 

x = at + b 

If the discussion is limited to the case where 	 = 0, it is 

then possible to expand a solution for the transformed equation as 
follows:

x q=A0 +A1 e +A2 e +A3 e +. .. 

The foregoing expansion is convergent for negative values of z. 
If a numerical solution is started from inside the area of conver-
gence of the series solution, the asymptotic value of q' (co) can be 
evaluated. Because the asymptotic value of ft(co) is 1, the scal-
ing factor a is given by

1 

a = ____
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The scaling factor b can be fixed by designating 

= o 

The asymptotic form of f is then given by 

1	 3
aT 

f=a0 +a1e	 +a2e +a3e	 +. 

and, since f' (starting) < c, 

f'' t 	 8T 

f'-c = b1e	 + b2e + b3e 

The various coefficients of the expansion can easily be evalu-
ated by elementary methods. 

Asymptotic Behavior of Expanded 

Orr-Sommerfeld Equation 

If the asymptotic form of f tt /(f t _c) is inserted into equa-
tion (16), the following equation is obtained: 

(0)''	 2	 a	 (0) 
(a 

-	 +b1e	 + b2e + b3e	 + . . •j 	 = 0 

(0) and the form of cp 	 follows: 

(a + ! a)	 (a,i-a)i	 (a + (o) = e	 + Ii3Oe	 2	 + 1i20e	 + 1a30e	
a)1 + • • 

-

	

	 (18) 

cp(0) is substituted into equation (15) to obtain the next 

order term	 1), the following equation is obtained:
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cp	 - (a2+be ' + •b.2e +b3e2
 + • • •)• (

i) 

(a*a)t)	 (a*a)	 (ci..a)1 
=1 1e	 +12e	 +i3e	 2 

and 

cp	 = e	 + Ii,11e	
.a)i 

+ 1ea + h31e

(19) 

From equations (18) and (19), the boundary conditions can be 
obtained for integrating the stability equations starting at a 
finite T, 

A tabulation of the values or the coefficients of the first 
few terms of the expansions is given in the appendix. 

Integration of Boundary-Layer Equation 

The boundary-layer equation is 

ff 1 + 2V'' = o	 (3) 

or

flit = -	 ff,? 

Differentiation once gives 

f l y = -	 (fr''' + f'f'') 

and.twice,

= -	 (1c.fIV + 2f'f''' + f''2)



NACA TN 1929	 17 

4-).4 
ci 

Qa)
4-I 
0 

civ o -S . + 
cia) + -S 

• kG) '	 C) -S 

t 4-i •
• 1 

0 0
- - 

+ + r4Pi 
ci rl '-'

9- -
_ 

o a) ci
a o 9-

+ 
--S

5-
5-. 01

+ 9-
_ 4-I

4-i 
0 0. 

rI
o .,-4 
4' - 'i4i-441l 

1C3 .i1 -4l 
C\)

4)1'J4 
C\)

- ci ci 0 - 
-0. + ^ 

+ 
-5

OW 
4-) N

to 
1 0 9-

-. 
- 5--

__

•
'd 
I-I ii II :5-' + 

-5
5-

4-i -'- + -P 0 9-i 0) - 
0 I

- 

- 0 
-

- 
44 I :Iw

I4.r-I 
ID 4'

k 
4) . 0- 0

9-
- +

4-i 
'-9-i,-' 
'0IDO Co .4

0 C/) 4-
- 
- 0 CO

;(O 

-
i

4-) 'd	 0)
0 44 

I
s. 

f., P - -
k .cl 

ciO+) 0 .i 0 II
+ 
--

--S 

+ '-- 
-

9-i 4-i
44 'd +' 

a)'-
9- -

"- 
-

- 
- 

-

- 
- 4-i +

P
4-I

0 
- +'

0) 
'd 0

C%Ja r
-

Co 
0)

-
-

- 
- 

-S II + 0 k ci 4'
i9- 

- -I-I 
P0 

'-

0 
4-i

5--.. -5''-.-
p4 - - t 9-

+
- 
- '--

9-4 P'd 
4-i	 0)	 0

- 
iii

4)-' 

k 
CoO 

--.

-, 
9-i CoC') 

a) .

) + -
- 
4-i P

4-i
.-1',l 
k-P

9-i 
0

-i-I 
44'5' ' + ^ 

CO 
0) '-- -

.- + k 0 
-' ci 4-' 

0
ci 0

a) 
.1

- 
0 I -	 - ,-I

0) 
Co

.-. 
I' 

'-

-s 

5-- -
5- +	 1•

.p
4' - 

q
5-.-
9----- 

a),- - 
- 

CO + 
-.5

-f-V 
-

- 
- 
4-I

'-.-O!O 
P'-4ci ci k 0 '--

d
k 
0 0 

-
- 

0 
CO -4-) 

4-iciG) 0)
4-4 I 

-

i-I 

k
'-•

9--
k

5-_. 5--- II - -
'

ci 
El

+
+ o 

1-4 II 9-i 
II

-'- 
+

'a) 
—+' 0

H 0 
•u-I u-I 

'-- ci 
ci 

E-i
- 

+ 44 
-a) 01

- o r4 s.-'
9-

- 

o, ci 4 +
-

.1 '0) I 

$1 
.1-I

5-- 
9-i - 4-4 -+'' 

-	 4-I a)
-	 -S 
440

U 9-

4-i 9-i'do .I 
-P

--- 
9-

— H 

"-4
ci 

4-i	 bO 
0'd

k 
4) 9-i

+ 
'-

-.5. 
+ 

ci
-	 - 0)-i-I 'd 

-f-I
0 ---

0 5- - 

a)
r-IrIr-1 

ci'dci 
•PP

0 
0

-rI 0 

'rIG) ci 9-
4) 0) p4 

E-ici.O - 
iii



18
	 NACA TN 1929 

0' ' '	 0''	 'o' 
The values of cp' ' (r+w), q:' 

/	 (i^v), cp' / (+v), and 

(o)Iv oq	 (T1+w) can now be computed in a manner similar to the case 

of the boundary-layer equation, and the integration of 
q,(0) 

can 
•	 (o)Iv 

be carried forth. As before, cç	 can be evaluated in starting. 

	

Expansion of	 in a Taylor t s series gives 

(1)	 = (1)()+wq,(1)'(1)+V2 (i)''	 (1)''' 

	

-.-q	 (11)+-g--cp	 (ii)+ cp	 ( ii+w )	 P 

	

w4 (i)tV	 5	 6	 (1)vt 
cp	 (ti) +	 cp	 (ii) +q	 (ii) + . 

Now 2(I)() =	 (l)(+) - 

therefore 

	

82(1)(i) = (i)	 (1)	 - 2 (r+w) + cp	 (ri -w) 

w2p(l)t'()	 wG	 (1) Vt () + 

and

•b2 ( l)"()	 2(l)() +cp(1) vt (	 + 

Therefore,

	

b2[(1)(	

2 (1) t? ()] — 2 (i)'' 

	

=Wq	 () 

(1) 
The quantity cp	 can be integrated as indicated in a step-by-

step manner. From the asymptotic form of ( 
1) , (( 1) -	 1) 

can be evaluated in starting. 

	

When (o) and	 have been integratedto a large posi-
tive value of i, the boundary condition at 	 = +o' can be imposed 
to evaluate R:

— (0) 
cpcp 

cp'(+c4 + cup(+c) = 0
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Therefore,

R = 
j [(l)' (+	 +	 1)(+C)\1 

(0)'	 (0)	 )J	 (20) 
[\qD	 (+co)+acp (+)j 

Although the foregoing method of integration was used. in the 
solution of the problem, it was not the most efficient scheme. 
Originally, the problem was programmed for integration along a 
rectangular path through the complex plane; complex integration 
was necessary because of the singularity at the point where f' = c 
in equation (15). It later became apparent that the rectangular 
path was disadvantageous and that a better choice was a path start-
ing in the third quadrant of the complex plane and travelling in a 
straight line to a point on the positive, real axis (fig. 2). Most 
of the original program could be used for the straight-line path. 
In order to expedite the solution, the equations were therefore 
integrated along the new path in the manner previously indicated. 
The interval of integration w was taken as 0.2 + 0.05i. 

A more advantageous scheme for the straight-line path of
integration of' equation (15) is included herewith for completeness. 

o2(	

2 
(k) - !_ (k)'' = 2 (k)''	 w4 (k)tv 

3O P	 ,/ 

(k)IV =v2tv	

(21) 

i	 ,1 

Method of Solution of Eigenvalue Problem 

If sets of eigenvalues of a, c, and B are to have any 
physical significance, B must be real; a is taken real and c 
may be complex. The process then to be followed is: 

1. For a fixed value of a and a set of values of c, inte-
grate the equations and obtain the corresponding values of B. 
These values of B are usually complex. 

2. For the value of B that is real, the corresponding c 
is the desired eigenvalue. 

3. Repeat the process until the secular relation (equation (17)) 
is explored.
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RESULTS P,D DISCUSSION 

The secular relation (equation (l7) for the case of the "free" 
boundary layer was explored for damped, neutrally stable, and. ampli-
fied. disturbances. The stable disturbance corresponds to 1111 c < 0, 
the neutrally stable disturbance corresponds to Lu c = 0, and the 
unstable disturbance corresponds to Lu c> 0 (equation (ii)). The 
disturbance equations were solved for values of Lu c = 0, Im c = 
0.05, liii c = 0.10, and. In c = -0.05 (table I). The results were 
then interpolated for Lu B = 0 to give the neutral stability curve 
and curves of equivalent degrees of damping and amplification, 
(table II and fig. 3). 

The curves obtained were continuous, which indicates a low 
effect of rounding errors in the numerical techniques employed. 
Some i'ntegrations were redone using an interval of half that used 
throughout the problem. The results of both integrations were the 
same to the fifth significant figure and indicated the low trunca-
tion error. Because the parameter of expansion of the eigenfunc-
tion q (equation (14)) was (-i/aR) and only the first two terms 
of that expansion were used, the determination of the eigenvalues 
of a., c and H was inaccurate at low values of aR. For the 
same reason, it was impossible to obtain the lower branch of the 
curve of neutral stability. For purposes of comparison with the 
free boundary layer, Lin's curve of neutral stability for Blasius-
type flow is included in figure 3. (See references 5 and 6.) 

A comparison of the stability characteristics of the free 
boundary layer with Blasius-type flow reveals certain basic differ-
ences. First, the free boundary layer is unstable for some dis-
turbances at an infinite Reynolds number (tantamount to "inviscid" 
flow), whereas the Blasius-type flow is completely stable in that 
range. This type of instability is caused by the presence of a 
point of inflection in the velocity profile. Some implications of 
the presence of a point of inflection in the velocity profile were 
first investigated by Rayleigh (reference 22). Another salient 
difference between the two types of flow is the presence of a highly 
oscillatory solution (P3 ) in the general solution for the dis-

turbance in Blasius-type flow, whereas no such solution exists for 
the free boundary layer. This difference arises from the doubly-
infinite boundary conditions for the free boundary layer as opposed 
to the singly-infinite boundary conditions for Blasius flow. The 
foregoing is apparent from the asymptotic forms of the solutions 

and	 As shown by the form of the solutions, viscosity has a 

second-order effect on 	 and	 whereas it has a first-order
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effect on	 and CP. The inclusion of q 3 in the general solu-
tion of the disturbance for Blasius flow théref ore indicates a 
greater effect of viscosity on the disturbance than for the case 
of the free boundary layer. As could be inferred from the fore-
going, therefore, the effect of viscosity on the stability char-
acteristics of the free boundary layer is apparent only at very low 
Reynolds number, whereas the Blasius flow stability characteristics 
are much more affected even at higher Reynolds numbers. 

The Inaccuracies due to small values of the parameter a.R can 
be avoided by direct Integration of the Orr-Somnmerfeld equation for 
those cases. The asymptotic solution of the entire disturbance 
function could easily be developed as was done f or the expanded dis-
turbance function, and the numerical technique of integration after 
starting from the asymptotic solution would correspond to equa-
tion (21). These further solutions should be performed as soon as 
more high-speed computing-machine service can be obtained. 

CONCLUSIONS 

It is concluded that the laminar boundary layer between parallel 
streams Is an unstable-flow configuration except at low Reynolds 
numbers. The method of calculation of stability characteristics is 
successful for small absolute values of the parameter (-i/aR). 

In comparison with Blaslus-type flow against 
Instability occurs at much lower Reynolds numbers 
boundary layer than f or the boundary layer against 
with no pressure gradient.

a flat plate, 
for the free' 
a flat plate 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, March 21, 1949.
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APPENDIX - COEFFICIENTS FOR ASYMPTOTIC SOLUTIONS OF cpo	 Pi 

a 1.23849316 

a0 = -1.23849316 

a1 = 1.23849316 

82 = -.30962329 

83 = .08600647 

a3 

	

= -	 81

	

a	 2 

	

b2 = -	 a2 + r	 i 

a"27	 2 

	

= -	 83 +	 8182 +	 a) 

2c 

d2 = - 4 (a2 + _ a12) 

h10-	 / \2 18 

+ b2 
1120	 - 22aa + a 

b1h20 + b2h10 + 

2 
3aa+ 

K1 = 2 (a. + a)2
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K2 = (2a) 2 (a + a)2 h20 

K3 = (3a) 2 	 + a) h30 

1 1 = d0 K1 

1 2 = d0 K2 + d1 K1 

1 3 = d0 K3 + d1 K2 + d2 

b1 + 11 
h = .LL	 i 

ía 
aa+ 

b1 1111 + b2 + 12 
h21	 2 2cia + a 

b1h21^b2h11+b3+13 

/3 \2 3cxa+(a 
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TABLE I - EIGE!WMJUES OF a,, C, A1D B 

[Inviscid. solution (B-cP); c6 = 0.58727198; 
and. a5 = 0.39537.] 

c B B 

Imc,0___ _____ ________ 

0.390 0.584000 292.54 + 34.121 0.355 0.571000 44.25 - 0.011 
.390 .584550 305.89 + 1.961 .345 .568600 36.19 + .041 
.390 .584581 307.06 - .011 .335 .566000 30.83 + .62i 
.390 .584600 307.27 - 1.251 .335 .567000 30.76 + .121 
.390 .585000 312.08 - 28.001 .335 .567300 30.74 + .02i 
.390 .588000. 210.66 - 190.291 .335 .568000 30.68 - .371 
.390 .600000 3.96 - 88.131 .335 .570000 30.45 - 1.351 
.385 .581500 156.95 + 11.591 .325 .565000 26.9? + .681 
.385 .582190 160.64 + .251 .325 .567000 26.75 - .021 
.385 .582204 160.76 + .011 .315 .550000 24.35 + 4.661 
.385 .582500 161.85 - 5.171 .315 .555000 24.40 + 3.391 
.380 .579960 109.78 - .011 .315 .563000 24.09 + 1.291 
.380 .580000 109.83 - .321 .315 .568000 23.63 + 0-	 1 
.380 .583000 109.18 - 25.381 .315 .567500 22.68 - 1.691 
.375 .575000 79.73 + 11.711 .305 .570000 21.12 + .161 
.375 .577700 83.69 + . .681 .305 .570900 21.00 + 0	 1 
.375 .577850 83.81 + .011 .305 .571000 21.00 - .021 
.375 .578000 83.94 - .671 .295 .576200 18.67 + .021 
.375 .580000 84.40 - 10.051 .295 .576400 18.67 + 0	 1 
.365 .573600 57.40 + .981 .295 .576500 18.63 - .021 
.365 .573900 57.49 + .381 .295 .577100 18.56 - .09i 
.365 .574050 57.52 + .071 -.285 .585000 16.38 + .101 
.365 .574100 57.55 + .011 .285 .586000 16.26 + .021 
.355 .567300 43.68 + 4.081 . .285 .586300 16.25 + 0	 1 
.355 .570000 44.18 + 1.131 .285 -.586500 16.21 - .021
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TABLE I - •EIGENVALUES OF a, c, PD R - Concluded 

al c 

Im c, 0.05 

0.315 0.562500 + 0.051 72.57 + 0.951 
.315 .562800 + .051 72.68 - .071 
.285 .540000 + .051 31.19 + 8.001 
.285 .555000 + .051 32.55 + .25i 
.285 .570000 + .05i 28.87 - 7.541 
.285 .580000 + ..051 24.47 - l0.72i 
.265 .548000 + .05i 28.89 + 2.461 
.265 .550000 + .051 24.79 + 1.901 
.265 .560000 + .051 23.74 - .791 
.245 .560000 + .051 19.47 + 1.111 
.245 .570000 + .051 18.26 - .151 

Lu c, 0.10 

0.265 0.550000 + 0.101 79.17 + 7.141 
.265 .551700 + .101 81,12 + .121 
.265 .552000 + .101 58.03 - 1.291 
.245 .545000 + .101 39.83 + .881 
.245 .548000 + .101 39.72 - 1.881 
.245 .550000 + .101 39.45 - 3.731 
.225 .542000 + .101 27.74 + 1.481 
.225 .544000 + .101 27.58 + .751 
.225 .546000 -s- s .101 27.32 + .031 
.205 .550000 + .101 21.06 + 1.091 
.205 .554000 + .101 20.58 + .451 
.205 .557000 + .101 20.18 + .011 

Im c, -0.05 

0.400 0.500000 - 0.051 16.25 + .14.251 
.400 .550000 - .051 26.91 + 13.761 
.400 .580000 - .051 34.34 + 1.641 
.400 .590000 - .051 33.20. - 4.561 
.400 .600000 - .051 29.59 - 9.721 
.420 .580000 - .051 46.72 + 10.091 
.420 .590000 - .051 49.92 - 3.101
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TAJE II - EIGEVALUES OF a, c FOR B REAL 

a c B a c	 lB 

Imc, 0 .Imc, 0.05 

0.395 0.587 0.315 0.563 + 0.051 726 
.390 .685 307.1 .285 .555 +	 .051 32.6 
.385 .582 160.8 .265 .557 +	 .051 24.1 
.380 .580 109.8 .245 .569 +	 .051 18.4 
.375 
.365

.578 

.574
83.8 
57.6 Im c, 0.10	 _____ ______ 

0.265 0.552 + 0.101 81.1 .355 .571 44.3 
.345 .569 36.2 .245 .546 +	 .101 39.8 
.335 .567 30.7 .225 .546 +	 .101 27.3 
.325 .567 26.8 .205 .557 +	 .101 20.2 
.315 
.305

.568 

.571 '
23.6 
21.0 Im C, -0.05	 _____ _____ 

0.400 0.583 - 0.051 34.0 .295 .576 18.7 
.285 .586 16.3 .420 .588 -	 .051 48.9

[4 
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