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SUMMARY

By the method of superposition of conical flows, the load distribu—
tion is calculated for regions of a long, rectilinear, swept~back wing
behind the points at which the Mach lines from the trailing—edge apex
intersect the leading edge. It is found that a good approximation to
the load can be obtained by the application of a fairly simple correc—
tion factor to the two—dimensional subsonic distribution. The similarity
to two—dimensional flow is used to derive expressions for the loss of .
1ift behind the Mach lines from the tips of the wing.

INTRODUCTION

In a previous paper (reference 1), formulas were derived by the
superposition of linearized conical flows (reference 2) for the loading
of a thin, flat, swept—back wing of rectilinear plan form traveling at
'supersonic speeds, under the limitation that the Mach lines from the
trailing-edge apex did not cut the leading edge. Ahead of these Mach
lines the flow is known to follow the conical pattern identified with the
triangular wing having the same apex angle. By superposing an appropriate
distribution of other conical flows behind the trailing edge to cancel the
1ift in the wake, the triangular-wing loading can be corrected within the
region behind the trailing—edge Mach lines to conform to the Kutta condi—
tion for a subsonic trailing edge. This method is described more fully
in reference 1.

When the region of influence of the trailing edge includes a part of
the leading edge and the stream ahead of it, the mutual interaction of the
two regions results in a flow which is susceptible to treatment by the
conical—-flows method only at the expenditure of considerable effort. The
flow in the tip regions is particularly difficult to calculate. A method
of cancellation of external 1lift by supersonic doublet distributions, pro—
posed in reference 3, offers some promise of providing a solution in the
tip region if the pressure at all points inboard of the tip Mach cone 1is
known from other sources. The method appears, however, to be in error as
applied in the neighborhood of the leading edge or of a raked—out tlp.
Formulas of considerable simplicity have been derived by Heasl<t, Lomax,
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and Spreiter (reference 4), but only for a particular family of slightly
tapered wings with a filleted trailing edge and plan forms very slender
relative to the Mach cone,

Since no satisfactory method appeared to be available for investi—
gating tlie general problem of the rectilinear swept-back wing with
interacting leading and trailing edges -~ that is, wings of high sweep
or aspect ratio, or wings of moderate sweep and aspect ratio at low
supersonic Mach numbers — the work of reference 1 was extended, with
some simplifying assumptions for the tip regions, to cover such cases.
The principal object of the investigation was to obtain, if p0351ble, an
indication of the manner in which the flow in the outboard regions of a
long narrow wing approaches the subsonic two—dimensional type of flow
indicated by simple sweep theory.

The calculations showed that the section loading assumes the genéral
shape of the subsonic two-dimensional loading at the very station at
which the trailing—edge Mach line intersects the leading edge. Further
investigation showed that everywhere behind the Mach lines from the point
of intersection and farther outboard the load could be closely approxi-—
mated by a fairly simple adaptation of the two—dimensional formulas.

The following material outlines the method of obtaining the load
distribution in the region of leading— and trailing—edge interaction by
the superposition of conical flows and presents the formulas for approxi-—
mating the results by a single step based on correction of the two-—
dimensional formulas. A corresponding approximate correction to the load
near the tips is also derived.

CALCULATION OF LOADING BY SUPERPOSITION OF CONICAL FLOWS
Procedure

Figure 1 shows the central portion of a long, narrow, swept-back
wing divided into various regions by the trailing-edge Mach lines, the
Mach line arising at the intersection of the trailing—edge Mach line
with the leading edge, and so on. In the superposition process to be
described, -these Mach lines mark the regions of influence of the flow
fields used in successive cancellations of lifting pressure outside the
wing boundaries.

. In region I, the streamwise component u of the upper—surface per—
turbation velocity — to which, in linear theory, the loading is propor—
tional — is given, as previously mentioned, by the known solution for the
triangular wing swept behind the Mach cone '

u(a) = ——= | (1)

mLaZ
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where ug, the constant velocity along the center line a=0, is

w. = mVa, (2)

° B E( N12)

(See Appendix A for explanation of the symbols.)

The flow over the remainder of the wing, however, is affected by
the reduction of the lift to zero behind the trailing edge. The primary
.induction effects on the wing are given in reference 1 in the form of
two corrections to the basic perturbation velocity: a symmetrical
correction?

(Au) . = —u F( }ﬂi’w) (3)
(o] (o] K( ll_mtz) - ‘
with
R | l-'toz
¢ = sin 1 >

and the integral with respect to a of

(au), = - da cos—1 (l-a)(tazifiit;(i:t_;j)(lfta) | (h.)

where ug = (qu/da)da.

These induced velocities appear on the wing surface (in regions II,
ITT, . . .) as corrections to the basic velocity un. Beyond the actual
surface of the wing they represent a discontinuity in pressure which
cannot be supported in the free stream and must therefore be canceled at
all points ahead of the leading edge. Cancellation of these pressure
differences will, in turn, induce additional corrections to the perturba—
tion velocities in region III and all portions of the wing aft of that
region. Again, pressure differences will be introduced in the wake region
and new corrections will have to be made which will affect the loading in
region IV and all more rearward portions of the wing. For the present no
tip location will be specified, except that it is, of course, outboard
of the intersection of the first trailing—edge Mach line with the leading
edge. The tip region will be considered after the result of the trailing—
edge — leading—edge interference effect is determined.

1Equation (3) as originally prescribed in reference 1 (equation (51)) is
incorrect. An errata sheet has been issued to correct this error.
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The initial distribution of lift to be canceled ahead of the wing (in
region II extended) is the result of superposing an infinite. number of
conical flow fields originating at the various points on the trailing edge.
To cancel this distribution of 1ift by the superposition of conical flows
requires that each of the lift distributions corresponding to a single
value of a ‘in equation (4), as well as the 1lift due to (Mu), (equa-
~ tion (3)), be canceled separately by an infinite number of conical fields.

The single conical field of (Au), will be considered first. The
velocity field to be superimposed ahead of the leading edge to cancel the
velocities (Au)o induced in the plane of the wing by the symmetrical
solution (equation (3)) can be built up, as shown in the sketch on the left,

ﬂvMWg;edye
element a

of overlépping constant—velocity sectors having one edge along the leading
edge of the wing and one along the extended ray to from the apex of the
trailing edge. The magnitude of the constant velocity on each element-is
[a(Au),/at, ] dt, or, from equation (3), ‘

u, dto

K/ Tm2) (1—tg2) (b Pme?)

. (3)

Similarly, for each oblique wake or trailing—edge element a, (see
right—hand sketch), a canceling field can be built up ahead of the leading
edge by the superposition of sectors bounded by the leading edge and by
ray: tg from the apex xg,yg of the element a and having a constant
velocity of magnitude '
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o(Au), 1 3 _, (1-a)(tg—m ) m—a)(1-t,)
—SE;_— dty = - — Uy SE; cos™t — (1) (6 a) dtg

(from equation (4)).

Elementary Solution for the Region Ahead of the Leading Edge

In general, the elementary solution required for the cancellation
of pressure in the plane of the wing ahead of the leading edge 'is one
that:

1. Provides constant streamwise velocity over an infinite .sector
bounded on one side by the leading edge of the wing (extended) and on
the other by an arbitrary ray extending outward into the stream from
some point xyp,yp on the leading edge. (See fig. 2.)

2. Induces no vertical velocity, or downﬁash, on the wing.

3. Induces no 1lift except on the wing and within the sector
described in condition (1).

At first glance these conditions would appear to be satisfied by the
oblique solutions used at the trailing edge in the previous work, if
properly oriented with respect to the wing, and one might expect the same"
"form. of solution to apply. In reference 1, however, it was pointed out
that the downwash connected with this solution remained constant over the
wing, only provided that the wing area did not include the line
y = constant extending downstream from the apex of the element. In the
case of the leading-edge element this condition is violated (fig. 2) and
an additional term is needed to bring the downwash to zero throughout the
area of the wing affected by the element.

The solution applicable to this case has been given by Lagerstrom
(reference 2). The u component of the velocity in the plane of the wing
is as follows: : ' ‘ :

'_ uy _ (ta—-m)(l+tb)—(m-tb)(1+t )
= r.p. = [cos 1 (Tom) (tpt,) a

1+ty : .
(1) WV (tgm)(1+t,) E} , | (6)

In equation (6), wu, .is the constant streamwise perturbation
velocity over the element, and ty, is B times the inclination, with
respect to the stream, of the ray from the apex Xys¥p ©Of the element



6 NACA TN 1991

through the point x,y at which the pressure is being computed. Thus,

N B(Y‘Wb)
=Xy

(7)

When the correction is being made for the symmetrical trailing—edge ele—
ment only, ts is replaced by to and up =[d(Au)o/dty] dte-

For brevity, the two parts of the correction function will be
referred to as ,

_y (tgmm)(Lety)~( m-ty, ) (1+t,)
(1+m) (ty—ty ) .

" C(ty) = r.p. cos

and

—2m
(1+m)tg

1+tp

R(tg) = r.p. W (tgm)(1+t,) (9)

These functions and the induced velocity (eqﬁation (6)) are plotted
against ty 1in figure 2 for typical values of the other parameters.

Leading-Edge Corrections to the Local Lift

Applying equation (6) to the cancellation of the symmetrical-wake—
correction velocities (Au)o ahead of the wing results in the following
induced-velocity increment at any point x,y on the wing:

1 .
(su)o = [ 2802 fo(ty) + R(s0)1 at, (10)

o}

vhere 7, 1s that value of t, for which ty, = -1, and designates the
most rearward leading-edge element containing the point x,y within its
Mach cone. In terms of x and y,

. m( x+By )
© " (x+By)~(1+m)c,

a(au)o ]
at, C(to)dto is not possible by elementary means.

(11)

.Integration of

For values of m equal to or greater than 0.4, a series expansion can be
used for (Au), (Appendix B) and a satisfactory expression found for the
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first term of the integral (equation (10)). Calculations for m = 0.2
indicate that integration by series may not be sufficiently accurate
when m is small. In such a case, the first part of the integration
may be performed graphically. ’

The second part of equation (10) can be integrated in closed form as
follows:

1, a(au), —J+m3/2 /x—ﬂ?
;f T R(to) dto =:tmt(1+m)K'(mt) = [m(k,w)—m(k,qr)] (12)

To
where K and E are the complete elliptic integrals of the flrst ‘and
second kind, respectively, of the modulus

k = emt(l—TQ)
(1-my ) ( 7o+my )

(13)

Bd

and F(k,¥) and E(k,¥) are the corresponding incomplete integrals, with

. the argument
/T +mt . ' :
= sj_n_l O ’ (lll»)
v 271,

The corresponding procedure for each oblique trailing-edge element
a results in an expression for [d(Au)p/da] da similar to equation (10).
Again, the first term cannot be 1ntegrated in closed form; the second term
becones .

1 [ ro(au), ) “m u Ve [mge)(x+py)—(T+m)me,
—'J[J_EE;—_'R(ta dtg = n2(1+m)a - mx~By

Ta
{ /:%T.:‘E [KE(ka,wa)—EF(ka,wa)]-
/_:,t—; [KE('ka,\vo)—EF(ka,wo)] } )

where

m(mi—a ) (x+By )—emyc,(1+m)

(H%—a)(x+By)—mtco(l+m) (16)

TB.=
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| _ (1+my ) (1~,) ‘

ky —M//(l—mt)(1+7a) (27)
_ (mt—a)(1+7 )

Vg = si (Ta—a)(l+m:). (18)

1

Yo

. l . ‘ .
sin'lb/';§%§:££%l | ' (19)

In region III (fig. 1), the total leadlng—edge correction to the per—
turbation velocity at any p01nt X,y 1is

a 1 4
(s)y = () + [ Pl (20)
(o] .

vhere ao? corresponds to the most rearward trailing—edge element the .
velocity field of which, reflected in the 1ead1ng edge, can-affect the
point x,y.

In region IV, the cancellation of the velocity increment (Au)b at
the trailing edge must be taken into account. To do this in any rigorous
way is obviously impractical. However, the velocities to be canceled are
small, and it is possible to estimate the effect of their cancellation in
many cases. Beyond region IV the velocity distribution cannot be deter—
mined in practice, except very approximately, by the conical—flows method.

Calculated Results

Load distributions have been calculated by the for€going method for
three combinations of taper, sweep, and Mach number as follows:

Untapered - Tapered
m =0.2 0.4 . 0.4
mg = 0.2 0.4 0.6

These values of m and my represent, by virtue of the Prandtl-Glauert
transformation, a variety of practical sweep angles at Mach numbers
between 1 and 2; as for example, 0.2 would be the value of m for a wing

with 63° sweep of the leading edge at a Mach number of 1.075, or 75° sweep
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at a Mach number of 1.25. Similarly, m = 0.4 would correspond to 45°
of sweep at M = 1.08, 60° at M = 1.22, or 75° at M = 1.80. The"
trailing-edge sweep angles at these latter Mach numbers, if my. = 0.6,
are 34°13', 49°, and 68°, respectively.

In figure 3, the m = 0.4 wings are shown at M =2, so that
A = cot™ 0.4, Keeping the same angle of sweep, the m = 0.2 case is
depicted (fig. 4) as representing the same wing at a lower Mach number
(B = 1/2). Figures 3 and 4 show also the spanwise stations at which the
load distributions were calculated.

The results of the calculations are presented (figs. 5, 6, and 7) in
the form of values of B (Ap/qa) where Ap 1is the local 1ift, q the
free—stream dynamic pressure, and o the angle of attack. In linear
theory this quantity is connected with the streamwise component of the
upper—surface perturbation velocity u by the relation

4P _

2
qa © Va

The various components of the 1lift, as calculated by the superposition
method, are shown individually.

Figure 5 presents the resulting lift distributions at the two
stations of the tapered wing shown in figure 3. Section A—A contains the
intersection of the trailing—edge Mach line with the leeding edge,so that
the leading-edge correction at the leading edge is zero. At points
farther back along the leading edge, as at By/co = 0.8, the correction
is minus infinity. However, it is seen to increase to a small pos1t1ve
value within a fraction of the chord length at By/cy = 0.8.

At both stations it is necessary.to estimate the effect of cancella—
tion of the leading—edge correction at the trailing edge to satisfy the
Kutta condition. Cancellation would be effected by means of oblique ele—
ments of the type used previously (equation (4)) in canceling 1lift at the
trailing edge, so that the induced 1ift on the wing has the same general
shape as the primary oblique trailing—edge correction. It therefore may
bé presumed to fall along a modified inverse-cosine curve to zero at the
boundary of the region affected. Iocating this boundary, the twice—
reflected Mach line from the trailing—edge apex, we are able to draw in a
satisfactory estimate (dotted curve) of the correction to bring the
pressure once more to zero at the trailing edge.

The untapered wing with the same sweep (m = 0.4) relative to the
Mach lines is shown in figure 6 with the load distributions calculated at
the same statlons.

Four section lift distributions are presented (fig. 7) for m = 0.2.
At By/co = 0.15 only the rear 60 percent is influenced by the subsonic
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trailing edge. The reflection of this influence in the leading edge
alters the pressure over the rear 40 percent of the section. At section
B-B the leading— and trailing-edge interaction affects the entire
section. A further reflection of this effect in the trailing edge must
be estimated.

At section C-C the reflection of the leading—edge correction in the
trailing edge covers the whole extent of the chord and any estimate of
its magnitude would be necessarily arbitrary. Also, a second pair of
reflections must be taken into account. The final pressure distribution
has therefore been drawn as a band within which the true curve may be
shown to lie. TIts height is the error introduced at the trailing edge
by the first leading—edge correction, except very near the leading edge,
where an infinite negative correction is known to be introduced by the
second leading—edge correction. The calculations were also carried out
for By/co = 0.45. The margin of uncertainty was found not to have
increased by.any appreciable amount. (See fig. 7(d).)

It may be seen from the figures that, except in the vicinity of the
leading edge, the magnitude of the leading—edge correction is small. The
part due to reflecting the oblique trailing—edge correction is roughly
the same fraction of the total leading—edge correction as the oblique
trailing-edge correction is, at the leading edge, of the total trailing—
edge correction. This fraction is less than 10 percent in the examples
calculated and the resulting contribution to the leading—edge correction
is negligible. The labor involved in computing the loading can in such cases
be considerably reduced by omitting the calculation of the effect of
reflecting the oblique trailing-edge correction in the leading edge.

APFLICATION OF TWO-DIMENSIONAL FORMULAS
TO CALCULATION OF LOAD DISTRIBUTION

Load on Midspan Portion of Wing

It is apparent from the calculated results that, whenever the plan
form and the Mach number are such that the trailing—edge Mach line inter—
sects the leading edge, the load distribution behind the Mach linés from
the point of intersection (regions III and beyond, fig. 1) resembles in
shape the well-known incompressible load distribution over an infinitely
long flat plate. However, the quantitative agreement does not appear
good, particularly in the case of the tapered wing, until the load distri—
butions over sections normal to the stream are examined, when a simple
proportionality of the curves is observed. In order to determine the
factor of proportionality it is noted that, if the curves are similar,
each can be characterized by the strength of the singularity at the
leading edge. An explicit expression for this quantity can be obtained
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for regions III and V2 of the swept—back wing, and the ratio of this
quantity to the corresponding quantity in the two—dimensional flow is the
r2quired correction factor to bring the two curves into agreement. :

The leading-edge singularity in the loading on the swept—back wing
is initially that in the triangular-wing loading. Introduction of the
leading-edge corrections to the load in region III reduces the strength
of the singularity there through the terms R(ty) and R(ta). (The inverse—
cosine function is always finite.)

It is convenient to define the strength of the leading—edge singular—
ity as the coefficient of (mx—By)1/2 in the velocity distribution. In

the region ahead of the trailing—edge Mach line, this coefficient is,
from equation (1),

mxu

N mx+fy

reducing to

Cp = U, ,\/% _ (21)

at the leading edge.

From equations (12) and (15), decrements to this coefficient may be
derived for the portion of the leading edge behind the intersection with
the trailing—edge Mach line, as follows:

4 .
(ac), = thf‘?:t) = {KE(k,w) —EF(k,w)]- (22)

and, for each value of a from O to that value ao Wwhich makes 7,
equal to one,

aac ~4m u /(1+a)(T -a)
— dg = —— 8 : _ 8 -
da da 2/ 1 a .1—3 /(mt—a)x—mtco{ (1~a)(mt—=) [ KE(ka, Vo)

EF(k, ,¥,) ]—/E {m(ka,wo) Rk 90) }} (23)

-

®This expression will be shown later to hold approximately for some
distance outboard of its theoretical 1limit of appllcablllty, that 1s,
beyond region IV (fig. 1).
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where T, and ‘T, reduce to

and

_ (mt—a)m;4mtcoé
) (my—e)x-mpe,

and the arguments and moduli of the elllptlc integrals follow as for
equations (12) and (15).

The coefficient of (mx—By)_l/z in region III is therefore

*0anc
Ca + (AC)o +\/P — da
: o da

with
¢, —~(1-m)x
myc—~(1-m)x
Fof convenience, we may define the noﬁdimensional coefficient
%o anc ,
d(x) = —L—| c, + (AC) +\jp da } (25)
( Vaycq [ A °J, “da

In figure 8, the quantity PBo(x) 1is plotted against x/co  for the
wings previously discussed. Additional terms enter into the coefficient
at the values of x/co indicated by cross-markings on the curves, where
successive reflections of the Mach lines off the trailing edge ‘intersect
the leading edge. Evaluation of these terms has not been attempted;
however, the asymptotes of the curves for the untapered wings are known
from simple sweep theory, and it is apparent from the figure that the
magnitude of the omitted decrements, within the practical range of aspect
ratios, must be small. The curve for the tapered wing, without the addi-
tional corrections, goes to zero where the wing tapers to a point, at

= 3co. However, the complete curve, with the effect of the successive
reflections included, would have 8 finite value at that point. It can
be shown that the successive corrections enter with zero derivatives of
successively higher order so that the error caused by neglecting one .

“initially small. The curve in figure 8 is believed valid to the extent

of the solid line.
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The subsonic perturbation velocity on an infinitely long flat plate
moving normal to its surface with circulation T 1s .

L fix ‘ (26)

nc ]

wvhere 1 1is the distance to the
leading edge, expressed as a
fraction of the chord c¢. If

the section of the plate coin—
cides with a section of the swept—
back wing taken perpendicular to
the stream (x constant), as in the
sketch, then the chord length is -

% [mx—mi (x—Cg)] (27)
and ?gza%? %%?
- | I
1 = =Py - (28) /nfinite flat plate|
. mx-my (x—,) |

Substituting for 1 in equa—
tion (26), we find that the
coefficient of (mx—ﬁyy_l/a is

_E../Bybmt(x—co) B (29)

ne

which reduces at the leading edge to

JL»J m#—ﬁt(x—co)

nc

Equating this coefficient to the coefficient for the swept—back wing gives

e

8o
I . 1 Ca + (AC)g + ac 4 (30)
Vv mx-mg(x—cy) {A ° fo da a}

Then the two—dimensional approximation to the load coefficient on the
outboard portions of a swept—back wing is given by
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u U(X)N/( [By-mi(x—,)]c, | (31)
Vo ' [ mx~my (x—cy) ] (m=x—By)
or
ALp [By—m(x—,)]c, .
2Py ool
Q@ U(X)«/[mx-mt(x—co)](mx—ﬁy) (32)

The closeness with which the foregoing procedure predicts the theo—
retical loading over swept—back wings is indicated by figures 9, 10, and
11, where the previously calculated load distributions are compared with
those calculated by equation (32). Even in the case of the highly
tapered wing, the agreement is seen to be good.

At the most inboard section of the m = 0.2 wing (fig. T7(a)) there
is, of course, no agreement over the forward portion where the flow is
essentially conical, but behind the reflection of the trailing—edge Mach
line in the leading edge (at 60—percent chord) the adjusted two-—
dimensional'theory appears to hold fairly well. At the next section,
B-B, the agreement is very good. At sections- C—C and D-D, the curve
calculated by the two-dimensional theory lies within the band prescribed
for the loading by the conical-flow calculations. Since the discrepancy
between the two—dimensional loading and the correct theoretical distribu—
tion is already, at section B-B, less than the width of the bands in
figures 7(c) and (d), and must diminish to zero at infinity, it may be
supposed that the corrected two—dimensional curve is at least as satis—
factory an approximation to the correct curves at sections .C~C and
D-D as at section B-B, and more satisfactory than can be obtained by
the conical-flows method. : -

The load distributions derived by simple sweep theory are included
(figs. 9(b), 10(b), and 11(d)) to show the magnitude of the plan—form
effect and also, in the case of the untapered wings, the curves which the
load distributions are approaching with increasing distance from the

plane of symmetry.

In figures 10(b) and 11(b), comparison is also made with results
of the slender—wing theory of reference 4. In the second case
(fig. 11(b)), the Mach line from the trailing edge of the root chord, in
the modified plan form of reference 4, crosses the section at 12.6.
rercent of the chord, causing the cusp which appears in the load distri—
bution calculated for that wing. It is interesting to note that the
loadings calculated by the two methods agree fairly well even when the
wing violates the slender plan—form assumption (m=0.4).
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Calculation of Tip Effect

In the conical-flows method, the effect on the load distribution of
the presence of the wing tip is calculated by canceling, outboard of the
tip, each of the various components of the lifting pressure previously
calculated. To do this exactly when the trailing-edge Mach line and
leading edge intersect involves a prohibitive amount of work. Approxi-
mate procedures have been developed (Appendix C), but the calculations
remain tedious, while the accuracy is in some respects unsatisfactory.

A simpler approximation, based on the assumption of cylindrical flow
beyond the tip location, was therefore attempted. The formulas are
developed for the tips alined with the stream, but the fundamental
procedure may be applied to raked tips as well.

It is assumed that the velocity distribution to be canceled in the
plane of the wing outboard of the tip is an extension of the velocity .
distribution calculated for the tip section along lines parallel to the °
leading edge. For this purpose the approximate load distribution given
by equation (32) is used, still further simplified by assuming ¢ to
remain constant at its value at the leading edge of the tip section. The
error involved in this assumption may be estimated by referring to
figure 8. The maximum range of abscissa to be used is 1.0; the change in
ordinate within that range — where the influence of the wake is effective
is less than 10 percent. (Where the wing is tapering to & point and o

is changing more rapidly, the tip region is so small that the entire cal—
culation of tip effects would probably be omitted.)

- The assumption of constent ¢ results in a failure to cancel exactly
the 1lift along the tip. The assumption of cylindrical flow, while reason—
able for the untapered wing (compare figs. 10(a) and (b), for example)
would appear to be too drastic for the tapered wing, where neither the
chord nor the loading remains constant. However, it has been shown in
reference 1 that the major part of the tip effect results from the cancel—
lation of the infinite pressure along the leading edge, and this part will
be accurately calculated. The effect of the residual lift on the rearward
portion of the tip section and in the stream will be shown, by numerical
examples, to be small.

The distribution of perturbation velocity at the ?ip station y =.s
with the simplification of constant o is, from equation (31), approxi—
mately '

(x.,8) =0 VUU/[V [ﬁs_mt(xc"co)] Co (33)
W Xe» =Us

[mxe—mt(xc~x0) ] (mxe—Bs)
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where x;,5 are the coordinates
of a point on the tip and o5 is
the value of o at x = Bs/m.

This expression may be more
conveniently written in terms of
the variable

Eo = E—ﬁ%ﬂ ENEY

which is the ratio of the distance
of x¢,8 back of the leading edge
(see sketch) to the tip chord ct.
Since '

¢y = <°B + %._-i- __.BES_ (35)

equation (33) may be written

( ) - ogVa (1-.)cq
A =T n
’ m e/ tc
(36)

)

If the velocity distribution
u 1is assumed to be constant beyond
y = 8 along lines parallel to the

V-2

m ’

!
1

leading edge, it may be canceled by the superposition of conical constant—
velocity elements, having one edge along.the tip and the other parallel to

‘the leading edge, with apexes displaced along the tip by increments in

§c. The velocity induced at a point  x,y by each such element would be

(reference 2)

u, -1 m+tc+2mt¢
—= CcoSs ————
t c—m
where
6 = B(y—s)
c =

and u, is the velocity on each sector.

(37)

(38)

Following the procedure used in deriving equation (36) in reference 1,

' the corresponding equation may be written for the velocities induced by
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canceling the assumed cylindrical loading :

M —wm(1+m)(zx,) PO u(xg,s) ax,, (39)
Va T -/l;s V& I l+m)x—x°—mxc ]'\/ Xg~Xe X
o
where x,,s 1s the intersection of the Mach forecone from X,y with the

tip.

If the distances of x,y and xo,5 back of the leading edge, meas—
uréd as fractions of the tip chord are

-1 —-1> . (10)

e
|

"
0

(20 ) (42)
it can be shown that

(14m)(x—xg) = mey(t—tg) (42)

from which equation (39) can be written (with the substitution for
u(xzc,s) from equation (36)) ’

Au ' 0 L dg
=—(x,y) = - -& < (43)
Vo b1 m g—gc
' (£o—tc) (1- &— g>§c
St
_where A = =5 the taper ratio,
o
In 1ntegrat1ng equation (h3), three cases must be distinguished:
(1) & <1 (always true for the untapered wing), (2) 1<t<zp—5 (when the
point x,y lies behind the tfailing edge of the fictitious untapered wing

through the tip chord), and (3) &> éﬁm

points near the trailing edge of a highly swept or tapered wing).

(a possible condition for some
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In the first case (& <1)

ﬁ"‘(X:Y)

NE=p

/ < {KE(k';Wl) - (EE)F(k*,¥31)] §  (kba)
1- =T g

where K and E are the complete elliptic integrals of modulus

/ m.._%
mt—m

and E(k?,V;) and F(k',¥;) are the incomplete integrals, with the com-
plementa.ry modulus

[
b 113
b

and argument

EIG=D
Sarcl

V¥, = sin™?
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In the second case <1< §<i
m—m
—20g 1 E—~Eo
3 = - K —
—(x,y T =13 —
. 1- my gO
/ e (KB, ¥2)—EF (k, ¥2) ] | (4bb)
me—m i
13 (1— Tb-_ §>

where

mt
Vp = sin™? ot

In the third case <g>
m—m

By ) = [KE(K,¥o)~(BB)F(K! ¥g)]  (Mhe)

“-w“_ﬂ

where
—ry

—_— 1
-

Vg = sin )

Along the Mach line from the leading—edge tip, all three equations
reduce to the value

*
& O%s - (45)

Va - me
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By the procedure just described, approximate cancellation of all
pressure differences outboard of the tip has been effected, but the
pressures induced by such cancellation now violate the condition of zero
1lift in the wake. Cancellation of the induced pressure differences in
the wake can be accomplished in an approximate manner, as in reference 1,
by making use of the known value of the induced pressure at the trailing
edge of the wing, but assuming the entire error to originate at the tip

leading edge.

On the trailing edge of an
untapered wing, ¢ =1 and

< >§ 1. ;f/"% KK (6

There is no corresponding simplifi—
cation for the tapered wing.

The constant—velocity elements
to be superposed in cancellation of
this tip—induced velocity will be

defined by rays of slope tp/B
from the leading-edge tip. (See

sketch.) Their apexes will be at 2=
the intersection xt,yt of the rays —
‘with the trailing edge, and they
will be bounded by the rays tp on
one side and the trailing edge on

the other. The initial sector,
bounded by the tip Mach-line tp = -1
will have the constant velocity Au*
given by equation (45). The total
induced correction to the velocity at.
any point x,y will be

2(t*—ﬂ%)—(n%+l)(lrt*)

Aou(x,y) = - %- [Au* cos™ (l—mt)(t*+l)

(1) (tomy ) m—t) (19
w5 (2m) (bt

HCNN5
o
n
A
*|
o
o

dty ] 4(1‘7)

where, if x¥,y* are the coordinates of the intersection of the tip Mach

line with the trailing edge,
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and

=

The integral in equation (47) is most conveniently evaluated by plotting
the inverse cosine against Au, obtained from equation (46) for the
untapered wing, or equations (U44b) or (Llc) for the tapered wing, for the
points xt,yt on the trailing edge. The two Punctions are related
through tp, which is defined by

B | |
ty = % - ' (50)
m- ]

It is difficult to assess the accuracy of the formulas proposed for
calculating the tip losses in the loading since no correct values are
available for comparison. In figure 12 two streamwise section load dis—
tributions calculated by equations (44) and (47) are compared with those
obtained by the simplified conical—flows methodsdescribed in Appendix C.
‘The latter calculations are correct along the tip Mach lines, but are
known to fall below the correct theoretical value at more rearward points.
The tip—induced velocity to be canceled at the trailing edge cannot be
calculated with significant accuracy by the approximate method employed,
so that no estimate could be made of the load curve within the region
affected by such cancellation. The cylindrical-flow approximation probahbly
represents as good an estimate as can be obtained at present of the theo—
retical load distribution in that region.

CONCLUDING REMARKS

Beyond the spanwise station at which the Mach lines from the trailing—
‘edge apex intersect the leading edge of a swept—back wing, the section
loading takes on the general form of the two-dimensional subsonic load dis—
tribution. A good approximation to the loading in this region can be
obtained by applying an easily calculated correction factor to the two—
dimensional flat—plate distribution.

The two—dimensional approximation appears to be in good agreement
with the theoretically more accurate loading calculated by the conical—
flows method for tapered, as well as untapered, wings. In the case of
tapered wings, the proposed method is able to predict the increased
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loading in the outboard regions (similar to the effect found in subsonic
flow).

- The same concept of utilizing two—dimensional loading can be employed
to obtain an estimate of the loss of loading in the zone of influence of
the wing tip, when the tip lies wholly within the trailing-edge Mach cone.
This simplification is especially valuable because even approximate appli-—
cation of the conical—flows method is tedious, and physical conditions of
flow in the tip region are so different from the conditions assumed in the
theory that a rough indication of the nature of the theoretical load
should suffice at the present time as a basis for further investigatioms.

The approximations of the conical—-flows method, as it has been
applied herein, should be noted: (1) In canceling 1ift behind either wing
half, a small amount of upwash introduced on the other half of the wing —
in violation of the boundary conditions — is ignored and (2), if the
trailing—edge Mach line intersects the leading edge, its reflection will
intersect the trailing edge and, within the Mach cone from the point of
intersection, only an estimate of the loading is feasible. If the next
reflection (in the trailing edge) results in a second intersection of the
Mach line with the leading edge, the leading—edge correction factor for
adjusting the two-dimensional load distribution will also be in error.
Calculations made to check the first of these approximations showed the
induced—downwash angle to be less than half of 1 percent of the angle of

"attack on the wings considered. The magnitude of the inaccuracy intro—
duced by the second limitation has been indicated by the examples pre—
sented herein; the result is to limit the aspect—ratio Mach number com—
binations (as expressed by the reduced aspect ratio PBA) for which the
conlcal—flows method will give accurate theoretical solutions. The
corresponding error in the leading—edge correction coefficient appears,
however, to be insignificant and it is felt that, with the exception of
wings tapered to a point, the upper range of reduced aspect ratioc BA is
adequately covered by the proposed method of correcting the two—
dimensional load distribution. There remains only the case in which the
reduced span (B times the geometric span) is less than the tip chord.

In this case, the interference of the tip flows with each other will, in
conjunction with a subsonic trailing edge, create a problem not readily
solvable by either the conical—flows method or the two—dimensional approx—
imation. This problem falls within the scope of the slender—wing theory
of reference k4, " .

Ames;Aeronauticai Laborétory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Sept. 16, 1949,
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APPENDIX A
SYMBOLS
General
v free—stream velocitj
M free—etream-Mach number
B M1 |
p density of air
qQ dynamic pressure < %pV2>
LD pressure'difference between upper and lower surfaces, or local
11ft
a ang;e of attack, radians
r circulation on infinite flat plate
c chord of infinite flat plate (See.sketch, p. 13)
Wing Dimehsions

o root chord
Cy tip chord
8 semispan
A angle of sweep of the leading edge
A taper ratio (cy/c,)

Coordinates
X,y Cartesian coordinates in the stream direction and across the

gtream ln ths plane of the wing ’

X,;Yg coordinates of apex of oblique tralling-edge element
Xy,Yp coordinates of apex of leading—edge element

coordinates of point on trailing edge, within tip Mach cone

23
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streamwise .coordinate of apex of tip element -

largest value of X, at which cancellation of pressure can
affect point at which pressure 1s being calculated

streamwise distance of x,y back from leading edge as a fraction

of the tip chord (equation (40))

distance of x, behind leading-edge tip, as a fraction of the
tip chord (equation 34)) .

distance of = x, behind leading-edge tip, as a fractior of the
tip chord (equation (41))

spanwise distance of x,y from leading edge, as a fraction of
the chord through x,y measured perpendicular to the stream
(equation (28))

In the following, all slopes are measured counterclockwise from a

line extending downstream from the apex of the wing or of the pertinent
elementary sector:

slope of leading edge _ t A
slope of Mach lines B co

slope of trailing edge
slope of Mach lines

slope of ray from the orighl 8 J
slope of Mach lines b's
slope of ray from trailingedge apex 2 B y
slope of Mach lines L X—-c,

slope of ray from leading-edge tip _ B J—8
slope of Mach lines x— (Bs/m)

slope of ray from apex of elemsnt a =B Y—7a

slope of Mach lines X—X,
slope of ray from apex of leading-edge element =B I=JYp

slope of Mach 1lines ' X—Xy

%, for point at which pressure 18 being calculated

slope of ray from apex of .tip element =B y-s

slope of Mach lines X— X,
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8¢

Uc
(&u) 4

(Au)g

(ou),,

(o)

(au),

Aéﬁ

fhe value of a correspondinglto a trailing—edge element of which
the apex lies on the Mach forecone of the point at which the
load is being calculated

the largest value of a along which cancellation of pressure in

the wake can affect the polnt at which the load 1s being cal-—
culated through reflection in the leading edge

the smallest value of t, along which cancellation of pressure
. ahead of the leading edge can affect the point at which pressure
is being calculated (equation (11))

the smallest valuss of t, along which cancellation of pressufe

ahead of the leading edge can affect the point at which pressure
is being calculated (equation (16))

Streamvise Componsnts of Perturbation Velocity

.basic (uncorrected) perturbation velocity as given by solution

for triangular wing (equation (1))

value of u, at a=0 (equation (2))

constant perturbation velocity on canceling (oblique) sector
in wake

constant perturbation velocity on canceling sector ahead of wing
constant pefturbation velocity on canceling sector outboard of tip

symmetrical trailing-edge correction to up (equation (3))

correction to up due to single oblique trailing-edge element

g‘_‘& d_a>
da

1eading—edge correction to s

leading-edge correction to wu,. due to reflection of (2u),
(equation (10)) :

correction to u, dus to reflection of leading—edge correction
in wing tip (terms in R only) -

rturbation veloclty induced by canceling tip effect at the
trailing edge (equation (47))
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Arbitrary Mathematical Symbols
real part
radical term of leading—edge correction function (equation (9))

inverse—cosine term of leading—edge correction function
(equation (8))

value of coefficient of (mx—8y)  ~/2 in ur at the leading
edge (strength of the leading—edge singularity in u)

decrement in the strength of the leading—edge singularity in
u due to reflection of (Au), at leading edge

decrement in the strength of the leading—edze singularity in
u due to reflection of (Au)y at leading edge

leading—edge correction coefficient defined by equation (25)

value of o at leading-edge tip

Elliﬁtic Integrals (See references 5 and 6.)
ﬁodﬁlus of elliptic infegral (defined where used)
the compléﬁentary modulus (W1 — k2) |
argument of elliptic integrals (defined where used)’

incomplete elliptic integral of the first kind of modulus k
and argument @

complete e€lliptic integral of the first kind of modulus k
(K = F(k,%))

incomplete elliptic integral of the second kind

complete elliptic integral of the second kind of modulus k
[E = E(k:%)] ' '

K of the complementary modulus [K'(k) = K(k')]
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APPENDIX B

1 d(Au)o

EVALUATION OF f C(to)dte BY SERIES EXPANSION

To [}

For 1ntégration of the first term of equation (10), the product
[d(Au)o/dte ] C(te) 1s integrated by parts to give

1 1 . ac(t,)
- (Au) QL 4t Bl1)
vy e, O Ty

fl U)o o (4o)ate = (Au)o C(to) _
(o]
o o :

To dto ’

The first term goes to zero at either limit. In the second term, tp
must be expressed in terms of x, y, and to before taking the deriva—
tive of C(to). If the constant (for any selected point)

By

to* =
o X—Co

is defined, this derivative may bé written

dC(to) _  (l+to*) ¥(To-m) (mx—py)
dtg (to—to*) ¥meo(l4m) (I+to) (to—To)

(B2)

If this expression and the expression for (Au)o given by equation (3)
are substituted in equation (Bl), the result

1 d(Au)o C(to)dto = ug(l+to*) (Tomm) (mx—By)
L/; dto ° ° . K( Iy l—mtz) mco(l+m)

fl F( W l_mtel‘ P)
T

o (to~to*) ¥ (1+to) (to—To)

dtg (BS)_

is obtained. For to close to 1 (small values of 9), F(~1-mt?,9) may

be expanded into a Maclauren series in sin @ = f/(lrtoz)/(l—mtz) as
follows:
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F(/1-m7,9) ?/fi—z _th) <1—t 2> "

3+2(1"mt2)+3 (-my2)> (1—to )

" (Bb)

From the first two terms of the series, substituted in equation -
(B3), we may obtain

1 _ nug(14to¥) (Tom) (mx—By) [1to* 1)
fro(ub)° oltolato K( V1m?) ¥ moo(lem)(1-m2) {< ot >[ +

) (1431 +ht *)}

(B5)

%(l ' l—m.b_ )“ﬁt *2)} <

The corresponding expression has been derived for f(ub ) C(ta)dta,
. a

but the results are numerically insignificant in most cases.
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APPENDIX C
. CAICULATION OF TIP 0SS IN LOADING BY CONICAL-FLOWS METHOD

If the tfailing—edge Mach line intersects the leading edge on ths
wing, four components of the perturbation velocity, as calculated by
the conical-flows method, must be canceled outboard of the tip:3 (1) the

basic velocity wu,, (2) the trailing-edge correction (Au), +Jf %%% da,
)

a !
0.
(3) the leading—edge corrections (Au)y, = (Amb)o +u/ﬁ d(ﬁ:) da
. v o

and (4) the reflection of (Au), 1in the trailing edge (in region IV,
fig. 1). This last component has not been calculated. If 1t does not
extend over more than 50 percent of the tip section, the effect of 1its
cancellation at the tip can probably be neglected.

( The third component (Au),, can be further broken down into ths
parts arising from the radical term R 1in the leading—edge correction
function and those arising from the inverse—cosine term C. The former
components increase to infinity at the leading edge and will be treated
in the same way as the basic velocity Up- The latter remain finite

and exactly cancél the trailing-edge corrections  (Au), d/\ dAu da

at the leading edge of the tip section. Although these components (the

C component of (Au),, and the trailing—edge correction) do not cancel
each other elsewhere on the tip section or in the stream, the variation
of each is fairly small in the region affecting the pressures on the
wing, and, since the net induced effect of canceling them is zero and has
zero slope along the tip.Mach cone, it will be assumed that they cancel
each other completely. This assumption will result in somewhat too low
a loading near the trailing edge.

Cancellation of the first component, the basic Velocity up, has
been covered in reference 1. The result is a reduction in u glven by

Cpu - uo’:/;{ eiiz; 7) g ox /m2x2_52y2 [F(k w)< >+ KE(k',W):I}

(c1)

EN , . ,
If the tip lies beyond region IV (fig. 1) further emall components
enter, but these will not be considered. in the present analysis.
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(equation (37) of reference 1), where
s 1is the semispan,

/(m-ea,)(1-m)
2m(ay+1) f

k =
L ftmen) e
V= s Bs(ao+m)’ % ~ x+B(y-s)’

Kt = K(k'x and E' = E(k').
The part of the leading-edge correc—

tion associated with R(tg) may be

canceled by the following procedure:

For any one value of to - (see sketch),
the correction to- u(x,y) will be

NACA TN 1991

—1 tp+te+2tpte

albulg 4y - - L (Mo g¢  13ms, R(to,tb) cos™
at, T2 at ty—>m | | to—tp
%= 7 am —1 byt +2t5t
5 oo _Ti-t-—iatb : (c2)
where tb = Eiﬁ:_lhl (see sketch).
: <
Integrating by parts results in the elimination of the first term
so that
) L ople=m L bpatgaltyt
d(Au) 1 da(Au da- ~1 Uptlo+elplo
=\a2/c —\=20 —_—
I, dto = =5 at, dtg fm R(tg,tp) Tty cos™?! — dty,
Lo : c b
B (c3)
Equation (C3) can be integrated aﬁalytically, giving
G PR /(to—m>(1+to)<1+tb*) a(su)
dty C ﬂ(l+m)t o (ch)
whefe '
£ % B(Y_Y'b)
b

X—X-b
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To obtain the total correction to u(x,y) for the-cancellation of
the term in R(ty,) of the leading—edge correction, equation (C4) may ve
integrated graphically by plotting against (Au), the remainder of the
expression in the right—-hand side. An approximate correction for the
reflection of the terms in R(t,) can be included by plotting against
the values of ‘

along ths leading edge. Then

% = o) (Lete) (1 p%) |
_ 2m 1 o— )\ L+Tg +
(Am)c B 7(1+m t6= N to J/ nbib* dAu (05)

where t,, ty*, and Au are all compﬁted for specified locations of
X,,¥p ©on the leading edge and the extension of the leading edge to
tBe point such that tb* = - 1. .

In practice, equation (C5) appears to result in a nearly constant
correction to the section loading, as shown in figures 12(a) and (b).
The work may be further simplified, therefore, by performing only the
relatively simple calculation for a point on the Mach lins.
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———— Mach Ilines

Figure [ — Plan view of central portion of sweépt- back
wing showing pattern of Mach lihes arising at

leading and ftrailing ed_qes.
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4—Leading edge

- Figure 2. — Leading-edge element and /nduced-velocity function.
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Figure 3. = Plan view of tapered and untapered wings,m=0.4,
showing Mach line patterns and sections ot which

lift distributions were ‘calculated.
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Figure 4.~ Plan view of untapered wing, m=0.2, showing

Mach line pattern and sections at which [lift dijs—

tributions were calcu/afed.
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Figure 6.- Load distribution over two sfreamwise sections of
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Figure 7.- Load distributions over four sireamwise sections of the
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flows method.
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Figure 9.~ Load distributions on the tapered wing as calculated ;
by the conical-flows method, and the two-dimensional

approximation.
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8- 21
7- /7
Leading-edge tip inferaction,
Y‘ equation (C5)
6- o

Correction for Kutta
condition, eq(47)

5 ~f Cylindrical-flow
correction,
eq.(44)
4- -2 Approximate tip ef-
£4P fect, conical-flows
Jo method
Primary tip correction,
- 3- -34  equation (C/)
2-1

Final curve

,- #

Without tip effect

Cylindrical -
flow approximation

-+ Conical-flows
approximation
- 2 U T : ¥ 1
0 25 50 75 100

)
Percent chord

(a) Untapéred wing, m =0.4, gA = 188. Section at By=0.8¢c,,
or 85-percent semispan.

Figure /12— Load .distribution over section near tip as cal-
culated by conical- flows method and by assun)ing cylindricol

flow near tip.
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/.A
Leading-edge . {i
8- /mteracllon. eq. /ng
o
79 Correction
- for Kutta
cona’n‘/on
€q. (47)
6-
- C‘y/mdr/ca/—
flow corr.,
eq.(44)
5..
-3 Approx. 1ip
£ % . 5 effect, conical-
q Exact loading flows ‘method
4 (from conical Primary tip cor-
_ . flows) rection, eq.(C})
dimensional theory
k2
2.
Without tip effect
/.
0 4 4 }
. Cylindrical-flow
approximation.
-/ ‘ /
Conical-flows
approximation
"% 25 50 % 100

Percent chord
(b) Tapered wing, £A=2.6/. Section al By = 0.8¢,

or 94-percent semispan '

Figure /2.~ Concluded.
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