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SUMMARY 

By the method of superposition of conical flows, the load, distribu-
tion is calculated for regions of a long, rectilinear, swept-back wing 
behind the points at which the Mach lines from the trailing-edge apex 
intersect the leading edge. It is found that a good . approximation to 
the load can be obtained by the applidation of a fairly simple correc-
tion factor to the two-dimensional subsonic distribution. The similarity 
to two-dimensional flow is used to derive expressions for the loss of 
lift behind the Mach lines from the tips of the wing. 

INTRODUCTION 

In a previous paper (reference 1), formulas were derived by the 
superposition of linearized conical flows (reference 2) for the loading 
of a thin, flat, swept-back wing of rectilinear plan form traveling at 
supersonic speeds, under the limitation that the Mach lines from the 
trailing-edge apex did not cut the leading edge. Ahead of these Mach 
lines the flow is known to follow the conical pattern identified with the 
triangular wing having the same apex angle. By superposing an appropriate 
distribution of other conical flows behind the trailing edge to cancel the 
lift in the wake, the triangular-wing loading can be corrected within the 
region behind the trailing-edge Mach lines to conform to the Kutta condi-
tion for a subsonic trailing edge. This method is described more fully 
in reference 1. 

When the region of influence of the trailing edge includes a part of 
the leading. edge and the stream ahead of it, the mutual interaction of the 
two regions results in a flow which Is susceptible to treatment by the 
conical-flows method only at the expenditure of considerable effort. The 
flow i.n the tip regions is particularly difficult to calculate. A method 
of cancellation of external lift by supersonic doublet distributions, pro-
posed in reference 3, offers some promise of providing a solution in the 
tip region if the pressure at all points Inboard of the tip Mach cone is 
known from other sources. The method appears, however, to be in error as 
applied in the neighborhood of the leading edge or of a raked-out tip. 
Formulas of considerable simplicity have been derived by Heas1't, Lomax,
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and. Spreiter (reference ii. ), but only for a particular family of slightly 
tapered wings with a filleted trailing edge and. plan forms very slender 
relative to the Mach cone. 

Since no satisfactory method appeared to be available for investi-
gating the general problem of the rectilinear swept-back wing with 
interacting leading and trailing edges - that is, wings of high sweep 
or aspect ratio, or wings of moderate sweep and aspect ratio at low 
supersonic Mach nunibers - the work of reference 1 was extended, with 
some simplifying assumptions for the tip regions, to cover such cases. 
The principal object of the investigation was to obtain, if possible, an 
indication of the manner in which the flow in the outboard regions of a 
long narrow wing approaches the subsonic two-dimensional type of flow 
indicated by simple sweep theory. 

The calculations showed that the section loading assumed the general 
shape of the subsonic two-dimensional loading at the very station at 
which the trailing-edge Mach line intersects the leading edge. Further 
investigation showed that everywhere behind the Mach lines from the point 
of intersection and farther outboard the load could be closely approxi-
mated by a fairly simple adaptation of the two-dimensional formulas. 

The following material outlines the method of obtaining the load 
distribution in the region of leading- and trailing-edge interaction by 
the superposition of conical flows and presents the formulas for approxi-
mating the results by a single step based on correction of the two-
dimensional formulas. A corresponding approximate correction to the load 
near the tips is also derived. 

CALCULATION OF LOADING BY SUPERPOSITION OF CONICAL FLOWS

Procedure 

Figure 1 shows the central portion of a long, narrow, swept-back 
wing divided into various regions by the trailing-edge Mach lines, the 
Mach line arising at the intersection of the trailing-edge Mach line 
with the leading edge, and so on. In the superposition process to be 
described, these Mach lines mark the regions of influence of 'the flow 
fields used in successive cancellations of lifting pressure outside the 
wing boundaries. 

In region I, the streainwise component u of the upper-surface per-
turbation velocity - to which, in linear theory, the loading is propor-
tional - is given, as previously mentioned, by the known solution for the 
triangular wing swept behiM the Mach cone 

mu u(a) = _____	 (1) 
/ m2-a
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where u0, the constant velocity along the center line a=O, is 

nlVcL	
(2) U0 = 

(See Appen.ix A for explanation of the symbols.) 

The flow over the remainxler of the wing, however, is affected by 
the reduction of the lift to zero behind the trailing edge. The primary 
induction effects on the wing are given in reference 1 in the form of 
two corrections to the basic perturbation velocity: a symmetrical 
correction1

F(Jl2,)	
(3) = —u K( l2) 

with

2 to 
cp = sin' 

and. the integral with respect to a of 

( Lu)a = -	 cos	
( 1 )( ta_iiit) - (mie(1ta) 

(1)(ta—a)	
(4) 

where Ua = (du/da)da. 

These induced, velocities appear on the wing surface (in regions II, 
iii, . . .) as corrections to the basic velocity u. Beyond the actual 
surface of the wing they represent a discontinuity in pressure which 
cannot be supported in the free stream and must therefore be canceled at 
all points ahead of the leading edge. Cancellation of these pressure 
differences wifl, in turn, induce additional corrections to the perturba-
tion velocities in region III and all portions of the wing aft of that 
region. Again, pressure differences will be introduced in the wake region 
and new corrections will have to be made which will affect the loading in 
region TV and all wore rearwaid portions of the wing. For the present no 
tip location will be specified, except that it is, of course, outboard 
of the intersection of the first trailing—edge Mach line with the leading 
edge. The tip region will be considered after the result of the trailing—
edge - leading—edge interference effect is determined. 

'Equation (3) as originally prescribed in reference 1 (equation (51)) is 
incorrect. An errata sheet has been issued to correct this error.
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The initial distribution of lift to be canceled ahead of the wing (in 
region II extended) is the result of superposing an infinite . number of 
ccnic.1 flow fields originating at the various points on the trailing edge. 
To cancel this distribution of lift by the superposition of conical flows 
requires that each of the lift distributions corresponding to a single 
value of a in equation (4), as well as the lift due to (Au) 0 (equa-
tion (3)), be canceled separately by an infinite number of conical fields. 

The single conical field of (Au) 0 will be considered first. The 
velocity field to be superimposed ahead of the leading edge to cancel the 
velocities (Au) 0 induced in the plane of the wing by the symmetrical 
solution (equation (3)) can be built up, as shown in the sketch on the left, 

of overlapping constant—velocity sectors having one edge along the leading 
edge of the wing and one along the extended ray t 0 from the apex of the 
trailing edge. The magnitude of the constant velocity on each element-is 
[d(Au) 0/dt0 J dt0 or, from equation (3), 

u0 dt0 

K(jl2)j(l_t02)(t022)	
-	 (5) 

Similarly, for each oblique wake or trailing—edge element a, (see 
right—hand sketch), a canceling field can be built up ahead of the leading 
edge b the superposition of sectors bounded by the leading edge and by 
rays ta from the apex Xà, ya of the element a and having a constant 
velocity of magnitude
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1	 - (1)(ta))(lta) 
______	 -	 d.ta 
ta 

dta = - - Ua	 COS	
(1int)(ta) 

(from equation (1)). 

Elementary Solution for the Region Ahead of the Leading Edge 

In general, the elementary solution required for the cancellation 
of pressure in the plane of the wing ahead of the leading edge is one 
that:

1. Provides constant streamw-ise velocity over an infinite sector 
bounded. on one side by the leading edge of the wing (extended) and on 
the other by an arbitrary ray extending outward into the stream from 
some point xb, yb on the leading edge. (See fig. 2.) 

2. Induces no vertical velocity, or downwash, on the wing. 

3. Induces no lift except on the wing and within the sector 
described in condition (1). 

At first glance these conditions would appear to be satisfied by the 
oblique solutions used at the trailing edge In the previous work, if 
properly oriented with respect to the wing, and one might expect the same' 
form of solution to apply. In reference 1, however, it was pointed out 
that the downwash connected with this solution remained constant over the 
wing, only provided that the wing area did not incinde the line 
y = constant extending downstream from the apex of the element. In the 
case of the leading-edge element this condition is violated (fig; 2) and 
an additional term is needed to bring the downwash to zero throughout the 
area of the wing affected by the element. 

The solution applicable to this case has been given by Lagerstrom 
(reference 2). The u component of tie velocity in the plane of the wing 
is as follows: 

u = r.p.	
cos' (ta-m)(l+tb)_(n-tb)(l+ta) - 

L	 (l+m)(tb-ta) 

2m
A/(ta_Ifl)(1+ta) 

rT1	 (6) 
(l+m)ta	 ID-t1 J 

In equation (6), ub •is the constant streamwise perturbation 
velocity over the element, and tb is 3 times the incliiiation, with 

° respect to the stream, of the ray from the ape 	 of the element
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through the point x,y at which the pressure is being computed. Thus, 

tb 
= XXb 

(y-Yb)	
(7) 

When the correction is being inad.e for the symmetrical trailing-edge ele-
ment only, ta is replaced by t0 and u ) = [d(Lu)o/dt0 ] dt0 

For brevity, the two parts of the correction function will be 
referred to as 

C(ta) = r.p. cos1 (taifl)(1+tb)_(1itb)(l+ta)
(8) 

(l-I-m)(tb-ta) 

and

-2m	 /i; 
R ( ta) = r.p.	 J(taln)(1+t ) /	 (9) 

(1+m)ta	 a j flktb 

These functions and the induced velocity (equation (6)) are plotted 
against tb in figure 2 for typical values of the other parameters.. 

Leading-dge Corrections to the Local Lift 

Applying equation (6) to the cancellation of the synimetrical-iake-
correction velocities (zu) 0 ahead of the wing results in the following 
induced-velocity increment, at any point x,y on the wing: 

p' 
( ub)o =	 J	 dt	 [c(t0 ) + R(t0 )] dt 3	 (10) 

T0 

where T0 is that value of t0 for which tb = -1, and designates the 
most rearward leading-edge element containing the point x,y within its 
Mach cone. In terms of x and. y,

m(x-4-f3y) 
T0 = ( x+13y)-(l+m)c0	 (11) 

d( t0 
Integration of	 C(t0)dt0 is not possible by elementary means. 

For values of m equal to or greater than 0. 1i-, a series expansion can be 
used for (u) 0 (Appendix B) arid a satisfactory expression found for the
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first term of the integral (equation (10)). Calculations for m = 0.2 
indicate that integration by series may not be sufficiently accurate 
when m is snail. In such a case, the first part of the integration 
may be performed graphically. 

The second part of equation (10) can be integrated in closed form as 
follows: 

r' 
d(iu)0 

n(t0 ) dt0 =
	

*)_IF(k,*)]	 (12) 

	

J	 dt	 ltmt(1+ni)K'(m.t)	 mx-y [ T0 

where K and E are the omplete elliptic integrals of the first and 
second kind, respectively, of the modulus 

k
 =J

21flt(lTp) 

( l-.nmt)( To+1flj) 

and F(k,4r) and E(k,*) are the correspondin,g incomplete integrals, with 
the argument

= sin 1
	

(iii.) 

The corresponding procedure for each oblique trailing-edge element 
a results in an expression for [d(Lu)b/da] da similar to equation (10). 
Again, the first term cannot be integrated in closed form; the second term 
becomes 

	

1	
a R(ta)	

-4iii UATT 

J(mt_a)(x+y)_(l+m)mtco I t 

	

U	 a	 dta = j2(l+m)a	 mx-y 
Ta

I /(1+a)(Tp—a) 

A/ (i-a)(mt-a) 

1r	
[KE(ka*o)F(ka1bo)] }
	 (15) 

where

T 
= m(m-a)(x+y)--e.m.c0(l±m) 

(m-a)(x+J3y)--mc0(l+m)	 (16) 

('3)
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ka I(l+mt)(l_Ta) 
=

	

	 (17)
(l1t)(1+Ta) 

/(mça)(l4Tp) 
= sin_i j (Ta)(1+)	

(18) 

	

a	 (19) 'ro = sin	
Ta(1+flJG)	 - 

In region III (fig. 1), the total leading-edge correction to the per-
turbation velocity at any point x,y is 

a0' 

( u)b =(ub)o + r	
d(Li	

da	 (20)
Jo 

where a0 ' corresponds to the most rearward trailing-edge element the 
velocity field of which, reflected in the leading edge, can affect the 
point x,y. 

In region IV, the cancellation of the velocity increment (t,U)b at 
the trailing edge must be taken into account. To do this in any rigorous 
way is obviously impractical. However, the velocities tobe canceled are 
small, and. it is possible to estimate the effect of their cancellation in 
many cases. Beyond region IV the velocity distribution cannot be deter- - 
mined in practice, except veryapproximately, by the conical-flows method. 

Calculated Results 

Load distributions have been calôulated by the foregoing method for 
three combinations of taper, sweep, and Mach number as follows: 

Untapered	 Tapered 

m = 0.2	 0.	 0. 

= 0.2	 0. i1.	 0.6 

These values of m and m.b represent, by virtue of the Prandtl-Glauert 
transformation, a variety of practical sweep angles at Mach numbers 
between 1 and 2; as for example, 0.? would be the value of m for a wing 
with 63° sweep of the leading edge at a Mach number of 1.075, or 75 sweep
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at a Mach number of 1.25. Similarly, m = 0.4 would correspond to 45° 
of sweep at M = 1.08, 60° at M = 1.22, or 75° at M = 1.80. The 
trailing-edge sweep angles at these latter Mach numbers, if mj . = 0.6, 
are 34°13', 49°, and 68°, respectively. 

In figure 3, the in = 0.4 wings are shown at M =4, so that 
A = cot l 0.4. Keeping the same angle of sweep, the in = 0.2 case is 
depicted (fig. 4) as representing the same wing at a lower Mach number 
(i3 = 1/2). Figures 3 and 4 show also the spanwise stations at which the 
load distributions were calculated. 

The results of the calculations are presented (figs. 5, 6, and 7) in 
the form of values of	 (Ap/qa.) where Ap is the local' lift, q. the 
free-stream dynamic pressure, and a the angle of attack. In linear 
theory this quantity is connected with the streamwise component of the 
upper-surface perturbation velocity u by the relation 

qa	 Va 

The various conrponents of the lift, as calculated by the superposition 
method, are shown individually. 

Figure 5 presents the resulting lift distributions at the two 
stations of the tapered wing shown in figure 3. Section A-A contains the 
intersection of the trailing-edge Mach line with the leading edge, so that 
the leading-edge correction at the leading edge is zero. At points 
farther back along the leading edge, as at f3y/co = 0.8, the correction 
is minus infinity. Rowever, it is seen to increase tO a small positive 
value within a fraction of the chord length at 13y/c 0 = 0.8. 

At both stations it is necessary.to estimate the effect of cancella-
tion of the leading-edge correction at the trailing edge to satisfy the 
Kutta condition. Cancellation would be effected by means of oblique ele-
ments of the type used previously (equation (4)) in canceling lift at the 
trailing edge, so that the induced lift on the wing has the same general 
shape as the primary oblique trailing-edge correction. It therefore may 
be presuixd to fall along a modified inverse-cosine curve to zero at the 
boundary of the region affected. Locating this boundary, the twice-
reflected Mach line from the trailing-edge apex, we are able to draw in a 
satisfactory estimate (dotted curve) of the correction to bring the 
pressure once more to zero at the trailing edge. 

The untapered wing with the same sweep (m = 0.4) relative to the 
Mach lines is shown in figure 6 with the load distributions calculated at 
the same stations.

- 

Four section lift distributions are presented (fig. 7) for in = 0.2. 
At 3y/c0 = 0.15 only the rear 60 percent is influenced by the subsor4c
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trailing edge. The reflection of this influence in the leading edge 
alters the pressure over the rear 110 percent of the section. At section 
B-B the leading- and trailing-edge interaction affects the entire 
section. A further reflection of this effect in the trailing edge must 
be estimated. 

At section C-C the reflection of the leading-edge correction in the 
trailing edge covers the whole extent of the chord and any estimate of 
its magnitude would be necessarily arbitrary. Also, a second pair of 
reflections must be taken into account. The final pressure distribution 
has therefore been drawn as a band within which the true curve may be 
shown to lie. Its height is the error introduced, at the trailing edge 
by the first leading-edge correction, except very near the leading edge, 
where an infinite negative correction is known to be introduced by the 
second leading-edge correction. The calculations were also carried out 
for 13y/c0 = 0.11.7. The margin of uncertainty was found not to have 
increased by. any appreciable amount. (See fig. 7(d).) 

It may be seen from the figures that, except in the vicinity of the 
leading edge, the magnitude of the leading-edge correction is small. The 
part due to reflecting the oblique trailing-edge correction is roughly 
the same fraction of the total leading-edge correction as the oblique 
trailing-edge correction is, at the leading edge, of the total trailing-
edge correction. This fraction is less than 10 percent in the examples 
calculated and the resulting contribution to the leading-edge correction 
is negligible. The labor involved in computing the loading can in such cases 
be considerably reduced by omitting the calculation of the effect of 
reflecting the oblique trailing-edge correction in the leading edge. 

APPLICATION OF TWO—DIMENSIONAL FORMULAS
TO CALCULATION OF LOAD DISTRIBUTION 

Load. on Midspan Portion of Wing 

It is apparent from the calculated results that, whenever the plan 
form and the Mach number are such that the trailing-edge Mach line inter-
sects the leading edge, the load distribution behind the Mach lines from 
the point of intersection (regions III and. beyond, fig. 1) resenibles in 
shape the well-known incompressible load distribution over an infinitely 
long flat plate. However, the quantitative agreement does not .ppear 
good, particularly in the case of the tapered wing, until the load distri-
butions over sections normal to the stream are examined, when a simple 
proportionality of the curves is observed. In order to determine the 
factor of proportionality It is noted that, if the curves are similar, 
each can be characterized by the strength of the singularity at the 
leading edge. An explicit expression for this quantity can be obtained
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for regions III and 2, of the swept-back wing, and the ratio of this 
quantity to the corresponding quantity in the two-dimensional flow is the 
required correction factor to bring the two curves into agreement. 

The leading-edge singularity in the loading on the swept-back wing 
is initially that in the triangular-wing loading. Introduction of the 
leading-edge corrections to the load in region III reduces the strength 
of the singularity there tlfrough the terms R(t 0 ) and R(ta). (The inverse-
cosine function is always finite.) 

It is convenient to define the strength of the leading-edge singular-
ity as the coefficient of ( xnx-13y ) 1/2 in the velocity distribution. In 
the region ahead of the trailing-edge Mach line, this coefficient is, 
from equation (i),

mxu 

'IInx+y 

reducing to

T C=u0 ---

at the leading edge. 

From equations (12) and (15), decrements to this coefficient may be 
derived for the portion of the leading edge behind the intersection with 
the trailing-ed.ge Mach line, as follows: 

-4muo 

= :JUfltK?(fll.t) 
A/].f [IcE(k*) - EF ( k.4r)]	 (22) 

and, for each value of a from 0 to that value a 0 which makes Ta 
equal to one, 

- da =	 __________ ____	 J()xco{ /(l+a)(Ta) [('a) 
A/ (la)(mta) da	 a 

( 'a ) 1	 [() -	 ( '
o) ] }	

(23) 

2This expression will be shown later to hold approximately for some 
distance outboard of its theoretical limit of applicability, that is, 
beyond region IV (fig. i).

(21)



12
	

NACA TN 1991 

where T 0 and Ta reduce to

T =
x.-co 

and

Ta = (at-a)mx--mtcoa 

( mt.-a ) x-mc0 

and. the argunnts and niodull of the elliptic integrals follow as for 
equations (12) and (15). 

The coefficient of (mx_13y)_h/2 in region III is therefore 

ao 
c+(c)0 + r - 

J0da 

with

c0—( l—m)x 
a0 =	

xntc0—(l--ni)x 

For convenience, we may define the nondimensional coefficient 

[ __	 dLC 
ci(x) = 1
	 + (tc) 0+ f - da 1 vcLt.f	 'Jo	 J 

In figure 8, the quantity I3ci(x) is plotted against x/c 0 for the 
wings previously discussed. Additional terms enter into the coeff.icient 
at the values of x/co indicated by cross—markings on the curves, where 
successive reflections of the Mach lines off the trailing edge intersect 
the leading edge. Evaluation of these terms has not been attempted; 
however, the asymptotes of the curves for the untapered wings are known 
from simple sweep theory, and it is apparent from the figure that the 
magnitude of the omitted decrements, within the practical range of aspect 
ratios, must be small. The curve for the tapered wing, without the addi-
tional corrections, goes to zero where the wing tapers to a point, at 
x = 3c0. However, the complete curve, with the effect of the successive 
reflections included, would have ,a finite value at that point. It can 
be shown that the successive corrections enter with zero derivatives of 
successively higher order so that the error caused by neglecting one is 
initially small. The curve in figure 8 is believed valid to the ext&nt 
of the solid line.

(21i.) 

(25)
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The subsonic perturbation velocity on an infinitely long flat plate 
moving norn1 to its surface with circulation I' is

(26) 
1tcJ T 

where TI is the distance to the 
leading edge, expressed as a 
fraction of the chord c. If 
the section of the plate coin-
cides with a section of the swept-
back wing taken perpendicular to 
the stream (x constant), as in the 
sketch, then the chord length is 

t — "t ( x-co)J	 (27) 

mx 

,-

and

infinite f/of P/ole-ti (28) 
mx-lnt(x-co) 

Substituting for T in equa-
tion (26), we find that the 
coefficient of (mx_f3yY h/2 is

ri	 2 1./ f3y-ni(x--c)	 9 

which reduces at the leading edge to 

fl mx—mt(x—cc) 

Equating this coefficient to the coefficient for the swept-back wing gives 

a0 

[C+(C)0+r	
1 

iJtC	 I 
ii Inx—mt(x--co)	

-	 da j
	

(30) 

Then the two-dimensional approximation to the load, coefficient on the 
outboard portions of a swept-back, wing is given by
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- cT(x) J [ 3y-mt( x-cp)]c0 - 
-	 (31) 

Va.	 [m-m(x-c0)J(fl)x--y) 

or

= Ii.a(x) /
	 [y-mt(x-c0)]co	 -	 (32) qc	 ,j [mx-mi(x-c0)](mx--3y) 

The closeness with which the foregoing procedure predicts the theo-
retical loading over swept-back wings is indicated by figures 9, 10, and 
11, where the previously calculated load distributions are compared with 
those calculated by equation (32). Even in the case of the highly 
tapered wing, the agreement is seen to be good. 

At the most inboard section of the m = 0.2 wing (fig. 7(a)) there 
is, of course, no agreement over the forward portion where the flow is 
essentially conical, but behind, the reflection of the trailing-edge Mach 
line in the leading edge (at 60-percent chord) the adjusted two- - 
dimensional theory appears to hold fairly well. At the next section, 
B-B, the agreement is very good. At sections C-C and. D-D, the curve 
calculated by the two-dimensional theory lies within the band prescribed 
for the loading by the conical-flow calculations. Since the discrepan'cy 
between the two-dimensional loading and the correct theoretical distribu-
tion is already, at section B-B, less than the width of the bands in 
figures 7(c) and (d), and must diminish to zero at iiffinity, it may be 
supposed that the corrected two-dimensional curve is at least as sat is-
factory an approximation to the correct curves at sections C-C and 
D-D as at section B-B, and more satisfactory than can be obtained by 
the conical-flows method.	 .	 - 

The load distributions derived by simple sweep theory are included 
(figs. 9(b), 10(b), and 11(d)) to show the magnitude of the plan-form 
effect and also, in the case of the untapered wings, the curves which the 
load distributions are approaching with increasing distance from the 
plane of symmetry. 

In figures 10(b) and. 11(b), comparison is also made with results 
of the slender-wing theory of reference 4 . . In the second case 
(fig. 11(b)), the Mach line from the trailing edge of the root chord, in 
the modified plan form of reference 1., crosses the section at 12.6. 
percent of the chord, causing the cusp which appears in the load distri-
bution calculated for that wing. It is interesting to note that the 
loadings calculated by the two methods agree fairly well even when the 
wing violates the slender plan-form assumption (m=0.4).
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Calculation of Tip Effect 

In the conical-flows method, the effect on the load distribution of 
the presence of the wing tip is calculated by canceling, outboard of the 
tip, each of the various components of the lifting pressure previously 
calculated. To do this exactly when the trailing-edge Mach line and 
leading edge intersect involves a prohibitive amount of work. Approxi-
mate procedures have been developed (Appendix C), but the calculations 
remain tedious, while the accuracy is in some respects unsatisfactory. 
A simpler approximation, based on the assumption of cylindrical flow 
beyond the tip location, was therefore attempted. The formulas are 
developed for the tips alined with the stream, but the fundamental 
procedure may be applied to raked tips as well. 

It is assumed that the velocity distribution to be canceled in the 
plane of the wing outboard of the tip is an extension of the velocity 
distribution calculated for the tip section along lines parallul to the 
leading edge. For this purpose the approximate load distribut±on given 
by equation (32 ) is used, still further simplified by assuming a to 
remain constant at its value at the leading , edge of the tip section. The 
error involved in this assumption may be estimated by referring to 
figure 8. The maximum range of abscissa to be used is 1.0; the change in 
ordinate within that range - where the influence of the wake is effective - 
is less than 10 percent. (Where the wing is tapering to a point and a 
is changing more rapidly, the tip region is so small that the entire cal-
culation of tip effects would probably be omitted.) 

The assumption of constant a results in a failure to cancel exactly 
the lift along the tip. The assumption of cylindrical flow, while reason-
able for the untapered wing (compare pigs. 10(a) and (b), for example) 
would appear to be too drastic for the tapered wing, where neither the 
chord nor the loading remains constant. However, it has been shown in 
reference 1 that the major part of the tip effect results from the cancel-
lation of the infinite pressure along the leading edge, and this part will 
be accurately calculated. The effect of the residual lift on the rearward 
portion of the tip section and. in the stream will be shown, by numerical 
examples, to be small. 

The distribution of perturbation velocity at the tip station y = s 
with the simplification of constant a is, from equation (31), approxi-
mately

[3S_•!flt(xc_Co)J Co	 (33) 
u( xc, $ ) = a 5

 VJ[() J (mxs)
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F where XC,S are the coordinates 
of a point on the tip and. a5 is 
the value of a at x . = s/m. 

This expression may be more 
conveniently written in terms of 
the variable 

= xc—(s/m) 
C	 Ct	

(34) 

which is the ratio of the distance 
of X, S back of the leading edge 
(see sketch) to the tip chord ct. 
Since 

Ct = ( +!\_.!	 (35) 
.omt)rn 

equation (33) may be written 

a5VCL /
	

( 1c)co 
/ mt—rn '\ 

u(,$) =

	 c) c 

(36) 

If the velocity distribution 
u is assumed to be constant beyond. 
y = s along lines parallel to the 
leading edge, it may be canceled by the superposition of conical constant—
velocity elements, having one edge along.. the tip and. the other parall'el to 
the leading edge, with apexes displaced along the tip by increments In 

The velocity Induced at a point x,y by each such element would be 
(reference 2)

	

COS 
m+t+2int	

(37) It	 tc-rn 

where

tc = 
t3Z)	 .	 ( 38) 

and Uc is the velocity on each sector. 

Following the procedure used in deriving equation (36) in reference 1, 
the corresponding equation may be written for the velocities ±nduced by
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canceling the assumedcylindrical loading: 

zu = -A/(l-I-nl)(x-x0) rx0 u(xc ,$) ____________________	

(39) 
Va	 n	 VCL	 [(1+m)x-x0-nx0 ] A/ 

m 

where x0,s is the intersection of the Mach forecone from x,y with the 
tip.

If the distances of x,y and x0,s back of the leading edge, nas-
uréd as fractions of the tip chord, are 

E-- (_i 
- cj \	 m 

.•1I

0L ( 
•ct \ O	 m 

it can be shown that

(1^m)(x-x) = 't()	 (42) 

from which equation (39) can. be written (with the substitution for 
U(XC, 5 ) from equation (36)) 

aSA./O 

godJ	
1_c	 (43) Va

(x,y) = -	

- (l_
mt 

where - = t, the taper ratio. 
Co 

In integrating equation (43) three cases must be distiuished:
(1)	 <1 (always true for the untapered wing), (2) 1 < 	 (when the 

t 
point x,y lies behind the trai1in edge of the fictitious untapered wing 

through the tip chord), and (3)	 (a possible condition for some 

points near the trailing edge , of a highly swept or tapered wing).

(40) 

(4i)
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In the first case ( <1) 

-2a5 _______________
K + 

,1

(l_ ___	

- (K)F(k',1)] } (a) 

where K and E are the complete elliptic integrals of modulus 

/ 
k= /	 0 

J(mt-m 

and E(k',4r1 ) and P(k', 11r1) are the incomplete integrals, with the com-
plementary modulus

k'- / 
- /m-rn 

mt0 

and arguizEnt

=	 /_ _(1_ 

Al (i_)(i_)
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In the second case	 <

	

-2a	 1 

Va	
K-

m0

(b) 

('fl% ) 

where

/(i-	
) 

sin1 A/ 

In the third case 

(x,y) -2a
5	 I [KE(k',1V3)-(K--E)F(k',i13)J 	 (141.c) 

,tA/	 / (rn-si t
/ 

where	 _________ 

I _mt 
4 3 = Slfl	 ,J 

Along the Mach line from the leading-edge tip, all three equations 
reduce to the value

- -s	 (45) *Ti
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By the procedure just described, approximate cancellation of all 
pressure differences outboard of the tip has been effected, but the 
pressures induced by such cancellation now violate the condition of zero 
lift in the wake. Cancellation of the induced pressure differences in 
the wake can be accomplished in an approximate manner, as in reference 1, 
by making use of the known value of the induced pressure at the trailing 
edge of the wing, but assuming the entire error to originate at the tip 
leading edge. 

On the trailing edge of an 
untapered wing,	 = 1 and 

= —2a k
tK	 (46) 

1t?f 

There is no corresponding simplifi-
cation for the tapered wing. 

The constant—velocity elements 
to be superposed in cancellation of 
this tip—induced velocity will be 
defined by rays of slope t1I13 
from the leading—edge tip. (See 
sketch.) Their apexes will be at 
the intersection xt,yt of the rays 
with the trailing edge, and. they 
will be boui.ed by the rays tm on 
one side and the trailing edge on 
the other. The initial sector, 
bounded by the tip ch-line tm = —1 
will have the constant velocity Lu* 
given by equation (45). The total 
induced correction to the velocity at 
any point x,y will be

r, y) 

2(t*_mt)(m.t+l)(l_t*)
+ Lu(x,y) = - .	 cos_1	

(i_it)(t*+i) 

I

t=i d,u -1 c°	
(l)(ttm)	

dtm ] (47) 
:i. 

where, if x,y* are the coordinates of the intersection of the tip ch 
line with the trailing edge,
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= (y—.sr)	
(48)

x-x 

t = (31—Y.)	
(49) 

x-xt - 

The integral in equation (47) is most conveniently evaluated by plotting 
the inverse cosine against au, obtained from equation (46) for the 
untapered. wing, or equations (44b) or (44c) for the tapered wing, for the 
points x.t,yt on the trailing edge. The two functions are related 
through tm, which is defined by

- ______ 
m - - 

It is difficult to assess the accuracy of the formulas proposed for 
calculating the tip losses in the loading since no correct values are 
available for comparison. In figure 12 two streamwise section load dis-
tributions calculated by equations ( 41i. ) and (47) are compared with those 
obtained by the simplified conical-flows methods described in Appendix C. 
The latter calculations are correct along the tip Mach lines, bxt are 
known to fall below the correct theoretical value at more rearward points. 
The tip-induced velocity to be canceled at the trailing edge cannot be 
calculated with significant accuracy by the approximate method employed, 
so that no estimate could be made of the load curve within the region 
affected by such canceflation. The cylindrical-flow approximation probably 
represents as good an estimate as can. be  obtained at present of the theo-
retical load, distribution 'in that region. 

CONCIAJDING REMARKS 

Beyond the spanwise station at which the Mach lines from the trailing-
'edge apex intersect the leading edge of a swept-back wing, the section 
loading takes on the general form of the two-dimensional subsonic load dis-
tribution. A good approximation to the loading in this region can be 
obtained by applying an easily calculated correction factor to the two- - 
dimensional flat-plate distribution. 

The two-dimensional approximation appears to be in good agreement 
with the theoretically more accurate loading calculated by the conical-
flows method for tapered, as well as untapered, wings. In the case of 
tapered wings, the proposed method is able to predict the increased

(50)
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loading in the outboard, regions (similar to the effect found in subsonic 
flow).

The same concept of utilizing two-dimensional loading can be enrployed 
to obtain an estimate of the loss of loading in the zone of influence of 
the wing tip, when the tip lies wholly within the trailing-edge Mach cone. 
This simplification is especially valuable because even approximate appli-
cation of the conical-flows method Is tedious, and physical conditions of 
flow in the tip region are so different from the conditions assumed in the 
theory that a rough indication of the nature of the theoretical load 
should suffice at the present time as a basis for further investigations. 

The approximations of the conical-flows method, as It has been 
applied herein, should be noted: (i) In canceling lift behind either wing 
half, a small amount of upwash introduced on the other half of the wing - 
in. violation of the boundary conditions - is ignored and (2), If the 
trailing-edge Mach line intersects the leading edge, Its reflection will 
intersect the trailing edge and, within the Mach cone from the point of 
intersection, only an estimate of the loading is feasible. If the next 
reflection (in the trailing edge) results in a second intersection of the 
Mach line with the leading edge, the leading-edge correction factor for 
adjusting the two-dimensional load distribution will also be in error. 
Calculations made to check the first of these approximations showed the 
Induced-downwash angle to be less than half of 1 percent of the angle of 
attack on the wings considered. The magnitude of the inaccuracy Intro-
duced by the second limitation has been indicated by the examples pre-
sented. herein; the result Is to limit the aspect-ratio Mach number com-
binations (as expressed by the reduced aspect ratio .k) for which the 
conical-flows method will give accurate theoretical solutions. The 
corresponding error in the leading-edge correction coefficient appears, 
however, to be insignificant and it is felt that, with the exception of 
wings tapered to a point, the upper range of reduced aspect ratio A is 
adequately covered by the proposed method of correcting the two-. 
dimensional load distribution. There remains only the case in which the 
reduced span (3 times the geometric span) is less than the tip chord. 
In this case, the interference of the tip flows with each other will, in 
conjunction with a subsonic trailing edge, create a problem not readily 
solvable by either the conical-flows method. or the two-dimensional approx-
imation. This problem falls within the scope of the slender-wing theory 
of reference 14• 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif., Sept. 16, 1914.9.
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APPENDIX A 

SYMBOt1S 

General 

V	 free-stream velocity 

M	 free-stream ch number 

p	 density of air 

dynalc pressure (.øv) 

pressure difference between upper and. lower surfaces, or local 
lift 

angle of attack, radians 

circulation on Infinite flat plate 

c	 chord of infinite flat plate (See s1tch, p. 13) 

Wing D1ns ions 

c0 root chord 

Ct tip chord 

s seinispan 

A angle of sweep of the leading edge 

taper ratio (ct/Co)

Coordinates 

x,y Cartesian coordinates in the stream direction and across the 
stream in the plane of the wing 

coordinates of apex of oblique trailing-edge element 

coordinates of apex of leading-edge element 

coordinates of pOint on trailing edge, within tip 	 ch cone
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streaise coordinate of apex of tip element 

largest value of x at which cancellation of pressure can 
affect point at which pressure is being calculated 

streainwise distance of x,y back from leading edge, as a fraction 
of the tip chord (equation (40)) 

distance of x behind leading-edge tip, as a fraction of the 
tip chord (equation 314.)) 

distance of' x0 behind leading-edge tip, as a fractior. of the 
tip chord (equation (41)) 

spanwise distance of x,y from leading edge, as a fraction of 
the chord through x,y measured perpendicular to the stream 
(equation (28))	 ' 

In the following, all slopes are measured counterclockwise from a 
line extething downstream from the apex of the wing or of the pertinent 
elementary sector: 

in slope of leading edge =	 cot A 
slope of Mach lines 

slope of trailing edge 
slope of Mach lines 

a slope of ray from the origin 	 y 
slope of Mach lines	 x 

to slope of ray from trailing-edge apex y 
elope of Mach lines	 .'	 '

___ 

x-c 

slope of ray from leading-edge tip = Y-
slope of Mach lines x-(s/m) 

ta slope of ray from apex of element a = y - 
slope of Mach lines x_xa 

t b slope of ray from apex of leading-edge element =	 y-
slope of Mach lines x_xb 

tb* tb	 for point at which pressure is being calculated 

C
slope of ray from apex of tip element y-s 
,	 elope of Mach lines

=

x- xc
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a0	 the value of a corresponding to a trailing-edge element of which 
the apex lies on the Mach forecone of the point at which the 
load is being calculated 

a0 '	 the largest value of a along which cancellation of pressure in 
the wake can affect the point at which the load is being cal-
culated. through reflection in the leading edge 

the smallest value of t o along which cancellation of pressure 
ahead of the leading edge can affect the point at which pressure 
is being calculated (equation (11)) 

Ta	 the smallest values of ta along which cancellation of pressure 
ahead of the leading edge can affect the point at which pressure 
is being calculated (equation (16)) 

Streaise Components of Perturbation Velocity 

basic (uncorrected) perturbation velocity as given by solution 
for triangular wing (equation (1)) 

u0	 value of u at . a=O (equation (2)) 

Ua	 conetant perturbation velocity on canceling (oblique) sector 
in wake 

uj	 constant perturbation velocity on canceling sector ahead of wing 

uc	 constant perturbation velocity on canceling sector outboard of tip 

(Lu) 0 syietrical trailing-edge correction to u (equation (3)) 

(iu)a correction to uA due to single oblique trailing-edge element 

(da) 

(u)b leading-edge correction to , u	 . 

(2) leading-edge correction to u. due to reflection of 
(equation (10)) 

( u )	 correction to u due to reflection of leading_edge correction 
in wing tip (terms in P only) 

perturbation velocity Induced by. cancelingtip effect at the 
trailing edge (equation ( 7))
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Arbitrary Mathematical Symbols 

r.p.	 real part 

B	 radical term of leading-edge correction function (equatIon (9)) 

C	 inverse-cosine term of leading-edge correction function 
(equation (8)) 

C	 value of coefficient of (mx-y)"2 in u at the leading 
edge (strength of the leading-edge singularity in u) 

(c)0 decrement in the strength of the leading-edge singularity in
u due to reflection of (u) 0 at leading edge 

d.a decrement in the strength of the leading-edge singularity in a	
u due to reflection of (u)a at leading edge 

a	 leading-edge correction coefficient defined by equation (25) 

value of a at leading-edge tip 

Elliptic Integrals (See references 5 and 6.) 

k	 modulus of elliptic integral (defined where used) 

k'	 the complementary modulus (All - k2) 

q) or	 argument of elliptic integrals (defined where used) 

F(k,cp) incomplete elliptic integral of the first kind of modulus k 
and argument cp 

K,K(k) complete elliptic integral of the first kind of modulus k 
[K=F(k,)J 

E(k,cp) incomplete elliptic integral of the second kind 

E,E(k) complete elliptic integral of the secbnd. kind of modulus k 

[E =E(k4)] 

K'(k) K of the complementary modulus [K'(k) = K(k')]
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APPENDIX B 

p l d(u)0 
EVALUATION o '	 c(t0)d.t0 BY SERIES EXPANSION 

Jr0 d.t0 

For integration of the first term of equation (10), the product 
[d(iu) 0/dt0 ] c(t0) Is integrated by parts to give 

3. d(tu)	 Ii	 dC 

ITO 
dt	

c(t0)dt0 = (tu)o C(t0 ) I	 I	 (tu)o	
(t0) 

dt0	 (Bi) 
to IT0 JT0 

The first term goes to zero at either limit. In the second term, tb 
must be expressed in terms of x, y, and to before taking the deriva-
tive of c(t0). If the constant (for any selected point) 

13y 

x—co 

is defined, this derivative may be written 

dC(t0) =	 (l^t0*)	 0i)(npy)	
(32) -	

dt0	 (ta_to*) Afmc0(l+1fl)(I+to)(tO...rO) 

If this expression and the expressioh for (u) 0 given by equation (3) 
are substituted in equation (Bi), the result 

pi d(i u)o	 uo(l+to*) /

(m)(y) 11-0 
dto 

c(t0)dt0 
K( fl_nt2 )	 mco(l+m) 

	

p'	 F( Jl_mt2 ,. q) 

J'r0 (t0_t0*) A/(l+t0)(t,...'r0) dt
	 (B3) 

is obtained. For to close to 1 (small values of cp), F( A/lmt2 ,p) may 
be expanded into a MacLauren series In sin cp = 'v(l_to2 )/(l—mt2) as 
follows:
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p( *Ji- 2 ,cp) =	
+ 1+(1 .2) (1_t02/2 + 

&/	 2	 6	 2)

5/2 
3+2(11nt2)+3Q._nt2)2 ( i—t0 "1	 + . . 

11.0	 \ 1.-mj)	 (Bli.) 

Fran the first two terms of the series,, substituted. in equation 

(B3), we may obtain 

1	 = tuo(1+to*) /_(10—m)(mx_y) •f( 'i	 - 1) [1+ - f ( ub) c(t0)dt0
K( V'1_!nt2) '1 mco(1+m)(1_nt2 ) (\/ r_.t * 

00 

	

+ 1 )tI - l—T0 (^ 1	 +4t *)} 
6\	 1—'t2	 48 '\ 1_.rn.2J	 0 0 

(B5) 

The correspond.lng expression has been derived f or f(ub)C(ta)dta, 

but the results are numerically insignificant. inniost cases.
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APPEIDIX C 

CAlCULATION OF TIP LOSS IN LOADING BY CONICAL-FLOWS METHOD 

If the ti'ailing-edge ch line intersects the leading edge on the 
wing, four components of the perturbation velocity, as calculated by 
the conical-flows method, must be canceled outboard of the tip: 3 (1) the 

basic velocity u, (2) the trailing-edge correction (u)0 +	 da, J da 
0 

a' 
P 0 d 

(3) the leading-edge corrections ( u)b = ()	
(u) da , 

	

o	 da 

and (1k.) the reflection of (t,u)b in the trailing edge (in region IV, 
fig. 1). This last component has not been calculated. If it does not 
extend over more than 50 percent of the tip section, the effect of its 
canóellation at the tip can probably be neglected. 

The third àomponent (tu)b can be further broken down into the 
parts arising from the radical term R in the leading-edge correction 
function and. those arising from the inverse-cosine term C. The former 
components increase to infinity at the leading edge and will be treated 
in the same way as the basic velocity u. The latter remain finite 

and exactly cancel the trailing-edge corrections (Lu)0 + /	 da 
d.a 

at the leading edge of the tip section. Although these components (the 
C component of (Lu)i , and the trailing-edge correction) do not cancel 
each other elsewhere on the tip section or in the stream, the variation 
of each is fairly small in the region affecting the pressures on the 
wing, and, since the net induced effect of canceling them is zero and has 
zero slope along the tip.1.ch cone, it will be assumed that they cancel 
each other completely. This assumption will result in somewhat too low 
a loading near the trailing edge. 

Cancellation of the first component, the basic velocity u1 , has 
been covered in reference 1. The result is a reduction in u given by 

LU=uo/f /2(s-y) K-2x	 m	 _____ 
it	 J x+y	 A/m2x2_2y2 L K'

(Cl) 

If the tip lies beyond region IV (fig. 1) further small components 
enter, but these will not be considered . in the present analysis.
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(equation (37) of reference 1), where 
s is the setnispan, 

/(m-ao)(l--m) 

'/	 2m(a+l) 

/a0(mx+iy)	 f3s 
= Slfl 

A/ s(a0+m)' a0 = x+(y—s)' 

K' = K(k'), and E' = E(k'). 

The part of the leading-edge corr 
tion associated with R(t0 ) niay be 
canceled by the following procedure: 

For any one value of to • (see sk 
the correction to u(x,y) will be 

= - ! d(u)o t 0 irtt [( tO , tb) cos tb+tc +2thtc + 
dt	 2 at0	 tb_>m L	 tc_tb 

-	 [tc	 t+t+2tt dtb ] 

S	

- 	 ( c2) 

	

-	 tb 

where t-b =	 ::jc.b) (see sketch). 

Integrating by parts results in the elimination of the first term 
so that	 S 

_____	 = 1 d(u)0 at0 fm
	

R(tQ,tb)	 cos_l t+t+2tt dtb

(c3) 

Equation (C3) can be integrated analytically, giving 

=	 2m	 /(o_m)(l+to)(l+tb*) d(u) 

at0	 °	 ir(i+m)t	 A/	 m_tb*	
0	 (Cl-i-) 

where	 S..S..-. V

t* - _______
b - X_Xb
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To obtain the total correction to u(x,y) for the . cancellation of 
the term in R(t0 ) of the leading—edge correction, equation (C t1.) may be 
integrated graphically by plotting against (iU) 0 the remainder of the 
expression in the right—hand side. An approximate correction for the 
reflection of the terms in R ( ta) can be included by plotting against 
the values of

p0 

	

Lxu=(Lu) + I	 IA 

	

° J	 da 
0 

along the leading edge. Then 

tb* = 1_ 
/()(1^to)(^tb*) du
	 (c5) (.u) - 2in	 r	 _________________ 

c (1+m) J	 t 'I 
t0=i	 o	 b 

where t0 , tb*, and	 are all computed for specified locations of 
XJD ,Yb on the leading edge and the extension of the leading edge to 
the point such that tb* = - 1. 

In practice, equation ( C5) appears to result in a nearly constant 
correction to the secMon loading, as shown in figures 12(a) and (b). 
The work may be further simplified, therefore, by performing only the 
relatively simple calculation for a point on the Mach line. 
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4v

I 

6• 

-	 I
Trailing_edge 

31	 Mach/me 

I 
Mach lines

\ 

Figure I. - P/ca view of central port/on of swept- bock 

wing showing pattern of Mach lines arising at 

leading and trailing edges.
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FIgure 2. - Leading-edge element and induced-velocity function.
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—.2 0 .2 4 .6 .8 -20.2.468 

/77:4 

/77/ .6

8 
Figure 3. - P/an view of tapered and untapered wings, m :0.4, 

showing Mach line patterns and sec/ions of which 

I/f I d/strIbuf/os were calculated.
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-.2 -.1	 V .1 .2 .3 .4 .5 

Figure 4. - P/on view of untopered wing, m : O.2, showing 

Mach line pattern and sections of which I/ft dis - 

fr/but ions were calculated.
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Correct/on for 
Leading-edge correct/on	 Ku/ta con 

Oblique trailing -edge 
correction 

Symmetric t,oi7/ng -edge 

25

	

	 75	 iO 
Percent chord 

(a) Section 4-4 d8 /C0 0. 66Z 

• Figure 5. - Load distribution over two s/re am wise sections 

of me tapered swept-back wing calculated by the 

con/ca/-flows method.

37
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4 .6 ..8 
I -4 

fly

N 

3 
4p

ic•mcl is

Alt 111a114 

75	 /00 
Percent chord 

(b) Section B -B; ly Ic 0.8. 
figire 5. — Concluded.
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i-'erceor cnoro' 	 _________ 
(a) Sect/on A-A; 8y/c0 a 0. 

Figore 6. - Load distribution over two stream wise sections of 
the untapered swept-back wing, m 0. 4, calculated by 
the con/ca/-flows method.



- Percent chord 
(b)SectionB-B; fly/c0 

Figure 6. - Concluded.
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'a 

Percent chord 
i'd Sec//on A -A; ,ey,', = 0.15. 

Figure 7- Load distributions over four sfrecmw/se sectiOns of the 

un/op ered swept-back wing, m-0.2, calculated by the con/ca/ -
flows method.
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Percent chord 
(b) Sect/on B -B; ,8y/c0 0.25. 

figure 7- Continued.
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0	 .i	 .2	 .3	 .4	 .5	 6 

Percent chord 

(c) Sect/on C -C; iy/c0 0.35. 

Figure 7- Continued.
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Percent chord 
(d) Section D 0; fly/c 0.45. 

Figure 7- Concluded.
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0	 25	 50	
A7°0

Percent chord 
(a) Section A-A. 

figure 9. - L oad disfr,buf/ons on the tapered wing as cc/cu/a/ed 
by the conical- flows method, and the two - dimensional 
approximation.
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0	 50	 75 
b) Sect/on B-B.	

/00 

Figure 9.- Concluded.
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/
ag-edge tip interaction, 
equation i'C51 

Correct/on for Ku/ta I	 condition, e/4< 
I	 -/ Cylindrical-flow 

correct/on 
eq. (44) '__—_--

Approximate tip ef-4,
fect conical-flows 

equation (Cl) ' 3

';aicurve,i ' 
2

LsJ(IW( f(.CIl 

flow approximation 

approximation 

-	 -
Percent chord 

(a) Lin/apered wing, rn NO.4, gA = /88. Sec//on at ly=O.8c0, 
or 85-percent sem/span. 

Figure /2.— Load distribution over section near tip as ccl - 

cub/ed by conical- flows me/hod and by assuming cylin dr/cal 

flow near tip.
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/
,Leading-edge tip 
interaction, eqjf5) 

C

Correction 
- /	 for Kutta 

condition 
eq. (47) 

-2 Cylindrical-
flow corr. 
eq.,'44) 

-3 Approx. tip 
effect, conica/ 
flows method 

Primary tip cor-
rection, eq 'C 

o4p 
"qa	 ;cl loading 

(from don/cal 
Vorrected two
	 flows) 

dimensional theor

Without lip effect 

I	 I
Cylindrical-flow 
app,oximation 

-1
Conical-flows 

approximation 
-2

Percent chord 
• (b) Tapered wing, fiA 2.6/. Section ci y 0. 8c,, 

or 94-percent semispan. 

Figure /2. - Concluded. 
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