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By K. R. Czarneckl and Jemes N. Mueller
SUMMARY

An approximate method of calculating pressures within the tip
reglon of a rectangular wing having a symmetricel circular-arc profile
is developed by means of which it is possible to determine the pressures
at supersonic speeds to a higher degree of accuracy then with the usual
linearized methods. The method consists essentially of applying tip
corrections realized from linear theory to the exact pressures celcu-
lated for the two-dimensional flow region and then taking into account
the actual reglon influenced by the wing tip. A comparison of somse
calculated pressure distributions with experimental results indicates
good agreement for reglons not affected by shock—boundary—layer
interactions.

JINTRODUCTION

Comparisons between theory and experiment indicate that, for
rectangular wings of moderate thickness or at moderately high angles
of attack, the pressure distributions calculated by linear theory are
not in good. agreement with experimental results. If viscous effects
are neglected, the pressure distributions for the parts of the wings
vhere the flow 1s two-dimemsional can be calculated with near exactness
by the method of characteristics. Other methods that provide less
accuracy than the method of characteristics but greater accuracy than
the linear theory are the shock-expansion technique (neglect of the
reflections from initial shock that are considered in the character-
istice method) and Busemann's second~-order-approximation theory. For
moderate Mach numbers and thickness ratios the shock-expamsion method
glves results which are nearly identical with those of the character-
istics method and which are in.very good agreement with experiment when
no strong viscous effects are present. For the region influenced by the
wing tip, no theories of corresponding precision are as yet availlabls.
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In reference 1, Bomney introduces a method of calculeting the
aerodynamic characteristics of rectangular wings with an accuracy
greater than.that possible with usual linear msthods. The method con-
sists essentially of computing the pressures in the two-dimensional flow
reglons by means of Busemann's second-order approximation and assuming
that, in the region influenced by the wing tip, the differences in °
pressure between the wing surfaces decrease from those In the two-
dimensional region to zero at the wing tip in accordence with the rate
of loss in 1lift found by linear theory for emn infinitely thin flat plate.
The method is not suitable for the prediction of actual pressures in the
wing tip region, however, because the increments in pressure due to wing
thickness largely cancel and need not be computed for the tip region in
order to determine the lift end moment characteristics of the wing.

The present paper introduces an approximate.method by means of
which it is possible to calculate the pressures in the tip region of a
rectangular wing with a symmetrical circular-arc section to a higher
degree of  accuracy than is possible with the usual linear methods.

The method is basically similar to Bonney's method, but the two-
dimensional pressure distributions are calculated by more exact methods
than Busemann 's second-order approximetion, and tip corrections realized °-
from linear theory are applied to the pressure increments due to both
angle of atback and airfoil thickness. In addition the actual flow
field influenced by the wing tip is taken into account rather than the
field between the free-stream Mach line and the wing tip as 1s done in
linear theory and Bonney's method. A brief comparison of some calcu-
lated pressure distributions with experimental results for a 9-percent—
thick wing at a Mach number of 1.62 is included.

SYMBOLS

P-DP
P pressure coefficient < 0 °>
APy pressure-coefficient increment due to angle of attack
A'Po, pressura-coefficient incremsnt due to airfoll thickness

and shape

P local static pressure
Po free-stream static pressure
(P free-stream.dynamic pressure

Xep center of pressure, in fraction of chord from leading gdge
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c chord of airf;Jil

t/c ) ‘ma:x:l.nnnn thickness ratio of airfoil

Cng f2 section piltching-moment coefficient (1:—52,@)

Cn ' section normal-force coefficlient < -(-11-15)

m, /2 section pitching moment about 50-percent-chord point,

positive when it tends to rotate leading edge of
sectlon upward

n section normal force, positive upward

M local Mach number

Mo free-stream Mach number

a angle of attack

B=|M2 -1

X, ¥, 2 qoordinates of mutually perpendicular system of axes

€, 1 coordlnates wh.ich replace x and jy, respectively, used
to indicate origin of source line

u B x-component of disturbance velocity, positive in flight
direction

dz /ax slope of airfoll surface _

K1, Ep, K3,  constants used to determine location of point in

Ky, E5 distorted flow field (defined in Ffig. 5)

v free-stream velocity in flight direction )

S'ubscripts: '

1 preséure coefficient In region iInfluenced by wing tip

determined by linear theory

2 pressure coefficient in two-dimensional flow reglon
determined by linear theory
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3 pressure coefficlent in two-dimensional flow region
determined by use of oblique-shock theory.and Prandtl-
Meyer's equations for expamnsion of two-dimensional
supersonic flow

Subscript notation for wu and % indicates the origin of sowrce

line in terms of x .and ¥y, respectively, except when noted otherwise.

Subscript P on x and y in equation (5) indicates location of
boundary between two-dimensional and three-dimensional flow regions.

Primed symbols:

Primes Iindicate the location or coordinates of a point in the
distorted flow field.

ANALYSTS

In the linearization of the three-dimensional equations of
potential flow the following assumptions are made: +the total-pressure
losses across shocks are negligible, disturbances propagate on the air-
foil along straight lines inclined at the Mach angle of the free stream,
and no interaction exists between the thickness and angle-of-attack
effects. In order to improve the accuracy of the pressure-distribution
calculations for the tip region these simplifying assumptions must be
modified to Include conditions that are more nearly in,agreement with
actual flow conditions.

The effects of the total-pressure losses across the lehd:!.ng-edge
shock and of the interaction between the pressures due to thickness and
angle of attack are approximated by the use of pressures that are calcu-~
lated for the two-dimensioral-flow region by methods involving oblique-
shock theory and the Prandtl-Msyer equations for the expansion of a two-
dimensional supersonic flow. If the method of superposition of linear
theory 1s followed, the two-dimensional pressures are divided into two
increments. (See fig. 1.) Thus,

. P3 = AP0'3 + AP@3 (1)
where the pressure increment due to thickness APy 1is taken as constant
Tor a glven airfoll and the effects due to interaction are concentrated
in the pressure increment due to angle of atbtack .APy. The pressure
Increment dus to interactlon between angle-of-attack and thickness
offects may be defined as the difference in pressure found when the
Pressure at any point on the alrtoil is computed by two methods. In the
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Pirst method, which gives results that are in very good agreement with
experiment, the pressure 1s camputed by the usual shock-expansion
technique in which the thickness snd emgle-of-attack effects are con~
sidered together. In the second method, the pressure 1s computed by the
shock-expansion theory, but the pressure increment due to thickness is
calculated separately at « = O° and to this increment is added the
increment in pressure calculated for a thin flat plate at the appropriate
engle of attack. The assumption that the interaction effect 1s concen-
* trated in the increment in pressure due to angle of attack was made in
order to reduce slightly the amount of required calculations. Actually,
some calculations indicated that a more reasonable assumption, such as
one in which the interaction effect was equally divided between the
increments in pressure due to thickness and angle of attack, would
generally lead to results in slightly better agreement with experiment.
The actual differences in pressure resulting from the use of the two
methods of galculation are usually negligible as regards the calcula-
tion of pressures in the tip region.,

According to linear theory, the ratio of the pressure in the tip
region of a rectangular wing with a symmetrical circular-arc profille
to the pressure at the corresponding chordwise station in the two-
dimensional flow region 1s given, for a = 0°, by the expression

-1(s - cog-l- 27 Losht —E_ 4 L Xy - cos1 .‘L)
APO']_ . ﬂB(ﬂ cos B%>+“chsh- B|y|+ﬂyﬂ cos Bx

=14
= -
B c

where the equation is valid for -1 S B% < 1. (See appendix for

derivation of equation and fig. 2 for definition of pertinent symbols.)
The corresponding pressure ratlo due solely to the angle of attack of a
flat plate of rectangular plan form (reference 2) is

(2)

AP
a1 cos'l(l + ZBI-> (3)
ap b18 X ]
where
-1 < <1
SpL <

When the method of superposition of linear theory is followed but the
twc?-d.imensional pressure coefficient calculated by rigorous methods as
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"a base is used, the 'bheoretical pressure coefficlent anywhere in the tip

region is defined by

P=APU3AP-T—-02+APG3EG—2' (%)
Equation (4) may be regarded as a correction of the pressure coefficlent
in the tip region P; due to wing thickness or angle of attack as cal-
culated by linear theory by the corresponding ratio of the exact two-

dimensional pressure to the linear 'two-dimsnsional pressure 521 It nay

be noted that equation (2) is indeterminate at I 0 (at the wing tip),

but the pressures at the station actually have a :E':Lni'be value which
varies along the chord. The equation also changes in sign from minus to

plus infinity at the chordwise station X = 0.50 (for the circular-ar

profile), and thus a discontinuity results in the pressure distributions
derived from equation (4) if the exact two-dimensional pressure coefficient
due to thickness does not change In sign at exactly the same chordwlse
point as In the linear theory. When such pressure discontinuities do occur
they are ascribed to Inaccuracies of the msthod and are neglected in the
Ffairing of the pressure-distribution curves. Usually, the discontinuil-
ties are confined to & region less than 5 or 6 percent of the chord in

length and located at the midchord point of the wing. For B% = -1 and 1,

equation (2) reduces to 1 and 0, respectively. Equation (3), on the

AP
o,

APap

other hand, indicates a conical flow field with zero pressure ratio
at the wing tip.

Calculation of the dlstortion of the field influenced by thé wing
tip to allow for the propagation of disturbances along Mach lines
dependent upon the local velocitles over the wing is somewhat more
difficult and can be accomplished only by approximation. Among the
methods of distorting the tip field that were investigated are: a
linear distortion in a spanwise direction, with no chenges being assumed
in pressure at the wing tip; a linear distortion in a chordwise direc~
tion with the pressures at the trailing edge held constent; and dis-
tortions in both the spenwise and chordwise directions based on various
concepts that disturbances propagate along curved Mach lines. Most of
the techniques Investigated gave results that were 1n fair agreement
with experiment and thus indicated the purely arbitrery nature of the
distortions, even though in some instences they appear to be linked with
the basic assumptions of some of the linearized theories. The best and
most consistent agreement with experiment was obtained by transforming
the field by the method described in the following paragraphs.

- et m———— — ———— e+ — - ——— o« —— ———— e ———— e - ————
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According to Jones' linear theory (see appendix), the pressure at
any point L(x,y) (fig. 3) on an arbitrary spenwise station EF is
determined by the pressure due to the action.of the line sources amnd
sinks representing the wing surface from the leading edge to the
point IL(x,y) eand by the decrease in pressure due to the action of the
line sources and. sinks representing the tip and originating between A
end G. The pressure disturbances are assumed to propagate along curved
lines similar to AD and the pressure decrements resulting from the tip
effects calculated from the sources and sinks from A +to G are
assumed to be felt at the reference station at the point L'(x',y). By
equation (%), the pressure at the point I(x,y) is corrected so that, abt
the same chordwise station, the pressure at the edge of the region
influenced by the wing tip 1s equal to the exact two-dimensional
pressure. The decrease in pressure due to the wing tip 1s taken as the
difference between the exact two-dimensional pressure at the chordwise
station corresponding to the point L(x,y) and the carrected pressure
at the point IL(x,y). '

Inasmuch as the curved Mach line AD from the leading edge of the
tip lies at the boundary of the two-dimensional flow region, its loca-
tion can be determined accurately from the exact two-dimenslonal calcu-
lations from the following relationship derived by Frick and Boyd of
the Ames Aeronautlcal Laboratory:

—_— (5)

ey
o ° x
c ‘/; \/ﬁ d(c)

where M3 denotes the local two-dimensional Mach number at the

point x/c. The curved Mach line GL' is assumed to be equal in slope
and curvature to the corresponding chordwise section of AD. In other
words, the curve GL' 1s found by translating AD +toward the right
until it passes through G. The determination of the coordinates of a
large mumber of points L'(x',y) is simplified by first finding the
locus of the points T(x,y) (fig. %) that corresponds to those

points ¥'(x',y) which lie on the tralling edge of the wing DC. At
each spanwise station EF the desired point is located graphically by
translating AD +to the right wntil it passes through F or F', thus
locating G. From G a line 1s drawn parallel to the Mach line AB.
The intersection of this line GT with the station line EF glves the
locus of the desired poinmt. It should be noted that T(x,y) is the
point required to determine the pressure at the trailling-edge

point F'(x',y); therefore, the procedure for locating the point is
reversed from that for locating a tremsposed point L'(x',y). Typical
loci of points T(I,Y) are shown in figure 4. The ordinate of the -
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’

point L'(x',y) (fig. 5(a)) in terms of the ordinate of L(x,y) end
some graphically determined constants is :

t K K l
a2 (5 ®

This procedure amounts to expanding the region NI linearly to N'F'.
The pressure at the point L'(x',y) is then found from’

AP

:Pa:b x',y = (P3)a:b x',y - (P3)a'b X,y + @03)3-[; X,y F::
APa,l
+ (AP"B)a,t X,y @ - (7)

In order to determine the pressures at spanwise stations lying inboard
of the point where the line or loci of the points - T(x,y) intersects the
wing trailing edge (for exemple, fig. 4, lower surface), a subterfuge
must be used and pressure ratlios must be computed for points behind the
model. This computation is carried out by assuming that equations (2)
and (3) are valid without change and by computing the exact two-
dlimensional pressure for the polnt as if the upper and lower surface
extended without a break and with the same curvature beyond the actual

wing tralling edge.

When a slightly greater discrepency between the calculated and
experimental pressures, probably not exceeding twlice that resulting
from the use of the rreceeding method, cen be tolerated (in gemeral the
changes in pressures and in integrated characteristics will be small)
the calculations may be simplified by assuming that the points T(x,ys
coincide with the trailing-edge points F'(x',y) and no trailing-edge
distortion is present. With equal accuracy for the outboard stations
and considerably better accuracy for stetions approaching the two-
dimensional region as compared to the previous simplified method, the
calculations may be simplified by distorting the tip region linearly in
a spanwise direction with the tip pressures held constant. In this case
the pressures are calculated directly from equation (4) in which the

LP AP

01 o

ratios and -—= are computed for the point P(x,y) and are
a2

APUQ.
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applied at the point P'(x,y'). The relation between the initial and
transposed ord_'_l.nates is

Dz B
iz >

vhere the quantities K and K5 are defined in figure 5(b) .

o

Because the method of calculating pressures in wing-tip regions
that is presented in this paper requires the use of Mach lines, it is
obviously restricted to cases in which the flow over the airfoll is
always supersonic. The technique can also be applied to swept wntapered
wings of constant section thickness ratio, but this application has not
been carried out herein because, in most practical cases, disturbances
from the apex of the swept leading edge will affect part of the region
inflvenced by the wing tip. The pressures in the field influenced by
the apex of the leading edge or on wings having other than circuler-arc
sections cen similarly be determined. In all cases only the form of
equation (2) end possibly equation (3) will change. It should also be
noted that the accuracy of the pressures approximated for the tip reglon
depend directly upon the accuracy with which the two-dimensional pres-
sures can be determined.

COMPARISON WITH EXPERIMENT

A comparison between some pressure distributions calculated by the
method of thls paper with experimental pressure dlstributions is pre-
sented in figure 6 for a rectangular wing having a symmetrical circular-
arc profile, 9-percent thick. At the Mach number used for this compari-

son (Mg = 1.62) the station %: -0.282 1ies approximately in the

middle of the region influenced by the wing tip. The agreement between
the calculated and experimental values is generally good for regions not
affected by shock-boundary-layer interaction or by a slight misalinement
of the upper surface of the flap. At the higher angles of attack a slight
discrepancy exists between the calculated and experimental pressures
over the forward part of the wing theoretically not influenced by the-
wing tip. This discrepancy is believed to be due to the occurrence of
wing twist during the tests that was not accounted for by the experi-
mental method of measuring angles of incildence.

Additional caleéulated pressure distrlibutlons for other spanwlse
stations are presented in figures 7 and 8. The variation with spanwise
location and angle of attack of the aerodynamic coefficients obtalned
by mechanical integration of the pressure distribution curves of
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figures T and 8 are shown in Pigure 9. For camparison the section
coefficients determined by linear methods are included in the latter

figure. At station I = -0.282, the values of on and cp calculated

c .
by the present method for o = 4.55° (integrated from £ig. 6) were O.1Th
and 0.028, respectively, and the calculated cemter of pressure was abt
the 34.0-percent chord point. The corresponding experimental values
of and cp were 0.200 and 0.031 with the center of pressure at
the 34.5-percent—-chord point. A brief comparison of some of the aero-
dynamic characteristics obtained by the present method with those
determined.by Bonney's technique for a wing of aspect ratlo 2 indicated
very good agreement in normal-force coefficients and in piiching-moment
coefficient at low angles of attack. At higher angles of attack, the
present calculations show & forward movement of the center of pressure
with o +that is not predicted by Bonney's method.

CONCTUDING REMARKS

Y

An approximate method has been derived for calculating pressures
within the tip reglon of a rectengular wing having a circular-arc
profile. Comparison of results obtained by this method and by ldinear
theory with experimemtal results indicates that the approximate method
1s more accurate than the linear theory for predicting these pressures
at supersonic speeds.

Lengley Aeronautical Laboratory
National Advisory Committee for Asronautics
Langley Air Force Base, Va., July 28, 1949
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APPENDIX

PRESSURE RATIOS DUE TO WING THICKNESS AND ANGLE OF ATTACK

According to linear theory, the pressure coefficlent at any point
on a fixed wing is glven by

P = APy + APgy ' (a1)

vhere APy is the pressure on the surface. of the glven wing at zero
engle of attack and AP 1is the pressure on the surface of a flat plate
of the glven plan form &t the angle of attack a. The equatlion can be
rewritten for convenience in obtaining the derivations in the main body
of this paper as

(42)

APO‘ APG
P=AP62APU:+APGE-&3Q—:

where P denotes the pressure In the tip reglon as calculated by the
method of this paper and the subscripts 1 end 2 Iindicate the pres-
sures in the tlp and -two-dimensional flow reglons, respectively, as
' AP .
o
calculated by linear methods. The ratio E‘—; vas first derived by

Busemsnn (reference 2) by conical-flow methods and may be expressed as

AP
hot U A, y
Mg = = cos (l + 2B—__£> (A3)
where .
15l s
x

For a wing of rectangular plan form and circular-arc section, the
rossure due to thickness can be derived most conveniently by the use of
somi-infinite line sources and sinks by the method of Jones (reference 3).

Flgure 2 shows the locatlon and positive directions of the system of
axes used in the derivation. The semi-Infinlite line sources repre- °
senting the alrfoil surface are assumed to originate at the spanwise
station -h &and extend to the right. The line sources of egqual
strength but opposite sign required to simunlate the square wing tip are
assumed to origlnate at station y = 0 &and extend to the right.
Station -h 1is taken sufficlently distant from station y = 0 8o that

———a ~————— At e - e E
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the Mach cone from the point x = O,y = -h will not overlap that from
the wing tip. From equation (Al) of reference L, the disturbance
velocity on the wing may be expressed by

- 2U0,-h - 0,0 + 00,0 (4k)

w=T,.p -

where the subscript notation indicates the origin of the source line and
the u-expressions are given by

ug’n(x,y) = ;B_.E x - cos™ &(Lléll]

oy & A x-t '
e, n(%y) = Uy - n) z%oshlsl;f_nl ) (A5)

+ 12X Ble o cos L ML—J%
By -1 x - &

vhere £,n represents the origin of the elementary source ]_'l.nes. For
the circular-arc ailrfoil,

i Within the accuracy of the linear theory, the pressure-coefficient
ratio is

-2u1 )
APUl X _ (46)
oo - -2112 u2
v

Substituting the appropriate parts of equation (Al) into equation (A6)
results in

- +
oy . TR0 29,0

. (A7)
Leap %, - 3%, -h
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vhere the denominator of the fraction is restricted to the two-
dimensional flow field outside and to the right of the Mach cone from
the point x = 0,y = -h eand the numerator applies to the region within
‘the Mach cone from the wing tip. Substituting equations (A5) into (A7)
and simplifying give

L, -11) an-1 12y - cog-l
APdl - “B(st cos™- B<L Eo B|F|+ (ﬂ cos B;):l

1 X
51'23)

where the equation is valid for

-1

A

M T
A
|—l
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Figure 3. Sketch showing method of transposing a point in the flow field
of linear theory to the distorted flow field which allows for local .
velocitles on ths airfoil.
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Upper surface Lower purface

Figure 4.— Typical boundaries of region influenced by wing tip after
distortion to allow for locel velocltles on airfoil. =Symmatrical

circular—arc airfoil; -ﬁi = 0.09; M = 1.62; a = 3.35.
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(b) Linear distortion spanwise.

Figure 5.— Definition of constants used in determination of ordinates of
point transposed from flow field of linear theory to field distorted

to allow for local velocities on airfoil.




(a) o= 0.55°. (v) a= 1.55°.

Figure 6.— Comparison of cslculated and experimental pressure distributions in the tip reglon of a
symmetrical circular-ero airfoil. -2- = 0.09; L = —0.282; M = 1.62.
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Figure 9.— Comparison of some aerodynamic characteristics of the tip
region of a symmetrical circular—erc airfoil as determined from
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1inar theory and the approximate method. % - 0.09.
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