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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 211k

THEORETICAL LIFT AND DAMPING IN ROLL OF THIN WINGS WITH

ARBITRARY SWEEP AND TAPER AT SUPERSONIC SPEEDS

SUPERSONIC LEADING AND TRAILING EDGES

By Sidney M. Harmon and Isabella Jeffreys
SUMMARY

Generalized expressions are obtained by means of the linearized
theory for the surface velocity potentials and the surface-pressure
distributions due to 1lift and roll, the lift-curve slope, and the
damping-in-roll derivative for a series of thin wings. The results are
applicable to wings of arbitrary taper ratio in which the leading edge
is sweptback, whereas the trailing edge is either sweptback or swept-
forward (including zero sweep angles), and the tips are unyawed with
respect to the free-stream direction. The range of speeds covered is
such that the components of the stream velocity normal to the leading
and trailing edges are supersonic. A further restriction is that the
foremost Mach line from either tip may not intersect the remote half-
wing. The configurations for which the results for the stability deriv-
atives are applicable may be extended by means of the reversibility
theorem. These additional configurations include cases in which the
foremost Mach line from either tip intersects the remote half-wing, pro-
vided the Mach line from the leading edge of the center section inter-
sects the trailing edge, and also wings which have sweptforward leading
edges.

The results of the investigation are presented in the form of
generalized design curves for rapid estimation of the derivatives.

INTRODUCTION

The 1ift and demping in roll as obtained from the linearized
theory of supersonic flow have been reported for various ranges of
supersonic speeds for thin wings having particular plan forms (for
example, see references 1 to 7). In reference 7, generalized curves are
presented for the lift-curve slope CLQ and the damping-in-roll Clp



2 NACA TN 2114

for a particular family of tapered sweptback wings for a range of
.supersonic speeds for which the wing lies within the Mach ccne emanating
from the leading edge of the center section but lies ahead of the Mach
cone emanating from any point along the trailing edge (subsonic leading
edge and supersonic trailing edge).

In the present paper, the range of speeds which is considered in
reference 7 is extended and data are obtained for cases in which & por-
tion of the wing always lies ahead of the Mach cone emanating from any
point along the leading edge (supersonic leading edge) although the
trailing edge is still superscnic. The wings considered have an arbi-
trary taper ratio, leading and trailing edges that are each swept at a
constant angle (including zero sweep angles), and tips that are unyawed
with respect to the free-stream direction. The results of the analysis
for wings with sweptback leading edges and either sweptback or swept-
forward trailing edges are given in the form of generalized equations
for the surface velocity potential and for the surface-pressure distri-
bution for the wing at an angle of attack and in a steady rolling
motion, Generalized equations are also given for these wings for the
derivatives Cr, and Czp. A series of generalized curves is presented,

from which rapid estimations of CLCL and Czp can be made for given

values of aspect ratio, taper ratio, Mach number, and leading-edge sweep.
Some illustrative variations of the derivatives with these parameters
are also given.

As shown in references & and 9, the theorem of reversibility
applies to the derivatives CLa and Czp for the wings considered in

this paper |(see also reference 10 for Cr, ). Conseguentl the results
L q y)

for these derivatives, which are presented for wings with sweptback
leading edges, apply as well to the corresponding sweptforward wings
obtained by reversing the flight direction. 1In order to present a
complete and systematic analysis, some data pertaining to the present
calculations which have been given in other papers have been incor-
porated herein.

SYMBOLS

X,Y,2 rectangular coordinates with origin at leading edge of
center section (figs. 1 and 3(a))

Xgq,¥g indicates a transformation of origin of x- and y-axes from
leading edge of center section to leading edge of tip

section <xa = X - E; Ya =y - h on right half-wing)
m
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v = &L

X
vy - L

a

v undisturbed flight velocity
M free-stream Mach number
B-\M -1
o} wing angle of attack
P angular velocity about x-axis, radilans
) Mach angle <sin'l % or cot™t B>
A sweeép of wing leading edge, positive for sweepback
AR sweep of wing trailing edge, positive for sweepback
m = cot &
h wing semispan
b wing span
c chord at arbitrary spanwise position
Cp root chord
Cy tip chord
A taper ratio (ct/cr)
S wing area (Egﬁig_i_ll)

: 2b
A aspect ratio <——?—__——7>
cp(l + A

cot ATE BA(L + )\)

cot A~ BA(L + \) - kBm(1 - )




L
A' = BA
m' = Bm
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J = A(1 + )

free-stream mass density of air

disturbance-velocity potential on upper surface of airfoil

AP pressure difference between lower and upper surfaces of
airfoil, positive in direction of lift
&Ch nondimensional coefficient expressing ratio of pressure
difference between lower and upper surfaces of airfoil
to free-stream dynamic pressure I 5
3 oY
ACP contribution of wing cut-off at tip to ACP; used with
t subscripts o« and p to refer to angle of attack and
steady rolling motion, respectively
X,Y,7 forces parallel to x-, y-, and z-axes, respectively
L 1lift
L' rolling moment
o [ L
L 1ift coefficient |7———
2
\& ov%s
Ll
Cz rolling-moment coefficient T Bar
= pV~Sb
2
c —(aCL>
La = \&a /4 40
. 3¢,
Zp = S—*g
2V/pb . o
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Subscripts:
R refers to reverse of a given wing, obtained by reversing
flow direction
TE refers to tralling edge
ANATYSIS
Scope

The analysis is limited to wings of vanishingly small thickness
that have zero camber. The results are valid only for a range of super-
sonic speeds in which the components of the free-stream velocity normal
to the leading and trailing edges are supersonic. These conditlons are
now commonly expressed by the term "supersonic leading and tralling
edges". The wing configurations considered in the analysis are defined
by the information and sketches given 1n figures 1 and 2. All the data
obtained in the analysis for the veloclty potential and pressure distri-
butions and for the derivatives CL, and Czp are applicable to the

wings of the type shown in figure 1. These wings have sweptback leading
edges, although the trailing edges may be either sweptback or swept-
forward. A further restriction is that the Mach waves from either tip
may not intersect the remote half-wing.

It is indicated subsequently that, although the data for the veloc-
ity potential and pressure distributions are applicable only to wings of
the type shown in figure 1, the results for Cr, and CZP may be

applied also to an additional series of wing configurations by use of
the theorem of reversibility. This additional series of wings is indi-
cated in figure 2. The wings in the figure have supersonic leading and
trailing edges. 1In figure 2(a), the leading edge 1s sweptforward. The
configuration shown in figure 2(b) represents an increase in the range
of applicability for BA over that indicated in figure 1. This increase
in the BA range, by means of the theorem of reversibility, 1s discussed
in the section entitled "Results and Discussion” and corresponds to the
allowance that the Mach waves from a tip may intersect the remote half-
wing, provided the Mach line from the leading edge of the center section
intersects the trailing edge of the wing.

The orientation of the wing with respect to a body system of coordi-
nate axes used in the analysis is indicated in figure 3(a). The surface
velocity potentials, the pressure distributions, and the stabllity deriv-
atives are derived with respect to this system. Figure 3(b) shows the
wing oriented with respect to the stability-axes system. A transforma-
tion of the body system of axes to the stability system of axes
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(references 11 and 5) indicates that to the first order in a, the
derivatives Cr, and Clp have the same value in the stability system

as they do in the body-axes system shown in figure 3(a).

Method

Basic considerstions.- The evaluation of the derivatives CLa and
Clp involves the integration over the wing of the disturbance pressures

caused by an angle of attack o and a steady rolling angular veloclity p,
respectively. In the treatment of small disturbances, such as are con-
sidered in this analysis, the disturbance pressures may be determined
from the well-known relationship

AC, =

20V
- D¢x_l+¢x (1)

1 2 1 277
5 PV 5 PV

Derivation of ¢ and ACy distributions.- The potential func-
tion ~§ must be determined so as to satisfy the linearized partial dif-
ferential equation of the flow and the boundary conditions that are
associated with the wing in its prescribed motion.

The methods for deriving the pressure distribution for lifting
swept wings of finite aspect ratio of the type considered herein are
extensively treated in the llterature (for example, references 1, 2, L,
and 12 to 15). In the present analysis, it was found convenient to
obtain the surface-potential function and the pressure distribution on
the Zing by means of the method and data presented in references 1k, 15,
or l6.

Expressions for ¢ and ACP distributions.- For purposes of
obtalning generalized expressions for the surface velocity potential and
pressure distributions, a general wing of the type considered in this
analysis is conveniently divided into five individual regions. These
regions are indicated in figure 4 and are defined by means of Mach fore-
cone boundaries which yield regions in which all points are influenced
by a particular type of disturbance. Thus all points in region 1 are
influenced by a disturbance which is identical to that induced by an
infinitely long oblique wing. Points in region 2 are influenced by a
disturbance which is identical to that induced by a triangular wing.
Points in region 3 experience two types of disturbances; one of these is
the same type as that in region 1 and the other results from the effect
of the wing cut-off at the tip which 1is hereinafter denoted as the tip
effect. Points in region 4 experience disturbances which include all
types associated with regions 1, 2, and 3. Consequently, the formula
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for @ or ACp  in region 4 expresses the effects of all the disturb-
ances experienced in regions 1, 2, and 3. When the ¢ or ACp expres-
sion as determined for region 4 is used for any of the regions 1, 2,

or 3, certain terms become imaginary. These imaginary terms indicate
the condition that a disturbance type associated with region 4 vanishes
in the other regions 1, 2, or 3. The foregoing facts show that the
expression for @ or ACp 1n any of the regions 1, 2, 3, or L is

found simply as the real part of ¢ or ACp as determined for region k.
Points in region 5 are actually influenced by all the disturbances which
affect region U4, together with a new disturbance which arises from the
tip effect associated with region 2. However, if the effective forezone
of influence is drawn for points in region 5, that is, if the external
field is canceled by the appropriate area on the wing surface, the
effect of the adjacent half-wing disturbance is seen to be completely
canceled by the tip effect arising from region 1. The real part of the
expression for ¢ or ACp, as determined for region 5, consequently
does not yield the corresponding formulas for the other regions.

The formulas for ¢ and ACp for the five regions for a general
wing of the type considered in this analysis are summarized in tables I
and II for the cases of angle of attack and rolling, respectively. It
is significant to note in table II that 1n regions 1 to 4 the pressure
distributions caused by an angle of attack are conical (f(v) or f(Vg))
and those caused by steady rolling are quasi-conical (xf(v) or xgf(vg)).
Examples of the pressure distribution in the chordwise and spanwise
directions for the cases of angle of attack and rolling are given in
figures 5 and 6, respectively.

Derivation of formulas for Cr, and C;P.- The derivatives Cr,
and Czp are basically obtained by integrating over the wing the quan-

tities ACp(x,y) and ACp(x,y) times its moment arm, respectively.
Thus

1 r
CLa=s_a/j ACp dx dy (2)
JJs
Cy. = ——x FAC dx d (3)
'p T B po/av J J OB W

i
where ACp = v fx and @x for the angle of attack and rolling cases

are linear functions of o and p, respectively.
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The conical form of ACp for Cr (f(v) or f(vy)) and the
quasi-conical form of ACp for Czp (xf(v) or xaf(Vg)), as indi-

cated in table II for regions 1 to 4, make it convenient to employ a
polar integration procedure. In this polar integration procedure, the
variable of integration y or Yy, 1s replaced by the variable Vv

or V,, respectively, and the integrations in equations (2) and (3) are
conveniently performed first with respect to x and then with respect
to v or vg. In some cases in the present analysis, it was found
convenient to utilize the potential function @ to obtain the deriva-
tives (L, and Czp. Thus, for a lifting wing, the linearized, thin-

airfoil theory yields a potential function ¢ which is antlsymmetrical
with respect to the xy-plane (z = 0). Furthermore, ¢ is continuous
for z = Constant (either z-—>+0 or z —3 -0). Consequently, @ is
zero at the wing leading edge. Then, because ¢x is continuous on the
wing, there results

Jf T.E. N Jﬁ T.E. ; L :
AC. dx = & ix = = 1)
L.E. P Vipe, °F v TIE

The total 1lift per unit span along any wing section, conseguently,
is proportional to the value of the potential at the trailing edge.
Similarly, the rolling moment contributed by any wing section is pro-
portional to the product of the potential at the trailing edge and its
moment arm. Thus the derivatives are

)
CL, =~ V5a $re Ay (5)

JTE

and

I
Cip = 755*557§VL/; Prgy Ay (6)
TE

where the integrals are evaluated along the wing trailing edge. For
cases in which the derivatives were expressed in the form of equa-
tions (5) or (6), the potential @y was obtained from table I by

specifying x and y or Xg and yg for conditions along the wing

trailing edge.



KACA TH 11k 9

RESULTS AND DISCUSSION

Formulas for Cr, and Czp

The formulas for Cr, and CZP are summarized in the appendix.

It may be found from an examination of table II that the pressure dis-
tributions are in general markedly different for the cases where the
Mach line from the leading edge of the center section intersects the
wing tip and where this Mach line intersects the wing trailing edge.
In order to determine the derivatives C(r, and Czp, however, it is

sufficient to integrate the forces or moments on the wing as determined
for the case in which the Mach line intersects the wing tip. The real
parts of the resulting expressions then also yield the corresponding
derivatives Cr, and Czp for the case 1n which the Mach line inter-

sects the wing trailing edge. This fact results from the inherent rule
of supersonic flows that any disturbance cannot propagate ahead of the
Mach aftercone. Then the first case (Mach line cutting tip) may be
converted to the second case (Mach line cutting trailing edge) by cut-
ting off an appropriate rear portion of the wing. This conversion does
not alter in any way the original pressure distribution over the new
wing. Thus, if the expressions for Cr, and Czp as determined for

the first case are now applied to the second case, certain terms which
arise from disturbances peculiar to the first case become imaginary,
and the remaining terms that are real yield the corresponding expres-
sions for Cr, and Czp for the second case.

Charts for BCL, and BCzP

The results of computations for the derivatives Cr, and Czp

are presented in figures 7 and 8, respectively. The data are shown for
values of taper ratio A from O to 1.0 for values of aspect-ratio
parameter BA from 2 to 20. The range of sweep angles covers values
for sweep-angle parameter B cot A from 1 to ow.:

For constant B, that is, constant M, the curves In figures 7T
and 8 indicate directly the variation of Cr, and Czp, respectively,

with sweep for constant values of A and A. In this case the curves
for increasing values of B cot A correspond to decreasing angles of
sweepback for both the leading and trailing edges. Some specific varia-
tions of the derivatives Cr, and Czp with Mach number, aspect ratio,

sweep angle, and taper ratio are shown in figures 9 and 10. The wing
parameters represented in the figures include configurations with
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supersonic and subsonic leading edges and supersonic trailing edges.
The results for the supersonic leading edges were obtained from fig-
ures 7 and 8 of this paper and those for the subsonic leading edges
were obtained from reference 7. (Note that application of the
reversibility theorem to the results of reference 7 for wings with
subsonic leading edges and supersonic trailing edges will yield
corresponding results for wings with supersonic leading edges and
subsonic trailing edges.)

The data in these figures show that the manner in which Cly
and Czp vary with many of the factors depends to an important extent

on the value of the aspect-ratio parameter BA. Figures 7 and 8 show,
for constant Mach number, that when BA 1is less than approximately 3,
the magnitudes of CL, and Czp tend to increase with decreasing

sweep angle; however, when BA 1is greater than approximately 3, the
magnitudes of these derivatives tend to increase with increasing sweep
angle. This general trend for values of BA greater than approximately 3
becomes more pronounced as BA 1is increased. These data indicate alsq
that for values of B cot A greater than approximately 3, the sweep of
the leading and trailing edges for constant BA and X have a very

small effect on BCLQ or BCzp.

The foregoing trends may be explained by the relation of the Mach
aftercone which emanates from the leading edge of the center section to
the wing tip. This relationship has an important effect on the contri-
bution of the wing tip region to the derivatives CL,, and Czp. ifr

the gquantity

AB(1 + )
BBl + x) - I

B cot A «

then the Mach line from the leading edge of the center section cuts the
wing tip. This condition yields region 5 in figure 4. 1If the effective
forezone of influence is drawn for points in region 5, that is, if the
external field is canceled by the appropriate area on the wing surface,
it is seen that the pressure distributions in this region for both angle
of attack and rolling are determined only by the sources in a strip
along the leading edge of the remote half-wing. Because these sources
generally are at a comparatively large distance from region 5, the con-
tribution of region 5 to Clo, 1s comparatively small (see fig. 5). 1In

the case of rolling, these sources at the leading edge of the remote
half-wing actually contribute negative damping to region 5 becsause these
sources have the reverse sign from those on the adjacent half-wing

(see fig. 6). For a given value of B cot A, from geometric considera-
tions, this influence of region 5 in reducing the magnitudes of CLq

and Czp decreases as the value of BA increases.
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Similarly, from geometric considerations, the influence of region 5
in reducing the magnitudes of CLCL and Czp increases as the value of

the taper ratio A increases. This factor contributes to an important
extent to the trend that the maximum values of (1, and Czp occur at

progressively lower values of A as BA decreases (see figs. 9 and 10).

Extensions of Cr, and Clp Results by

Reversibility Theorem

Increased range for BA.- The direct application of the formulas
in the appendix is limited by the restrictions that the leading edge is
sweptback and is supersonic, that the trailing edge is supersonic, and
that the foremost Mach line from either tip does not intersect the
remote half-wing. As noted in the introduction, however, the reversi-
bility theorem for CLg and Clp 1is applicable for all the plan forms
used in the derivation of these formulas. In this connection, wing
plan forms of the type shown in figure 2(b) require special attention.
In these cases, the foremost Mach line from either tip intersects the
remote half-wing, that is,

< 4B cot A
BASTT 7+ 0)(T + B cot A)

therefore these conditions are outside the validity of the formulas in
the appendix. It can be shown, however, that if this reduced-aspect-
ratio parameter 1s accompanied by the condition that the foremost Mach
line from the center section intersects the trailing edge, that is

> UAB cot A
BA 2
={1 + A){(Bcot A - 1)

the reverse of the wings shown in figure 2(b) will meet all the condi-
tions for the validity of the formulas in the appendix. Thus the
values for Cr, and Czp for wings of the type shown in figure 2(b)

can be calculated from the formulas in the appendix by using the wing
parameters for the reverse of the given wing, and applying the calcu-
lated result to the given wing. If the subscript R refers to the
reverse of the given wing, the parameters to be used in the formulas
are related in the following manner:

AR = M
- Bog = -Bmk

kp = ¢ (7)
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Wings with sweptforward leading edges.- The results for BCLy,
and BCZP which are shown in figures 7 and 8 for wings in which the

leading edges are swept back (positive values for B cot A) can be
applied to wings with sweptforward leading edges (negative values

for B cot A) by use of the reversibility theorem. (See fig. 2 for
applicable wing configurations.) Thus, suppose the sweep-angle parame-
ter is expressed as B cot A where this quantity is negative and where
the reverse of the given wing meets all the conditions for the validity
of the data in figures 7 and 8 as indicated in figure 1l; the values

for BCLOL and BCzp for the given wing are then obtained from figures 7

and 8, respectively, by choosing a wing for which the relationships
expressed by equation (7) apply. Thus

N BA cot A(L + 1)
B cot AR = T cot A(T = %) - BA(L ¥+ 1)

BAR = BA
and
AR = A

where the subscript R refers to the parameters to be used in figures 7T
and 8.

An illustrative comparison of BCLOL and BClp for wings with

sweptback and sweptforward leading edges is given in figures 11 and 12,
respectively. The data in these figures are presented for a taper ratio
of 0.5, for values of BA of 2, 4, and 10, and for a range of B cot A
from -5 to 5. The wing parameters represented in the figures include
configurations with supersonic and subsonic leading and trailing edges.

The results for the sweptback leading edges were obtained from
figures 7 and 8 of this paper for the supersonic leading and trailing
edges and from reference T for the subsonic leading edges and subsonic
and supersonic trailing edges. In the case of the subsonic trailing
edges, the results from reference 7 have a limited significance in that
they represent an upper limit for the true values of the derivatives.
The limited signifance of the results for the subsonic trailing edges is
indicated in figures 11 and 12 by means of the dashed portions of the
curves.

The results for the'sweptforward wings were obtained by use of the
reversibility theorem. In this connection, it should be noted that the
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reversibility theorem for CLy and Czp is applicable even for
subsonic leading and trailing edges (reference 9).

The comparison for the wings with sweptback and sweptforward
leading edges in figures 11 and 12 indicates that the curves for BCL,

and BCzp for XA = 0.5 are, in general, very nearly symmetrical with

respect to the ordinate axis. The significance of the symmetry of the
curves is better visualized when it 1s noted that, for a specified A,

A, and A, if the sweep angle of the leadlng edge 1s reversed in sign

to -A, there is also an alteration in the sweep angle of the trailing
edge, the magnitude of which 1s dependent on the various wing parameters.
Consequently, the near symmetry of the BCL, and BCzp curves in fig-

ures 11 and 12 for A = 0.5 indicates that for a given A and A,
if A 1is reversed in sign, the values for the derivatives Cr

and Czp are, in general,; only slightly changed even though the sweep

angles of the trailing edges of the two wings may be markedly different.
For the case of an untapered wing, the theorem of reversibility indi-
cates that CLQ and Czp are unchanged by reversing the signs of A

and ATE’ that 1s, the corresponding curves in figures 11 and 12 would

be identically symmetrical with respect to the axis of ordinates for
all values of . BA.

CONCLUDING REMARKS

Generalized expressions havé been obtained by means of the lin-
earized tueory for the surface velocity potentials and the surface-
pressure distributions due to lift and rcll, the lift-curve slope, and
the damping-in-roll derivative for a series of thin wings. The results
are applicable to wings of arbitrary taper ratio in which the leading
edge is sweptback, whereas the trailing edge is either sweptback or
sweptforward (including zero sweep angles), and the tips are unyawed
with respect to the free-stream direction. The range of speeds covered
was such that the components of the stream velocity normal to the
leading and trailing edges were supersonic. A further restriction is
that the foremost Mach line from either tip may not intersect the
remote half-wing.

The configurations for which the results for the stability deriva-
tives are applicable may be extended by means of the reversibility
theorem. These additional configurations include cases in which the
foremost Mech line from either tip intersects the remote half-wing,
provided the Mach line from the leading edge of the center section
intersects the trailing edge, and also wings which have sweptforward
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leading edges. The results of the investigation were presented in the
form of generalized design curves for rapid estimation of the
derivatives.

A significant result of the investigation was that for constant

Mach number when A\MZ - 1 (where A 1is aspect ratio and M is Mach
number) was less than approximately 3, the magnitudes of the lift-curve
slope Cr, and the damping-in-roll derivative Czp tended to increase

with decreasing sweep angles; however, when AﬂdM? - 1 was greater than
approximately 3, the magnitudes of these derivatives tended to increase
with increasing sweep angle.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., February 23, 1950
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APPENDIX

SUMMARY OF FORMULAS FOR CLQ AND Czp

The following formulas for CLy and Czp refer to wings which

have an arbitrary taper ratio, leading and trailing edges that are each
swept at a constant angle (including zero sweep angles), and tips that
are unyawed with respect to the free-stream direction. These configura-
tions are limited by the conditions (see fig. 1)

BcothA 21
>
\B cot ATE’ Z 1

and

> 4B cot A
BAZ2TT 31 + B cot A)

Note that the trailing edges may be either sweptforward or sweptback.
In the formulas, care must be used to preserve the correct sign of the
terms involving radicals. For example, if a <0 and b <O, then

Jab V( 1) \a“b Jﬂ = ||p]
It may be of interest to mention that in computing with the formulas,

it was found that if seven significant figures were used, relisble
results were obtained.

Formulas for CLOL

If' the Mach line is coincident with the leading edge, that is,
B cot A =1, there result:
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For tapered wings:

1 -
- 2A kyk - 1 cos~i(2n - 1) - cos™t 11 -

La = B 1}1 -2k + 1)\ + K
MA(k - 1) . k - 1 .\

(1 - M@ - Mk + 1) k(L - M2(k + 1)

5 2
[Ek - Mk + lﬂ cos-l 2K ¥ A1 - 3k) (A1)
o\2(1 - 2)2(k + 1)Wk(k + 1) 2k - Mk + 1)
For untapered wings; A = 1; km' = 1:
S [CEE.5) W 1A L w82 am
Lo = 528 2 AT+ 1 373
When the Mach line is behind the leading edge, that is,
Ym?
A T < :
BcotA>1, and if A T+ (@ - 1)’ there result:
S Y«
~
For tapered wings:
1 [bm'k + A'(k - 1j]
CLy = —
xBym'® - 1 2a' (k2 -
n'? - 1 Gos-l L _ cos-l Mkmt(A' - 1) - A'(k + 3))
1 1 1 _l
(' + 1)’ - 1) km ' + A'(k - 1)
2
Em'k—A'(k'lH m' +1 -11+km(1'A')+A'(3k+l
EEY R B - AT(k - 1)
TAr(k - 1) \k(m' +
2 ———— "(k - 1)
1 (1 + 3k) (Y l;.km(A'-l)+A(k
(bmx + a1 + 36)]° [(m cos-L HmIUA - 1) o s

LA (x + 1) (km' + 1)
(A3)
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For unswept leading edses or for unswept trailing edges; k = o or 0:

o1 = mptiZ feos 11 - 2 zf] \2 gl o 2h -3
Lo = 3BT - M)T [°°° 2/ T2l TR - T - M ° 2x
2
(2 - \) cos~t _J - 2\ (AL)
\I[T + (1 - )] 22
For untapered wings:
_ iy m.?(m,Q - 2> cosL ﬁ; ) _JELE___ .

C1, - 1
a m'2 -1
nA‘B\‘m'2 -1 ( ) m}2 -1

' 2 _ v ' v
{: (m + A‘mz} cos 1 & A gm 1) +
o(m' i m

(m' + A" Ed s-1 o (o' - 1), m'dA'E%n' - A'(m! - lz

2ﬂm + 1 A' v EJm' -1

(A5)
Yam’
1 .
A>T @ -
N\
) N
\\ AN
For tapered wings:
2
1 Bm'k+A'(k—l):] 1 11
Cr,., = £ cos™T o5 4
* aam? -1 2A" (k% - 1)
2
o R U s
COS k' TAT(K - 1) \k(xm' + 1)

Vkm' - 1) (' + 1)
(86)
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For unswept leading edges or for unswept trailing edges; k =o or O:

CL. = ha ’ 1 A (AT)
a  B(L - A)|J
VJ T - M1 -]
For untapered wings; A = k = 1:
L m'g(m‘2 - 2) -1 1 m'2
CL., = - Cos T = - =+
nBA'\/m'2 -1 (m'® - 1) m'e -1
.2
(m' - + A'm'| n (A8)
2im 5

Formulas for Czp

If the Mach line is coincident with the leading edge, that is,
B cot A =1, there result:

For tapered wings:

[3J3k3(l - k)3 + 272K3(1 - k)2(9k -E{ﬂ
Cqi. = +
P (1 - k)3

[%Jk3(l - K)(15k2 - 32k + 12) + 12k*(k2 + ui]

+

(1 - k)3

u[§3(1 - k) (232 + 10k + 2) + hkI2(U1K2 - 5k - {ﬂ
35

+

J(1 - k) + Lk
4 -12k27(29k - 1) + 2u0k5j)> T3 1 k

)
35 J 3J2(l + k)3

(continued on next page)
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Bk (k2 + ) [: LI - k) + 2:]
2k
331 - k2)3J;2 -
8x3(13K2 + 2) [_ 6 |, 512 < K )3/2 )
S(1 - x2)3 13 M 7 3xmyE J(1 o+ a) K+

(277

on(b1k3 + 63k2 + 11k - 11) - Jk(13k® + 29k - 4)| ———— -
{[ ( ) - Ik :|1+8k(k + 1)2

[j12(3k2 + 3k + 20) + bOA(k2 - 21k - 2) + W2k(23k + 351 «

Eh(k + 1)°
YA oifs . 2 3 -on]  A3/25/R
- H(E - X)Vg; * 8(5 * x) cos T FT¥ 2;} * e
22 (_x ) ,5/2,3/2 ﬂ_k__f 7/2
5(k+l))” J +7k+l M (A9)
For unswept leading edges or for unswept tralling edges; k = o or O:
16 (1333 + 6563° - 342J + 5&6_] k- J
Cip = 3nB(1 + A)
10532
L -2+ 27 - JQJW 512 J;82x _ 133)/7\3/2
73 8 * I3 \2 }
J3 2 f 3\BBIS (1 + x)l

2
33° + qu + 92 13 1J -2
{: :}[*‘ _ ) X 7? 8(5 ¥ X) R Q;J *

@3/?/2 ] 2@54253/2 \ mg{/é‘ﬁ (420}
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For untapered wings; A = k = 1:

.16 8 (A" +1)°(13A'° - 2pA" +13) 1A' - 1.
C1p = nBA.3[Z 315 ¢ 768 s T Ery1?
Jo(BaS o ha? e 37 | (a11)
2688 T 1520 ~ 5760 ~ 2688

When the Mach line is behind the leading edge, that is, B cot A >1,

Yam'
T+ 2@ -1)’

and if A' < there result:

For tapered wings:

J128m 43 [ - mrR(3 1)] -1
331 + M (@? - 1)3721 - ¥8)3

1
Cip = 3§

128 M3(1 + ¥2 - 2m'2k?)
331 + M) - k¥9)%(m' - 1)(m'%K° - 1)

128m' "5 [-4 + m'2kB (K2 + 3)] cos™t
333(1 + M) (L - k¥)3(m2R - 1)3/2 k!

cos™l 2m'k - J(m'k - l{] - {Ju(l - k)h[éhkum‘5 + 12k3m'u(k +5) +

2m'K
m' 32 (-17k% + 22k + 43) + m'k(-5k3 - L4BK® + 3k + 2) -
m'(10k3 + 45K° + 12k + 5) - (5k° + 1hk + 52} +
16km'I3(1 - k)3[§m'5k” ¢ 83m Mk + 2) + m3Kk2(-3k2 + 1hk + 5) +
m'2k(-3k3 - 82 + k - 6) - m"(6k3 + TS + 8k + 3) -
(32 + 2k + 3}] + 32m'2x°J2(1 - k)3[;;2k3m'u - 9k%m'3(3 + k) +

(continued on next page)
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3m'2k(k2 - Tk - 6) + 3m'(2k® - 5k - 1) - 3(1 - ki} +
256m'3k37(1 - k)g[gém'3(l k) +m'k(2 - k - k%) +

m'(-2k° + k + 1) + (1 - ki] + 256khm'h{§;um‘5 B30T - x) +
k2m'3(-9k2 - 10k + 35) + km'2(3k3 - 32k2 - 5k + 18) +

m'(6k3 - 37k2 + Lk + 3) + (3k2 - 14k +

21 J(1 + k - 2km') + 4km'

; } cos I - k) + b’ i
967I3(1 + Mk(1 - k)3(m'2 - 1)(m'k + 1)3\k(m'k + 1)(m' - 1)

<{&u(1 + k)”[éuk“m'5 + 12k3m (5 - k) + m'3k2(-17k? - 22k + 43) +

' 2(5k3 - UBKZ - 3k + 2) + m'(10k> - 45Kk + 12k - 5) +

(5k° - 1hk + 55] + 16km'J3(1 + k)3[§k“m'5 s 83m e - k) 4

K2m13(-3k2 - 1hk + 5) + km'2(3k3 - 8k2 - k - 6) + m'(6kD - Tk° +

8k - 3) + (3K° - 2k + 3Z| + 32km2J2 (1 + k)3[12k3 o

9kPm'3(3 - k) + 3km'2(k° + Tk - 6) + 3m'(2k° + 5k - 1) +

3(1 + k)%] + 256K3m'33(1 + k)e[gzm‘3(l + k) + km'2(2 + k - K2) +

m'(-2k3 - 32 + 1) - (1 + ki] + 256k*m ”L@k” Do b3mtH(k o+ ) +

kPm'3(-9k2 + 10k + 35) + km'2(-3k3 - 32k° + 5k + 18) +

m'(-6k3 - 37k2 - bk + 3) - (3K° + 1k +

~1Jd(k -1+ 2km') - *lkm!

€0 J(I + k) + bkm’
3)] ;
96m33(1 + Mk(1 + k)3(m'2 - Ym'k + 1)3\k(m'x + L' + 1)
{%3(1 [:2k7 Ty 1Bn® C WO O(5k2 - 7) + xtmH(sk® - 13) +

2k3n3(5k2 - b) - 2KPm'2(5K2 - 7) - km' (5K2 - 3) + 5(k2 - 1)] +

(continued on next page)
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LI2(1 - k2)2km' (13k8m'6 - 6x5m'D - 33ktm'* + 12Kk3m'3 + 27k%m'2 -
6km' - T) + 163(1 - kz)kzm'z[ék7m'7 + 26%m€ & Pm Ok - 3) -
3t (k2 + 1) + 6k3mr3(2 - kB) + 6kMm'® + km'(3k2 - 5) -

(32 - lﬂ + 6)+k3m’3i:-:8k7m'7 - 1{6m'6(k2 +7) + 4om'2(k2 + 5) +

kll—mvll-('?ke + 17) - 8k3ml3(k2 + 2) _ k2m'2(llk2 + 13) + ukm.|(k2 + l) +

\/J{ﬁh'k - J(km' - 1)

> km' + 1
o 3ij} 2hn33(1 + Mk(m'2 - 1)(1 - ¥2)2(xBn'@ - 1)3 e

For untapered wings; A = k = 1:

Ci. = -16 ['!‘L((:Am'2 + 6m' + 1) + hA'3m'(2m'2 - 1) - 6A°m'2(om' + 1) +
P xpar3
A m'(A' -1)
3 4 ¥ om? 4 et Y U o ok
YUA'm'? + m' (2m'S + 6m' + 5) 3 + |m'"(em'Y -
192(m' + 1)

bm'3 - 2m'2 + 9m') + 8A'3m'(m' - 1)2(m'2 - 1) - 124"%m'3(m' - 1)2 +

cos~L B'_- A'gm' - 1)
hA'm'3(m' - l)ﬂ a +

192(m' - 1)°(@m'@ - 1)m'® - 1

m'u(-Bm'g + L'l m|6)
48(m'2 - 1)3¢m.2 1

m;h(a + lOme - 3mvl$)
Uh(m'? - 1)3

-1

1
cos™T =+ + +
m

[;A’S(-m'u +3m3 - 3m2 +m) + A2m(2n'? + 39m'3 - 61w -

3m' + 23) + A'm'2(-14 + 3km' - 19m'2 + 2m'3 - 3m'*) + 3mr3(-5 -

)
2 N

288(m'c - 1)%(m' - 1m" +1

6m'e - m'3 + 2m'uﬂ (A13)
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m'
T+ (@ - 1)

If A' >

For tapered wings: N .

; 1 -128m'“k3[§k2 - m'e(3k° + li] cosl L,
lp = § s oT
P Bl3g3(1 + A (w2 - 1)3/2(1 - k2)3 n

1283m 4 (1 + k2 - 2m'2P) s
3nI3(1 + A)(1 - k¥2)2(m'@ - 1)(x%m'® - 1)

128k5m'“'Eﬂ + m22(K2 + 3) ] el 2L
3033(1 + M1 - kK2)3(m'2x2 - 1)3/2

{%u(l - k)hEghkum’5 + 12};31[][1'1+ (k +5) + k2m'3(-17k2 + 22k + 43) +
k'S (-5k> - UBKS + 3k + 2) - m'(10K3 + LSK® 4+ 12k + 5) -

(5k° + 1bk + 5i] ¢ 16km'I33(1 - k)3|8k%m'D + 8k3m H(k + 2) +
K2m'3(-3k% + 1hk + 5) + km'2(-3k3 - 8K2 + k - 6) - m'(6k3 + TK2 +
8k + 3) - (3k° + 2k + 3j} + 326Pm 221 - k)3[;12k3m'“ -

9k°m'3(3 + k) + 3km'2(¥ - Tk - 6) + 3m'(2k2 - 5k - 1) -

3(1 - ki] + 256k3m'3J(1 - k)g[;gm‘B(l k) + km'e(2 - k - K°) +

m'(-2k° + k + 1) + (1 - ki] + 256k”m'”[§£“m'5 + b3mr (7 - x) 4
km'3(-9k2 - 10k + 35) + km'2(3k3 - 32%2 - 5k + 18) + m'(6k3 -
37k + bk + 3) + (3K° - lhk +

3£{} -
9673(1 + Mk(1 - k)3(m'® - 1) (k' + 1)3k(km’ + 1)(m' - 1

(ALL)
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For unswept leading edges or for unswept trailling edges; = o« or O:
-1 1 2 2 2
€1, = =+ AS2a(1 - A)(5n = 3) + 6J(1L - A)(A° - b o+
Pog1-a3@+n)3 [:
— 1 '
L) + J2(-32° + 8\ - 6ﬂ (A15)
37 - (1 - xB\FE - 41 - )
For A = 0O:
__128k3m't 1462 - 2@m?
lp 31{BA'3(1 - k2)2 (m|2 - i)(k2m|2 _ l)
232 +1) - ME g1, w2 +3) -2 1 -1
(1 - x2)(m?2 -1)3/2 mt (] - @) (kw2 - 1)3/2 b
(AL6)
For untapered wings; A = k = 1:
0y, = —25 En'”(zm'“ - 43 - 2n'? +om') + 84 3m' (m' - 1)2(m'® - 1) -
P xa'3B
12a2m'3(m' - 1)2 + bam'3(m' - 1)2] r— +

mll-l-(_3m1l|- + 10111'2 + 8) . m|)+(_m|6 + hmlh' _ 8m12) -1 _l_
1hh(m'2 - 1)3 1B(m'2 - 1)3h2 -1 m'

(A7)



NACA TN 2114 25

REFERENCES

1. Lagerstrom, P. A., Wall, D., and Graham, M. E.: Formulas in
Three-Dimensional Wing Theory. Rep. No. SM-11901, Douglas
Aircraft Co., Inc., July 8, 1946.

2. Lagerstrom, P. A., and Graham, Martha E.: Some Aerodynamic Formulas
in Linearized Supersonic Theory for Damping in Roll and Effect of
Twist for Trapezoidal Wings. Rep. No. SM-13200, Douglas Aircraft
Co., Inc., March 12, 1948.

3. Jones, Arthur L., and Alksne, Alberta: The Damping Due to Roll of
Triangular, Trapezoidal, and Related Plan Forms in Supersonic
Flow. NACA TN 1548, 1948.

. Cohen, Doris: The Theoretical Lift of Flat Swept-Back Wings at
Supersonic Speeds. NACA TN 1555, 1948,

5. Harmon, Sidney M.: Stability Derivatives at Supersonic Speeds of Thin
Rectangular Wings with Diagonals shead of Tip Mach Lines. NACA

Rep. 925, 1949,

6. Malvestuto, Frank S., Jr., and Margolis, Kenneth: Theoretical
Stability Derivatives of Thin Sweptback Wings Tapered to a Point
with Sweptback or Sweptforward Trailing Edges for a Limited Range
of Supersonic Speeds. NACA TN 1761, 19k9.

7. Malvestuto, Frank S., Jr., Margolils, Kenneth, and Ribner, Herbert S.:
Theoretical Lift and Damping in Roll of Thin Sweptback Wings of
Arbitrary Taper and Sweep at Supersonic Speeds. Subsonic Leading
Edges and Supersonic Trailing Edges. NACA TN 1860, 1949.

8. Harmon, Sidney M.: Theoretical Relations between the Stability
Derivatives of a Wing in Direct and in Reverse Supersonic Flow.
NACA TN 1943, 1949,

9. Brown, Clinton E.: The Reversibility Theorem for Thin Airfoils in
Subsonic and Supersonic Flow. NACA TN 194k, 1949,

10. Hayes, Wallace D.: Reversed Flow Theorems in Supersonic Aerodynamics.
Rep. No. AL-755, North American Aviation, Inc., Aug. 20, 1948.

11. Glauert, H.: A Non-Dimensional Form of the Stability Equations of
an Aeroplane. R.& M. No. 1093, British A.R.C., 1927.



26

12,

13.

14,

15.

16.

NACA TN 211k

Brown, Clinton E.: Theoretical Lift and Drag of Thin Triangular
Wings at Supersonic Speeds. NACA Rep. 839, 1946.

Brown, Clinton E., and Adams, Mac C.: Damping in Pitch and Roll
of Triengular Wings at Supersonic Speeds. NACA Rep. 892, 1948.

Evvard, John C,: Distribution of Wave Drag and Lift in the
Vicinity of Wing Tips at Supersonic Speeds. NACA TN 1382, 1947.

Evvard, John C.: Theoretical Distribution of Lift on Thin Wings
at Supersonic Speeds (An Extension). NACA TN 1585, 1948.

Moeckel, W. E., and Evvard, J. C.: Load Distributions Due to
Steady Roll and Pitch for Thin Wings at Supersonic Speeds.
NACA TN 1689, 1948,



NACA TN 211k

27

TABLE I.- GENERALIZED FORMULAS FOR @ DISTRIBUTIONS

EBCO?;AZI; B cot A

rm|zliBAZ 4B cot A

T+ XJ{L + 5 cot &) (See fle. l'ﬂ
v >y
BN
en?
N
~
~
~
\\ ) >ya
2 v}
N
4 ~
’,
,’ b I’\\
7 ~
/’ \\
’// ,” ‘\\
”, 4
_———— v ,
Mach line p ¥
X
Region
(see Formula for @ contributed by a
sketch)
1 Va({mx - y)
Y BPm? -1
- 2 ;
2 .__Vi’:_(mx-y)coslx_'_B;'i_+(mx+y)coslx7ﬂ)_
Eem? - 1 B(mx - y) Blmx + y
3

Va (mxq - ya) cos-l mxg + ya(2Bm + 1)
ﬂ\‘[lgem2 -1

nXg - Ya

+ 2\ myg(x, + By,)(Bn + 1E|

et e )[

(mx, + 2h + y,) cos

_1 MXg + ya(2Bm + 1) - cos-L -mxg + B2m2yq + h(B
mx

e _ 1) .
a - Ya Bo{mx, - ¥g)

1
+ 2\ -my, (xq + By,)(Bm + 1)j

1 mx, + B2nPy, + h(Fn + 1)

Bm(mx, + y, + 2h)

Vo (me, + y. + 2n) cost mxg + ya(2Bm - 1) + 2h
a a
VB2 - 1

mx, + y, + 2h

+ 2\/-ya(mxa + Bmy, + 2h)(Bm - IZi
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VIR
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G
. X L + Byu a0 2 IerAH - wsmmv:
a7+ (1 - we)®A 4 T U ugmn + (T - gE) oA+ (T - gWAE)PANE ¢ (T + L) Samg + “Aoxcm gz + 2% 1
3 . ® I- ™8
TA T )N - (PR - Prymuz v A - manma\/ﬂ’
\
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V &
(a) Notation and body axes used in analysis.
Y
<<
V L A
< X %
£

Stobil fy axes

Q:—QE?AC;A;\;T

(b) Stability axes. (Corresponding body axes dashed for comparison.)

Figure 3.- System of axes and associated data.
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Mach lines

Figure 4.- Regions of similar disturbances for velocity potential
and pressure distributions.
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(a) Taper ratio

L= 0.

Figure 7.- Variation of BC; ~ with sweepback-angle parameter for
a

various values of aspect-ratio parameter and taper ratio.
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(b) Taper ratio X = 0.25.

Figure 7.- Continued.
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(c) Taper ratio X = 0.50.

Figure 7.~ Continued.
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(d) Taper ratio X\ = 0.75.

Figure 7.- Continued.
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(e) Taper ratio A = 1.0.

Figure 7.- Concluded.
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(a) Taper ratio A = O.

Figure 8.- Variation of BC, with sweepback-angle parameter for
Y

various values of aspect-ratic parameter and taper ratio.
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{c) Taper ratio

A = 0.50.

Figure 8.~ Continued.
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(d) Taper ratio X = 0.75.

Figure 8.- Continued.
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Figure 8.- Concluded.
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