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SUMMARY

A method is given for determining the horizontal tail loads in
maneuvering flight. The method is based upon the assignment of a load—
factor variation with time and the determination of a minimum time to
reach peak load factor.  The tall load 1s separated into various com—
ponents. Examination of these components indicated that one of the
components was so small that it could be neglected for most conventional
airplanes, thereby reducing to a minimum the number of aerodynamic
parameters needed in this computation of tail loads.

In order to illustrate the method, as well as to show the effect
of the main variables, a number of examples are given.

Some discussion is given regarding the determination of maximum
tail loads, maximum pitching accelerations, and maximum pitching veloc—
ities obtainable.

INTRODUCTION

The subject of maneuvering tail loads has received considerable
attention both experimentally and theoretically. Theoretically, methods
and solutions have been derived for determining the horizontal tail load
following either a prescribed elevator motion (references 1 to 3) or an
assigned load—factor variation (reference L4).

The first approach has been adopted into some of the load require—
ments where the type of elevator movement specified consists of linear
segments whose magnitudes and rates of movement are governed by the
assignment of a maximum initial elevator movement consistent with the
pilot’s strength. The rates of movement and the time the elevator is
held before reversing are so adjusted that the design load factor will
not be exceeded.
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The results of reference 5 show, as is to be expected, that only
when the aerodynamic force coefficients are accurately known from wind-—
tunnel tests can good agreement be obtained between measured and
calculated tail loads. At the design stage, however, only general
aerodynamic and geometric quantities are avallable and some of the more
important stability parameters are not known accurately. Thus, the work
involved in the solution for the tail load following a given elevator
motion 1s not considered to be In keeping with the accuracy of the results
obtained. <Conseguently, there appears to be a need for an abbreviated
design method of computing tail loads which, although incorporating
approximations, will nevertheless be based on the theoretical considera—
tions of the problem.

If the load~factor variation with time is specified and the
corresponding tail load, elevator angles, and load distributions are
subsequently determined, a simpler and equally rational approach to the
tail-load problem can be made. Although this approach has been tused to
a limited degree (reference k), several shortcomings have limited its
use.

The purpose of this paper 1s to develop further the load—factor or
inverse approach and to present a method of computing horizontal tail
loads which is comprehensive and generally simple. To this end, (1)
the shape of the load—factor curve and the minimum time required to
reach the peak load factor have been determined from an analysis of
pull-up maneuvers that were avallable, (2) the minimum time required to
reach the peak load factor has been determined from a theoretical analysis
which is supported in some measure by statistical data obtained from a
number of flight tests with airplanes of widely vaerying sizes, and (3)
the equations relating the various quantities are presented.

SYMBOLS
b wing span, feet; also shape factor in equation (13)
by tail span, feet‘
c chord, feet
c mean aerodynamic wing chord, feet
c, 1ift coefficient (L/qS)
Qm pitchingemomént coefficient of airplane without

horizontal tail (Mb/qS2)
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Cm,

N‘_gi‘ H O ®

t

g

pitching-moment coefficient of isolated horizontal—
tail surface

acceleration of gravity, feet per second per second
pitching moment of inertia, slug-—-feet2
radius of gyration about pitching axlis, feet

empirical constant denoting ratio of damping moment
of complete airplane to damping moment of tail alone

- 1ift, pounds

local 1ift at any spanwlse station

 alrplane mass, slugs (W/g)

moment, foot—pounds
airplane load factor at any instant
maximum increment In load factor

dynamic pressure, pounds per square foot (%pve)

wing area, square feet

horizontal—tail area, square feet

time, seconds

time to reach peak of elevator deflection, seconds
airplane true velocity, feet per second

airplane weight, pounds

length from center of gravity of airplane to aerodynamic

center of tail (positive for conventional airplanes),
feet ) v

nondimensional spanwise dimension (5%§>
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a,b,c :} constants occurring in equations (13), (23), (26), and

A’B,C’D,E (30)

lKi,Ké,K3 constants occurring in basic differential equation
(see equation (3) and table I)

A time to reach peak load factor, seconds

o} ’ ass density of air, slugs per cubic foot

um : tail efficiency factor (ay/q)

- wing angle of attack; radians

a average angle of attack of horizontal stabilizer,

: radians

ay tail angle of attack, radians

B angle of sideslip, degrees

¥4 flight—path angle, radians

] | ~ attitude angle, radlans (a + 7)

S} elevator angle, radians

€ downmﬁsh aﬁgle, radians (%%q)

ig tail setting, radians

The notations & and é, o and 5, and so forth, denote single
and double differentiations with respect to +.

Subscripts:

o initial or selected value
% tail | |
max maximm value

lo zero. 1ift

geo geometric

c camber
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METHODS
Method of Determining the Dynamic Tail Load
Basic equations of motion.— The simple differential equations for

the longitudinal motlon of an airplane for any elevator deflection (see
method given in reference 2) may be written as

. a d
ao. 2 : dc 5.2
m S my, £ 2 .
————— — = e = ’ 2
o paYe? > ALgxy + = M4 o LD —mky 6 =0 (2)

Equations (1) and (2) represent summations of forces perpendicular
to the relative wind and of moments about the center of gravity. (See
fig. 1 for direction of positive quantities.) Implicit in these equa—
tions are the followlng assumptions: '

(1) In the interval between the start of the maneuver and the

attainment of maximum loads, the flight—path angle does not change
materially; therefore, the change in load factor due to flight—path

change is small.

(2) At the Mach number for which computations are made, the aero—
dynamic derivatives are linear with angle of attack and elevator angle.

(3) The variation of speed during the maneuver may be neglected.
(4) Unsteady 1lift effects may be neglected.
By use of the relations 6 =y + a, 6=7+6, and 6 =7 + &,

equations (1) and (2) are reducible to the equivalent second—order
differential equation

&+ Ko + Ky Aa = Ky 25 | (3)

where K;, Kp, and K3 are constants for a gilven set of conditions (see
table I). '
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- In equetions (1) and (2), &, ¥, 6, &, and AL Wwill, ina

glven maneuver, vary with time. Using the relations between 6, 7y, a,
and their derivatives permits equation (2) to be rewritten as follows to
glve the increment in tail load:

' 2.. 2.. 4c L2
_ dCy g  mky @ mkyy my, Sy
ALy, = = & * T Wl (%)

In a still shorter form, equation (4) may be written as

AL, =AL, + AL, + AL, + AL ; .
t T tg | (5)

Equations (4) and (5) show that the tall-load increment (the increment

above the. steady—flight datum value) at any time is composed of four

parts: ALt s assoclated with the angle—of-attack change; AL-!-;- » asso—
(o7 ' ("7

ciated with angular acceleration about the flight path; AL_b s assoclated
7
with angular acceleration of the flight path; and ALtc , required %o

compensate for the moment introduced by change in camber of the horizontal—
tall surface. The load ALy 1s generally small but in some extrenme
c

configurations may amount to 10 percent of the total increment and thus
for the present it is retained in the development.

If the load~factor—increment variation with time An is known,
then by the usual definition

dl
HAn = -.-_-OL Ja%e? -7-—qu (\6)
so that

end o _ B WS
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The following relation also exists between An and 7:

On g = 3V (7

so that

e

_ ng ~
A . ©)

When equations (6) to (8) are substituted into equations (4) and (5),
the four tail-load components then become

dc
WS : _
ALy, = 55}1:1 by , (9a)
WQkye . .
Alg, = — —ag ¢ (9v)
85t g5~
Wi 2
WkY . .
ALy, =—=——n0
dc 2 .
oy Sy
A, = Mipx (9d)

.Thus, if the variation of the load factor with time An and the
geometric and aerodynamic characteristics of the airplane were known,
the first three components of the talil load could be found immediately.
The magnitude of the fourth component, that due to horizontal—tall camber,
would follow from equation (3) in which the elevator angle 1s seen to be

ae K K2 ’
M=%+ ta+ 2 (10)
K3 K K3

Substitution into equation (10) of the values of A, &, and &
from equation (6) ylelds the value of the elevator angle at any instant
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m = ML (i:l + Klﬁ + Ko An) ' (11)‘

so that, finally, the fourth component is given as

o o o . 5¢2  wW/s
te @ v by EEL._ K
do 3

(’ﬁ + Kjh + Ko An) (12)

The procedure outlined shows that the tail—load magnitude can be
determined if the load—factor varilation is known.

Types of load—factor variation.— The relation between the tail load,
the geometric and aerodynamic characteristics, and the load factor having
been established, it 1s desirable to establish a load—factor variation
which is reasonable as well as critical insofar as loads are concerned.

The maximum value of load factor is usually specified; however, there

are many possible varlations for the shape. Regardless of the details

of shape, the load factor may be considered to rise smoothly and con—
tinuously to a maximum, the rate of rise depending upon several variables.
Beyond the maximum value of the load factor the return to initial condi—
tions ‘can, at the will of the pilot, be either gradual or rapid.

Experiments as well as theoretical studies have already indicated
that the maneuver that combines maxlimum angular and linear accelerations
causes critical loads in both the wing and tail. One such maneuver occurs
when the maximum load factor is reached as raplidly as posslble by using
an initial elevator movement which is greater than that required to reach
a gliven steady—trim value of the load factor. This initial elevator move—
ment is followed by a rapid checking of the maneuver either by returning
the elevator quickly to neutral or by reversing the controls.

The shape of the load—factor curve for such a maneuver may be
expressed approximately by several analytic functions, one of which is

M = atbe™ob o (13)

By way of illustration, figure 2 shows details of the shape of the load—
factor curve obtained with the use of equation (13) for which the constants
have been adjusted so that an 8g peak is reached in 1 second. By further
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adjustment of the constants the load factor can, within certain limits,
be made to rise to any specified peak and to diminish in any prescribed
manner. ’

Because the positive slopes obtained from equation (13) are always
greater than the negative slopes, the positive angular accelerations are
greater than the negative ones. In general, this conditlon is true for
most high g critical maneuvers performed by most classes of airplanes,
but maneuvers may occasionally be performed for which the reverse may be
true, particularly for small airplanes.

Determ:lmtion of constants.— From equations (9), (11), and (12)
the required quantities relating to load factor are seen to be An, =n,
and n. Since the increment An 1is to be given by

An = atPe—ct \ (13)
then at maximum load‘factor
. _ b ;
_b s )
Thus =< at maximum load factor. Let N = Anmax Then
b .
_ (b} oD
v = a(2)e (15)
so that
£\ (b—ct) |
An =( ) e (16)
N b/c
Let 2 =A. Then
c ‘
& -
oo _ (L)beb(l-x) (17)
N A

Equation (17) is in nondimensional form where A 1is the time to reach
the peak load factor and b 1s a constant,
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When equation (17) is differentiated, the first and second deriva—
tives hecome »

» _ l _ - . )
B - b(t7x l) | (18)
and
..2 2
2 _aq22( _ 1) _a ,
N NbLQ( b) t+l] (19)

In equations (17) to (19) the quantities N, A, and b are now
required in order to determine the variation of An, 1n, and 1. The
value of N & 1s immediately available from the required maneuver load
factor, whereas the time to reach the peak load factor A can be ob—
tained from examination of available records or by specification. The
constant b, as may be seen from equation (17), can best be described
as a "shape" factor and has no particular physical significance.

The values of A and b should be associated with a maneuver which
produces maximum tail loads. Therefore the time A to reach peak load
factor should be the minimum possible consistent with possible pilot
action and airplane response. The shape factor b should also be con—
sistent with both of these.

In conmection with the determination of the minimm time to reach
peak load factor, the results shown in figure 3 for a typical airplane
are informative. Figure 3(a) shows the load—factor variation following
several abrupt Jjump elevator movements. The load factor wvaries with the
elevator position, but the time to reach peak load factor does not.
Figure 3(b) shows the load—factor variation for several abrupt hat—
shape elevator impulses. Again the load factor is seen to vary with
the amount of elevator deflection but the time to reach the peak value
remains constant. Although the time to reach the peak load factor
shown in figure 3(b) remains constant, 1t is seen to be less than that
shown in the previous case; therefore, an impulse elevator motion pro—
duces a smaller value of ) than the Jjump type.

Because of inertia and elasticity in the control system, the pilot
cannot move the elevator instantaneously but requires some finite time
+1 to do so. A possible critical type of elevator impulse thus appears

to be one which increases linearly to maximm and decreases at the same
rate to zero. In order to determine the minimum time to reach peak load
factor associated with such a variation, the equation of motion (equa—
tion (3)) has been solved for the triangular elevator impulse for
airplanes of various static stabilities and damping.
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The results of the computations are given in figure 4 in which the
minimum time A +to reach peak load factor is plotted against the time tl
required to deflect the elevator. .

For completeness the curves of figure 4 are labeled for the actual
values of K, employed in the computation as well as for relative values
of stability. By a series of computations the damping term K; was
found, as was to be expected, to have only a secondary effect on A.

The curves apply to an average value of the damping constant. The upper
curve, labeled "low stability," should be associated with rearward
center—of—gravity positions (that is, low static margin) in combination
with one or both of the following: low dynamic pressure or heavy alr—
planes. The lower curve, labeled "high stability," would be associated
with forward center—of—gravity positions in combination with one or both
of the following: high dynamic pressure or light airplanes. It is seen
that A Increases almost linearly with +t; and also increases when the

restoring forces are reduced, that is, when the stability is reduced.

A preliminary value of the shape factor b (required in equa~—
tions (17) to (19)) was initially determined from flight records of
typical impulse maneuvers by fitting curves of the type given by equa—
tion (13) through several points of the actual time histories and
determining the constants. The results of this first step were then
modified by the results of the same computations which had been made to
determine A, and the variation of b with %, given in figure 5 was
obtained. Since the b factor 1s not found to be critical, an average
value of 5.0 1s suggested, although as a refinement the values from
figure 5 may be used.

The questlon of the value of 17 to use 1s one which must be
solved either from experience or from a knowledge of the characteristics
of the controls and the control system. For conventional airplanes
having the usual amounts of boost and no rate restrictors, the following
values of t7 are suggested as representative:

Fighters or small civil airplanes with weight 1limit from

about 500 to 12,000 pounds, seconds . . . « « “ e e 2 s e 0,20
Two—engine alrplanes with weight 1imit from 25, OOO

to 45,000 pounds, SecondsS « o« & o o o o o 0 o o o e o o o oo 025
Four—engine airplanes with weight limit from 50 OOO )

to 80,000 pounds, s5ecOndS « « « « » o o o o o o s o o + +-0 o 0.30
Alrplanes with weight 1limit above 100,000 pounds, seconds . . . 0.40
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The minimum time A glven in figure 4 was actually established
separately from the adopted load—factor variation; therefore, in applying
the inverse method, the derived elevator impulse would not be expected
to agree in detail with the "tent" type impulse used in the derivation.

. The first three tail—load components can now be computed by insert—
ing the values of An, h, and H from equations (17) to (19) into -
equation (9) and using appropriate values of A from figure 4. In
order to facilitate this computation, curves of An/N, #n/N, and n)@/ N
plotted against t/A, are given in flgure 6 for the suggested value of
b = 5. Actually to apply the results of figure 6 it is convenient to
find first the components ALJG , and so forth, in terms of the nondi-

men51onal time /% and then to convert to time +t in seconds. In
order either to compute the fourth component or to obtain the elevator
angles for use in chord loading, the constants K,, Ko, and K3 of
equation (3) must also be known.

Thus, in terms of +%/A and the ordinates of figure 6, the various
tail—load components are

ALta, = 2, bXt(Ordln/a‘be of fig. 6(&)) (202)
— Wiy ?
_ Y N ,
ALt& = —a_—gl:- k—a(Ordinate of fig. 6(0)) (20b)
Xy
— Wk
ALy, = —_ g(Ordmate of fig. 6(b)) (20¢)
Y Vx
. n 5 w_m [orainate of rig. 6(c) .
¢ ap b byXy B - g \2
dao

k) (Ordinate of fig. 6(b))
)

+ Kp(ordinate of rig. 6(a))](20d)

The constants K;, Kp, and K3 defined in table I are the same as those
given In reference 2, except for changed signs caused by specifying x¢
as positive.
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{

_ The conversion to time t is made by multiplying values of the
base scale t/A by A. :

Sample calculations for incremental tail loads.— The results of
several examples are given to illustrate not only the method but also
the effect of each of a number of variables on the incremental tail load
of a typical fighter airplane, the geometric and aerodynamic character—
istics of which are given in the following tables. In order to illustrate
the effect of static stability, results have been computed for three
center—of—gravity positions with the assumption that an 8g recovery is
made at 19,100 feet from a vertical dive at an equivalent airspeed of
L4OO miles per hour. In order to illustrate the effect of the time of
the elevator impulse on the tail load, computations were carried out at
one of the center—of—gravity positions for several values of tq1. The

cases considered and the airplane characteristics follow:

GEOMETRIC CHARACTERISTICS

Gross wing area, S, square feet .« ¢ « o o 3 ¢ o o o o o ¢ & o o 300
Gross horizontal—-tail area, Si, square feet .« « & o o ¢ « o + & 60
Airplane weight, Wy pounds « o ¢ o ¢ o ¢ ¢ ¢ o o o« s s » & » o » 12,000
Wing span, D, £t v ¢ o o o ¢ o o o o 5 o 6 o o o o s o o o o s b1
Tail span, by, feet « o v v o ¢ o v 4 e e v e e e e e e e e e 16

Radius of gyration, ky, feet o « ¢ v ¢ v ¢ ¢ 0 0 ¢ o o o 0 0 .. 6.4

Distance from aerodynamic center of airplane less tail to
aerodynamic center of tail, x;, feet:

Center of gravity, 29 percent M.A.C. & « o o o o ¢ ¢ o o & @ 20.0 -
Center of gravity, 24 percent MiACu « ¢ v o ¢ o « o o o « o 20.3
Center of gravity at aerodynamic center . « « « « o« « & o & 21.0

AERODYNAMIC CHARACTERISTICS

Slope of airplane 1ift curve, dCL/ha, radians .+ . 0 ¢ 4 0 & . o 4,87
Slope of tail 1ift curve, dCLt/Hat, radians . ¢ « s+ o o ¢ o o o 3.15

Downwash factor, @e/do « v o v v 4 ¢ o 4 ¢ 4 o 4 o 4 o s 0 o s o 054
Tail efficiency factor (gt/q), nt o 00

Empirical airplane damping factor, K « « « ¢ o ¢ ¢ ¢ ¢ s o « ¢ & 1.1
Elevator effectiveness factor, dCLt/d6: radians « « o « o o « o 1.89

Rate of change of tail moment with camber due to ,
elevator angle, det/dS, radian « s e o s ¢ s 6 0 o 0 o e s« =057
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Rate of change of moment coefficient with angle of attack
"for airplane less tail, de/Ba, radians:
Center of gravity, 29 percent MiA.Cu v v o o v o o o o o o 0.625
Center of gravity, 24 percent MiA.Ce v v v v o & o o « » « 0,403
Center of gravity at aerodynamic center . . + ¢ ¢ ¢« « s o & 0.000

) The specified conditions for the sample computations are given in
table ITI., The computed results for tail components are given in fig—
ures T and 8. "Figure 7 gives results for varying the center of gravity
and figure 8 gives similar results for varying ty. The tail-load
components are computed from equations (20) and the derived elevator
angles from equation (11). If the increment in tail load due to camber
and the incremental elevator angle are not required, the KX values need
not be computed and the computations are considerably shortened. Fig—
ures 7 and 8 show that a maximum error of only about 4 percent is
introduced by this omission.

Method of Determining the Total Tail Load

The initial or steady—flight tail load and elevator angles to which
the computed incremental values are to be added must alsoc be determined,
" In steady flight, the horizontal tail furnishes the moment required to
balance the moments from all other parts of the airplane so that the
initial load may be written as

_Cmo®8e 4y wis
o b dCr, bxy

Lt cos 7, (21)

Thus the total tail load at any time in a maneuver is composed of the
four previously mentioned parts plus the components given in eque~
tion (21). Only the first term of equation (21) represents a new type
of load because the second term is a load of the type given by equa—
tion (9a) or equation (20a) and its effect may be immediately included
in the computations by multiplying the ordinates of figure 6 by

N + cos 7, instead of by N.- .

The initial elevator angle required to balance the airplane in
steady flight varies with airplane Cy, and center—of—gravity position

so that, in general, B, must be obtained from wind—tunnel data. With-

out results of wind-tunnel tests, a rough rule which can be used as a
guide at the design stage in determining the elevator position is that
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the final elevator setting will be so adjusted by repositioning of the
stabilizer setting during acceptance tests that it will be near a zero
position at the crulsing speed and at the most prevalent center—of—
gravity position.

Method of Determining Maximum.values

Maximum tail loads and angular accelerations.— The method outlined
enables a point—by-point evaluation to be made of the quantities that
determine the tail load. Such detail may often be unnecessary and the
procedure may be shortened by evaluating only those points near the load
peaks or, altermatively, by accepting an approximation to the results.
One such approximation which may be made 1s to balance the airplane at
the comblnations of load factor and angular acceleration which would
result in maximum up and down tall loads.

Figure 7 shows that the maximmm down tail load in a pull-up occurs
near the start of the maneuver and before appreclable load factor is
reached. This maximum load is practically colncident with the negative
maximm in the Ly, tail-load component. Since, for a given configu-

(s

ration, this component increases as the center of gravity 1s moved forward
-and since the steady—flight down load increases with speed, the maximum
down tail load in & pull—up occurs at the highest design speed in combin~
ation with the most forward center—of-gravity position.

Figures 7 and 8 show that at the time of the maximum down—tail—load
increment the elevator is near but has not quite reached its peak position.
Also at the time of maximum up—tail-load increment the elevator is near
1ts zero position, although it may be on elther side of this position
depending upon the stabllity and the time +;. These results suggest
that the maximum down load for the elevator and the hinge brackets would
occur with the alrplane center of gravity well forward and at the start
of the maneuver. The maximum load for the stabilizer is likely to occur
at the peak load factor. v

Figure 7 also shows that the up tall load occurs near the peak of
the LtOL component as well as near the positive maximum peak in the

Lt& component.  Since the LtOL component Increases as the center of

gravity is moved rearward and since a decrease in speed generally reduces
the initial down load, the maximum up tall load occurs at the upper left—
hand corner of the V-n diagram for the most rearward center—of-gravity
position.
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The maximum tail load in a pull-up maneuver may be written as

C,.. gSc : .
m daC
- - _o m WS _Io.
Ltmax X + dCr, bxy (n + cos 7, Xy (22)

where the sum of the second and third terms is to be a maximum in the
maneuver. From the previous discussion the load—factor increment at
maximm down load is nearly zero and at maximum up load it is nearly
equal to N so that if the positive and negative values of emax can

be determined, a relatively simple method for determining maximum loads
is available. : .

Since by definition & = & + ¥, an expression for angular acceler—
ation can be derived from equations (6) and (7) and written in the form

'6'=WLS 'r'1+%-f1

G, a

O

The maximum angular acceleration can be approximated by

- WS X o
R .

For the maximum positive pitching acceleration, B 1s the maximum
positive ordinate in Ffigure 6(c) and C is the ordinate of figure 6(b)
at a value of /A for which B was determined. Thus, B is 6.5 and
C is 0.95 for this example.

For the maximum negative pitching acceleration, B is the maximum -
negative ordinate in figure 6(c) and C is the ordinate of figure 6(b)
at a value of t/A for which B was determined. Thus, B is —5.8 and
C is 0.80. TFor use in equation (23) the values of A for the maneuver
are avallable from figure 4 and the other quantities are available from
the conditions of the problem. The maximm loads can be given by the
following equations:
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For maximum up tail load :Ln the pull-up:

C. gSc
m ac
B m W3 Iy v /5.8 W/s _ 0.8\ (o
Lt11an:+ Xt +dCL bxy (l\I+l.O)+th dCy, A v (Bha)
= 4
da

For maximm down tail load in the pull—up:

- %m,%5C a0y yo Iy x (6.5 w/s . o. | |
o B (i)

For push-downs to limlt load factor, equations (24a) and (24b) still

apply with changed signs for N and changed directions- for Lt . and
: max-+

Ly . A questlon arises as to whether the maximum down tail load at

the start of a pull-up with forward center—of—gravity position is greater
than that which would occur When pulling up from a negative load—factor
condition, with the center of gravity in the most rearward position.

This can be determined only by computing both cases and seeing which is
the larger.

Maximm value of angular velocity.— The maximum value of the pitching
angular velocity in the pull-up may also be found in a manner similar to
that used to obtain the maximum angular acceleration. Since 8 = a + y
and the relations involving these quantities in terms of load factor are
given by equations (6) and (7), the following equation may be written:

_hWfs Mng

8 ac, = | (25)
o q

The maximum angular velocity may be approximated by

S -pX WS Ng
8 DdeL +EBF (26)
q
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where D is the maximum positive ordinate in figure 6(b) and E is the
ordinate of figure 6(a) at a value of t/» for which D was determined.
Thus D, for this example, is 1.95 and E is 0.48.

In the steady turn or pull-up at constant g, the angular velocity
is usually given by the expression 6 = 1.0 %1 The difference between
the factor 1.0 of this expression and the factor 0.48 of equation (26)

is more than made up by the angle—of-attack component of the angular
velocity. :

Approximate Method of Determining Load Distribution |

Symmetrical loading.— The spanwise distribution of the total load
can be formulated with varlous degrees of exactness. If information
regarding detalls of the angle—of-attack distribution -across the span
were avallable, then an exact solutlon could be obtained for the loading
with the use of existing lifting—surface methods. The following method
may be used as a first approximation to the solution.

From the total tall load, the total fail 1iff coeffiofent Cp can

readlily be found. The average effective angle of attack & of the
stabilizer portion is given in the definition

| 1 !
) - C
= = dy¥ + By + AD
r,, /Oczmon25 ¥ Acls(o £B)

where only « 1s assumed as unknovn and c¢;  and C1q may be taken
a

ay* (27)

aflo

as the rates of change of section 1ift coefficient with o and 9,
respectively.

Thus, for constant elevator angle across the span,
/ l
- (B4 + AB) ¢
- oLy, (0 o s
o =
‘ 1
c

= d
Jo ot

dy*

aillo

(28)
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In a practical case both integrals in equation (28) need be evaluated
only once for a given configuration and Mach nunber. A plot of &
against CLt with ©® as a parameter would be useful in further compu—

tations. With G Iknown as a function of CLt and &, the local 1ift

at any spanwise s’bation is then obtained from the expression

1= 0,9 = [cla‘E *+ c15(8 + Ab{]qc (29)

Unsymmetrical loading.~ Up to this point the total loads have been
assumed to be symmetrical about the airplane center line, whereas, in
reality, the load may have an unsymmetrical part. The sources of this
dissymmetry may be due to uneven rigging, differences In elasticity
between the two sildes, or to effects of slipstream, rolling, and sideslip.
The first two sources are usually inadvertent ones while the last two are
difficult to determine without elther wind—tumnel tests or a knowledge of
how the airplane will be operated. Present deslgn rules regarding dis—
symmetry of tail load are concerned more with providing adequate design
conditions for the rear of the fuselage than with recognizing that at
the maximum critical tall load some dissymmetry may exist.

Tests in the Langley full-scale tunnel (reference 6) and flight
tests (reference 7) of a fighter—type airplane, as well as unpublished
flight tests of another fighter—type airplane, indicate that the tail—
load dissymmetry varies linearly with angle of sideslip so that the
difference in 1ift coefficient between the two sides of the tail can be
given as : ‘

c ~c - A3 (30)
L L ,

*Right tLert :
The average values of A per degree found for the two fighter—type
airplanes are approximately 0.0l. No similar values are avallable for
larger alrplanes nor for tall surfaces having appreciable dihedral.

In maneuvers of the type considered herein it is doubtful that
angles of sideslip larger than 3° would be developed at the time the
maximum tail load 1s reached. If the value of the sideslip angle at
the time of maximum tail load can be established, equations (27) to (29)
are easily modified to include this effect, provided the approximate
value of A 1s known. '



20 : \ NACA TN 2078

Chordwise loading.~ The chordwise distribution can be determined
for any one spanwise station in elther of two ways. One way for design
work is outlined in reference 8. A knowledge of the airfoil section
and the gquantities contained in equation (29) suffices for this deter—
mination.

If pressure—distribution data are available for & similar section
with flaps, an alternate way would be to distribute the load chordwise
according to the two—dimensional pressure dlagrams with the use of the
computed values of sectlon 1ift coefficlent and elevator angle.

DISCUSSION

The method presented is another approach to the determination of
tail loads. From the results given in figures 7 and 8, it can be seen
that the camber component I, is so small that for all practical cases

c

it may be omitted with considerable simplification in the compubtation of
tail loads. This omission reduces to a minimum the number of aerodynamic
parameters needed to compute the tail loads.

It is possible, in the application of the preéenf method with the
use of the suggested values of t,, that the derived elevator angles

may not be within the pilot's capabilitles. Since 1t must be assumed
that all airplanes, to be satisfactory, should have sufficient control
to reach thelr design load boundaries, such an occurrence requires only
that the time to reach elevator peak deflection t; be Increased so as

to reduce the elevator angle. The results of figure 8, in which the
time t37 1is varied, furnish a useful guide for determining the in-—

crease t7 that might be required.

If sufficient information is available, 1t 1s recommended that
existing lifting-surface methods be used In debermining the spanwise
distribution of the total load; however, if Information of the angle—
of-attack distribution across the span is not knmown, the method presented
may be used as a first approximation.

Along some of the boundaries of the V-n diagram, tail buffeting may
occur. Measurements show that buffeting usually occurs along the line
of maximum 1ift coefficient and again along a high—speed buffet line
which is associated with a compressibility or force break on some major
part of the airplane. All airplanes are subject to buffeting at the
design conditions associated with the left—-hand corner of the V—m
diagram.
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Only high-speed a.n.d/or high-altitude alrplanes are capable of reaching

the other boundary. Measurements show that the oscillatory buffeting

. loads may be so high that the designer should at least be cognizant of
them at the .deslgn stage. ,

The maximum angular acceleration varies inversely with alrspeed
and directly with the load factor, with the contribution due to acceler—
ation in angle of attack likely to be more important than the angular
acceleration of the flight path. A somewhat similar variation is indi—
cated for the maximm angular velocity (equation (26)) where it 1s seen
by direct substitution that the part due to angle of attack is likely
$0 be larger than the part due to the angular velocity of the flight
path. o

CONCLUDING REMARKS

A simple method has been presented for determining the horlzontal
tall loads in maneuvering flight with the use of a prescribed incremental
load—factor variation.

The incremental tail load was separated into four components repre—
senting «, o, ¥, and c¢. The camber component Li 1s so small that
c

for most conventional alrplanes it may be neglected, thereby reducing to
a minimum the number of aerodynamic parameters needed in this computation
of tail loads.

An approximate method is presented for predicting maximum angular
accelerations and maximum angular velocities.

The method indicates that maximum tail loads in a pull—up occur at
forward center—of-—gravity positions and early in the maneuver. The
maximum down tall loads in a pull—up occur at the highest design speed
in combingtion with the most forward center—of—gravity position. The
meximum up tail load occurs at the upper left-hand corner of the V-n
diagram for the most rearward center—of—gravity positions.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., February 9, 1950
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TABLE I

‘CONSTANTS OCCURRING IN BASIC DIFFERENTTAL EQUATION

Constant Definition

dCr,. g.x.2 e
oVl Ly S¢Xg K, de\, 3

2m| doy, ky? T]t\/-vgc- o do

Xy ov2Ji0n 52 0Lg . S¢%¢ ( | de> L% kK pSxg
T 2m Y ! t L 2 T i) T @ P

2 2 2
pV2 dCLt S¢xt de-t S¢ dCLt d‘CLtr Kn¢ o Xt Sta
Zw \T @ % i TR b d9g B /T 2 T2
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TABLE IT

- SPECIFIED CONDITIONS OF SAMPLE PROBLEM

Increment in load £actor . « « « « ¢ o ¢ ¢ 4 4 4 e e 0 e o . 8.0
ALLitude, TEEt = « v v o o o b v e e e e e e e e e e e 19,100
Air density, slug per cubic foot . . « « « « « + . . . . .. 0.001306
Case (percenigM.A.C.A) B | K i K3 ?(/ﬁ;. 1;)) ;
1| 8.C. 0.2 :h.93 %'3o;l+ | —33.4 0.45
e | 2} BEARSC  16.2 | —.2 .50
3 | 29 2 | 4.61 | 8.45 | —31.7 | .56
b R 472 | 16.2 | —32.2 | .77
5 2y 6| b2 | 16.2 | 2| 1.02
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Figure 1.- Sign conventions employed. Positive directions shown.
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Incremental Jload factor, an
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Figure 2.- Variation of load-factor increment. An = N250t9:93e-2:33,
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Figure 3.- Incremental-load-factor variations following control movement.
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Figure 5.- Variation of shape factor b with tl.
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