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TECUNICAL NOTE NO. 1897 

AERODYNAMIC PROPERTIES OF CRUCIFORM-WING AND BODY. 
COMB INATIO]S AT SUBSONIC, TRANSONIC, AND 

SUPERSONIC SPEEDS 

By John R. Spreiter


SUMMARY 

The aerodynamic forces and moments exerted on pitched and yawed 
wing-body combinations consisting of a slender body of revolution 
ath a cruciform arrangement of thin wings have been investigated by 
two theoretical methods. One method, an extension of the slender 
wing-body theory of NACA TN No. 1662, makes possible the determina-
tion of simple closed expressions for the load distribution, the 
forces, and the moments for slender cruciform-wing and body combina-
tions in which the wings may be of dissimilar plan form. The 
results are applicable at subsonic and transonic speeds, and at 
supersonic speeds, provided the entire wing-body combination lies 
near the center of the Mach cone. The second method treats 
cruciforn-iing and. body combinations consisting of a body of revolu-
tion and identical wings of arbitrary aspect ratio and plan form. 
The results of this section are also independent of Mach number. 

The main conclusions may be stated as follows: The )r ft and 
pitching moment are independent of the angle of yaw, and the side-
force and yawing moment are independent of the angle of attack. If 
the vertical and horizontal wings are identical, the rolling moment 
is zero for all angles of pitch and yaw. 

INTRODUCTION 

A great amount of research is being done on missile configura-
tions utilizing cruciform arrangements of wings and. relatively large 
bodies of revolution. Although the aerodynamic characteristics of 
the components of such configurations may bewell known, the mutual 
interference resulting from combining the wings, as well as the wings 
and. body, may be so great that it is desirable to study the aerod.y-
nanLic properties of the complete configurations.. Two methods of
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hrn-idling this problem are presented in this report. 

The first method is essentially an extension of the theory for 
slender wing—body combinations of reference 1 to determine the load 
distribution, .forces, and moments exerted on slender cruciform-wing 
and body combinations inclined simultaneously at small angles in 
pitch and yaw. Except for specifying that the wings have a pointed 
leading apex and an unewept trailing edge, the wings are otherwise 
of arbitrary plan form. Further, the vertical and horizontal wings 
may be of different size or plan form. The results of this analysis 
are applicable to combinations having wings of very low aspect ratio 
at all Mach numbers and to combinations having wings of moderate 
aspect ratio at Mach numbers near one. Examples are included that 
illustrate the calculation of the load distribution, the forces, 
and the moments on several elementary cruciform-wing and body combi-
nations. 

The second method, based on symmetry considerations, is capable 
of treating cruciform-wing and body combinations possessing complete 
rotational symmetry at any Mach number. For this treatment, the 
wings may be of completely arbitrary plan form and aspect ratio. 
The horizontal and vertical wings, however, must be identical and 
must be mounted at the same longitudinal station of the body. 
Although no explicit formulas for the aerodynamic loading Or for 
other aerodynamic properties of specific configurations are presented, 
several general conclusions are found regarding the total forces and 
moments exerted on any cruciform-wing and body combination possessir 
rotational symmetry.

SYMBOLS 

(span squared A	 aspect ratio	
area	 ) 

B	 cross—section area of body of revolution (itS2) 

Bb	 cross—section area of base of body of revolution 

/ volume'\ mean cross—section area of body of revolution length) 

CL	 lift coefficient (L
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/dCL\ , lift—curve slope ( -) 

rolling—moment coefficlent(_L' 
2qSs 

Cm	 pitching—moment coefficient (qsc) 

c	 yawing—moment coefficlent(_N 
qSc 

C1	 side—force coefficient 

Cy	 rate of chge of side force with angle of sideslip
d3) 

L lift 

rolling moment 

L 'L rolling moment due to lifting forces 

L ?y rolling moment due to side forces 

M pitching moment about apex of horizontal wing 

free—stream Mach number 

N yawing moment about apex of vertical wing 

S wing area 

V0 free—stream velocity 

W complex potential function (cp + i*) 

X complex variable	 (y + iz) 

I side force 

a radius of bo&y
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CLa. 

Cy 

.lift-curve slope (~L) 

rolling-moment coefficient ( L' .) 
2qSHsmax 

pi tchi.ng-moment coefficient (q~CH) 

yawing-moment coefficient ( N ) 
qSvcv 

side-force coefficient(q~) 

( dd"CQV) CYI3 rate of change of side force with angle of sideslip ~ 

L lift 

L' rolling moment 

L'L rolling moment due to lifting forces 

L'y rolling moment due to side forces 

M pitching moment about apex of horizontal wing 

Me free-stream Mach number 

N yawing moment about apex of vertical wing 

S wing area 

Vo free-stream velocity 

W complex potential function (cp + i 1jr) 

X complex variable (y + iz) 

Y side force 

a radius of body 

3 



NACA TN No. 1897 

c	 maxinu wing chord 

d	 semispan of flat plate 

i	 imaginary unit ( AJ) 

1	 over—all length of wing—body combination 

p	 static pressure 

local pressure difference between lower and upper 
surfaces (p1 - 

local pressure difference between port and starboard 
surfaces	 - PS) 

q	 free—stream dynamic pressure 

r,9	 polar coordinates 

s	 local semispan of horizontal wing 

s	 maximum semispan of horizontal wing 

t	 local semispan of vertical wing 

tmax	 maximum seinispan of vertical wing 

u	 perturbation velocity component in the free—stream direction 

x,y,z	 Cartesian coordinates 

(xcp)L distance from apex of horizontal wing to center of pressure 
of lifting forces 

( xcp) distance from apex of vertical wing to center of pressure of 
side forces 

angle of bank 

stream function 

a.	 angle of attack 

J3	 angle of sideslip
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maximum wing chord 

semispan of flat plate 

imaginary unit (J=f.) 

over-all length of wing-body combination 

static pressure 

local pressure difference between lower and upper 
surfaces (PI - pu) 

local pressure difference between port and starboard 
surfaces (p - p ) 

p s 

free-stream ~c pressure 

polar coordinates 

local semispan of horizontal wing 

maximum semispan of horizontal wing 

local semispan of vertical wing 

maximum semispan of vertical wing 

perturbation velocity component in the free-stream direction 

Cartesian coordinates 

(XC.P.)L distance from apex of horizontal wing to center of pressure 
of lifting forces 

(Xc •p ) y distance from apex of vertical wing to center of pressure of 
side forces 

angle of bank 

stream function 

angle of attack 

angle of sideslip 
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transforid rectangular coordinates 

complex variable (q + i) 

p	 density of air 

perturbation velocity potential 

cp'	 perturbation velocity potential corresponding to unit angles 
of pitch or yaw

Subscripts 

B	 body 

H	 horizontal wing 

V	 vertical wing 

W	 basic wing without body 

a	 pertains to angle-of--attack case having zero yaw 

b	 pertains to sideslip case having zero angle of attack 

1	 lower side 

p	 port side 

s	 starboard side 

u	 upper side 

ANALYSIS OF BLENDER CRUCIFORM-WING AND BODY COMBINATIONS 


General 

The prime problem to be treated in this section is the predic-
tion of the load distribution and aerodynamic properties for slender 
cruciform-wing and body combinations inclined at small angles of 
pitch a and yaw 13. (See fig. 1.) The wings must have pointed 
leading apexes, swept-back leading edges, and unswept trailing edges. 

11
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otherwise their plan forms and relative size may be arbitrary. It 
should be noted that the problem of determining the same character-
istics for a slend.er cruciform-wing and body combination inclined 
a small angle in pitch a' and banked an angle D is equivalent 
to the present problem and may be treated by writing a'cos 	 and 
ct t sin	 for a aM 3 throughout the analysis. 

The approach to the problem will be based on. the general 
arguments advanced in references 1, 2, 3, and 4 for slender wings, 
bodies, and wing-body combinations. The assumptions involved in. 
the study of these configurations permit the Prandtl linearized 
differential equation for the perturbation velocity potential of a 
compressible flow in three dimensions

(1) 

to be reduced to a particu.larly simple parabolic differential equa-
t ion in three dimensions

q:yy + (P zz = 0
	

(2) 

which is the two-dimensional Laplace's equation in the transverse 
yz plane. 

The slender body and low-aspect-ratio wing theories (refer-
ences 2 and 3) neglect the term (l-M 2 )p 	 In comparison with 
q	 and.	 because	 is very small for slender wings and 
bies. Therefore, the loading and aerodamic properties of plan 
forms having very low aspect ratios are Independent of Mach number. 
As pointed out in reference 1 and discussed in greater detail in 
reference 5, the theory is also valid for swept-back plan forms of 
moderate aspect ratio at sonic velocity, since the term (1-NO2 ) p 

can be neglected because 1-MO2 is zero, provided that q) 	 does 
not become very large in comparison with the other velocity gradients 
cPyy and (Pzz. In both the low-aspect-ratio and. sonic applications, 
it should be noted that, with the sole exception of the Infinitely 
long swept wing, it is possible to solve only problems involving the 
differential pressure arising from an asymmetry of the flow field. 
Thus, lifting problems may be treated satisfactorily. Thickness 
problems cannot be handled in general, however, since the theory 
predicts infinite longitudinal perturbation velocities and hence 
infinite pressures at all points on the surfaces of wings and bodies
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other than the Infinitely long swept wing, thereby violating the 
basic asrnmption of linearized small perturbation theory. 

The form of equation (2) permits the analysis to be undertaken 
as a two-dimensional potential-flow problem at this point; each 
vertical plane, therefore, may be treated independently of the ad.ja-
cent planes In the determination of the velocity potential. Thus, 
the po±entlal is determined for an arbitrary x = x0 plane; then, 
since the x0 plane may represent any plane normal to the fuselage 
center line, the potential distribution is Imown f or the entire wing-. 
body ccmibination.

Velocity Potential 

For the problems about to be analyzed, the perturbation velocity 
field in the x0 plane is similar to the velocity field around an 
infinitely long cylinder, the cross section of which correspond.s to 
the trace of the wing-body combination in the x0 plane. For a slender 
cruciform-1ng and body combination inclined an angle CL in pitch and. 

in yaw, the flow in the x 0 plane is as shown in figure 2(a) where 
the component of the flow velocity at infinity in the z direction is 
V0CL and that in the y direction is -V0 . The flow field of 
figure 2(a) can obviously be considered to be the sum of the two flow 
fields shown in figures 2(b) and 2(c), since the vertical wing in 
figure 2(b) and the horizontal wing in figure 2(c) lie in planes of 
symmetry and cannot affect the flow shown in their respective figures. 
Thus the flow fields shown in figures 2(b) aM 2(c) are identical to 
those of figures 2(d) and 2(e), respectively. These component flow 
fields have been treated In reference 1. Briefly, the derivation of 
the expression for the velocity potential of the flow field shown In 
figure 2(d) proceeds as f011ows: 

The transverse flow around a section such as shown in figure-2(b) 
or 2(d) may be derived from the transverse flow around an infinitely 
long flat plate (fig. 2(f)), by application of the principles of con-
formal mapping using the Joukowaki transformation. Thus, we consider 
the mapping of the i plane of figure 2(f) onto the yz plane of' 
figure 2(b) by the relation

(3)
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where 
s = Tl + i~ 

and 
x = y + iz 

The complex potential function for the flow in the Tls plane is (see, for instance, reference 6) 

Wa' = CPa' + iVa' = -iVoa ~ s_2_d2 ( 4) 

wher~ the primed symbols indicate values in the Tlt plane as opposed to the yz plane. If d = 2a, 
the flow around the flat plate expressed by equation (4) transforms by equation (3) into the 
vertical flow around a circle of radius a having its center at the origin. If d is taken 
larger than 28, the flow transforms into the desired vertical flow around a cylinder consisting 
of a circular cylinder of radius a with thin flat plates extending outward along the extension 
of the horizontal diameter to· a distance s from the origin. When the Tl~ plane is trans.formed 
into the yz plane in this manner, the complex potential for the flow in the yz plane is 

Wa = q>a + iVa = -iVoo.! (X + ~ )2 - d
2 

= -iVoo. j ( X + a;. ) 2 _ ( B + ~ ) 2 ( 5) 

since the point d in the Tl~ plane corresponds to the point s in the yz plane. The velocity 
potential q>a for the flow in the yz plane may then be determined by squaring equation (5), 
substituting X = r(eos e + i sin e), and solving. Thus is obtained the expression for the 

(Xl 

velocity potential of .the flow field shown in figure 2(b), ~ 
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where the sign is positive in the upper half plane (0 <8 <rc) and negative in the lower half 
plane (rc < 8 <2rc). The expression for the velocity potential for the flow field shown in 
figure 2( c) is found in a similar mnner to be 

Vol3 
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where the sign is posi~tve in the'left half plane (~<e <~rc~ and negative in the right 

half plane (- ~ <e <~). The perturbation velocity potential for the flow field about a 

cruciform-wing and body combination inclined in both pitch and yaw (fig. 2(a» is then given by 

q:> = q:>a + Cjlb 

Load Distribution 

The differential pressure coefficient in linearized potential flow is,given by 

6p 4u 
q = Vo (9) 

~ 
&; 

~ 
(6) !2l 

0 . 
I-' 
(X) 
\0 ' 
-..'I 

(7) 

(8) 

\0 



H H 

-nH
 

Ø
-r4 

n1 tO
 

'8a) 
4

In
I 

-u
-la) 

-4
0

 
H

-p 

-p
 

0 0 .nl 
CU 

14 11 

fOrD 
8 + 

'0 (1f 10 
—

.iI.

1
0

0


	

—
	

H 

	

o
	

0
4
-'	

rf 
a)	

H
	

a) 
.-

Q
r
l	

t
o
,
c
l
 

.i-1	
-p 

.r4 
P

4+
 

4.)	
,-

1 
04-'	

4.)	
C

)

-
p
 

0 
r
4

j 
d
0
	

a) 

	

•	
0 C

) 

	

. p
	

'3) 
a

)C
)	

Q
to

-rl	
a) 

$i	
'8

Q
H

 0
 

to 
to 
a) 

a
)
s

.rl	
s 

a
)
 P4 

2:
a) 	

'8 '3) 

a) 

	

'8
	

1)

W

a
)
a
)
 •i

-
1
 ci 

4
-'H
	

8
	

P4 
r
l,t.r

4
	

+

	

o
0
	

.4-' 

	

C)	
'3) 

r
U

 t' 
O

k
a
)
	

I	
-p 

-i-I	
k 

a
jc

i'd
	

,	
. 1 

	

h	
O

to
ta

 

	

II	
a

)
 'g

 - 
'3,	

.I
0
 

'3) 
a) 

P4.p
-4-' 

H
,C

) 
-
p

a
)
4

ci 0
rl 

0
i
a
)
	

r1	
'3) 

	

P4• .ci	
-p
	

a

4-, 

-p

a) 

-w
	

tO	
, 

0
	

-1	
4.) 

0
8
 C

) 
42)0 

a
)
 ta

r-f 

-p
	

,.	
-p
	

.,-4	
.., 

42)	
to 

	

-i-I	
q

.i -
i-

i 


rc
-, 0

a
) a) 

,ci	
a
)r-1
	

r4 
C

O
 4

.) b

N
A

C
A

 T
N

 N
o
. 1

8
9
7
 

(\4
H 

Ca 

c'J 

+

C
jIcj 

- 

C
"a51 Ca 

+
 

H 

,-4
I0

4

•iIr 

_
_

_
 

F
	

J

c
j H 

+ 

H
	

+ + 

i I,. 
u
I tC

where ~ is the component of the perturbation velocity in the free-stream direction. Since b 
body axes are used in the present treatment rather than wind axes, the component of the 
perturbation velocity in the free-stream direction will be approximated by 

u=~-130CP+a.Ocp 
Ox Oy oz (10) 

The last two terms .of equation (10) are often omitted since they each represent the product of 
a small angle and a small perturbation velocity and are generally much smaller than the first 
term of the right-hand Side, which represents only a perturbation velocity. For the long 

slender wings, bodies, and wing-body co~1nations considered here, however, ~ is much smaller o 0 ox , 
than ~ and ~; therefore, all three terms are retained •. The pressure coefficient is then 

given by 
6.p = .±. (. ~ _ 13 ocp + a. ocp ) 
q Vo ox Oy oz (11) 

Through application of equations (8) and (11) expressions for the lifting differential 
pressure (lower minus upper) on the horizontal wing and body are found to be, respectively, 
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where. in equation (13), the plus sign is taken for the starboard side of the body and the minus 
sign for the port side. Similarly the yawing differential pressure (port. minus starboard) on 
the vertiQal wing and body are given, respectively, by 

(~~)v = 4(3 
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) + 2 !!: da (a2 
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4
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~~2-)2 4 z2 
1-- +-

S2 S2 

where,·in equation (15), the plus sign is taken for the upper side of.the body and the minus 
sign for the lower side. It should be noted that the expressions for the pressures on the body 
are not valid for stations behind the trailing edge of the more forward ~ring since the influ­
ence of the downwash field behind the wings has not been considered in the analysis. 

Total Forces and Moments 

The total forces and moments exerted on a complete cruciform-wing and body combination 
may be determined by integrating the loading over the entire surface area. It is convenient 
to carry out the integration by first evaluating the forces and moments on one transverse 
strip and then integrating these elemental quantities over the length of the wing-body com­
bination. The lift and side force on a transverse strip of width dx are given, respectively, 
by 
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The rolling moment on this elemental strip is given by 

(16) 

(17) 

~ 
I\) 

dL.=qdx[-{"Y~'\ ay-tY(~\ dy+f-z(~) dz1tz(~)" dZ] .. (18) 
-s i a h -t V a V 

where the integration is carried only over the surface of the wing since pressures on the 
body cannot produce a rolling moment. When the indicated operations are performed, the 
following expressions for the elemental lift, side force, and roll1ngmoment are obtained: 

d (L) [dS ( a
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) S C· a
2
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1 ~ (19) 

! (~) = -41(~t [f (l-~) + ~ ( 2~) J-e~t ~ [2 (l-~) -! (1 + ~)2 
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+-
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The forces, moments, and center of pressure for the complete wing-body combination may 
now .be determined by integration of the forces on all the elemental strips.. Expressed 
in nondimensional form, these characteristics are given by 
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CL =	 (22) 

= -1 A 
m sflcffjdx(q)	 (23) 

(x' __ 

\ CKJL	 CL	
(2) 

cY f(_dx	 (25) 

=	 f)x &	 (26) 

(XCp\	 _2a	 (27) 
\CVJY 

Cl = 
2sSf()	 (28) 

where the integration interval extends from the most forward to the 
most rearward part of the wing-body combination. To achieve a 
unity of expression for side force and lift and for yawing moment 
and pitching moment, the side-force coefficients have been based 
upon the area of the vertical wing rather than the more conven-
tional horizontal-wing area, and. the yawing-moment coefficients 
have been based upon the area and. root chord of the vertical wing 
rather than the area and. span of the horizontal wing. 

The expressions for the forces and moments on the elemental 
strips (equations (19), (20), and (21)) indIcate four important 
general characteristics of slender cruciform-wing and body combina-
tions. First of all, there is a complete correspondence of the 
expressions for the lift and side force as would be expected from 
the geometry of the configuration. Second, the lift is independent

NACA TN No. 1897 13 

(22) 

(24) 

. -1 J d (Y) en = Svcv di q x dx (26) 

(28) 

where the integration interval extends from the most forward to the 
most rearward part of the wing-body combination. ·To achieve a 
unity of expression for side force and lift and for yawing moment 

. and pitching moment; the side-force coefficients have been based 
upon the area of the vertical wing rather than the more conven­
tional horizontal-wing area, and the yawing-moment coefficients 
have been based upon the area and root chord of the vert ical wing 
rather than the area and span of the horizontal wing. 

The expressions for the forces and moments on the elemental 
strips (equations (19), (20), and (21» indicate four important 
general characteristics of slender cruciform-wing and body combina­
tions. First of all, there is a compiete correspondence of the 
expressions for the lift and side force as would be expected from 
the geometry of the configuration. Second, the lift is independent 
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of the angle of yaw and. the side force is independent of the angle 
of attack. Third, the expressions for the lift and pitching 
moment for slender cruciform-wing and body combinations are identi-
cal to those given iii. reference 1 for slender plane-wing and body 
combinations. Last, if the vertical and. horizontal wings are 
identical, the rolling moment is zero. 

It might be noted. at this time that the value of zero for the 
rolling moment in the case of identical wings results from a 
conpiete balancing of the rolling moment exerted on the horizontal 
wing by an eclual but opposite rolling moment on the vertiôal wing 
rather than by having zero rolling momen.t on each wing. Since such 
a complete bn1ming nay be easily disturbed by factors neglected. 
in the analysis (for instance, higher-order terms neglected in the 
analysis or separation along the wing-body junction), particularly 
at large angles of inclination, the pitch and yaw range over which 
this conclusion is expected to apply may be more limited than that 
of the conclusions regarding lift and. side force. 

Several applications of the foregoing theory- are presented in 
detail in the appendix. 

ANAISIS OF CRUCIFORM-WING AND BODY CO1IN.ATIONS

EAVING IDENTICAL WINGS 

An analysis of some of the aerodynamic properties of cruciform-
wing and. body combinations having identical wings may be undertaken 
on the basis of symmetry considerations. For this treatment the 
wings nay be of any plan form, or aspect ratio, provided the vertical. 
and horizontal wings are identical and. are mounted at the same 
longitudinal position of the body. The concepts of linearized 
theory are used in. this treatment; therefore, the usual restrictions 
that the body Is ilender and that the angles of pitch and. yaw are 
small must be observed. The conclusions are applicable at all 
speeds, sinàe the Mach number does not enter the problem directly. 
Consider the cruciform-wing and body combinations as being inclined 
small angles	 in pitch and. 13 in. yaw from the free-stream 
direction, the free-stream velocity being V 0. Since superposition 
is a valid principle in linearized theory, the perturbation veloc1 
potential (p may be considered to be the sum of the two components 

(p = CP'a + 13'b	 (29)
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of the angle of yaw and the side force is independent of the angle 
of' attack. Third, the' expressions for the lift and pitching 
moment for slender cruciform-wing and body combinations are identi­
cal to those given in reference 1 for slender plane-wing and body 
combinations. Last, if the vertical and horizontal wings are 
identical, the rolling moment is zero. 

It might be noted at this time that the value of zero for the 
rolling moment in the case of identical wings results from a 
complete balancing of the rolling moment exerted on the horizontal 
wing by an equal but opposite rolling moment on the vertical wing 
rather than by having zero rolling moment on each wing. Since such 
a complete balancing may be easily disturbed by factors neglected 
in the analysis (for instance, higher-order terms neglected in the 
analysis or separation along the wing-body junction), particularly 
at large angles of inclination, the pitch and yaw range over which 
this conclusion is expected to apply may be more limited than that 
of the conclusions regarding lift and side force. 

Several applications of the foregoing theory are presented in 
detail in the appendix. 

ANALYSIS OF CRUCIFORM-WING AND BODY COMBTIlATIONS 
HAVING IDENTICAL WTIlGS 

An analysis of some of the aerodynamic properties of cruciform­
wing and body combinations having identical wings may be undertaken 
on the basis of symmetry considerations. For this treatment the 
wings may be of any plan form. or aspect ratio, provided the vertical . . 
and horizontal wings are identical and are mounted at the 'same 
longitudinal position of the body. The concep~s of linearized 
theory are used in this treatm,ent; therefore, the usual restrictions 
that the body is" slender and that the angles of pi tch and yaw are. 
small must be observed. The conclusions are applicable at all 
speeds, since the Mach number does not enter the problem directly. 
Consider the cruciform-wing and body combinations as being inclined 
small angles a. in pitch and 13 in yaw from. the free-stream 
direction, the free-stream velocity being Vo. Since superposition 
is a valid principle in linearized theory, the perturbation veloci~ 
potential q> may be considered to be the sum of the two components 
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where c'a and. P'b are the perturbation velocity potentials of 
the flow about a cruciform-id.rig arid, body combination inclined unit 
angles of pitch and. yaw, respectively. 

Consider now the differential pressure between corresponding 
points on the upper and. lower surfaces of the, body and. the horizon-
tal wing 

2 (P'a 1 + [('b"\ "'b"\	 11+. [{[(a)
u L"X)LX/'lJJ 

['P'p	 - "'a " 1 +	 [ (!i\ ] }	 + L	 Y2 Ii Y 

/p' \ p?	 \ 
'b\

1 {a __	 - [ _)
a) 

(
2

+p 
]

r(3qt	 ,' 
)	 -f

}] (30) 
U. u

Ordinarily, only the potential gradients, or perturbation velocities, 
in the x direction would be included in equation (30). For long 
slender objects, however, the perturbation velocities in the x direc-
tion are so inu.ch smaller than those in the y and. z directions that 
the products of small angles and perturbation velocities in the 
y and. z directions must be retained as well as the perturbation 
velocities in the x direction. Since the inclusion of these terms 
does not introduce any particular restrictions into the problem, 
they will be retained throughout the present discussion even though 
in many instances, such as with high-aspect--ratio unswept wings, it 
is unnecessary to do so. In general, none of the individual terms - 
in equation (30) is zero and. the pressure at every point depends ulon 
both P'a and P'b, or, what is equivalent, upon both the angle of 
attack and the angle of yaw. However, several of the terms are 
equal and will cancel. Thus, remsnibering that equation (30) repre-
sents the lifting differential pressure, it is apparent from 
symmetry considerations that 
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where ~'a and ~'b are the perturbation velocity potentials of 
the flow about a cruciform-wing and body c.ombination inclined unit 
angles of pitch and yaw, respectively. 

Consider now the differential pressure between corresponding 
points on the upper and lower surfaces of the body and the horizon­
tal wing 

~Pr. 2 
-=-

q Vo 

~{~[(~ (~)J+~[~)l -(~~]) + 

~{~ [(~)u - (~)l ] q[(~)u - (~)J} J (JO) 

Ordinarily, only the potential gradients, or perturbation velocities, 
in the x direction would be included in equation (30). For long 
slender objects, however, the perturbation velocities in the x direc­
tion are so much smaller than those in the y and z directions that 
the products of small angles and perturbation velocities in the 
y and z directions must be retained as well as the perturbation 
velocities in the x direction. Since the inclusion of these terms 
does not introduce any particular restrictions into the problem, 
they will be retained throughout the present discussion even though 
in many instances, such as with high-aspect-xatio unswept wings, it 
is unnecessary to do so. In general, none of the individual terms 
in equation (30) is zero and the pressure at every point depends up:l-n 
both ~'a and ~'b, or, what is equivalent, upon both the angle of 
attack and the angle of yaw. However, several of the terms are 
equal and will cancel. Thus, remembering that equation ( 30) repre­
sents the lifting differential pressure, it is apparent from 
symmetry considerations that 
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on the horizontal wing. Therefore, equation (30) simplifies to 

~Pr. 2 { [·COCP'), (oCP') ] - ::: - a. .-..:...A _....:.....A + 
q vo .Ox u ox z 

-'------ -----~ 

"""" 1 

0.13 [(oCP'a) _ (oCP'a) ] + 0.13 [ (~) _ (OCP'b) J} 
'---- Oy Z Oy U I \. OZ U oz Z J 

""'" ""v" 
2 3 

where the third bracketed term differs from zero only on the body. The second and third 
bracketed terms are odd in y.; hence, they cannot contribute to the lift. The lift is 
therefore evaluated by integrating the first bracketed term over the entire projected area 
of the wing-body combination. 

L = pvoo.J J[ (~) -(~) ] dx dy 
~ H u . Z , . 

(31) 

(:32) 
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The pitching moment and longitudinal center-of-pressure position are 
given similarly by 

= - voctfr	 [('' - (
cPtp\ ]x dx dy	 (33) 

'4,H	 x 

( xC p \\	 -M
(34) 

An expression for the rolling moment due to lifting differen-
tial pressures may be obtained in a similar niii,er. The first and. 
third bracketed terms in equation (31) need not be considered; the 
first because It Is even in y, the third because it is different 
from zero only on the surface of the body. Hence, the rolling 
moment due to the lifting differential pressure Is given by 

L'L=vOf [(a
	 - ('a ]y
	 dy	 () )	 y "u 

where the integration Is carried over only the area of the horizon-
tal wing. 

In a similar rnier, expressions for the side force, yawing 
moment, and rolling moment may be developed from the differential 
pressure between corresponding points on the port and starboard 
sides of the wing-body combination, thus 

[ / tb'\	 tP'b	 1 dy dz	 (36) Y = pV0 ff	 xi - x ) ] 
B,V 

N=_Pvo fIBV [(	 , -	
is ]xdz	 (37)

- 

(xc.p.'	
=	 (38) 

-	 \%cVJ	 Yc 

L'y = PYo3ff [ 
_) -	

) ] dy dz	 (39) 
S	 p
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Lfy = pVoa.~ J J 
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[ (
d<:Pfb ) (dq>fb ) ] -- - - xdydz 
dX p ax s 

-N 
=-

[ ( 
dq>f~\ (d q>'b ) ] 
-;JZ) s - rz- p z dy dz 

(36) 
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where the integration is carried over the projected area of .the wing—
body combination in equations (36) and (37) and only over the area of 
the vertical wing in equation (39). 

The total rolling moment is 

___	 (P'b\ 1 -(	 Izdydz-L' = L'y + L'L =	
z ) 

ff[(a Pt,)	 (a)] YdxdY}=0
	 (14.0) 

since it can be seen that the two integrals have identical values 
because the flows they represent are identical save for orientation 
in the coordinate system. 

From examination of equations (32) through (14.0), it may be seen 
that the aerodynamic properties of cruciform-wing and body combina-
tions having identical vertical and horizontal wings of arbitrary 
plan form and aspect ratio may be sulmnR.rized in the following 
statements. The lift and. pitching moment are independent of the 
angle of yaw and the side force and yawing moment are independent of 
the angle of attack. Further, the rolling moment is zero for all 
combinations of angles of pitch and. yaw. For the corresponding 
problem relating to a cruciform-wing and. body combination inclined 
in pitch and. bank, the conclusions may be restated as follows: The 
lift and longitudinal center—of--pressure position are independent of 
the angle of bank axid the rolling moment is zero for aU angles of 
bank.

CONCLUSIONS 

The forces and momenta exerted on pitched and yawed wing—body 
combinations consisting of a slender body of revolution and a 
cruciform, arrangement of thin wings have been investigated by two 
theoretical methods. 

One method made possible the determination of simple closed 
expressions for the load distribution, the forces, and the moments 
for slender cruciform-wing and body combinations of which the wings
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may be of dissimilar plan form. These results indicate four general 
characteristics of slender cruciform-wing and body combinations. 
First, there is a complete correspondence of. the expressions for the 
lift and. side force. Second, the lift is independent of the angle of 
yaw and the side force is independent of the angle of attack. Third, 
the expressions for the lift and pitching moment for slender 
cruciform-wing and. body combinations are identical to those given in 
NACA TN No. 1662 for slender plane-wing and body combinations. Last, 
if the vertical and. horizontal wings are identical, the rolling 
moment is zero. 

The second method treats cruciform-wing and body combinations 
consisting of a body of revolution and identical wings of arbitrary 
aspect ratio and. plan form. Although explicit formulas for the 
aerodynamic properties are not given in terms of the physical dimen-
sions of the wings and body, the following general relationships are 
found for all Mach numbers for such cruciform-wing and body comb ma-
tions inclined simultaneously in pitch and yaw. The lift and. pitching 
moment are independent of the angle of yaw, and. the side force is 
independent of the angle of attack. The rolling moment is zero for aU 
angles of pitch and yaw. For the corresponding problem relating to 
cruciform-wing and body combinations inclined in pitch and. bank these 
conclusions may be restated in the following 1TnPer. The lift and 
pitching moment are independent of the angle of bank and the rolling 
moment is zero for all angles of bank. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 

EXANFLES OF SLENDEIR CRUCIFORM-WING 

AIU) BODY COMBINATIONS 

For any given cruciform-wing and body combination complying with 
the general requirements of the slender-body theory presented in the 
first part of this note, the load, distribution may be determined 
directly by substituting the proper values for the body radius and 
wing semispan and their rate of change with x into equations (12), 
(13)., (1k), and. (15). By using these expressions for the load distri-
bution, closed expressions for the forces and. moments for several 
elementary configurations may be readily found. by simple integration
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APPENDIX 

EXAMPLES OF SlENDER CRUCIFORM-WmG 
AND BODY COMBINATIONS 

For any given crucifo~ing and body combination complying with 
the general requirements of the slender-body theory presented in the 
first part of this note, the load distribution may be determined 
directly by substituting the ·proper values for the body radius and 
wing semispan and their rate of change with x into equations (12), 
(13), (14), and (15). By using these expressions for the loaddistri­
but ion, closed expressions for the forces and moments for several 
elementary configurations may be readily found by simple integration 
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of the integrals indicated by equations (22) through (28). The dis-
ôussion will be brief since the present results are similar to those 
given in reference 1.	 - 

Pointed Low-Aspect-4atio Wings, No Body 

The first and. simplest example of a slender cruciform configura-
tion to be considered consists of a set of pointed low-as:pect-ratio 
wings, which may have different plan forms and. aspect ratios, and no 
body. The aerodynamic properties of such a configuration nay be 
determined by letting

a_a_	 da_ 
s t 0	 dx 0 

By substitution of these values into equations (12) aM (14), it 
follows that the load distributions for the horizontal and. vertical 
wings are given by 

__	 __	 (Al) 
qj11	 J y2	 \q4	 / z 

1_	
, 

These expressions are similar to that given by Ribner (reference 4) 
for the loading on a single low-aspect-ratio triangular wing inclined 
in pitch and yaw. The symmetric first terms contribute to lift and 
side force; the antisymmetric . second terms contribute to rolling 
moments. To illustrate this point further, figure 3 has been prepared 
showing the load distribution on a cruciform arrangement of triangular 
wings. The loading on the vertical wing Is shown by the two top 
sketches while that on the horizontal wing is shown by the lOwer 
sketches. The sketches on the left represent the contribution of the 
symmetric first terms of equation (Al); those on the right the contri-
bution of the antlsymmetric second terms. In accordance with the 
stated assumptions, these expressions are invalid when either the 
angle of pitch or yaw becomes so large that the leading edge passes 
beyond the stream direction and. becomes, effectively, a trailing edge. 
Mathematically expressed, the expressions are valid when 1131 ^ds/dx 
and	 ^dt/dx. If It is desired to Investigate wings inclined at 
larger angles, consideration must be given to the influence of the
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trailing vortices lying outboard of one , of the sides of the wing. 
Such a problem ny be treated by an extension of the methods employed 
in the treatment of a swept—back wing in reference 5 The total load. 
on an elemental strip is found from equatIons (19) and (20) to be 

= 4licLqs	 ()q= —4itqt .t
	

(A2) 

The rolling moments exerted on the horizontal and vertical wings are 
given, respectively, by the corresponding terms of equation (21) 

	

q	 —21tcLqs2	 d. (L'
	

= 2aqt2
	

(A3) 

The lift and side—force coefficients for the cruciform wing are 
found by integration of the forces on the elemental strips between 
the leading apex and. the trailing edge as indicated by substituting 
equation (A2) into equations (22) and (25) 

Off 

	

ci, = f 	 sd.x=ia	 Cyw_Av3	 (Au.) 

where AB and AV are the aspect ratios of the horizontal and 
vertical wings, respectively. 

Similarly, the pitching—, yawing—, and rolling-moment coefficients 
are found by substituting equation (A2) into equations (23), (26), 
and. (28), respectIvely, and integrating: 

Off
- x dx Cm j

 = - S11c	
li.	 d.s	 - -	

[14.82	 - _____ 
dx	 - 2	 SH

(A5) 
r	 (52)1	 [ - (t2) ] 

	

= - A11cL L' - s2xj	 Cn = - A L
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(A4) 

Similarly, the pitching-, yawing-, and rolling-moment coefficients 
are found by substituting equation (A2) into equations (23), (26), 
and (28), respectively, and integrating: 

1 1~ ds n [4S2max 4(s2)ml 
Cmw = - SHcH 0 4na.s dx x dx = - '2 a. ~ - SH 'J 

(A5) 

= _ ~~ [1 _ ..;...,( s_2)-=mJ 
2 S2ma.x 
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pcv	 CE 

= 2SS[ 
I 2ct2dx - f 2,tasdx ] 

Jo	 ¼J0

(A6) 

=	 - [(t2) - c(s2) ] Ss 
H max 

where

CR CV 
(s 2) =	 r s2di	 (t2) =	 r 2± 

In Cff J 	 m cJ0 

Attention is called to the fact that the pitching- and. yawing-noinent 
coefficients represent moments about the leading apexes and are non-
dimensionalized through use of the area and. root chord of the 
horizontal and vertical wings, respectively. 

For a more specific example, consider the wings to be of 
triangular plan form moving point foremost. Then, since 

4	 ann. (t2)m = 4	 the moment coefficients given 

by equations (A5) and. (A6) are 

Cm= - Act	 C= A	 (A7) 

- ,tcLI3 (Svtmax 
C--- .-	 -1	 (A) 

-) '-'fl max 

Pointed Slender Body of Revolution 

Expressions for the aerodynamic characteristics of a pointed 
slender body of revolution nay be derived from the previously 
derived equations by letting 

S	 dx - dx - dx
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(A6) 

= 1Ca.~ .[ c (t 2 ) - C (s 2 ) ] 
Ss V m H m 

H max 

where 
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(s2)m = ! S2ma.x and (t2)m = .1 t 21IBX' the moment coefficients given 
. 3 

by equations (A5) and (A6) are 

C=llLj3 
n 3--v 

(
Svtmax _ 1 ) 
Sa s max 

Pointed Slender Body of Revolution 

(A8) 

Expressions for the aerodynamic characteristics of a pointed 
slender body of revolution 1IBy be derived from the previously 
derived equations by letting 

~= 1 
s 

da ds dt 
-=-=-
dx dx dx 
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Since these results have been presented many times (see, for 
instance, references 1, 2, 7, and. 8) anti are well known, only the 
final equations will be listed 

(? i 

di'L\	 di'Y'\ 
= 4aa	 = 2q	 q = - 2q

(A9) 

(Alo) 

CL =
	

2a () dx = 2cL	 C = - 2	 (All) 

2 

_____ 1 '0 
2

(dB/dx)x dx 

(dB/dx) x

Bm 
= 1- -	 (Al2) 

Bb 

where B is the local cross-section area, Bb is the area of the 
base, and Bm is the mean cross-section area (i.e., the volume of 
the body divided. by the length). In the coefficients, the reference 
area is taken as. the area of the base cross section. 

For a more specific example, consider a cone moving point. 
foremost. The relationship between the base area and the mean cross-
section area is given by

Bm .Bb 

The center-of-pressure position is thus seen to be at the two-thirds 
point as would be anticipated by the conical nature of the load dis-
tribution for this case

= a 
2	 3
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.2:.. (~) q = 4rca.qa ~ = 2a.q dB 
dx \q d.X dx 

dey) dB - - q = - 213q-
dx q dx 

x c.p. 

2 1 (dB/dx)x dx 
1 0 

= T 2 

1 (dB/dx) .dx 
o 

Cy = - 213 

(AlO) 

'­
(All) 

(Al2) 

where B is the local cross-section area, Bb is the area of the 
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tribution for this case 



211.	 NACA TN No. 1897 

Triangular Wings With Conical Body 

The first example of a wing-body combination to be considered is 
a conical arrangement (coincident vertices) of a conical body and 
triangular vertical and. horizontal wings of, in general, different 
aspect ratio. The geometry of such a configuration requires that 

- da/dx - .	 a - d.a/dx - 
5 - d.s/dx -	 t - d.t/dx kV 

where d.a/dx, d.s/d.x, and. dt/dx are constants. If these values are 
substituted in equations (12), (13), (111. ), and (15), the load distribu-
tion along any elemental strip of the wings and. body is given by 

- 214s2) 
+	

(.__
kS4) 

	

= 11	

J(l+k) -	 l+ y4)	 j ( k4s 

- kL ds j( l+kH2) 2_ 
j2 () 

+	 (A13) 
B

r_________ 
+ _________ 

____________________	 a2 
l6a3

L

j2) 2	

2 () 

J2) 2 + 

4 4\ r- . (i+	
- 2ky4t2'\	 z f' k t 

+ a - 1-

	

43I	 __________________ 

	

(\\ =	 I	 d.x \	 z2 ,1	 t \ 
q	

[	 /( l+k) - : 
(1+ k?t4) 

	

=	 dt /^2 2 j2 (z2 ) + 
dx 

rkv ( \) (_L	
() 

A/i-

	

16a43	
\a /	 a21	 +	 a2 

[J(:L+kv 2 _ kv2 () -	 (l)2+
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Triangular Wings With Conical Body 

The first example of a wing-body combination to be considered is 
a conical arrangement (coincident vertices) of a conical body and 
triangular vertical and horizontal wings of, in general, different 
aspect "ratio. The geometry of such a configuration requires that 

where da/d:x., ds/d:x., and dt/d:x. are constants. If these values are 
substituted in equations (12), (13), (14), and (15), the load distribu­
tion along any elemental strip of the wings and body is given by 
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where the plus and minus signs are taken as in equations (13 and (15). 

The integrated lift, side force, and. rolling moment on an 
elemental strip a.re 

d	 i	 = - #itqt q = Ll.jtcqs	 a11	
dx sq)	 dx 

•; () = 2a43q(tT - 52T

(A1I) 

(A15) 

where a and T are constants given by 

a = l+k4+ --[ 2k(1-k2 ) - ( 1+k)2 . . 2k 1 sin	 I 
211L	 1+k2J 

T = 2k( 1-k2) + ( 1+k4) - ( 1+k2 
2	 1.-k2 

l+k2 

The subscripts U and. V on. a and. T refer to the use of	 or 
kv in the above expressions. The lift, side-force, and rolling-
moment coefficients for the entire conical cruciform-wing and. body 
combination are then 

	

CL = A11aa11	 Cy=-1 Av3av 

a/ t2 -	 F	 InaxT'\ 
U 

\max

(A16)

(A17) 

Due to the radial nature of the lines of constant pressure, the 
center-of-pressure position is independent of the body radius - wing 
seinispati ratios and. lies at the two-thirds chard point. The pitching 
and. yawing moments are then given by 

Cm	 A11aa11	 C= '. ya..	 (A18)
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where the plus and'minus signs are taken as in equations (13 and (15). 

The integrated lift, s ide force, and rolling moment on an 
elemental strip are 

...a.. (!)q = - 4rcf:\qt dt 0v 
dx q dx 

where a and T are constants given by 

2 
-11-k cos -. 1+k2 

(Al4) 

(A15) 

The subscripts R and V on ° and T refer to the uSe of kH or 
kV in the above expressions. The lift, side-force, and rolling­
moment coefficients for the entire conical, cruciform-wing and body 
combination are then 

(Al6) 

(A17) 

Due to the radial nature of the lines of constant pressure, the 
center-of-pressure position is independent of the body radius - wing 
semispan ratios and lies at the two-thirds chord point. The pitching 
and yawing moments are then given by 

c = 11 Lf30 n 3 --v V 
(Al8) 



rdt 

[7(1+5)I5(l+4) j 
Idx ___ ('-5)	 ('-5)1
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The lift, side force, pitching—moment, and yawing—moment results are 
plotted in. figures aM 5. Figure 6 presents rolling—moment results 
for selected ratios of vertical wing span to horizontal wing span. 
To facilitate the computation of further results, the values of T 
for use in equation (Al7) are. plotted as a function of k in 
figure 7. 

Triangular Wings on a Semi—infinite Cylindrical Body 

The next example to be considered is that of a triangular 
cruciform wing mounted on a semi—infinite cylindrical body. The• 
essential relationships associated with this configuration are that 
d.a/dx equals zero aM that d.s/dx and dt/dx are constants. 
Therefore it is clear from equation (A9) that no forces are exerted 
on. the body ahead of the leading edge of the root chord. Behimi this 
point, pressures are exerted on the wings arid, body in. accordance with 
the following relations: 

rdS (__ . 4) +	 (' - 0)1 \	 1kLI	
4 

a4\ Y2(	 a4 

(1 -
	 + 

I43 : (	 .z" i6ct	
/	 y2 

S	 l_)	 atA/a2 
______________________	 ± _____________________ 
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The lift, side 'force, pitcbing-moment, and. yawiIlg-inomsnt results are 
plotted in figures 4 and 5. Figure 6 presents roUiIlg-inoment results 
for selected ratios of vertical wing span to horizontal wing span. 
To faeilitate the .computation of further results, the values of· T 

for use in equation (Al7) are. plotted as a function of k in 
figure 7. 

Triangular Wings on a Semi-infinite Cylindrical Body 

The next example to be considered is that of a triangular 
cruciform willg IDOtmted on a semi-infinite cylindrical body. The' 
essential relationships aSsociated with this configuration are that 
da/d:z. equals zero and that dS/d:z. and dt/d:z. are constants. 
Therefore it is clear from equation (A9) that no forces are exerted 
on the body ahead of the leading edge of the root chord. Behind this 
point, pressures are exerted on the wings and. body in accordance with 
the following relations: 
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where the plus and minus signs are taken as in equations (13) and 
(15).

The integrated forces ansi moments on an elemental strip are 
given by

// a4\ds a4'\ d.t () q = 4.itczqs (,1- —i,)—
	 q= _itqt(1_ ) - (A20) 

-	 ___ dx (%j-,) - 2cLqt2 [2(1	
> 

It 
(+ ) - (1+ )2cos_i t2_&2 1_ 

t2+a2 J 

2cLi3qs2[2 (

1_ )+ it (+ ) - (+ &)

2co_1 s2—a 1 
j 

(A21) 

By integration along the length of the body, force and moment 
coefficients for the complete wing-body conbination, based on the 
area of the basic triangular wing without fuselage, are found to be 

CL - LjHct (i_ 
2	 (_ 2 

-	 J	 -	 t2	 J	 (A22)

max' 

-	
(1-3p3 +	 c=	 (i-_u	 + 3	 (A23) 

t fl	 tmax) max	 maxJ 

	

= . (Sv.x v - v)	 (A211.)

SflSmax V 

where

	

—1 1-k2	 k3log 2k2 V = 2k (l-k2 )+it(l+14.k-3k4 )( 1+6k-k4 )cos l+k2 +	 l+k2 

where, for detëinining vV, k is taken as a/tm ansi, for vU, 
k is taken as a/sm.
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where the plus and minus signs are taken as in equations (13) and 
(15) • 

The integrated forces and. moments on an elemental· strip· are 
given by 
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- - q = 1f<lqS 1- - -d (L) 4 (a 4) ds 
dx q S4 dx 

~(!) q= -41f~qt (1- ~\ dt (A20) 
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(A21) 

By integration along the length of the body, forcs and moment 
coefficients for the complete wing-body combination, based on the 
area of the basic triangular wing without fuselage, are :found to be 

(A22) 
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where 

where, :for detEf.:"mining vv' k is taken as a/tmax and,:for vH, 
k is taken as a/smaxo 

e 
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It may he seen from. the equations and from figures 1 and 5 that the 
addition of a semi-infinite cylindrical body to a cruciform arrange-
ment of triangular wings decreases the gnitudes of the forces and 
moments just 'as in the preceding example with the conical body. In 
the present example, however, the forces and. moments continue to 
decrease as the body radius increases with respect to the wing seffli-

span until finally, when they are equal (corresponding to a body 
without wings), the forces and moments are all zero. It Is further 
seen that the rolling moment vanishes when the two wings become 
identical, as has been shown in general in. the text. The rol1ing-
moment results cannot be plotted in general, however, as was done in 
the case of the conical wing-body combination since there are now 
three significant parameters Instead, of two. To facilitate calcula-
tion of these results, therefore, the variation of V with k has 
been plotted in figure 7. 

Triangular Cruciform Wing on a Pointed Body 

The theoretical characteristics of a triangular cruciform wing 
mounted on a pointed body of revolution, closed in an arbitrary 
mariner at the nose but cylindrical along the. wing root, may be 
determined by comb1nng the results of two previous examples. The 
portion of the wing-l:ody combination ahead of the leading edge of 
the wing root may be considered to be equivalent to the arbitrary 
body of revolution treated in the second example. The portIonof 
the wing-body combination aft of the. leading edge of the wing root 
is equivalent to a cruciform arrangement of triangular wings mounted 
on a semi-infinite cylinder discussed in the preceding example. The 
load distribution and integrated bad, on an elemental spanwise strip 
are then the same as those given in. the corresponding example. 

The lift and, side-force coefficients are found by adding the 
forces on the component parts of the wing-body combination and 
dividing by the dynamic pressure and the characteristic area, again 
taken to be the area of the basic triangular wing without fuselage. 
The lift and. side-force coefficients are then 

a2	 a4\	 ___ ___ ___ ___	 a2 ___ CL=ABal-2+4)	 CY=_vf3(l_t2
max max! 

(A25) 

These relationships are shown graphically in figure Ii..
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It may be seen from the equations and from figures 4 and 5 that the 
addit.ion of a semi-ilif1n1te cylindrical body to a· cruciform arrange­
ment of triangular wings decreases the magnitudes of the forces and 
moments just 'as in the preceding example with the conical body •.. In· 
the present example, however, the forces and moments continue to 
decrease as the body radius increases with respect to the wing semi­
span until final.ly, when they are equal (corresponding to a body 
without wings), the forces and moments are all zero. It is ;further 
seen that the rolling moment vanishes when the two wings become 
identical, as has been shown in general in the text. The roll~ 
:moment results cannot be plotted in general, however,· as was done in 
the case of the conical wi.Ilg-4)ody combination since there are oow 
three significant parameters instead of two. To facilitatecalcu18-
tion of these results, therefore, the variation of V with k· has .. 
been plotted in figure 7. 

Triangular Cruciform Wing on a Pointed Body 

The theoretical characteristics of ·a triangular cruciform wing 
mounted on a pointed body .of revolution, closed in an arbitrary 
manner at the nose but cylindrical along the. wing root, may be . 
determined by compining the results of two previous examples. The 
portion of the w~ody combination ahead of the leading edge of 
the wing root may be considered te be equivalent te the arbitrary 
body of revelution treated in the second example. The pertion·,of 
the wing-body combination aft of the leading edge .of the wing root 
is equivalent to a cruciform arrangement of triangular wings mounted 
on a semi-infinite cylinder discussed :in the preceding example. The 
load distribution and integrated load on an elemental spanWise~Btrip 
are then the. same as those given in the corresponding example. 

The lift and. side-:force coefficients are found by adding the 
forces on thecompenent parts of the w:i.n8-bedy combination and 
dividing by the dynamic pressure and the characteristic area, again 
taken to be .the area of the basic triangular wing without fuselage. 
The lift and side-force ceefficients are then 

1( ( a 2 . a4 ) CL = -2 AJra. 1- 2 + 4 . 
. .s max s max 

(A25) 

These relationships are shewn graphically in figure 4. 
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The pitching— and yawing-moment coefficients for this wing—body 
combination may be fouM in a ini1er similar to that used. in fithing 
the lift and Side—force coefficients, taking care to transfer the 
moments of both components to the same axis. 

5 a3	 a4	 3 - B (!_i + a 
Cm = - jja [i_	 + 3	

- 2	 )i

(A26) 
1 5 a3	 a4	 3 Bm (1	 a \1 

Ca-	 I1_t3	 3t4 
L	 max	 max 

The ro11ing—noment coefficient is given, of course, by 
equation (A21i.).
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The pitch~·and yawing-moment coefficients for this wing-body 
combination may be foUDd. in a manner similar to that used in finding 
the lift and side-force coefficients, taking care to transfer the 
moments of ."both components to the same axis. 

C -n -

The rolling-mom.ent coefficient is given, of course, by 
equation. (A24). 

(A26) 
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Figure I. - View of cruciform-wing and body combination 
showing coordinate axes. 

(41	 (b) 

(d)	 (e) 

Figure 2.- Two- dimensional flow fields. 

Figure 3. - Load distribution on a triangular cruciform wing.
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Figure I. - View of cruciform-wing and body combination 
showing coordinate axes. 
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Figure 2.- Two- dimensional flow fields. 
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Figure 3. - Load distribution on a . triangular cruciform wing. 
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Figure 4. -Lift and side-force ratios 
for three cruciform-wing and body 
configurations.
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Figure 5-Pitching-moment and yaw-
/ng-moment rat/os for two cruci-
form - wing and body configurations. 
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with k. 
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Figure 4. -Lift and side-force ratios 
for three cruclform-wing and body 
configurations. 
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Figure 6.-Rolling moment for conical 
cruciform-wing and body con­

figuratiOns. 
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Figure 5.-Pitching-moment and yaw­
ing-moment ratios for two cruci­
form-wing and body configurations. 
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Figure 7.-Variation of T and II 
with k. 
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