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SUMMARY

The aerodynamic forces and moments exerted on pitched and yawed
wing—body combinations consisting of a slender body of revolution
and & cruciform arrangement of thin wings have been investigated by
two theoretical methods. One method, an extension of the slender
wing-body theory of NACA TN No. 1662, makes possible the determina—
tion of simple closed expressions for the load distribution, the
forces, and the moments for slender cruciform-wing and body combina— '
tions in which the wings may be of dissimilar plan form. The
results are applicable at subsonic and transonic speeds, and at
supersonic speeds, provided the entire wing—body combination lies
near the center of the Mach cone. The second method treats
cruciforn—wing and body combinations consisting of a body of revolu—
tion and identical wings of arbitrary aspect ratio and plan form,
The results of this section are also independent of Mach number.

The main conclusions may be stated as follows: Theklift and
pitching moment are independent of the angle of yaw,and tﬁehside—
force and yawing moment are independent of the angle of attack. 'If
the vertical and horizontal wings are identical, the rolling moment
is zero for all angles of pitch and yaw.

INTRODUCTION

A great amount of research is being done on missile configura-—
tions utilizing cruciform arrangements of wings and relatively large
bodies of revolution. Although the aerodynamic characteristics of
the components of such configurations may be well known, the mutual
interference resulting from combining the wings, as well as the wings
and body, may be so great that it is desirable to study the aerody—
namic properties of the complete configurations.. Two methods of
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handling this problem are presented in this report.

The first method is essentially an extension of the theory for
slender wing-body combinations of reference 1 to determine the load
distribution, forces, and moments exerted on slender cruciform-wing
and body combinations inclined simultaneously at small angles in
pitch and yaw. Except for specifying that the wings have a pointed
leading apex and an unswept trailing edge, the wings are otherwise
of arbitrary plan form. Further, the vertical and horizontal wings
may be of different size or plan form. The results of this analysis
are applicable to combinations having wings of very low aspect ratio
at all Mach numbers and to combinations having wings of moderate
aspect ratio at Mach numbers near one. ZExamples are included that
illustrate the calculation of the load distribution, the forces,
and the moments on several elementary cruciform-wing and body combi-
nations.

The second method, based on symmetry considerations, is capable
- of treating cruciformwing and body combinations possessing complete
rotational symmetry at any Mach number. For this treatment, the
wings may be of completely arbitrary plan form and aspect ratio.

The horizontal and vertical wings, however, must be identical and
must be mounted at the same longitudinal station of the body.
Although no explicit formulas for the aerodynamic loading or for
other aerodynamic properties of specific configurations are presented,
several general conclusions are found regarding the total forces and
moments exerted on any cruciformwing and body combination possessing
rotational symmetry.

SYMBOLS
A aspect ratio (spa.n squared)
aresa
B cross—section area of body of revolution (na®)
By cross—section area of base of body of revolution
. ' volume
Bp mean cross—section area of body of revolution ( Te ngth>

Cr.  1ift coefficient [ -L—
L C C <qSH>
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CLy

C1

L'
L'L

L'y

ac '
.lift—curve slope (f)

rolling—moment coefficient ! —il—r
29SHSmax

pitching-moment coefficient M
aSgeq

yawing—-moment coefficient <—N—
aSycy
side—force coefficient [ ——
aSy

ac
rate of change of side force with angle of sideslip < —d—BI>

lift

rolling moment

rolling moment due to lifting forces
rolling moment due to side forces
4pitching moment about apex of horizontal wing
free—stream Mach number

yawing moment about apex of vertical wing
wing aresa

free—stream velocity

complex potential function (@ + 1Y)
complex variable (y + iz)

side force

radius of body
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maximm wing chord

semispan of flat plate

imaginary unit ( ~/=1)

over—all length of wing—body combination
static pressure

local pressure difference between lower and upper
surfaces (Pl - pu)

local pressure difference between port and starboard
surfaces (pP - ps)

free-stream dynamic pressure

polar coordinates

local semispan of horizontal wing

maximm semispan of horizontal wing

local semispan of vertical wing

maximum semispan of vertical wing

perturbation velocity component in the free—stream direction

Cartesian coordinates

distance from apex of horizontal wing to center of pressure
of lifting forces

distance from apex of vertical wing to center of pressure of
side forces

angle of bank
stream function
angle of attack

" angle of sideslip
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LFXY

m'

£ << H W

o

tranéformed rectangular coordinates

complex variable (n + 1¢)

density of air

perturbation velocity potential °

perturbation velocity potential corresponding to unif angles
of pitch or yaw

Subscripts

body
horizontal wing

| vertical wing
basic wing without body

pertains to angle—of-attack case having zero yaw

pertains to sideslip case having zero angle of attack
lower side

port side

étarboard side

upper side

ANALYSIS OF SIENDER CRUCIFORM-WING AND BODY COMBINATIONS

General

The prime problem to be treated in this section is the predic—

tion of the load distribution and aerodynamic properties for slender
cruciform—wing and body combinations inclined at small angles of
pitch o and yaw B. (See fig. 1.) The wings must have pointed
leading apexes, swept—back leading edges, and unswept trailing edges.
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otherwise their plan forms and relative size may be arbitrary. It
should be noted that the problem of determining the same character—
istics for a slender cruciformwing and body combination inclined

a small angle in pitch a' and banked an angle ¢ is equivalent
to the present problem and may be treated by writing a'cos ¢ and
a'sin ® for a and B throughout the analysis.

The approach to the problem will be based on the general
arguments advanced in references 1, 2, 3, and 4 for slender wings,
bodies, and wing—body combinations. The assumptions involved in
the study of these configurations permit the Prandtl linearized
differential equation for the perturbation velocity potential of a
compressible flow in three dimensions

(1-Mo3) Pgx + Pyy + P55 = O | (1)

to be reduced to a particularly simple parabolic differential equa-—
tion in three dimensions

Pyy + P2z = 0 (2)

which is the two—dimensional lLaplace's equation in the transverse
yz plane.

~ The slender body and low-espect-ratio wing theories (refer—
ences 2 and 3) neglect the term (l—Moz)Cpxx in comparison with
? and 9,, because 9., 1is very small for slender wings and
bggies. Therefore, the loading and aerodynamic properties of plan
forms having very low aspect ratios are independent of Mach number.
As pointed out in reference 1 and discussed in greater detail in
reference 5, the theory is also valid for swept—back plan forms of
moderate aspect ratio at sonic velocity, since the term (1-MyZ) 9.y
can be neglected because 1-Mo2 1is zero, provided that @xx does
not become very large in comparison with the other velocity gradients

and ®z5. In both the low-espect—ratio and sonic applications,

it should be noted that, with the sole exception of the infinitely
long swept wing, it is possible to solve only problems involving the
differential pressure arising from an asymmetry of the flow field.
Thus, lifting problems may be treated satisfactorily. Thickness
problems cannot be handled in general, however, since the theory
predicts infinite longitudinal perturbation velocities and hence
infinite pressures at all points on the surfaces of wings and bodies
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other than the infinitely long swept wing, thereby violating the
basic assumption of linearized small perturbation theory,

The form of eguation (2) permits the analysis to be undertaken
as a two—dimensional potential-flow problem at this point; each
vertical plane, therefore, may be treated independently of tae adja—
cent planes in the determination of the velocity potential. Thus,
the potential is determined for an arbitrary x = X, DPlane; then,
since the xo plane may represent any plane normal to the fuselage
center line, the potential distribution is known for the entire wing—
body combination.

Velocity Potential

For the problems about to be analyzed, the perturbation velocity
field in the x, plane is similar to the velocity field around an
infinitely long cylinder, the cross section of which corresponds to
the trace of the wing—body combination in the =x,plane. For a slender
cruciform+ing and body combination inclined an angle a in pitch and
B in yaw, the flow in the x, plane is as shown in figure 2(a) where
.the component of the flow velocity at infinity in the z direction is
Voo and that in the y direction is —V,B. The flow field of
figure 2(a) can obviously be considered to be the sum of the two flow
fields shown in figures 2(b) and 2(c), since the vertical wing in
figure 2(b) and the horizontal wing in figure 2(c¢) 1lie in planes of
symmetry and cannot affect the flow shown in their respective figures.
Thus the flow fields shown in figures 2(b) and 2(c) are identical to
those of figures 2(d) and 2(e), respectively. These component flow
fields have been treated in reference 1. Briefly, the derivation of
the expression for the velocity potential of the flow field shown in
figure 2(d) proceeds as follows:

The transverse flow around a section such as shown in figure.2(b)
or 2(d) may be derived from the transverse flow around an infinitely
long flat plate (fig. 2(f)), by application of the principles of con—
formal mapping using the Joukowski transformation. Thus, we consider
the mapping of the n{ plane of figure 2(f) onto the yz plane of
figure 2(b) by the relation

=3+ 2 | (3
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The complex potential function for the flow in the n¢ plane is (see, for instance; reference 6)

Wa' = Pt + 1Vg' = 1V v g2-g? » (4)

where the primed symbols indicate values in the n{ plane as opposed to the yz plane. If d = 2a,
the flow around the flat plate expressed by equation (4) transforms by equation (3) into the
vertical flow around a circle of radius a having its center at the origin. If d 1is taken
larger than 2a, the flow transforms into the desired vertical flow around a cylinder consisting
of a circular cylinder of radius a with thin flat plates extending outward along the extension
of the horizontal diameter to a distance s from the origin. When the ¢ plane is transformed
into the yz plane in this manner, the complex potential for the flow in the yz plane is

Wy = 9 + iV, = —1V0 Kx + %(5)2— d& = -V /(x + ﬁ;—)‘? - (s + 553>2 (5)

since the point d in the n{ plane corresponds to the point s in the yz plane. The velocity
potential @, for the flow in the yz plane may then be determined by squaring equation (5),
substituting X = r(cos 6 + 1 sin 6), and solving. Thus is obtained the expression for the
velocity potential of the flow field shown in figure 2(b),

- L6QT *ON NI VOVN
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V°a'/ <l+—>r2cos 26+52 1+——;>+'/r <+—>+2a"‘cos Lo+s* <1+—;> —252<1+ s"'XH ?>r2cos 206 -

where the sign is positive in the upper half plane (0<6 <1t) and negative in the lower half
plane (n<6 «2n), The expression for the velocity potential for the flow field shown in
figure 2(c) is found in a similar marner to be

—+—/< +—->r2cos 26+t2< + —-> / <1+ 1>+Ea cos 4o+t <1+ >+2t2 <1+ 1)(1+ —;)r cos 29

where the sign is positive in the left half plane (%<6 <-321 and negative in the right
half plane (— §<9 <X The perturbation velocity potential for the flow field about a

' cruciform—-wing and body combination inclined in both pitch and yaw (fig. 2(a)) is then given by

P =95 +%p

Load Distribution

The differential pressure coefficient in linearized potential flow is given by

&p
q

SHE

(9).

(6)
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where &«' is the component of the perturbation velocity in the free-stream direction. Since
body axes are used in the present treatment rather than wind axes, the component of the
perturbation velocity in the free—stream direction will be approximsted by

-9 _g590,,99
u ~ Bay+°°az | (10)

The last two terms of equation (10) are often omitted since they each represent the product of
a small angle and a small perturbation velocity and are generally much smaller than the first
term of the right—hand side, which represents only a perturbation velocity. For the long

slender wings, bodies, and wing—body combinations considered here, however, g—:—’ is much smaller

A

than %3 and gﬂ therefore, all three terms are retained. The pressure coefficient is then
4 _ ,
given by :
: bp_ 4 (o9 g, 3‘P> (11)
q@ Vo \ ox oy * %

Through application of equations (8) and (11) expressions for the lifting differential
pressure (lower minus upper) on the horizontal wing and body are found to be, respectively s

da (&2 2\ | : 4..
o) oo | BCE) 3B E-H)] [z (o) ”
: 1+g; a ’ ‘ '

(13)

oy (D2 2w 2)] ] o)
B - LesyoE [T E

8

0ot
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where. in equation (13), the plus sign is taken for the starboard side of the body and the minus
sign for the port side. Similarly the yawing differential pressure (port minus starboard) on
the vertical wing and body are given, respectively, by .

(), o [ E) 12 G- [16-)]

GEIEary
o ECD) e e 2(-5)] wa(2)f-2

8

2 2 .2
A[<1+%-2- —’-&-:E /(1—-—- h-z-E

- where, 'in equation (15), the plus sign is taken for the upper side of .the body and the minus

sign for the lower side. It should be noted that the expressions for the pressures on the body
are not valid for stations behind the trailing edge of the more forward wing since the influ—
ence of the downwash field behind the wings has not been considered in the analysis.

Total Forces and Moments

The total forces and moments exerted on a complete cruciform-wing and body combination
may be determined by integrating the loading over the entire surface area. It is convenient
to carry out the integration by first evaluating the forces and moments on one transverse
strip and then integrating these elemental quantities over the length of the wing-body com—
bination. The 1ift and side force on a transverse strip of width dx are glven, respectively,
by

L68T °"ON NI VOVN
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quf%€m>u , | ' (17)
The rolling moment on this slemental strip is given by | |
oo _qu{ <_PL>H f" <_Bu>ﬂ dy+f (‘21) d“f <%P_Y>v d] (8

vhere the integration is carried only over the surface of the wing since pressures on the
body cannot produce a rolling moment. When the indicated operations are performed, the
following expressions for the elemental 1ift, side force, and rolling moment are obtained:

£ (B (5) 20H) B[ 0H o] @
HORSECORICOIETIICORYCOELS JIIKE
S (- 8) (1) (v o 8 -
o] 8 () e (v15) - (o) ot 222 ]

The forces, momenfs , and center of pressure for the complete wing—body combination may
now .be determined by integration of the forces on all the elemental strips. Expressed
in nondimensional form, these characteristics are given by

dy

(21)

A
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SO
m—sncnfdx(>11x. | -_(23)

<_°_P_>Y -2 @
o~ ke [ 3 )‘”‘ e

where the integration interval extends from the most forward to the
most rearward part of the wing-body combination. 'To achieve a
“unity of expression for side force and 1lift and for yawing moment
and pitching moment, the side—force coefficients have been based
upon the area of the vertical wing rather than the more conven—
tional horizontal-wing area, and the yawing-moment coefficients
have been based upon the area and root chord of the vertical wing
rather than the area and span of the horizontal wing.

The expressions for the forces and moments on the elemental
strips (equations (19), (20), and (21)) indicate four important
general characteristics of slender cruciform—wing and body combina—
tions. First of all, there is a complete correspondence of the
expressions for the lift and side force as would be expected from
the geometry of the configuration. Second, the 1ift is independent .

b e T T o
~——
—_———e
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of the angle of yaw and the side force is independent of the angle
of attack. Third, the expressions for the 1ift and pitching
moment for slender cruciform+wing and body combinations are identi-
cal to those given in reference 1 for slender plane-wing and body
combinations. ILast, if the vertical and horizontal wings are
identical, the rolling moment is zero.

It might be noted at this time that the value of zero for the
rolling moment in the case of identical wings results from a
complete balancing of the rolling moment exerted on the horizontal
wing by an equal but opposite rolling moment on the vertical wing
rather than by having zero rolling moment on each wing. Since such
a complete balancing may be easily disturbed by factors neglected
in the analysis (for instance, higher—order terms neglected in the
analysis or separation along the wing-body junction), particularly
at large angles of inclination, the pitch and yaw range over which
this conclusion is expected to apply may be more limited than that
of the conclusions rega.rding 1ift and side force.

Several applications of the foregoing theory are presented in
d.eta:ll in the appendix.

ANALYSIS OF C.RUCU‘ORHING AND BODY COMBINATIONS
HAVING IDENTICAL WINGS

An anslysis of some of the aerodynamic properties of cruciform—
wing and body combinations having identical wings may be undertaken
on the basis of symmetry considerations. For this treatment the
wings may be of any plan form or aspect ratio, provided the vertical
and horizontal wings are identical and are mounted at the ‘same
longitudinal position of the body. The concepts of linearized
theory are used in this treatment; therefore, the usual restrictions
that the body is slender end that the angles of pitch and yaw are
small must be observed. The conclusions are applicable at all
speeds, since the Mach number does not enter the problem directly.
Consider the cruciform—wing and body combinations as being inclined -
small angles o Iin pitch and B in yaw from the free—stream
direction, the free-stream velocity being V,. Since superposition
is a valid principle in linearized theory, the perturbation velocity
potential @ may be considered to be the sum of the two components

? = ag'y + BOY A | (29)
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where o'y and ¢'p are the perturbation velocity potentials of
the flow about a cruciform-wing and body combination inclined unit
angles of pitch and yaw, respectively.

Consider now the differential pressure between corresponding

points on the upper and lower surfaces of the body and the horizon—
tal wing

IO ECONRICONEONIE
LG -G, ]-06), - (3 1)
6 - 1, -8 o

Ordinarily, only the potential gradients, or perturbation velocities,
in the x direction would be included in equation (30). For long
slender objects, however, the perturbation velocities in the x direc—
tion are so much smaller than those in the y and z directions that
the products of small angles and perturbation velocities in the.

y and z directions must be retained as well as the perturbation
velocities in the x direction. Since the inclusion of these terms
does not introduce any particular restrictions into the problem,

they will be retained throughout the present discussion even though
in many instances, such as with high-aspect—ratio unswept wings, it
is unnecessary to do so. In general, none of the individual terms
in equation (30) is zero and the pressure at every point depends upon
both o'y and o'y, or, what is equivalent, upon both the angle of
attack and the angle of yaw, However, several of the terms are '
equal and will cancel. Thus, remembering that equation (30) repre-
sents the lifting differential pressure , 1t is apparent from
symmetry considerations that



1
o
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everywhere and that
7). - (“' ),

on the horizontal wing. Therefore ’ _equa.t'ion (30) simplifies to

(08 ()
o[(2), - <a¢' )]+, - ()}

. J
|- —~

3

< ot ) < oot

1]
(o]

where the third bracketed “term differs from zero only on the body. The second and third
bracketed terms are odd in y; hence, they cannot contribute to the 1ift. The 1lift is
therefore evaluated by Integrating the first bracketed term over the entire projected area
of the wing-body combination.

e 1083, - (%),

(31)

(32)

91
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The pitching moment and longitudinal center—of-pressure position are
given similarly by

M=- pvoajI’H [<Bcp' <B<p' > ]x dx dy (33)

(), -2

An expression for the rolling moment due to lifting differen—
tial pressures may be obtained in a similar manner. The first and
third bracketed terms in equation (31) need not be considered; the
first because it is even in y, the third because it is different
from zero only on the surface of the body. Hence, the rolling
moment due to the lifting differential pressure is given by

= —pV, “vaé [ e <acp' ] dx dy (35)

where the Iintegration is carried over only the area of the horizon—
tal wing.

In a similar manner, expressions for the side force, yawing
moment, and rolling moment may be developed from the differential
pressure between corresponding points on the port and starboard
.sides of the wing-body combination, thus

e[, (B Jee oo
ool [(2)- RO
( ) ch (38)

= oVoan/; [( ) <a¢b }z dy dz (39)
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where the integration is carried over the projected area of the wing—
body combination in equations (36) and (37) and only over the area of
the vertical wing in equation (39).

The total rolling moment is

e N CORCOR TS
NCHRICYRIEES (o

since it can be seen that the two integrals have identical values
because the flows they represent are identical save for orientation
in the coordinate system.

From examination of equations (32) through (40), it may be seen
that the merodynamic properties of cruciformwing and body combina—
tions having identical vertical and horizontal wings of arbitrary
plan form and aspect ratio may be summarized in the following
statements. The 1lift and pitching moment are independent of the
angle of yaw and the side force and yawing moment are independent of
‘the angle of attack. Further, the rolling moment is zero for all
combinations of angles of pitch and yaw. For the corresponding
problem relating to a cruciform—+ing and body combination inclined
in pitch and bank, the conclusions may be restated as follows: The
1lift and longitudinal center—of—pressure position are independent of
the angle of bank and the rolling moment is zero for all angles of
bank.

CONCLUSIONS

The forces and moments exerted on pitched and yawed wing-body
combinations consisting of a slender body of revolution and a
cruciform arrangement of thin wings have been investigated by two
theoretical methods.

One method made possible the determination of simple closed.
expressions for the load distribution, the forces, and the moments
for slender cruciformwing and body combinations of which the wings
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mey be of dissimilar plan form. These results indicate four general
characteristics of slender cruciform«ing and body combinations.
First, there is a complete correspondence of the expressions for the
1lift and side force. Second, the 1lift is independent of the angle of
yaw and the side force is independent of the angle of attack. Third,
the expressions for the 1ift and pitching moment for slender

cruciformwing and body combinations are identical to those given in
NACA TN No. 1662 for slender plane—wing and body combinations. ILast,
if the vertical and horizontal wings are identical, the rolling
moment is zero.

The second method treats cruciformwing and body combinations
consisting of a body of revolution and identical wings of arbitrary
aspect ratio and plan form. Although explicit formulas for the
aerodynamic properties are not given in terms of the physical dimen—
sions of the wings and body, the following general relationships are
found for all Mach numbers for such cruciformwing and body combina—
tions inclined simultaneously in pitch and yaw. The lift and pitching
moment are independent of the angle of yaw, and the side force is
independent of the angle of attack. The rolling moment is zero for all
angles of pitch and yaw. For the corresponding problem relating to
cruciform+wing and body combinations inclined in pitch and bank these
conclusions may be restated in the following manner. The 1ift and
pitching moment are independent of the angle of bank and the rolling
moment is zero for all angles of bank.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.

APPENDIX

EXAMPLES OF SLENDER CRUCIFORM-WING
AND BODY COMBINATIONS

For any given cruciform—wing and body combination complying with
the general requirements of the slender—body theory presented in the
first part of this note, the load distribution may be determined
directly by substituting the proper values for the body radius and
wing semispan and their rate of change with x into equations (12),
(13), (14), and (15). By using these expressions for the load distri-
bution, closed expressions for the forces and moments for several
elementary configurations may be readily found by simple integration
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of the integrals indicated by equations (22) through (28). The dis-—
cussion will be brief since the present results are similar to those
given in reference 1.

Pointed Low—Aspect-Ratio Wings, No Body

The first and simplest example of & slender cruciform configura—
tion to be considered consists of a set of pointed low-aspect—ratio
wings, which may have different plan forms and aspect ratios, and no
body. The aerodynamic properties of such a configuration may be
determined by letting

olp
il
cH
il
o
565
H
o

By substitution of these values into equations (12) and (1k4), it
follows that the load distributions for the horizontal and vertical
wings are given by

(A1)

fog ‘*“<a:£+ﬁz> opy)_ 48 —2{*%)
S R

8 ‘ t

These expressions are similar to that given by Ribner (reference 4)
for the loading on a single low-aspect—ratio triangular wing inclined
in pitch and yaw. The symmetric first terms contribute to lift and
side force; the antisymmetric second terms contribute to rolling
moments. To illustrate this point further, figure 3 has been prepared
showing the load distribution on a cruciform arrangement of triangular
wings. The loading on the vertical wing is shown by the two top
sketches while that on the horizontal wing is shown by the lower
sketches. The sketches on the left represent the contribution of the
symmetric first terms of equation (Al); those on the right the contri-
bution of the antisymmetric second terms. In accordance with the
stated assumptions, these expressions are invalid when either the
angle of pitch or yaw becomes so large that the leading edge passes
beyond the stream direction and becomes, effectively, a trailing edge.
Mathematically expressed, the expressions are valid when |B| < ds/dx
and |a| f;dt/dx. If it is desired to investigate wings inclined at
larger angles, consideration must be given to the influence of the
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trailing vortices lying outboard of one of the sides of the wing.
Such a problem may be treated by an extension of the methods employed
in the treatment of a swept—back wing in reference 5. The total load
on an elemental strip is found from equations (19) and (20) to be

a/L\,. ds 4_<¥.>= at |
dx<q>q lHrcnu;.sdx o\ /)¢ —hﬂBqtdx | (A2)

The rolling moments exerted on the horizontal and vertical wings are
given, respectively, by the corresponding terms of equation (21)

4/ Lt = 2 4a (L' - 2
dx< ‘1>Hq —2nafqs dx<q>vq 2nafqt (A3)

" The 1lift and side—force coefficients for the cruciform wing are
found by integration of the forces on the elemental strips between
the leading apex and the trailing edge as indicated by substituting
equation (A2) into equations (22) and (25)

‘ CH
-1 48 40 = X ==X .
CLW = SHu/; lnas = dx S Cy, ZAVB (Ak)

where Ag and Ay are the aspect ratios of the horizontal and
vertical wings, respectively.

~Similarly, the pitching—, yawing—, and rolling-moment coefficients
are found by substituting equation (A2) into equations (23), (26),
and (28), respectively, and integrating:

°H 2
Cmy = — L f harasgixd_x=_£a[h52ma_x_’+(ﬂ )m]
SECH Jo dx 2 Sg Sg
(A5)
S (Sz)m] X [ (t3)p :l
= - Eqﬂq' {l - 32m an = > AVB 1 _t2mx
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1 [ v 2 d/\OH 2 }
C = m— 2 dx - 2 dx
ZW P maaSH /; a3 A nap

(A6)
- S;s i[cV(tz)m, cH(s2)m }
where
2 1 °E 1- y
(s®) = Ls%lx (z2) = /;t2d.x

Attention is called to the fact that the pitching- and yawing-mament
coefficients represent moments about the leading apexes and are non—
dimensionalized through use of the area and root chord of the
horizontal and vertical wings, respectively.

For a more specific example, consider the wings to be of
triangular plan form moving point foremost. Then, since

(s®)y = % 82pax 8nd (t2)p = 1 t2a¢» the moment coefficients given

by equations (A5) and (A6) are

1

R L T R (s
. noB t > :
c, = == -1 (a8)
P73 \ Sty

Pointed Slender Body of Revolution

'Expressions for the aerodynamic characteristics of a pointed
slender body of revolution may be derived from the previously
derived equations by letting
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Since these results have been presented many times (see, for
instance, references 1, 2, 7, and 8) and are well known, only the
final equations will be listed

<A_Z_L>B=aq%/1—_§‘ <9§12 s =i g

a2

d /L\  _ da _ a8 a./Y\,. ._ a8
1 RN
CL:Ebl?f 2“‘(% dx = 2a Cy =— 2B (A11)
o
Jfl
(dB/dx)x dx
Te.p. _1 _yim (A12)
T 1 1 By,

where B 1is the local cross—section area, By, is the area of the
base, and B, 1is the mean cross—section area (i.e., the volume of
the body divided by the length). In the coefficients, the reference
area 1s taken as the area of the base cross section.

For a more specific example, consider a cone moving point.
foremost., The relationship between the base area and the mean cross—
- section area is given by

-

The center—of—pressure position is thus seen to be at the two—thirds
point as would be anticipated by the conical nature of the load dis—
tribution for this case .

Xc.p. _ 2

l 3
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Triangular Wings With Conical Bedy

The first example of & wing-body combination to be considered is
a conical arrangement (coincident vertices) of a conical body and
triangular vertical and horizontal wings of, in general , different
aspect ratio. The geometry of such a configuration requires that

a _ dafdx _ a _ dajfdx _
s ds/dx kﬂ t dt/dx kV

where da/dx, ds/dx, and dt/dx are constants. If these values are
substituted in equations (12), (13), (14), and (15), the load distribu—
tion along any elemental strip of the wings and body is given by

g Pyt 2 e i (n kgt 54
<-A?1P_I-‘>H o < j‘/(l*kﬁ‘i) - 2( lsi]EI:‘:"F‘) Y4>

(Aq& - ba 38 /(m;)? ~ big® <§ ) + )
B

kﬁ()(- L Or-
(l+kH) - g <a2> :;(1—kve)2+ukvg<§>

___( _ 2k t2>+a_<_‘L_
4p Z
[ /(l+kv4) - Ez( :4>

15
3—
n

]

(A%Y 4 5% «/(1+kve)2 - b ® :_§> N
«(2)0-2) | w(® HE
J (14997 = ty? (f;) J o) by <§>

16aB
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where the plus and minus signs are taken as in equations (13 and (15).

The integrated 1ift, side force, and rolling moment on an
elemental strip are

.Q.v L = Ligas 35 A(I\g = - at o
dx(q)q hraqs % °H dx<q>q )-mBq‘bdx v (A1k)

. i <-]-:-§-> q= EGBQ(‘szV - 8%1g) .

(a15)
where 0 and T are constants given by
1 2 -1 2k
0 = 1+k*+ = | 2k(1-k2) — (1+¥°) sid
s 1| 21 - (107) o=
2 4 242 1 1 X
T = 2k(1-k") + n(1+k*) — (1+k°) cos ~ —
(1-4°) + n(14%) — (145°) —
The subscripts H and V on o and T refer to the use of kyp or
ky 1in the above expressions.

The 1ift, side~force, and rolling—

moment coefficients for the entire conical. cruciform-wing and body
combination are then

Cp = g Agoog °Y=—g AyBoy (416)

aB ' tgm&x
) - 5 <TV - TH> (a17)

Due to the radial nsture of the lines of constant pressure, the

center—of-pressure position is independent of the body radius — wing
semispan ratios and lies at the two—thirds chord point. The pitching
and yawing moments are then given by '

cm=-l31 Agaoy cn=-13L AgBay ' (A18)
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The 1lift, side force, pitching-moment, and yawing—momsnt results are
plotted in figures 4 and 5. Figure 6 presents rolling-moment results
for selected ratios of vertical wing span to horizontal wing span.

To facilitate the computation of further results, the values of T
for use in equation (Al7) are plotted as a function of k in

figure 7.

Triangular Wings on a Semi—infinite Cylindrical Body

The next example to be considered is that of a triangular
cruciform wing mounted on a semi—infinite cylindrical body. The-
essential relastionships assoclated with this configuration are that
da/dx equals zero and that ds/dx and dt/dx are constants.
Therefore it is clear from equation (A9) that no forces are exerted
on the body shead of the leading edge of the root chord. Behind this
point, pressures are exerted on the wings and body in accordance with
the following relations:

d I 4 4 \
() - G- - a(-8
q &4 y2 a4 .
Je+5)-5 (25
45 () _at), X ( 8 y2 =
<§3L- =%E<1-F * g \ 1maz at ¥ 1~ a2
q

+
a2\2 y2 ;// a2 \2
! /(“;3 -z (1-2)"

| | Ma19)
(), - EE

|
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v(rhe:)*e the plus and minus signs are taken as in equations (13) and
15). .

The Integrated forces a.nd. moments on an elemental strip are
given by
d /L at\ ds a /Y _ #\ dt
—( = brogs (1- = )= —( = = —=Ux -2\
dx(q) q o < S4>dx 'dx<q>q -4nBqt ( 1 ¥ = (A20).
2apqt” [25<1— ac >4 <1+ —> é.-!- ) cos™t 1&2_ -
t2+a°

4 /L
&%)
2apns?| a8 (1- 88)+ x (10 82) - (3¢ 83) "oos™ 222

(A21)

By integration along the length of the body, force and moment
coefficients for the complete wing-body combination, based on the
area of the basic triangular wing without fuselage, are found to be

pe(rwy) () e

Cpr — Zago (1482 + 382 ) o= Zaop (14482 4 387 ) (a23)
3 5max  5Tmax 3 Vmx  tma

_ 2;.‘3.(:;3551 wevg) <:Aau>'

where

N 12 2k2
V= 2k (1-2) e LoP—31 ) 1+6X2 1 o™ Tt 1 T

where, for detetmining vy, k is taken as a/tpzy and, for vy,
k is taken as &/spyy.
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It may be seen from the equations and from figures 4 and 5 that the
addition of a semi-infinite cylindrical body to a cruciform arrange—
ment of triangular wings decreases the magnitudes of the forces and
moments just as in the preceding example with the conical body. In-
the present example, however, the forces and moments continue to
decrease as the body radius increases with respect to the wing semi-—
span until finally, when they are equal (corresponding to a body
without wings), the forces and moments are all zero. It is further
seen that the rolling moment vanishes when the two wings become
identical, as has been shown in general in the text. The rolling—
moment results cannot be plotted in generel, however, as was done in
the case of the conical wing—body combination since there are now :
three significent parameters instead of two. To facilitate calcula— -

tion of these results, therefore, the variation of Vv with k has -
been plotted in figure 7.

Triangular Cruciform Wing on a Pointed Body

The theoretical characteristics of a triangular cruciform wing
mounted on a pointed body of revolution, closed in an arbitrary
menner at the nose but cylindrical along the wing root, may be
determined by combining the results of two previous examples. The
portion of the wing-body combination ahead of the leading edge of
the wing root may be considered to be equivalent to the arbitrary
‘body of revolution treated in the second example. The portion:of
the wing-body combination aft of the leading edge of the wing root
is equivalent to a cruciform arrangement of triangular wings mounted
on a semi—infinite cylinder discussed in the preceding example. The
load distribution and integrated load on an elemental spanwise.strip
are then the same as those given in the corresponding example.

The 1ift and side—force coefficients are found by adding the
forces on the component parts of the wing-body combination and
dividing by the dynamic pressure and the characteristic area, again
taken to be .the area of the basic triangular wing without fuselage.
The 1ift and side—force coefficients are then

max 5 max max

_x a2 - a4 _'__n __8a2 at
actom (o) oo ge(n o

(A25)
These relationships are shown graphically in figure k.
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The pitching— and yawing-moment coefficients for this wing-body
combination may be found in a manner similar to that used in finding
the 1ift and side~force coefficients, taking care to transfer the
moments of both components to the same axis.

O 5 a8 a% 3 By 1 a)}
Cm—_§< [1 2-sgmx +3‘*’4mza.x 2 n8%max \ C 1+3mx

The rolling—moment coefficient is given, of course, by
equation. (A24). ‘
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Figure [|.-View of cruciform-wing and body combination
showing coordinate axes.
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Figure 2.- Two-dimensional flow fields.
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Figure 3.-Lload distribution on a triangular cruciform wing.
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Figure 6--Rolling moment for conical
cruciform-wing and body con-
figurations.
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