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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2190 

THE USE OF AN UNCALIBRATED CONE FOR DETERMINATION OF 

FLOW ANG IES AND MACH NUMBERS AT SUPERSONIC SPEEDS 

By Morton Cooper and Robert A. Webster 

SUMMARY 

A pressure-distribution investigation of a body of revolution has 
been conducted in the Langley 4- by 4-foot supersonic tunnel at a Mach 

number of 1.59 and a Reynolds number of 1.04 x 106 per foot. The data 
over the forward part of the body have been analyzed to indicate the 
accuracy with which an uncalibrated cone containing four static -pressure 
orifices and one total-pressure orifice can be used as a Mach number and 
flow-angle indicator at supersonic speeds. The results show that, by a 
simple averaging process, the free -stream Mach number for the present 
tests was predicted within 0.01 up to incidence angles of about 80 • 

Further increases in incidence resulted in the overestimation of the Mach 
number by as much as 0.0 5 at an angle of 16 .100 • The angle of attack 
and the angle of yaw were predicted within 0.50 for various combinations 
of pitch and yaw up to an angle of attack of 100 • In an installation 
where the yaw was zero, the angle - of - attack prediction was improved to 
within 0.30 in the angle-of-attack range from 60 to 140 by proper orien
tation of the static orifices . 

A comparison of the experimental pressure distributions over the 
surface of the cone with various theoretical calculations indicated a 
marked superiority of the theoretical calculations in which the presence 
of the entropy singularity on the upper surface of the cone was considered. 

INTRODUCTION 

During the past few years, appreciable effort has been expended 
towards the development of a suitable means for determining the free
stream Mach number and the pitch-yaw attitude of aircraft and missiles 
at transonic and supersonic speeds. Some of the initial efforts con 
cerned the determination of Mach number from pitot-static tubes and 
also from airspeed systems using flush static-pressure orifices on 
fuselages in regions relatively insensitive to flight attitude. The use 
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of pitot-static tubes is a natural consequence of low-speed investigations 
and provides a simple means for determining the Mach number through the 
complete subsonic and supersonic flight range. The use of flush static
pressure orifices, although simple in principle, yields, in reality, 
only an indication of the static pressure and requires an elaborate 
calibration system. In either application, the methods are restricted 
to the determination of the flight Mach number since no accurate indi
cation of the pitch-yaw attitude is inherently possible from these systems. 

During investigations to develop flow-angle indicators, free
floating vane-type angle-of-attack indicators have been evolved for use 
at both subsonic and supersonic speeds. These instruments have, up to 
the present time, however, been limited to the determination of angles 
in a given plane. 

Although many types of compact-wedge survey instruments giving both 
Mach number and flow angles have been employed in supersonic wind tunnels, 
the adaptation of these instruments without calibration to flight atti
tudes is limited in the low-supersonic range by the detached-shock phenom
enon, which restricts the incidence angles to extremely small values, and 
by the mutual interference between the wedges. This interference would 
invariably exist in the low-supersonic range for all wedge systems 
employed to establish simultaneously the flow angles in any two perpen
dicular planes. In order to extend the range in flight, cones having 
four equally spaced radial orifices together with a total-pressure tube 
at the apex have been considered as a possible means for determining Mach 
number, angle of attack, and angle of yaw at supersonic speeds. Such a 
scheme is indicated in reference 1 and was proposed at a later date by 
Wilbur B. Huston of the Langley Aeronautical Laboratory, who suggested 
the reduction of the experimental data by means of the nonlinear cone 
theory of references 2 and 3. 

This paper presents an analysis of the r esults of the pressure 
distribution measurements obtained over the forward portion of a slender 
parabolic body of r evolution (which was essentially conical up to the 
static-pressure orifices) and indicates the accuracy with which an uncali
brated cone, containing a total-pressure tube at the apex and four equally 
spaced static -pressure orifices, can be used as a Mach number and flow
angle indicator at supersonic speeds. The experimental data were obtained 
in the Langley 4- by 4-foot supersonic tunnel in October 1949 during a 
detailed investigat ion of the pressures over a body of revolution at a 

Mach number of 1.59 and a Reynolds number of 1.04 X 106 per foot. 

The r esults of an i ndependent experimental investigation along these 
same lines were reported in r efer ence 4 for a much more limited appli 
cation in which the cone was yawed in a plane containing two of the 
static orifices 1800 apart. Such a condition presupposes , of course, 
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a knowledge of the plane determined by the cone axis and the relative 
wind - a condition which is generally unknown. Furthermore, the results 
indicated that the introduction of a total-pressure tube at the apex of 
the cone invalidated the use of the instrument as a Mach number indicator 
(reference 4, page 1, conclusion 3) , a result which is contrary to the 
data obtained during the present investigation. 

SYMBOLS 

Free-stream conditions: 

p 

v 

a 

M 

q 

p 

r w' eWJ ¢w 

Cone geometry: 

a 

<jr 

E 

¢ 

es 

R 

mass density of air 

airspeed 

speed of sound in air 

Mach number (Via) 

Mach. angle (sin- l ~) 

dynamic pressure (~v2) 

static pressure 

spherical polar coordinates in a wind-axis system 

angle of attack of cone axis (fig. 3) 

angle of yaw of cone axis (fig. 3) 

incidence angle - angle between cone axis and relative 
wind (fig. 3) 

cone radial angle (fig. 3) 

cone semiapex angle 

radius of body of revolution 
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x 

Pressure data: 

P 

p 

Subscripts : 

A, C 

B, D 

L 
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distance from apex of body of revolution measured along 
axis of symmetry 

local static pressure 

pressure coefficient (
PI q- P) 

pressure on surface of cone in axially symmetric flow 

orifice locations on opposite sides of body in plane 
of angle of attack (fig. 3) 

orifice locations on opposite sides of body in plane 
of angle of yaw (fig. 3) 

parameters obtained from linear theory 

APPARATUS 

Tunnel. - The Langley 4- by 4 - foot supersonic tunnel is a rectangular, 
closed- throat, single-return wind tunnel designed for a nominal Mach 
number range from 1. 2 to 2 . 2 . The test-section Mach number is varied 
by deflecting horizontal flexible walls against a series of fixed 
interchangeable templets which have been designed to produce uniform 
flow in the test section . For the present investigation, the nozzle 
walls were set for a test- section Mach number of 1 . 59. For this Mach 
number, the test section has a width of 4 . 5 feet and a height of 4 . 4 feet . 
Detailed calibration studies of the flow in the test section have shown 
that the general- flow properties have a relatively high degree of 
uniformity as is evidenced by the values of Mach number and flow- angle 
variations presented in table I. These values represent the extremes 
which existed along the tunnel axis. 

Model .- The test model was a parabolic body of revolution constructed 
of steel to the coordinates given by the equation in figure l(a). The 
base of the model was cut off bluntly 42 inches from the apexj the fine 
ness ratio was thereby reduced from 15 to 12 . 2 . The general arrangement 
of the nose of the model , which had a semiapex angle of 7. 50 , is shown 
in the photograph presented in figure l(b) and in the schematic drawing , 
figure l(a) . The experimental data presented in this paper were obtained 
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from an apex 0.020 - inch- diameter total-pressure orifice and four 
0 . 020- inch - diameter static - pr essure orifices spaced 900 around the body 
1 inch from the nose . In order to install the total-pr essure orifice , 
the nose was cut off at a di ameter of approximately 0 . 040 i nch . Hence, 
the r atio of the axial distance to the stati c -pressure orifices to the 
blunt -nose diameter was appr oximate l y 25 . 

Installation .- The model (fig . 2) was sting- supported in the tunnel 
and the incidence was varied i n the horizontal p lane . In order to define 
accurately the radial pressure distr ibutions at a given axial station, 
the model was rotated in- fixed incr ements to provide a much more detailed 
orifice cover age . The pr essur e tubes f r om the or i fi ces we r e brought out 
from the rear of the model through the sting to mul tiple - tube manometers . 

TESTS , CORRECTIONS, AND REDUCTION OF DATA 

Tests .- The data were obtained for a r ange of i ncidence angles from 
0. 280 to 16 . 100 at a tunnel Mach number of 1 . 59 and a Reynolds number 

of 1 . 04 X 106 per foot. The tunnel stagnation conditions were: pressure , 
0. 25 atmosphere j temper ature , 1100 Fj and dew poi nt, - 350 F . For these 
test conditions, the calibration data of the test section indicate that 
the effects of condensation on the flow over the model are probably 
extremely small . 

Corrections .- Since the magnitudes of the flow angle , the Mach 
number , and the pressure gradients are small in the vicinity of the 
cone, no corrections for these effects have , in general , been applied 
to the data. For the present investigation , the cone was located in a 
region of the test section wher e the calibration i ndicates a Mach number 
of 1 . 60 . As is shown subsequently from an examination of the experimental 
results, this value agrees better with the r esults of the present cone 
measurements than the nominal Mach number of 1 . 59 which is assumed to 
exist throughout the test section . 

The effects of the local a ir- stream irr egularities on the compar ison 
of the geometric angle of attack and the angle of attack indicated by 
pr essure measurements have been considered for the case where the 
correction appears to be largest , that is, at an angle of attack of 0 . 280 . 
For this condition, the effect of these irregularities would be to 
decrease the geometr ic angle of attack by about 0 . 080 and increase the 
angle of attack indicated by the pressure measurements by about 0 . 050 • 

Because of the small magnitude of these correct i ons , they have been 
neglected . 
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The change in angle of the model in the horizontal plane due to 
aerodynamic loading was determined by optically measuring the deflectj_ons 
during the tests. This correction, although amounting to less than 0.080 

in all cases, was applied to the data. In addition to the deflections 
caused by the air loads, the weight of the model introduced a small 
deflection angle of 0.280 at right angles to the air loads. In presenting 
the aerodynamic data, however, this droop angle was combined with the 
geometrically varied angle (in a horizontal plane) to obtain the true 
resultant angle which, in this paper, has been designated as the incidence 
angle E. (See fig. 3. ) Furthermore, in all cases, the radial angle ¢ 
has been geometrically r eferenced to the plane of the incidence angle 
as required by theory. 

The accuracy of the experimental conditions , in general, is estimated 
to be as follows: 

Incidence angle E, degrees 
Radial angle ¢, degrees 
Radial pressure coefficient 

±0.05 
±0.5 

±0.005 

Reduction of data.- The experimental pressures obtained at the 
radial stations and the total-pressure orifice were reduced to Mach number, 
angle of attack, and angle of yaw by applying the results of cone theory 
(references 2 and 3) , which have been tabulated in references 5 and 6, 
together with the normal shock relations (see , for example, references 7, 
8, or 9) . In applying these theories, the assumption was made that the 
incidence angle was small so that it could be taken directly as the vector 
sum of the angle of attack and the angle of yaw. This assumption is 
consistent with the limitations imposed by the cone theory (reference 3). 

In order to apply the tabulated results of references 5 and 6, the 
change in slope of the body surface between the apex and the radial row 
of orifices had to be neglected. In this particular application, the 

10 
curvature was small and corresponded to a slope change of 4 in the 

l-inch interval. (See equation, fig l( a) .) From linear considerations, 
the variation in pressure due to the curvature was estimated to be very 
small for axially symmetric flow and approximately equal in magnitude to 
the experimental accuracy. Hence, the half-angle of the nose was taken 
as 7 . ~, a mean value which existed between the total-pressure and the 
static -pressure stations. 

Since there is physically only one significant angle defining the 
plane of incidence of a body of revolution with respect to the relative 
wind, the incidence of the body can be varied experimentally in only one 
plane and, by so doing, all possible combinations of pitch and yaw can 
be obtained. The pressure readings for a conical pitot yaw head operating 
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at any combined pitch-yaw attitude can be obtained by geometrically 
resolving the incidence data to different r eference axes and by using 
faired values of the basic pressures (fig. 4). This process is illus 
trated in figure 5 for a r epresentative incidence angle of 60 • This 
incidence angle can be considered as any combination of pitch and yaw 
which combine to equal 60 • Then the pressures that a four-orifice system 
would indicate are determined by reading pressure coefficients at 

¢ = tan- l ttan * (orifice C) and corresponding points 900 out of phase 
an ex. 

(orifices B, A, and D). The angles of pitch and yaw then computed from 
these pressures can be compared directly with the known geometric angles . 
Such a method for reduc i ng the experimental data as just outlined, however, 
depends upon an accurate and detailed determination of the radial pressure 
distribution. Therefore, for these tests , approxi mately 23 pressures 
(corresponding to 46 points from symmetry condit i ons) were r ecorded to 
define the radial distribution. 

RESUurS AND DISCUSSION 

The basic pressure -distribution data obtained on the nose of the 
model have been presented in figure 4 as a function of r adial position 
for a range of i ncidence angles from 0. 280 to 16.100 • Since the flow 
is symmetrical with respect to the 00 , 1800 axis , a folded horizontal 
scale has been usedj the flagged symbols designate points between 1800 

and 3600 • These data , together with the total pressure at the apex, have 
been used to compute the free - stream Mach number and flow angles . 

In the reduction of conical4Pitot-yaw-head data for the prediction 
of Mach numbers and flow angles at supersonic s peeds, a primary problem 
exists in establishing the accuracy with which theory can be used in 
converting pressure measurements on the surface of a cone to the free 
str eam flow parameters. Of course , if experimental calibration data, 
such as shown in figure 4, are available for a particular installation, 
there is no need to r esort to theory for the reduction of the data. 
However, in gener al , the amount of calibration data is limited and hence, 
the theoretical r eduction of the pressures will us ually be necessary. 
Since i n the applicat i on of these theoretical methods the basic compu
tat i ons are extremely long and involved, the present application is 
directed towards the use of the extensively tabulated cone tables presented 
in references 5, 6, and 10 . The tabulated r esults in reference 5 apply 
to the case of a cone at zero yaw; r efer ence 6 consider s yaw to a first 
order , and r eference 10 considers ' yaw to a second order. In order to 
interpret the experimental results mor e fully, the r elationships obtained 
from reference 6 are paralle led with reference 10 and the linear theory. 
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In reference 11, it has been shown that the assumption of continuous 
flow properties around a yawed cone (references 3, 5, 6, and 10) leads 
to an erroneous entropy distribution as, in reality, there is a singularity 
in the entropy on the top surface of the cone (¢ = 1800 ). In reference 11, 
a correction has been introduced to account for the proper distribution 
of entropy at the surface of the cone. The use of this correction 
considerably improves the agreement between the absolute experimental 
and theoretical trends (as is shown subsequentlY)j but its application, 
together with the complete pressure-velocity relationship used in 
reference 11, complicates the reduction of experimental cone measurements 
to flow parameters . Since in many cases, the pressure differences are 
not seriously impaired by the direct application of references 5 and 6, 
these tables are employed directlyj a comparison of the flow parameters 
obtained by applying and neglecting the correction are presented for 
several special illustrations. 

The pressure distribution around a slightly yawed cone as given 
by reference 6 is 

p = p + E~ cos ¢ 

or to a higher approximation by (reference 10) 

p = Pe + E~e cos ¢w + (POe + P2
e 

- 2P2e sin2¢w)E2 

( 1) 

(2a) 

The pressure variation based on linear theory is given by (see reference 12, 
for example) 

In equations (1), (2a), and (3), p is the cone surface in unyawed 
flowj ~, PO' and P2 represent incremental pressures due to yawj and 

the subscript L indicates parameters obtained by linear considerations. 
In equation (2a), the added subscript B indicates parameters evaluated 
on the cone surface in yawed flow, that is, at a B value given by 

The parameter ¢w is the radial coordinate in a spherical polar coordinate 
system (rw, Bw, ¢w) having the Bw axis alined with the air stream 
(wind axes) and the origin located at the apex of the cone (reference 6 
or 10). Although this value of ¢w is replaced by the radial angle ¢ 
on the cone in equation (1), this appro~imation neglects terms which have 
been previously retained in equation (2a)j that is, the differences in 
the radial position coordinate in body and wind axes cannot be neglected 

_________ _____ -.J'-
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with consistency. However, in qualitatively discussing the experimental 
trends, such an approximation considerably simplified the analysis with
out impairing the conclusions and was therefore employed in obtaining 
subsequent equations (equations (5), (Tb), and (9)). In order to apply 
equation (2a) with the tabulated range of parameters presented in 
reference 10, equation (2a) must be developed into a power series of the 
form 

p 2 ~ 1 d
2p dT] p + €T] cos ¢ + IS PO + P2 + -2 - 2 + - -

w de de 

(2b) 

where in equation ( 2b) , the coefficients of the E terms are now to be 
evaluated at e = es and can be obtained from references 5, 6, and 10. 

Equations (1), ( 2b), and (3) serve as the basis for analyzing and 
interpreting the Mach number and flow-angle variations. Throughout the 
analysis the determination of p is assumed to be sufficient to evaluate 
the Mach number inasmuch as p, together with the total-pressure orifice 
reading, uniquely establishes the Mach number. 

Four-Static -O,rifice System 

Mach number determination .- For a four-static-orifice system, 
is given according to equation (1) by 

P 

-p 

-p 

( 4a) 

(4b) 

where A, C and B, D represent orifices in the angle-of-attack and 
angle -of-yaw planes , respectively. From the more exact relationship of 
equation (2b), the values of p are 

P 

-p 



10 NACA TN 2190 

and the cor responding val ues based on linear theory (equation (3)) are 

PA + Pc 
2 

P:s + PD 2,~ 
2 + 3qa. - q1Jl 

( 6a) 

( 6b) 

Hence , i n the first approximation ( equations (4)) the unyawed cone sur
face pr essure is given by the average of any two static pressures 1800 

apart independent of the pitch-yaw attitude or the r adial orientation 
of the orifi ces . The more exact relation (equations (5)) and the linear 
theory (equations (6)) , however, show that the unyawed pr essure p clear ly 
depends upon both the angle of incidence and the radial orientat i on . 

For small angles of incidence (0.2 and ~2 approaching zero) , the values 
of p in equations (5) and (6) approach the value given by equations (4) . 

In or der to inveetigate the limitations on equations (4), the Mach 
number was computed on the basis of the average of two pressures in the 
angle - of - attack plane (00 , 1800) and two pressures in the angle - of -yaw 
plane (900 , 2700 ) as the model angle of attack was increased, the yaw 
being held at 00 . The Mach numbers computed on this basis are presented 
in figure 6(a) . In order to eliminate any sources of discrepancy due 
to angle effects on the total- pressure readings, the Mach numbers are 
based on both the indicated total pressure at each angle and on the total 
pressure for 0 . 280 incidence (flagged symbols) . The close agreement of 
the Mach numbers based on both total pressures precludes the possibility 
of significant angle effects on the total-pressure tube . Figure 6(a) 
clearly shows that the Mach number and hence the average pressure of 
diametr ically opposed orifices depends significantly upon the angle of 
attack and radial position; therefore, the pressure variation expressed 
by equation (1) and resulting in equations (4) is limited to extremely 
small angles, perhaps about 20 or less for this Mach number of 1 . 60 and 
cone semiapex angle of 7 . 50 . In this low- angle range, the predicted 
Mach number of 1 . 60 agrees very well with the local free - stream Mach 
number indicated during the test - section calibration . (See section on 
corrections . ) For higher angles, the Mach number based on the 00 and 
1800 (C and A, respectively) orifices underestimates the true value 
of the free - stream Mach number; whereas, the Mach number based on the 
900 and 2700 (B and D, respectively) orifices considerably overestimates 
the free - stream Mach number . These discrepancies became pr ohibitive 
even for moderate angles of attack . A clearer interpretation of this 
result is possible by means of equations (5) and (6) . If these equations 
are simplified to cover the present case and the appropriate constants 
are evaluated , the nonlinear values of p from equations (5) are 

- PA(1800) + PC(OO) 2 
P = - 2 - - - 0.68qa. 

-- ~ 
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p 

with the corresponding values based on the linear theory given by 

2 - qa 

PB(900
) + Pn( 2700

) + 3qa2 
2 

11 

( 8a) 

(8b) 

From an examination of equations (7) and (8) it can be seen that , 
when p is based on the average of the 00 and 1800 (C and A, r espectively) 
orifices, the static pressure will be too positive and hence the Mach 
number will be too low as is verified by the data of figure 6(a). On 
the other hand, when :P is based on the average of the 900 and 2700 

(B and D, respectively) orifices, the Mach number will be too high 
(the overestimation being considerably greater than the underestimation 
in the previous case) as is again verified by the data presented in 
figure 6(a). Hence the experimental r esults clearly indicate the 
importance of both incidence angle and radial position for determining 
the Mach number throughout the practical angle - of-incidence range. 

Although attempts at using equations (5) or (6) together with an 
iteration procedure would undoubtedly give a better Mach number prediction 
thrul equations (4), a procedure involving the simple averaging of all 
four static pressures was indicated as a possible method in view of 
the opposing experimental trends shown in figure 6(a) . (A similar 
procedure was used in reference 4. ) The indicated Mach numbers computed 
on this basis are presented in figur.e 6(b) . In order to test the validity 
of the method under all conceivable combinations of pitch and yaw, the 
four-static - orifice installation was rotated as a unit in 150 increments 
to cover the complete pitch- yaw range . As can be seen from figure 6(b), 
all pitch-yaw attitudes considered r educe to essentially one curve having 
a Mach number scatter of less than ±0 . 009 for the complete inc i dence r ange . 
This average -value curve predicts the Mach number to within 0 . 01 up to an 
incidence angle of about 80 • Further increases in incidence result in 
the over estimation of the Mach number, the overestimation being as high 
as 0 . 05 at an incidence angle of 160

• From equations (5) and ( 6) , respec
tively, the theoretical variations with incidence angle are given by 
second-order nonlinear theory 

-p 
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and by linear theory 

( 10) 

Equations (9) and (10) substantiate the reduction of the data to a 
single curve which is a function of incidence angle. In both cases, 
the average pressure is too low and hence the Mach number is too high 
as verified by figure 6(b). Although an iteration procedure again might 
yield a better approximation in the high-incidence-angle range, such a 
procedure should in general be cautiously applied in view of the 
limitations of the theories at the higher angles and the limited amount 
of experimental data. 

The accurate functioning of this system in predicting the Mach 
numbers at low incidence angles is contrasted by the results reported 
in reference 4 for the same free-stream Mach number. Since no systematic 
evaluation tests of the two cones are available, the differences are, at 
best, difficult to interpret. However, the primary difficulty encountered 
in the tests reported in reference 4 may be the relatively low value of 
the ratio of the axial distance to the static orifices to the blunt-nose 
diameter. This parameter, which is equal to 10 for the tests of reference 4 
and 25 for the present tests, is undoubtedly of primary importance and 
probably depends upon both the cone angle and the free-stream Mach number. 

With the determination of the Mach number, the ambient static pressure 
can be calculated by the normal shock relations (references 7 to 9). 

Flow-angle determination.- In the determination of the flow angles, 
both the analyses for first-order (reference 6) and second-order 
(reference 10) incidence angles yield the same solution if the difference 
between wind and body axes is neglected. This solution is identical in 
form to the linear solution. 

The indicated angles of attack and angles of yaw were computed on the 
basis of equation (1) and compared with the geometric angles in figure 7; 
the solid lines indicate exact correlation. The combinations of pitch 
and yaw selected (fig. 7) have been determined more to exploit the 
limitations of the method than to select flight attitudes. In figure 7, 
no yaw correlation has been presented for ~ = 00

, because from assumed 
symmetry conditions such a correlation would be exact. In each attitude 
conSidered, the Mach number indicated by the average of the four static 
pressures, for the given pitch-yaw condition, was used. This Mach number 
is somewhat in error at the higher angles, but, since it will in general 
be the only Mach number available for an uncalibrated instrument, it was 
used in the angle prediction. The effect of this Mach number error is to 
reduce the indicated angles. 

\ 
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In general , the agreement shown in figure 7 is surprisingly good 
even up to angles consider ably larger than the semi apex angle . Up to 

13 

an angle of attack of about 100 the maximum discrepancies are less than 
about 0.50

• At the higher angles~ the discrepancie8 increasej the angle 
of attack generally is over-estimated whereas the angle-of-yaw discrep
ancies are smaller and of a more random nature. An examination of the 
angle -of-attack comparison in the range up to about 100 or 110 indicates 
that the agreement is relatively independent of pitch-yaw attitude . This 
fact, coupled with the exce llent yaw prediction up to about 100 when the 
angle of attack was equal to the angle of yaw, indicates that it may be 
advantageous to l ocate the orifices in planes other than the pitch-yaw 
planes for high-angle-of-attack installations when the yaw is known to be 
small. In order to illustrate this point, the orifice system was rotated 
45P as a unit and the indicated angles wer e r eso lved into the angle -of
attack plane. The r esults of such an installation are shown in figure 8 
for unyawed f l ight and compared with the conventional installation. The 
marked superi ority of the rotated installation is evident in the high
angle -of- attack range where the indicated angles are within 0 . 30 for 
angles of attack between 60 and 140

• Note, however , that such a rotated 
orifice system is limited to applications involving small yaw and would 
undoubtedly lose its advantages at larger yaw angles since the rotated 
system at equal pitch and yaw angles would be aerodynamically equivalent 
to the unrotated system in pitch alone . 

In order to illustrate the effects of the correction term (reference 11) 
neglected in the previous analysis , the indicated angles of attack 
obtained from the reduction of the experimental data with and without this 
correction term are presented in figur e 9. The data have been prepared 
for the case of pitch alone and for a Mach number of 1.60. The corrected 
angles have been obtained dir ectly from the theor etical curve presented 
in figure 5 of r eference 11. As can be seen from the present figure 9, 
the correction term has only a slight influence on the r esults over most 
of the angle range. For the highest angle, however, there is a consider able 
improvement . Therefore, at l east for this Mach number and cone - angle 
r ange , the dir ect use of the tables of r eferences 5 and 6 appears justi
fied for most of the incidence range ; for very h i gh angles , however , an 
apprec i able improvement can be r ealized by the application of the corr ec 
tion term. 

Other Orifice Systems 

Throughout the previous discussion, the analysis has been applied 
only to the case of a conical pitot -yaw system having four equally spaced 
static -pressure orifices and one total-pressure orifice. Actually , t he 
minimum number of static orifices theoretically r equired for a unique 
solution is three . Although such a system represents a slight construction 
simplification , it still requires the same number of pressure r eadings 
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as the four-static-orifice system. This consideration stems from the 
fact that the four-static-orifice system requires, in practice, only 
four readings: a total-pressure reading, two pressure-differential 
readings, and one average pressure reading . In addition, the use of a 
three-orifice system introduces a much more complicated data-reduction 
problem since both the pitch and yaw angles are, in general, mutually 
interrelated (if two of the three orifices are not opposite each other). 

Another and more serious disadvantage of the three - static-orifice 
system involves the Mach number scatter with pitch-yaw attitude as shown 
in figure 6. The maximum Mach number scatter at a given incidence angle 
for a four -orifice system was previously pointed out to be ±0.009. This 
value represents a scatter inherent in the method of data reduction and 
indicates a limitation of the method of arbitrarily averaging the pressures. 
For a two -orifice system (fig. 6(a)) the Mach number scatter is prohibitive 
and amounts to ±0.20 from a mean value; whereas for a three -orifice system 
the scatter is ±O.021. This comparison indicates that the Mach number 
accuracy is clearly related to the number and probably to the radial 
distribution of orifices. It is natural to question the improvements to 
be expected from increasing the number of orifices from four to, say, 
eight static orifices, since the scatter must diminish as the number of 
orifices increase. Increasing the orifices to eight reduces the Mach 
number scatter to a value of ±O.006. This value approaches a practical 
limit to be expected from accidental or precision limitations on the 
mechanical details of the system. 

General Comments on Theoretical Prediction of 

Pressure Distribution on Cone Surfaces 

In order to provide a more tangible basis for understanding the 
limitations of the present method and the cone theory in general, a 
comparison of the theoretical pressure distributions with the experimental 
data of figure 4 has been presented in figure 10. For this comparison, 
the experimental pressures have been referenced to the local flow condi
tions (M = 1.60) at the location of the cone. The theoretical pressure 
variations predicted by equations (1) to (3) have also been presented in 
this figure. In addition, the distribution corresponding to the first
order nonlinear theory which has been corrected to the proper entropy 
distribution (reference 11) is included. The numerical values of all 
the parameters used are 

(a) Linear theory 

P = 0 . 069 + 0 . 526E cos ¢ + E2(1 - 4 sin2¢) ( 11) 
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(b) First- order nonlinear theory (reference 3) 

P = 0 . 075 + 0 . 498E cos ¢ 

( c) Second- order nonlinear theory (reference 10) 

(d) First-order nonlinear theory (correction applied , reference 11) 
These curves have been obtained directly from figure 5 of 

reference 11. 

In equat i ons (11) to (13), the incidence angle E 
i n a ll previous equations . The radial coordinate ¢w 

system has been converted to the body r adial angle ¢ 

sin Bs sin ¢ 

is in radians as 
i n the wind-axis 

by the r elationship 

tan ¢w 
sin Bs cos ¢ cos E + cos Bs sin E 

where Bs is the cone semiapex angl e . 

An examination of the comparison of the experimental and theoretical 
results presented in figure 10 immediately indicates the marked superiority 
of the method of reference 11 for the complete incidence r ange . With the 
possible exception of an over estimation of the pressure minimum on the 
sides of the body for the highest incidence angles , the linear theory also 
shows relatively good agreement with the data . The inadequacy of the 
simple cosine variation (refer ence 3) becomes evident even at an angle 
of incidence of 40

• The second-order theory of r eference 10, although 
improving the ~esults at the sides of the body, distorts the pressure 
distribution as a whole and overcorrects on the top ( approx . 1400 to 1700 ). 

For the higher angl es of incidence (8 .050 and 12 .050 ) where the incidence 
is larger than the cone semiapex angle, no comparison of experiment and 
the second-order theory is possible . 

Hence , fo r a Mach number of 1. 60 and a cone semiapex angle of 7. 50 , 

the method of r efer ence 11, and for t hat matter the linear theory, is 
better adapted to the predi ct ion of the pressures over the body than the 
first- or second-order nonlinear theories of r efer ences 3 and 10, respec
tively . This r esult is probably caused by the effe cts of the erroneous 
entropy distribution as pointed out i n r eference 11. 

For the determination of Mach number and flow angles (pressure 
differences) , however, it appears that either the first - order nonlinear 
method (equation (1)) or the linear theory (equation (3)) could be used 
for the present combinat ion of cone ang l e and Mach number. This 
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consideration follows in the case of the Mach number becaus e the four 
static pressures were arbitrarily averaged and the evaluation of t he Mach 
number depended only on the unyawed solution given in r ef er ence 2 . For 
the present test conditions, the linear and nonlinear s olutions f or t he 
axially symmetric case gave essentially the same result. For the deter
mination of the flow angles, the fact that the coefficients of the 
E cos ¢ terms in equations (11) and (12) are approximately the same 
indicates that either equation could have been us ed in the present case. 
For the general case, however, these parameters (for both the yawed and 
unyawed solutions) will diverge with increases in cone angles and changes 
in Mach number, and, for large cone angles operating . in the small incidence 
range, the first-order nonlinear method (refe·rence 3) would probably be 
more suitable. Under extreme conditions, however, the direct application 
of reference 3 for the determination of Mach number and flow angles should 
be checked theoretically for several conditions with .the corrected results 
obtained from reference 11. 

CONCLUDING 'REMARKS 

A pressure-distribution investigation of a body of r evolution has 
been conducted in the Langley 4- by 4-foot supersonic tunnel at a Mach 

number of 1.59 and a Reynolds number of 1.04 X 106 per foot. The data 
over the forward part of the body have been analyzed to indicate the 
accuracy with which an uncalibrated cone containing four static-pressure 
orifices and one total-pressure orifice can be used as a Mach number and 
flow-angle indicator at supersonic speeds. The results show that, by a 
simple averaging process, the free-stream Mach number for the pre sent 
tests was predicted within 0.01 up to incidence angles of about 80

• 

Further increases in incidence angle resulted in the overestimation of 
the Mach number by as much as 0.05 at an angle of 16 .100 • The angle of 
attack and the angle of yaw were predicted within 0.50 for various combi
nations of pitch and yaw up to an angle of attack of 100

• In an instal
lation where the yaw was zero, the angle-of-attack prediction was improved 
to within 0.30 in the angle-of-attack range frQm 60 to 140 by proper 
orientation of the static orifices. 

A comparison of the experimental pressure distributions over the 
surface of the cone with various theoretical calculations indicated the 
marked superiority of the theoretical calculations when the pre s ence of 
the entropy singularity on the upper surface of the cone was considered. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

'- Langley Field, Va., December 12, 19:::0 
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TABLE I 

FLOW PARAMETERS ALONG TUNNEL AXIS 

Interval Maximum Mach Maximum hor izontal-
Distance along axis ( ft) number range flow-angle r ange 

(deg) 

Test-section height 
5. 5 1. 585 to 1. 604 -0 .0 5 to 0 . 20 tiines cot ~ 

Average model l ength 2 . 5 1. 585 to 1. 595 Q to 0 . 20 

Maximum vertical-
flow-angle r ange 

( deg ) 

-0. 15 to 0 . 30 

o to 0 . 30 

~ 
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CP 

~ 
~ 
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I-' 
\0 
o 
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Four static - pressure arifices, 

0 .020 diam., spaced 90· 

10150t= 100 

-~-==-:--~-~-=. 
0.040d~m-r-~~----~------------------~~---------

Total- pressure orifice, 0 .020 diam. 

(a) Schematic drawing. (All dimensions are 
in inches unless otherwise indicated.) 

(b) Photograph of cone. ~ 

Figure 1. - Model details. Semiapex angle) 7.50 • L- 639 24.1 

19 
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Figure 2 . - Model mounted in test section of the Langley 4- by 4-foot 
supersonic tunnel. 
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Figure 5 .- Resolution of inc idence angle to arbitrary comb i nat ions 
of pitch and yaw for an incidence angle E of 6°, 
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