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SUMMARY 

The recently derived particular integrals of the Prandtl-Busemann 
iteration equations make possible the extension of the familiar source-
sink concept to the solution of the higher-order iteration equations for 
the subsonic potential flow over thin sharp-nose symmetric two-
dimensional profiles. An explicit expression is derived for the second-
order velocity potential and velocity components' and a method for 
obtaining the higher-order terms is indicated. The velocity at the sur-
face of the Kaplan bump is evaluated to illustrate the method. 

INTRODUCTION 

Iteration methods have been used extensively during recent years 
for the calculation of compressible flows. The Prandtl-Busemann or 
Ackeret iteration process is the one most often applied in aeronautics 
and is the one considered herein. In the past this iteration technique 
has been used primarily tocalculate the flow past specific profiles, 
each profile presenting a distinct problem involving a great amount of 
labor in its solution. 

Van Dyke (reference 1) has given the particular integral for the 
second-order Prandtl-Busemann iteration equation and recently Kaplan' 
(reference 2) 1as obtained the particular integrals for both , the second-
order and third-order equations and has described a method for obtaining 
higher-order ones as well. With the use of these particular integrals, 
the higher-order solutions for the flow over sharp-nose symmetric bodies 
in two-dimensional flow are easily obtained by the method to be described 
herein, and the calculation of the surface velocity or presure distri-
bution for a specific profile requires only an integration. The procedure 
to be described involves considerably lesslabor than formerly required 
and also has the advantage of simplicity of treatment since the familiar 
concept of a source-sink distribution In the plane of symmetry is 
employed in the analysis.
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A general ecpression for the second-order velocity potential for 
symmetric profiles is developed and, as an example, the flow over the 
Kaplan bump is treated in detail. The procedure may be extended to 
obtain the third- and higher-order perturbation velocities. 

ANALYS IS 

The Prandtl-Busemann iteration equations for obtaining approximate 
solutions to the exact nonlinear equation governing the two-dimensional 
flow of a compressible fluid are briefly developed as follows 
(reference 2): 

The differential equation for the velocity potential '' is 

-	
- 2	 +	 - 4	 = a	 (1) 

where 

x,y	 rectangular Cartesian coordinates in flow plane 

u,v	 velocity components along x- and y-axes, respectively 

a	 local speed of sound 

and the subscripts x and y denote partial differentiation with 
respect to these designated variables. With the introduction of a 
characteristic length c/2, where c is the chord, and the undisturbed 
stream velocity U as the unit of velocity, the quantities x, y, u, 
v, and	 are used hereinafter to denote, respectively, the nondimen-
sional quantities 2x/c, 2y/c, u/U, v/U, and 2/Uc while a retains 
its original meaning. 

Let

y = tY1 (x) + t2y (x) + 0(t3 )	 (_l< x< 1)

and

y=o	 (x^l;x^-1) 

where 0(t3 ) denotes ternis of the order t 3 , define a slender sym-
metric body of thickness coefficient t lying on the x-axis between -1 
and 1.
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The appropriate boundary conditions for the flow over a two-
dimensional body in an unbounded stream are: 

At infinity 

= 1

and on the body

(xY) =	 ( x ,Y )	 (2) 

	

It is now assumed that	 may be expanded in the form 

=x+Ø1+Ø2+. 

where On-fl and its derivatives are small compared with On ' and Ø 
is of the order tn. Then, when the expansion for	 is substituted 
in the differential equation (i), the linear equations for Ø and 02 
are

ç2Ø+Øo	 (3) 

	

+ O2yy =	 2	 +	 + OlxyOly1	 () 

2 
where	 = r ^ 1	 2 = - M 2 , M is the Mach nuniberat infinity, 

and ' is the ratio of specific heats at constant pressure and constant 
volume. 

The boundary conditions for 01 and 02' to the order t and 
respectively, are: 

On the body

dY1 
øiy(X,0) = t	 (5) 

dY2	 d11 
O2y( X , 0 ) = t2	 + t - Ø(x,o) + 32tYiOj( x , O )	 (6) 

and at infinity

= øly 02x = 02y =	 (7) 
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The wel1-kno source-sink solution of the differential equation 
for Ø, valid for symmetric profiles and satisfying the boundary con-
ditions given by equations (5) and (7), is (see reference 3, for example) 

Ø(x,y) 
=	

loge\J(x - )2 + 2y2 d	 (8) 

The solution of the nonhomogeneous differential equation for 02, 
equation (4), can be expressed as the sum of the particular inte-
gra	 2(x,y) and a function p2(x,y) satisfying the homogeneous 
equation. 

The particular integral 2 of equation (4) (reference 2) is 

'jr2(x,y) = n.2O[(i +	 -	 3'01y11 	 (9) 

With the use of equations (8) and (9), iL and	 are easily shown

to vanish at infinity and the boundary conditions for p 2 , from equa-
tions (6) and (7), become: 

On the body

dF(x) 
cp(x,o) - dx 

where
___	

dY1	 1 2dY2 dF(x)	 2 
dx	 tElol(x,o) + —

O(x,Oj + t 

M2(l + )0y(x,O)0i(x,O) 

and at infinity

2x2y° 

It is to be understood that all differentiations are made prior to 
setting y equal to zero.
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The differential equation and boundary conditions for p2 are of 
the same form as for Øi . Therefore, the solution for 02 may be 
expressed as

	

- 1	 Wlog(x	 )2 +	 d + Ø2(x,y) -
	 ____ 

provided that f I F()I d converges and F() is sectionally con-
tinuous. Since the source-sink solution may be obtained by using the 
concepts of Fourier integrals, it follows that the function F() must 
satisfy the conditions which are required for a function. to be repre-
sented in a Fourier integral. These conditions are sufficient to insure 
the existence of the solution although somewhat broader conditions 
for	 are known. These conditions seem to exclude the representa-



tion of the second-order flow past blunt bodies by a continuous distri-
bution of sources and sinks on the axis alone. 

Then the velocity potential to the order t2 is 

= x +
	 j	 Lt	

+	 log(x - )2 +	 .d + 

4c2 (x,y) + 0(t 3 )	 ( 10) 

and the velocity components on the body to the same order are 

u=(x,Y) 

i + 1	
1	

dYl dF(,5l d 

	

Li L	 + d Jx - + tY1O(x,0) + 

M2(l	 )	 (x,o)Oi(x,o) + [O(x,o	 + 0(t3 )	 ( 11) 

	

v =	 (x,Y)

2 dY2 dYi ' 

	

= t	 _[ji + O(x,0iJ + t	 + 0(t 3 )	 ( 12) 

where P denotes the Cauchy principal value of the integral.
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Once Oi is determined for a given profile, the second-order 
velocity potential and the corresponding velocity components can be 
found from equations (10), (ii), and (12). 

The third- and higher-order terms for the velocity potential or 
velocity components can be determined in the same manner as the second-
order terms. The third-order term for the velocity potential is written 
as the sum of a function satisfying the homogeneous differential equa-
tion and a particular integral (from reference 2). Then the boundary 
conditions for the homogeneous equation are again in a form similar to 
those for Oi and the third-order solution is the sum of the particular 
integral and an expression for a source distribution with the source 
strength determined by the boundary conditions. 

It appears that this method, as developed herein, is not applicable 
for evaluating the flow over all bodies. For blunt bodies, the method 
must be refined to include other .solutions in conjunction with the 
source-sink solution in order to satisfy the boundary conditions It 
might be noted that the troublesome terms in F() arise from the 
particular integral. Since the particular integral is multiplied by M2, 
the difficulty encountered is a Mach number effect. 

It does not seem possible to obtain a second-order solution for the 
flow past a sharp-nose body at a small angle of attack (to the second order 
in thickness and first order in angle of attack) by only a source-sink and 
vortex distribution on the axis. An integral equation must be solved to 
obtain the function in the lift problem corresponding to F() in the 
thickness problem. Therefore, it is difficult to make any general state-
ments about the conditions this function must satisfy. However, the 
particular integral seems to introduce a singularity in the expression 
for the lift coefficient which cannot be canceled by the solution to the 
homogeneous equation. Here again the method must be refined in order to 
obtain the second-order lift solutions. 

In general, the integral for 02 or its derivatives are more 
difficult to evaluate than those for Oi and in some cases it may be 
desirable to approximate the integrar for 02. When 01 is known, the 
integrand of the integral for 02 or its derivatives may be expanded 
in a Taylor series and the integration performed term y term. 

The Taylor expansion of the function dF() about the point x is 

n 
)	 - x) 

d	 n!	 (x)	 (13) 
n=0
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where

2 dY1 dF(x) =
	 + 2tYlØ]jX (x , O) + t - øx(xo ) - 

	

dx	 dx' 

M2(1 + Eøi(x,o)ø1(x,o) 

F".(x) =	 F(x) 

Then, when of equation (13) is subètituted in equation (ii) and 

the resulting equation is integrated terni by term, the u component of 
velocity becomes 

u = 1 + Ø(x,o) + t2Y -i + M 2 (l + )[Ø2(x,O) + Ø(x,o)Ø i (x,o] - 
dx 

	

____	 ____	 ________	
\fl	 n—i---! 

	

i ___	 1 - x +	 F)(x) 
(1 - X) - ( -1 - x) JJ n(n!) I Ldx 1°l+x

(-i < <i) 

CALCULATION OF THE FLOW PAST THE KAPLAN BUMP 

As an example of the use of the second-order equations, the velocity 
at the surface of the Kaplan bump is evaluated. The equation of the 
bump is

Y(x) = t(i - x2)3/2 - 3x2t2( - 2 3/2 1	 x)	 +0(t3) 

Yi = (i - x2)3/2 

= _2	 - x2)3/2	 -
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From equation (8), the expression for .Ø(x,O) is 

Ø(x,o) =	
d.Yi	 d	 3t	 - 2 

x-nfi xJ d 

By the substitution of	 = cos 9, the expression for Øi(x,O) becomes 

Ø(x,O) =
	

sin2O do -	
r sin2O dO 
j0 X - COS 

With sin29 replaced by (l - cos 29) and with the use of the 

following integral

(MC 

/	 cos nO dO	 = -TC sin na	 (i) 
j0 cos a - cos &	 sin a 

the expressions for Ø(x,O) and Ø1(x,O) are 

Ø(x,o)	 (2)	 (-lxl) 

Ø(x,o) =x X3)	 (-lxl) 

The u component of velocity (equation (11)) is 

u =	 (x ,Y ) .	 S	 S 

l ' +	 f[t	 + d1X	
+ tY1Ø(x,O) + S 

M(l± )	 (x,o)Øl(x,o) + [Ø(x,o2} + 0(t 3 )	 (15) 

with	 - 

dF(x) = 
2t ElØ( x , o ) +! Øi( x , 0 + t2 

M2(l +)øixy(x,0)øi(x,O)
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d2Y1(x) 
where Ø(x,O) =	

2	
The variousterms arising in dx
	

are 

YiØixx(x,O) = --(i - 2)3/2 =	 -, x)\J1 

Ø(x,o) 
=	

- x3)\Ji - 

dY2
= (-6x + 15x3 ) \Ji - 

d2Y1	 _3t(. x -	 + 
Ø1(x,o) =	 ______ -	

\/lx2 

The following integrals will be required: 

	

r
1 \

/l 2d

	

	 _________ -	 =	 / cos e sin2O d	 / 1 
x-cos6	

=_+x2) 

It 
r1 3\jl - 2 d = r	

3	 2	 2 
_______	 cosesinede	 1 x 

x-cos9	 =ItT+x x-

d	
=	 r° 

0 dO	 - 

	

Jil-(x-)	 J0XC0SO 

/	
-'d	 p1t cos-'O dO 

	

J_i 1_g2(x_)	 J0 
x_cosO=_It(+x2) 

1
vd	 P1t cos56 dO -	

2 

______	 _________	
(3 x 

where repeated use has been made of equation (l14). 

From equation (15), with the use of equations (16) and (11), and. 
with

(16) 

(iv) 

d2Yi 
1 dx2 = _3t2

(1 - 2 + 2x1)
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[Ø(x,oJ2 + Ø1(x,0)Ø1(x,o) = 2(3 - 6x2 + 5x4) 

the x-component of velocity on the body, to the order t 2 , is 

	

u(x,Y) =1 _(2x2 -1)	 - 

. 2 +	 4 -	 + IJ 
in agreement with reference 1i. 

Langley Aeronautical Laboratory 
National Advisory Conunittee for Aeronautics 

Langley Field, Va., October 23, 1970 
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