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SUMMARY 

Force and moment data were obtained at low speeds to determine the 
aerodynamic characteristics of an unswept untapered semispan wing of 
NACA 64A010 section and aspect ratio 3.13 eqUipped with 25-percent-chord 
unsealed plain flaps having various spans and spanwise locations. Lift, 
drag, pitching-moment, and flap hinge-moment data were obtained for the 
wing with the various flaps deflected up to 600 • 

In general, changes in angle of attack, flap deflection, or flap 
span and spanwise location produced trends in lift, drag, pitching 
moment, and flap hinge moment that were similar to but of different mag­
nitudes from those for unswept wings of higher aspect ratio. The incre­
ment of lift coefficient due to 300 of flap deflection was relatively 
unaffected by the spanwise location of the flaps and increased nearly 
linearly with flap span. Because of the increase in the drag coeffi­
cients and the associated decrease in the values of the lift-drag ratio 
with increasing ' flap deflection, an advantage may be gained by limiting 
the flap deflection to moderate angles (about 300 ), even though the lift 
coefficients increase with further increases in flap deflection. 

INTRODUCTION 

The National Advisory Committee for Aeronautics is conducting an 
extensive investigation of the lift and control effectiveness of 
various flaps and control surfaces on wings having plan forms suitable 
for transonic and supersonic airplanes. The ultimate objective is to 
obtain flap and aileron design criterions similar to those available 
for wings of conventional low-speed plan forms (references 1 to 6). 
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As part of this broad study, the lift and lateral control character­
istics of an untapered "low-aspect-ratio semispan wing having various 
amounts of sweep and equipped with 25-percent-chord unsealed plain 
flaps or ailerons having various spans and spanwise locations are being 
investigated in the L~gley 300 MPH 7- by 10-foot tunnel. 

This paper presents the results of the investigation of the 
unswept wing configuration having an aspect ratio of 3.13 and utilizing 
the 25-percent-chord control surfaces as lift flaps. Lift, drag, 
pitching-moment, and flap hinge-moment data were obtained through an 
angle-of-attack range for various flap deflections up to 600

• 

SYMBOLS 

The forces and moments measured on the wing are presented about 
the wind axes which, for the conditions of these tests (zero yaw), 
correspond to the stability axes. The lift, drag, and pitching-moment 
data are presented about the point shown in figure 1 which corresponds 
to the 25-percent-chord station of the mean aerodynamic chord. 

CL lift coefficient (L/qS) 

6CL increment of lift coefficient 

CD drag coefficient (D/qS) 

Cm pitching-moment coefficient (M/qSc) 

6Cm increment of pitching-moment coefficient 

Ch flap hinge-moment coefficient (H/2qMl) 

L twice lift of semispan model, pounds 

D twice drag of semispan model, pounds 

M twice pitching moment of semispan model measured about 0.25c, 
foot-pounds 

H flap hinge moment, measured about flap hinge axis, foot-pounds 

Ml area moment of flap rearward of and about hinge axis, cubic 
feet (see table I) 

q free-stream dynamic pressure, pounds per square foot (~pV2) 
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S 

b 

c 

y 

v 

p 

CLa. 

twice area of semispan wing model, 19.16 square feet 

twice span of semispan model, 7.750 feet 

wing mean aerodynamic chord, 2.500 feet 

local chordJ feet 

lateral distance from plane of symmetry, feet 

span of flap, feet 

free-stream velocity, feet per second 

mass density of air, slugs per cubic foot 

angle of attack of wing with respect to chord plane at root 
of model, degrees 

flap deflection relative to wing chord plane, measured 
perpendicular to flap hinge axis (positive when trailing 
edge is down), degrees 

" (:~t 
= (dCL) 

do, of 

CLo 
CLa, 

3 

The subscripts outside the parentheses indicate the factor held 
constant. The parameters were measured in the vicinity of 00 angle of 
attack or 00 flap deflection. 

Subscripts: 

f flap 

f i inboard end of flap 

fo outboard end of flap 

max maximum 
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The lift, drag, and pitching-moment-coefficient data presented 
herein represent the aerodynamic effects of deflection of the flaps in 
the same direction on both semispans of the complete wing. 

CORRECTIONS 

Jet-boundary corrections, determined by the method presented in 
reference 7, have been applied to the angle-of-attack and drag­
coefficient values. Blockage corrections, to account for the constric­
tion effects of the model and its wake, have also been applied to the 
test data (reference 8) . No corrections have been applied to the data 
to account for the very small amount of wing twist produced by flap 
deflection or for the effect of air-flow leakage around the end plate 
at the root of the model. 

MODEL AND APP MATUS 

The semispan-wing model used in the investigation was constructed 
of laminated mahogany over a solid-steel spar. The plan-form dimensions 
are shown in figure 1. The wing sections were NACA 64A010 and the model 
had 00 sweepback, an aspect ratio of 3.13 (based on full-span dimensions), 
and a taper ratio of 1.0. The wing model had neither twist nor dihedral. 
A cross section of the wing showing the details of the 25-percent-chord 
radius-nose unsealed plain flaps is shown in figure 1. The flaps were 
constructed of mahogany with steel spars and had joints at three span­
wise stations so that various spans of flaps at various spanwise loca­
tions could be investigated (fig. 1 and table I). The chordwise gaps 
between flap segments were sealed when two or more flap segments were 
tested in combination. A motor-driven flap-actuating mechanism which 
was remotely controlled was used to obtain the various flap deflections 
used in the investigation, and these deflections were constantly indi­
cated on a meter by the use of a calibrated potentiometer which was 
mounted on the hinge axis near the root chord of the model. The flap 
hinge moments were measured by a calibrated electrical resistance type of 
strain gage. 

The semispan-wing model was mounted vertically in the Langley 300 MPH 
7- by 10-foot tunnel with the root chord adjacent to the ceiling of the 
tunnel, which served as a reflection plane (fig. 2). The model was 
mounted on the six-component balance system so that all forces and 
moments acting on the model could be measured. A gmall clearance was 
maintained between the model and the tunnel ceiling so that no part of 

the model came into contact with the tunnel structure. A ~-inch-thick 
16 
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metal end plate wa s attached to the root of the model to deflect the 
air flowing into the test section through the clearance hole in order 
to minimize the effect of this spanwise air flow on the flow over the 
model. 

5 

The Langley 300 MPH 7- by 10-foot tunnel is a closed-throat single­
return tunnel. Measurements have indicated that the turbulence factor is 
very close to unity. 

TESTS 

. All the tests were performed at an average dynamic pressure of 
approximately 100 pounds per square foot, which corresponds to a Mach 

number of 0.27 and a Reynolds number of about 4.5 x 106 based on the 
wing mean aerodynamic chord of 2. 500 feet. 

Tests with the inb~ard half-span and the full-span flaps deflected 
at seven deflections between 00 and 600 were performed through an angle­
of-attack range from _40 through the wing stall. The additional data for 
other spans and spanwise locations presented herein were obtained in the 
course of obtaining lateral-cont rol test data. 

RESULTS AND DISCUSSION 

The static aerodynamic characteristics of the wing in pitch for 
seven deflections of the inboard half-span and the full-span flaps are 
presented in figures 3 and 4, respectively. Corresponding data for the 
wing equipped with outboard flaps having various spans and for the wing 
equipped with half-span flaps at various spanwise locations are pre­
sented in figures 5 and 6, respectively, for a flap deflection of 300 • 

The incremental value s of lift and pitching-moment coefficients 
resulting from flap deflection are shown in figures 7 and 8, respectively. 
The effects of flap span and spanwise location on the lift and pitching­
moment coefficients for the wing at Of = 300 are presented in figures 9 
and 10, respectively. Figure 11 present s a comparison of the experi­
mental and estimated lift-effect i venes s parameters for the model 
equipped with both inboard and outboard flaps. The experimental data 
for the outboard flaps were obtained in the course of obtaining lateral­
control test data. 

Lift characteristics.- For the angle-of-attack orange covered in the 
investigation, increasing either the flap span or the flap deflection 
resulted in an increase in the lift at any given angle of attack and 
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also resulted in an increase in the maximum lift obtainable, except for 
the model with the inboard half-span and the full-span flaps deflected 600 

for which a slight decrease in CLmax was obtained as the flap deflec-

tion was increased from 500 to 600
• The incremental lift produced by 

unit flap deflection generally decreased as the flap deflection or 
angle of attack was increased; however, at low angles of attack, the 
wing with the full-span flaps deflected 500 and 600 exhibited larger 
increments of lift produced by unit flap deflection than was exhibited 
at a deflection of 400 (figs. 3, 4, and 7). As will be discussed later, 

b 
the hinge-moment data for the outboard 0.2422 flap (presented for 
of = 300 in fig. 5) and the hinge-moment and pitching-moment data for 
both the inboard half-span and the full-span flaps (figs. 3 and 4, respec­
tively) indicate that a region of high loading was located at the trailing 
edge of the wing near the tip at large effective angles of attack. This 
region of high loading was apparently accentuated by large deflections 
of the full-span flap, thereby producing the aforementioned increase in 
effectiveness of the flap at large deflections. A similar loading dis­
tribution was noted for the unflapped rectangular wings of reference 9 
at high angles of attack. 

The values of 6CL (fig. 7) obtained with the inhoard half-span 
and the full-span flaps deflected 300 and 600 are summarized in the 
following table: 

Flap span, of .6.CL 
6~ bf (deg) 

b/2 0
0 0 

ex, = ex, = 12 

0.484- 30 0.37 0.33 0.27 

.484 60 .50 .43 .30 

.968 30 .67 .61 .49 

.968 60 .90 .69 .52 

The increments of CL are lower at CLmax than at a constant angle of 

attack mainly because a larger portion of the wing is stalled at CLmax 

when the flaps are deflected to large angles. The usual reduction 
in .6.CL and .6.CLmax with decreasing aspect ratio is shown when the 

values are compared with those for the aspect-ratio-6 rectangular wing 
of reference 1 (accounting for the differences in flap chord on the 
basis of three-dimensional data at higher aspect ratios). 
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The effects of flap span and spanwise location on the lift 
effectiveness (figs. 3 to 6) are summarized in figure 9 for the various 
flap spans tested at a flap deflection of 300 and at angles of attack 
of 00 and 120. These data show that the lift produced by flaps of 
corresponding percent span was relatively unaffected by spanwise loca­
tion, whereas . a study of figure 11 indicates that, for the low values 
of flap deflection where the values of CLo are measured, the inboard 
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flaps are more effective in producing lift than flaps with outboard 
locations. The flaps having inboard locations lose effectiveness at a 
more rapid rate with increasing flap deflection than do the flaps having 
outboard locations. Results of other investigations (references 1 and 2) 
of wings having higher aspect ratios have indicated that inboard flaps 
are more effective throughout the flap-deflection range than flaps 
covering outboard portions of the span. Figures 3 to 5 and 9 also show 
that the lift coefficient increased almost linearly with increasing 
flap span and that this relationship was relatively unaffected by 
changes in angle of attack below ~ = 120. 

The value of C~ (with the flaps undeflected) was approximately 

0.055. The experimental values of CLo at ~ = 00 were about 0.016 

and 0.030 for the inboard half-span and the full-span flaps, respec­
tively, and decreased only slightly at the higher angles of attack. 
Estimated values of the lift-effectiveness parameter CLo were computed 

by method I of reference 10 for the four spans of outboard flaps tested 
and by an application of the Weissinger method for inboard-flap loca­
tions. The value of ~o from section data for the NACA 64A010 airfoil 

equipped with an unsealed flap type of control (reference 11), corrected 
cf to -- = 0.25 by the method of reference 10, was used in the computa-c 

tions of CLo' This value of ~ was considerably higher than the value 
of ~ obtained from the general curves of references 6 and 10. A com­
parison of the experimental and estimated values of the lift-effectiveness 
parameter is presented in figure 11 and shows very good agreement. The 
experimental CLo values for the outboard flaps were obtained from the 
unpublished lateral-control data. 

A comparison with the model of reference 12, which had the same 
airfoil section, sweep, and aspect ratio but had a taper ratio of 0.5, 
showed that the experimental CLo for the model with full-span flaps 

was slightly higher than that for the model of reference 12 corrected 

to cf _ 0.25. 
c 
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Drag characteristics .- Analysis of the drag data shows that 
increases in the flap span or flap deflection increasedothe values of 
drag coefficient for all angles of attack below ~ = 12 ( figs . 3 to 5) . 
A comparison of the lift-drag ratios LID for the wing with both the 
inboard half-span and the full - span flaps indicates that the LID rat io 
decreases as the flap deflection is increased, with a flap deflect ion 
of 300 providing almost the optimum value of LID for lift coefficients 
greater than about 1 . 0 . As will be discus sed i n the following section, 
an advantage gained by limiting the flap deflection to moderate angles 
is the smaller longitudinal - trim change result ing from flap deflection . 

A study of figure 6 reveals that the drag coefficient increased 
slightly as the half-span flap was moved outboard on t he wing . This 
increase in CD is attributed to the region of the high loading located 
at the trailing edge of the wing near the tip at large effective angles 
of attack as previously noted. 

Pitching-moment characteristics .- For all flap configurations and 
flap deflections , the wing had an unstable variation of pitching-moment 
coefficient with lift coefficient and the aerodynamic center was located 
at about O.20c (figs. 3 to 6) . This longitudinal instability generally 
decreased as the lift coefficient was increased, although at the highest 
flap deflections (500 and 600 ) Cm varied erratically with CL' Increases 
in either flap span or flap deflection produced negative increments of 
pitching-moment coefficient 6Cm over the entire lift-coefficient range 
except at the highest flap deflections (500 and 600 ) where 6Cm pro ­
duced by unit flap deflection decreased with an increase in flap deflec ­
tion in the high angle -of -attack range (figs . 3 to 5 and 8) . The values 
of 6Cm varied linearly with flap deflection only for deflect ions of 
less than about 200 (fig. 8) . For flap deflections greater than 200 , 

the 6Cm values generally exhibited only a small increase with unit 
flap deflection . The data of figures 3 to 5 and 8 also indicate that 
the values of 6Cm were relatively unaffected by angle-of-attack varia­
tions, except perhaps for the wing with the full - span flap at large flap 
deflections. 

The data for the outboard flaps (~~~ "0 .968) indicate that the ' 

pitching-moment coefficient showed an almost linear variation with flap 
span (figs. 5 and 10). The pitching-moment coefficients due to flap 
deflection are greater for flaps with their outboard end at the tip 
than for inboard flaps of the same span (figs . 3 to 6 and 10) because 
of the high loading region located at the trailing edge of the wing 
near the tip . 
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Hinge-moment characteristics.- The flap hinge-moment data of fig­
ure s 3 to 6 show, as would normally be expected, that the values of 
flap hinge-moment coefficient generally became more negative as both 
the flap deflection and the angle of attack were increased except for 
high deflections at inboard flap locations where the values of Ch 
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became less negative with increasing ~. (See fig. 3.) The hinge­
moment coefficients of the outboard flaps generally became less negative 
as the flap span was increased and this decrease in Ch became less 
pronounced as the flap span approached full span (fig. 5). A similar 
decrease in magnitude in Ch due to spanwise location of the half-span 
flaps was noted when the flap was moved inboard from the wing tip 
(fig. 6). 

These general trends of hinge-moment coefficient with flap span 
and spanwise location agree with the data of reference 9 which show a 
region of high loading located near the trailing edge at the wing tip 
of untapered low-aspect-ratio wings at high effective angles of attack. 

CONCLUSIONS 

A wind-tunnel investigation was performed at low speed to determine 
the aerodynamic characteristics of an unswept untapered semispan wing 
of aspect ratio 3.13 equipped with 25-percent-chord unsealed plain flaps 
having various spans and spanwise locations. The results of the investi­
gation led to the following conclusions: 

1. Changes in angle of attack, flap deflection, or flap span and 
spanwise flap location generally produced trends in lift, drag, pitching 
moment, and flap hinge moment that were similar to but of different 
magnitude from those for unswept wings of higher aspect ratio. 

o 
2. The increment of lift coefficient due to 30 

increased almost linearly with increasing flap span 
unaffected by the spanwise location of the flaps. 

of flap deflection 
and was relatively 

3 . Because of the increase in the drag coefficients and the 
associated decrease in the values of the lift-drag ratio with increasing 
flap deflection, an advantage may be gained by limiting the flap deflec­
tion to moderate angles (about 300 ), even though increases in lift 
coefficient result from further increases in flap deflection. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Air Force Base, Va., January 5, 1950 
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TABLE I 

DIMENSIONAL CHARACTERISTICS OF THE VARIOUS 0. 25c FLAPS TESTED 

ON THE WING HAVING AN ASPECT RATIO OF 3.13 

Flap spanwise location 
Flap span, Ml 

Configuration bf Yfi Yfo (cu ft) -
b/2 - -

b/2 b/2 

bd 0.968 0 0.968 0 .7324 

Cd .726 .242 .968 . 5493 

Cd .484 .484 .968 . 3662 

D .242 .726 .968 .1831 

[:J .484 .242 .726 . 3662 

6J . 484 0 .484 . 3662 
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1----------% = 3.875 ------+1 
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Figure 1.- Drawing of the unswept semispan-wing model having an aspect 
ratio of 3.13 . (All dimensions are in ft.) 



Figure 2 .- Unswept semispan-wing model of aspect ratio 3 .13 mounted in 
the Langley 300 MPH 7- by 10-foot tunnel. 
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Figure 3. - Effect of flap deflection on the aerodynamic characteristics 
in pitch of the unswept wing of aspect ratio 3.13 equipped with 

inboard half-span flaps (bf = 0.484~). Yfi = 0; Yfo = 0 . 48~. 
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Figure 3.- Concluded. 
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Figure 4. - Effect of flap deflection on the aerodynamic characteristics 
in pitch of the unswept wing of aspect ratio 3.13 equipped with full-

span flaps (b f = 0.968~). Yf
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= 0.96~. . 
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characteristics in pitch of the unswept wing of aspect ratio 3.13 

equipped with half-span flaps (bf = O.484~). Of = 300 • 
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