
GOVT. DOC. 

y ~l N ~ (/S: ~/;(CJ13 

~ 
cJ NATIONAL ADVISORY COMMITTEE 
~ FOR AERONAUTICS 

TECHNICAL NOTE 2093 

F OR MULAS AND CHARTS FOR THE SUPERSONIC LIFT AND DRAG OF 

F LAT SWEPT-BACK wrnGS WITH INTERACTING 

LEADll'IG AND TRAILING EDGES 

By Dor is Cohen 

Ames Aeronautical Laboratory 
Moffett Field, Calif. 

Washington 

May 195 0 

BUSINESS, SCIENCE 
& TECHNOLOGY DEP'!. 





NATIONAL ADVISORY COMMITl'EE FOR AERONAUTICS 

TECHNICAL NOTE 2093 

FORMULAS AND CHARTS FOR THE SUPERSONIC LIFT AND DRAG OF 

FIAT SWEPl'-BACK WINGS WITH INTERACTING 

LEADING AND TRAILING EDGES 

By Doris Cohen 

SUMMARY 

The problem is considered of a wing with rectilinear plan form swept 
80 that both leading and trailing edges lie within their respective Mach 
cones; moreover, the Mach lines from the trail1.ng-€dge apex intersect the 
leading edge. Formulas and design charts are presented for the lift in 
such a case, based on approximate formulas for the lift distribution 
developed in NACA TN 1991, 1949. The che.rts cover a practical range of 
aspect ratios and plan forms of moderate taper, with tips parallel to the 
stream. The leadi.ng-edge tbruBt and drag due to lift are also readily 
calculated from the material presented. Numerical results and an applica­
tion of the .charts are included. 

INTRODUCTION 

Range of Applicability of Formulas 

Problems in linearized supersonic wing theory are .chara.cterized 
primarily by the orientation relative to the wing boundaries of the Mach 
lines arising from the various points of disturbance defining those 
boundaries. Therefore, even when the plan form of a wing is specified, 
a series of problems arises if the wing is to fly through any consider­
able range of Mach numbers. 

Paradoxically, the problem of the flow at higher Mach numbers has 
proved more readily amenable to solution than that at lower speeds, 
because at the higher speeds the zones of influence (Mach cones) are 
narrow and interference problems are fewer. In the case of the conven­
tional swept-back wing at an angle of attack, four Mach number ranges may 
be said to have been investigated to a sufficient extent that the lift 
and drag of any specified wing is readily obtainable. The aerodynamic 
characteristics were first computed (reference 1) for that range of Mach 
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numbers in which only the center sections of the wing are included in the 
Mach cone from the leading-edge apex; formulas have also been given 
(reference 2) for the next lower range, where the leading-edge Mach line 
cuts the tip; formulas (reference 2) and charts (reference 3) have been 
given for a third range, where the leading-edge Mach line stands ahead of 
the wing, but the Mach line from the trailing-edge apex is behind the 
wing; and formulas have been given (reference 2) for the fourth case, in 
which the trailing-edge Mach cone includes part of the tip, but not the 
leading edge. 

The last of these cases is illustrated in figure lea). In figure l(b), 
the same wing is shown at a smaller Mach number such that the trailing­
edge Mach line now intersects the leading edge. In reference 4, the flow 
in such a case was investigated and formulas for the load distribution 
were derived. I~ the present report, the load distribution will be inte­
grated to obtain formulas for the total lift. Formulas for the leading­
edge thrust and the drag due to lift will also be presented. 

The Mach number range to which the formulas and charts apply is indi­
cated as a function of .taper ratio ~ and aspect ratio A for several 
angles of sweepback A in figure 2. The upper-limit curves are determined 
by the condition that the trailing-edge Mach line intersects the wing tip 
at the leading edge. Above these curves, the formulas of reference 2 may 
be used. A lower Mach number range, merging into the transonic and such 
that the flow field of one wing tip extends laterally to include a part of 
the other tip, is defined by the lower-limit curves. The flow pattern in 
such a case is too complicated to be treated by the method of the present 
report. Mach numbers low enough to permit wing-tip interference fall 
within the scope of the approximate th~ory of reference 5. 

The problem of wing-t ip interaction also, of course, sets a lower 
limit on the range of aspect ratios covered. On the other hand, the method 
of reference 4 and the present paper may in theory be applied to the com­
plete range of aspect ratios to the right of the boundaries shown in 
figure 2. However, the necessary formulas have been developed only up to 
a certain point beyond which the services of high-speed computing machin­
ery would be required for their evaluation. Both mathematical and physical 
considerations make the application of the method to very highly tapered 
plan forms inadvisable. For cases of moderate taper and a practical range 
of aspect ratiOS, charts have been computed to facilitate the calculation 
of both lift and drag due t o lift. The formulas and charts have been 
developed for wings with tips parallel to the stream only, but the general 
procedure is applicable to wings with raked tips also. 

The symbols used are listed in the appendix. 
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General Outline of the Procedure 

In reference 4 it Was found that, when interaction takes place 
between the flow fields of the leading and trailing edges, the wing plan 
form appears to comprise two principal regions, separated (fig. l(b)) by 
the Mach line arising at the point of intersection of the trailing-edge 
Mach line and the leading edge. Ahead of this line (region I) the flow 
is most readily described in terms of conical fields. Behind this line 
(region II), the flow is more nearly two-dimensional, and the loading can 
be approximated by the well-known subsonic flat-plate formula, corrected 
in magnitude to give the proper value of the pressure at the leading edge 
of each section. The formulas for correcting the two-dimensional loading 
are given in reference 4. For an infinitely long Wing, of course, the 
loading approaches the subsonic flat-plate loading, corrected for the angle 
of yaw acco!ding to simple sweep theory. 

The total lift is found using for the loading in region I the conical­
flow solutions of reference 2 and in region II the formulas given in 
reference 4. From the integrated lift and the leading-edge thrust, the 
drag due to lift can be calculated. The leading-edge thrust in region I is 
the same as that for the triangular wing with the same leading-edge sweep, 
and has been given by Jones (reference 6), Hayes (reference 7), Robinson 
(cited in reference 8), and others. The disturbance arising at the 
trailing edge affects the leading-edge suction in region II. Formulas are 
derived for calculating the resulting thrust, from which the drag due to 
lift follows. 

FORMULAS FOR LIFT 

Region I 

Conical-flows method.- The term "conical-flows method" is used to 
designate briefly a method of superposition of conical flow fields 1 devel­
oped by Lagerstrom (reference 9) as an extension of some earlier work by 
Busemann (reference 10). Thus, the load distribution on a swept-back wing 
is calculated by superposing on the conical loading of an infinite triangu­
lar plate other conical flow fields of such magnitude and orientation as 
to cancel loading on the portions of the triangular plate lying outside the 
boundaries of the specified swept-back wing. This process, as applied at 
the trailing edge of a swept-back Wing, is more fully described in 
reference 2. 

lA conical field is one in which the velocities are constant along rays 
emanating from a point (the apex of the cone). 
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In figure l(b), region I has been further divided into regions Ia 
and Ib by the Mach line from the trailing-edge apex. Region Ib is the 
region in which the loading is modified by the addition of the fields used 
to cancel the load behind the trailing edge. In region la, the loading is 
simply that on a triangular wing having the same apex angle as the swept­
back wing. 

The conical flow fields were originally derived most conveniently as 
velocity, rather than pressure, fields. The loading is obtained from the 
velocity by the linearized relation 

~ .6u 
q V 

where u is the streamwise component of the perturbation velocity on the 
upper surface, V is the stream velocity, and .6p/q is the coefficient 
of lifting pressure. 

Load distribution in region I.- In terms of the conical variable 
a = ~Y/x, the loading over the triangular wing is given by 

where 

mVa 

13E( J l-m2
) 

(1) 

(2) 

is the streamwise component of the perturbation velocity along the wing 
center line (a=O) and u.6 is the same velocity component elsewhere on 
the wing. 

Cancellation of the load in the wake, as described in reference 2, 
is accomplished by superposing first a symmetrical field having a constant­
load region coincident with the wake to cancel the perturbation velocity 
Uo throughout the wake, and then an infinite number of infinitesimally 
loaded oblique elements to cancel the remaining lift. Figure 3 shpws the 
constant-load region (shaded ) of a single "oblique" flow field. 

Cancellation of Uo induces on the wing a pressure distribution 
(equation (51) of reference 2, corrected) proportional to 
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where K( Jl-mt;2) is the complete elliptic integral of the first kind 

of modulus J l-rot 2, and F is the incomplete integral with argument 

flfg-t 2 
cp = sin-1 0 

I-mt 2 

Each of the oblique elements induces on the wing the perturbation 
velocity (equation (50) of reference 2) 

-u 
= ~ cos-1 

:J{ 

(l-a)(ta-mt)-(IDt-a)(l-ta ) 

(l-IDt)( ta-a) 

5 

(4) 

where ua is the differential of u6 obtained by differentiating with 
re'spect to a, or 

(I!l2-e2 ) 3/2 da (6) 

Uncorrected lift in region 1.- In order to obtain the total lift in 
region 1,2 we first integrate the uncorrected loading of the triangular 
wing over the entire area, obtaining 

where a2 is the value 
of intersection X2,Y2 
regions I and II. (See 
parameters, 

of a corresponding to the ray through the point 
of the trailing edge and the Mach line separating 
figs. 1 and 3.) In terms of .the wing plan-form 

2:mInt; 
a2 = ---....::.--

l+m+IDt~ 
(8) 

~ormulas which follow are for the complete wing; that is, the left-hand 
side is included. 
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When IDt=m (untapered wing), the second part of equation (7) becomes 
indeterminate. In this case , 

Wake corrections.- The wake corrections are to be integrated over 
region lb. Integration of the symmetrical wake correction (equation (3)) 
yields 

where 

(&')0 
qa. 

2 2 
-16m Xl Uo 
f3(l+IDt) Va. 

(10 ) 

(11) 

is the X coordinate of the intersection of the trailing-edge Mach line 
with the leading edge. (See fig. 3.) 

For each oblique element, the reduction in lift is given by 

1:.. d&, da = _ 2ua 1 +mt ( )( ) 2 [ 
qa. da f3Va. 1 +a mt-tl. XZ-xa 

(12) 

in which 

(
l+m '\ 

X2 = I-m + illf) 

is the x coordinate of the intersection of the Mach line from xl'Yl 
with the trailing edge (see fig. 3) and 

(14 ) 

is the x coordinate of the apex of' +·h.e element a. 
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Lift in region I.- The total lift in region I is then given by 

The quantity ~( L) 
m2 c0

2 qa. I 
is plotted against in figure 4 for 

several values of the ratio m/mt. This latter parameter is the ratio 
of the tangents of the semiapex angles of the leading an~ trailing edges 
and is constant for anyone wing through the Mach number range. 

Region II 

Tip-effect problems.- In figure l(b), region II is shown divided 
into two sections by the Mach line from the leading edge of the tip. 
Such a division is actually an oversimplification of the problem. While 
region IIa can be treated, by the method of reference 4, in such a way 
as automatically to satisfy the Kutta condition at the trailing edge, the 
tip effect, which modifies the lift in region lIb, has not been determined 
so as to take this condition into account. In the cancellation method 
used to determine the tip effect, a so--<:alled IIprimary tip correction ll is 
first obtained by superposing conical flows to reduce the lift to zero 
along and outboard of the side edge. A 
further succession of steps (reference 2) 
is required to cancel lift introduced in 
the wake behind region lIb, and thereafter 
outboard of the tip within the Mach cone 
from x*,y* (see sketch) and so on. The 
corrections obtained by this procedure 
alternate in sign and become successively 
smaller in magnitude, while increasing in 
mathematical complexity. Since, moreover, 
it is known from experiments that the 
assumed flow in the tip regions is at var­
iance with the physical flow, it would be 
illogical to attempt any precise evalua­
tion of these corrections. A simple for­
mula will therefore be given, following 
the derivation of the primary tip correc­
tion, for obtaining a fair estimate of the 
IIsecondary correction ll

; further correc­
tions will be neglected. 

Loading in region I1.- Except for tip 
losses, the lift in region II may be 
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calculated by integrating out to the tip the approximate load distribution 
given in reference 4. This loading is 

:= 40 
[ mx:-ffit ( x-c 0 ) ] ( mx:-{3 y ) 

( 16) 

which is merely the subsonic tWo-dimensional flat-plate loading, applied 
on sections taken normal to the stream, and with a correction factor 
inserted to bring the loading at the leading edge into agreement with that 
derived for the swept-back wing by the conical-flows method. The theoret i ­
cal loading at a subsonic leading edge is, of course, infinite in any case, 
with the infinity entering as the reciprocal square root of the distance 
to the leading edge. The coefficient 0 is a measure of the strength of 
the leading--edge s ingulari ty in the loading on the swept-back wing. 

It is most convenient to describe the leading--edge singularity in 
terms of the coefficient in the perturbation velocity u of (mx-{3y)-1/2, 
where the quantity (mx-{3y) is ~ times the spanwise distance to the 
leading edge. This coefficient is then uJmx-{3y and the strength of 
the singularity in u is the limit of its value as ~y approaches mx 
(the leading edge). The coefficient 0 is a nondimensional form of the 
same quantity: 

o (
u ~\ 

Va, J ~ )~y:=mx: 
and is a function of x. 

In line with the general procedure of the conical-flows method, the 
coefficient C,0. of (mx-{3y )-1/2 corresponding to the triangula.r-wing 
velocity distribution is found first, and is then corrected to take 
account of the effects of canceling the loading in the wake, by the sym­
metrical canceling element and by the oblique elements. The resulting 
expression for 0 is 

(18) 

where 

------~ 



NACA TN 2093 

is the uncorrected (i.e., triangular-wing) coefficient; 

-4muo ;;;; [K(k)E(k,1jr)~(k)F(k,1jr)J 
1tIDt K(jl-IDt 2)j hm 

with k 

is the symmetrical wake correction; and 

~C 
-da 
da 

and TO 

is the correction for a single oblique wake element, with 

Ta 
( IILt -a ) nIX--illt c oa 

(lllt-a )x--nLt;Co 

The upper limit of integration is 

(IILt-a)(l+Ta ) 

( T a -a) ( 1 +Illt ) 

9 

(20 ) 

nIX 

(22) 

Equation (18) for the coefficient of the leading-edge sigularity is 
mathematically complete for points immediately beyond xl ,Yl along the 
leading edge, but if the aspect ratio is very high or the Mach number 
very low, the Mach line from X2,Y2 may intersect the leadi ng edge 
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- - Mach lines 
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(see sketch) and bring about further 
modifications of the flow on the 
outboard portions of the wing. The 
only effect of this modification on 
the formulas presented herein is the 
introduction of additional terms 
into the expression for a for 
values of x beyond xs, and in 
still more extreme cases, beyond 
x5' and so on. Evaluation of these 
terms by the conical-flows method 
involves multiple integration and is 
impractical except with the aid of 
high-speed computing machinery. 
Each successive correction (to a) 
is initially zero and enters with 
zero slope at x 3' zero slope and 
cUrvature at x5 and so on, so that 
the three-term expression for a 
given by equation (18) may be used 
with satisfactory accuracy for some 
distance beyond the last value of 
x (x s) for which it is strictly 
valid. In practice, the third term 
in equation (18) may also be neg­
lected for values of x only slightly 
greater than Xl. 

Chart s giving ~jl-m m m 
as a function of x-xl for the values of 

Co 

the taper-ratio parameter covered in figure 4 are presented in 

figure 5 as an aid to computing. The curves were computed using equa­
tion (18) and are therefore exact only up to x=xs (Shown by a vertical 
mark in each curve). The points x=x are also indicated (by X's) as a 
more practical limit to which use of ~he curves may be- extended. (These 
points are- off the scale for rot = 0.8 and 0.9 in figure 5(a)). When the 
wings are untapered (m/IDt = 1.0), asymptotes 

f3ajl-m= 1 
m m Jl+m 

derived from simple sweep theory, may be drawn. The relative positions 
of the curves in figure 5(a) and their asymptotes suggest that a further 
extension beyond x5 will probably not introduce any serious error in 
these cases. 

The curves are for the most part regular enough to permit interpola­
tion within intervals of 0.2 of mt. However, at mt = 1.0 the lines 
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diminish to a point on the vertical axis; a curve for IDt = 0.9 was 
therefore inserted in the charts for moderate values of m/ffit. With 
m/mt less than O.~, ffit = 0.9 represents, if x>xl , such extreme 
taper that the successive points of reflection of the Mach lines 

11 

(x3 , xs, .•. ) take place within a very small fraction of a chord-length 
and no useful curve can be drawn. No curves are drawn for mt smaller 
than 0.2 because of the tip-interference limitation discussed in the 
introduction. 

Uncorrected lift, region 11.- In order to find the total lift (except 
for tip losses) in region II, a double integration with respect to x and 
y is performed on equation (16). A first integration, with respect to 
y, yields for the indefinite integral 

(mx~y)(mtCo-mtx+~y) 

IDtco-( IDt-m)x 
+ 

The values of ~y to be sub­
stituted as limits in equation (23) 
are indicated in the sketch to the 
right. Along the leading edge, the 
right-hand member of equation (23) 
reduces to zero; along the trailing 
edge it becomes ,8y=(I+m)x,-x 

(24) 

Then the total lift in region II 
(on both wing halves), except for tip 
losses, is 

Region 
II 

,8y=mx 
/-"'" 

x= ,8s 
m 
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'C "(xl (f1 tan-1 ~: + f;:s) dx ] 

m 

where 

Jm(x---{1s/m) 

J ( 1 +IIlt ) ( Xz-X ) 

The indicated integrations may be performed numerically or graphi­
cally, using values of a(x) taken from the charts. 

Primary tip correction.- A method of approximating the tip-induced 
reduction in loading is described in reference 4. The uncorrected 
loading along the tip section is determined by equation (16) , simplified 
by replacing a(x) by the constant 

(26) 

The assumption is then made that the lift to be canceled outboard of the 
tip is a continuation of this loading along lines parallel to the leading 
edge of the wing. The cancellation is accomp~ished by means of the t~ip 

I 
___ J 
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solutions" of references 2 and 9, 
flow fields having constant 
pressure over a region bounded by 
the tip and a ray extending 
outward from a point xc,s on 
the tip. 

In canceling the cylindri­
cal field assumed in this case, 
the rays would all be parallel 
to the leading edge. (See 
sketch.) The streamwise com­
ponent of velocity on the wing 
due to one such element is 

where uc is the constant value 
of the streamwise perturbation 
velocity on the element and 
tc/~ is the slope of a ray from 
its apex xc,s. This velocity 
is multiplied by 2pV to 
convert to pressure and by 

dS 
dtc dtc 

13 

line/, 

to obtain the lift on the differential of area shown in the sketch. Then 
integrating with respect to tc from -1 to 0 gives the total lift induced 
on the wing by the single canceling element at xc. The result may be 
written 

~d.6Ldx 
c 

go. dxc 

where ~c, as shown in the sketch, is the distance of xc,s 
leading edge, divided by the tip chord Ct, or 

~c 
xc-(i3s / m) 

(28) 

behind the 
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Since along the tip, from eQuation (16), 

or 

u(£ c) 
(30) 

where ~ is the taper ratio Ct/co, the canceling velocities lie must 
be given by the differential 

(31) 

Then the primary tip correction to the lift (both tips included) 

(32) 

which may be integrated by parts to give 

(33a) 

-~--------- -.~ ... ~. -
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where K and E are the complete elliptic integrals of the modulus 

k= j~m 

In the case of an untapered wing, equation (33a) reduces to 

(~l.L) -3;cco2 .[m 

qa. tip 

Secondary tip correction.- The 
primary tl.P effect Just derl.ved is 
actually an overcbrrection, since 
the load distribution of which it 
is the integral does not go to zero 
at the trailing edge. The residual 
lift in the wake is the result of 
superposition of an infinite number 
of conical fields and therefore 
cannot be canceled identically in 
any simple way. Numerical results 

213 (l+m) as 

indicate, however, as pOl(·nted out !*c, 
in the previous reports references 
2 and 4), that the major part of 
the tip effect arises in the can­
cellation of the infinite pressure 
at the leading edge. In determin­
ing the secondary tip correction to 
the loading, therefore, it may be 
assumed as an approximation that 
the residual velocity field in the 
wake is conical with respect to the 
leading-edge tip, the value of the 
velocity along any ray tm (see 
sketch) being determined by the value 

15 

(33b) 

at the intersection xb,Yb of the ray with the trailing edge. Thus the 
Kutta condition is satisfied, although some pressure differences remain 
in the wake. 

An expression for the correction to the total lift resulting from 
this approximate cancellation of the tip-induced velocities at the 
trailing edge has been given in reference 1 as equation (71), from which 
may be written 
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(A2L') = _ 4~{~~* (S_y*)2( )l:Int _~))l:"'t + 
qa. 4iP ~ ~ 

where x*,y* (see sketeh p. 15) is the point of intersection of the tip 
Mach line with the trailing edge, tm is ~ times the slope of a ray 
from the leading-edge tip, xb'Yb is the intersection of the ray with 
the trailing edge, l::.u is the velocity to be canceled at xb'Yb' 
and l::.u* is l::.u(x*,y*). 

Again experience has shown the integral term in equation (34), which 
involves very lengthy computing, to be considerably smaller than the term 
in l::.u*. Since only an approximate tip correction is desired, it will 
suffice, therefore, to calculate 

( A2L) '" l::.u* 2( ~ ) ~ 
qa. . = - 4~ Va. ( s-y*) J -;;; - J2 J-;;; 

tlP 
(35) 

From reference 4, equation (45), 

l::.u* 
-- = Va. 

(36) 

where ~* is the streamwise distance of x*,y* from the leading edge 
expressed as a fraction of the tip chord; that is, 

~* = L (x* -~) Ct m 

It is easily determined that 

f3(s-y*) 

and consequently 
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With these values, and 6u*/Va from equation (36), equation (35) becomes 

( 6.2L 
'\ ~ 4 o"s ~Ct 2 

1 (j l+:y _ ,f2 ) (38) 
qa -{iP 13 l+Int J (l+m);\ ~ 

Total tip correction.- The total tip correction, to the degree of 
approximation discussed, is the algebraic sum of equations (33) and (38). 
Except for the occurrence of O"s,Ct and ;\ in the coefficient, the 
resultant expression is a function of m and Int only, independent of 

the tip location. Values of 13 Ji (bL '\ have be.en plotted in 
ers~t2 qa )tip 

figure 6, in a f orm similar to the chart of ( ~a ) (fig. 4). 
I 

Numerical Example 

As a summary of the method, a sample calculation will be outlined. 
The lift-curve slope eta will be calculated for an untapered wing of 

10-foot chord and 4o-foot span, swept back 450 and flying at a Mach 
number of 1.08. Then cot A = 1.0, 13 = 0.4, m = 0.4, rot = 0.4 and, 
from figure 4, 

- = 13.30- c 2 (
L ) m

2 

qa I 13 2 
0 

1330 square feet 

m 

13 
(It should be noted that cot .A) 

With values of er obtained from figure 5(a), graphical integration of 
equation (25) gives 

(q: ) = 531 square feet 
II 

Since the leading-edge sweep i s 450 , the tip is at x = 20, and, from 

figure 5( a), ers=O. 635 (J) jlJ~_m = 0.518 . From figure 6 , since A = 1 , 

(:) 
tip 

2 Ct ers 
= -1.69 = -219 square feet 

13 
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Combining the three components of the lift, we obtain 
feet and 

Cta, = t ( q~) = 4.10 

DRAG DUE TO LIFT 

NACA TN 2093 

L = 1642 s"quare qa. 

The drag due to lift can be found as the integral around the airfoil 
of the incremental pressure puV times the slope w/V of the surface. 
In the case of a thin flat airfoil, this calculation gives merely the 
lift times the angle of attack over most of the surface. However, as is 
discussed in reference 11 in connection with the two-dimensional wi ng in 
subsonic flow, an infinite pressure acting on the leading edge results in 
a suction force, which tends to reduce the total drag. When the wing is 
swept behind the Mach lines from its apex, a similar suction can exist in 
supersonic flow, since the pressure on a subsoni c leading edge i s t heoret­
ically infinite. 

Hayes (references 7 and 12), Robinson (see reference 8), and others 
have derived the formula for the suction force on a subsonic leading 
edge by aSSuming the flow near the leading edge to be essentially two­
dimensional and applying the results of t wo-dimensional potential theory. 
The simple result obtained in that manner has been verified for the long 
swept-back wing by application of the somewhat different approach of 
reference 13. 

By the two-dimensional approach, the suct i on force is found to be 
proportional to the square of the strength of the leading-edge singularity 
in the perturbation velocity u. This quantity has already been di scussed 
in connection with the lift in region II, where the strength of the 
leading-edge singularity was defined as the coefficient of the inverse 
square root of mx~y. This coefficient is C~ (equation (19)) on the 

forward part of the wing and C~ + (t:e) 0 + Jao Fa de (see p. 8) 
o 

behind the trailing-edge Mach line. From Robinson's work, the longitudi-
nal component of the suction force per unit length in the x direction 
may be expressed, for region I, in terms of C~ as follows: 

dT p~ ~ 2 
dx = -;- AI I-mCO C~ 

and Similarly for the remainder of the Wing, with C~ replaced by the 
corrected coefficient. 
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For a given wing, the total drag due to lift is the result of sub­
tracting the total thrust from the product of the lift and the angle of 
attack; that is, 

~ ,rm dT 
D aL - 2J_ d.x dx 

o 

or, in coefficient form, 

where S is the total area of the wing. Writing 

we obtain 

so that 

~ 

Jm dT 
- d.x 
dx o 

(40) 

(41) 

dx] ( 42) 

d.x] } 

with the final integration to be performed numerically or graphically. 
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APFLICATION AND DISCUSSION 

Lift-Curve Slope 

The lift-curve slope CLa has been calculated for two families 
of untapered wings, with m constant at 0.2 and 0.4, and with varying 
aspect ratio. The results are plotted against the reduced aspect ratio 
~A in figure 7. The circled points indicate the actual cases for which 
calculations were made; the faired curves are only approximations, since 
they ignore slight discontinuities in curvature associated with the onset 
of interaction between the wake and leading edge, and higher-order dis­
continuities associated with success ive reflections of the trailing-edge 
Mach lines~ 

Two points corresponding to tapered wings with m = 0.4 and 
fit = 0. 6 are also included. In one case (~A = 1.6), and in the case 
of the untapered wing with the same span (~A = 1. 2), the trailing-edge 
Mach lines did not intersect the leading-edge, and the values of Cia 
were obtained by the formulas of reference 1. It should also be men­
tioned that the remaining values agree within 2 or 3 percent with values 
calculated entirely by the conical-flows method, the former being slightly 
lower than the latter. 

The curves for the untapered wings may be seen to be approaching at 
the upper end the value 2nm/ Jl-m2 given by simple sweep theory. At 
the lower end, the curves should approach the origin along the line 

CLu = ~ A given by low-aspect-ratio theory (reference 14). As previously 

mentioned, the present calculations cannot properly be extended below 
~A = 1 because of interference between the flow fields originating at the 
tips. However, two such cases have been included for m = 0.2 because, 
with so much sweep, the wing areas affected are small and the interference 
losses should be negligible. Results in these latter cases may be compared, 
because of the small apex angle relative to the Mach angle, with the results 
of the slender-wing theory of reference 5. This comparison is shown in 
figure 7, although a discrepancy in plan form lessens the Significance of 
the agreement. 3 The results of reference 5 have also been plotted for 
m = 0.4, in which case the assumption of extreme slenderness is no longer 
justified and introduces an appreciable error. (It should be mentioned 
that the asymptote for the slender-wing-theory curves is below the value 
given by simple sweep theory by the factor ~1-m2.) 

3The theory of reference 5, while applicable to any swept-back wing lying 
well within the leading-edge Mach cone, has been worked out only for a 
limited family of plan forms, having straight leading and filleted 
trailing edges, and, consequently, a slight taper. 
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Drag Due to Lift 

In figure 8, the drag-rise factor CD/CL2 is plotted for the same 
families of wings. Comparison is made with a theoretical minimum for 
slender wings in supersonic flight obtained by R. T. Jones in an unpub­
lished analysis. Using a method similar to Hayes l (reference 12) and 
aSSuming the wing to be narrow compared with the Mach cone, Jones has 
derived a minimum "wave drag" coefficient 

2 
Cn _ _13_ C 2 

---w 2rc~ L 
(44) 

where Ax is the aspect ratio defined in the streamwise, instead of the 
spanwise, direction; that is, if 2 (numerically equal to xT) is the 
over-all length of the wing, 

The wave drag is to be added to the "vortex drag," which is the 
induced drag of subsonic flow, calculated from the spanwise loading. 
USing the minimum induced drag calculated from lifting-line theory gives 
as the minimum supersonic drag-rise factor 

....£ll=..L+~ 
CL 

2 rcA 2rcAx 
(46) 

It may be seen that the drag rise of the constant-chord swept-back 
wings is fairly close to the minimum, especially at the lower values of 
m for which equation (46) was derived. 

Ames Aeronautical Laboratory, 
National AdviSOry Committee for Aeronautics, 

Moffett Field, Calif., Mar. 15, 1950. 

- --- --~--
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APPENDIX 

SYSTEM OF NOTATION 

General 

V free-stream velocity 

M free-stream Mach number 

p density of air 

(~pV2\ q dynamic pressure c ) 

6p pressure difference between upper and lower surfaces, or 
local lift 

~ angle of attack, radians 

L lift 

lift coefficient (~) 

drag coeffic ient (~S) 

Wing Dimens ions 

Co root chord 

Ct tip chord 

s semispan 

S wing area 

I over-all length of the wing in the streamwise direction 

A angle of sweep of the leading edge 

L 
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A aspect ratio (4s 2 /8) 

x,y 

x*,y* 

~ * 

Coordinates 

Cartesian coordinates in the stream direction and across the 
stream in the plane of the wing 

coordinates of apex of oblique trailing-edge element (see 
equation (14)) 

coordinates of point on trailing edge, within the tip Mach cone 

coordinates of paint on tip; apex of tip element 

coordinates of intersection of trailing-edge Mach cone with 
leading edge (see equation (11)) 

coordinates of intersection of Mach line from xl,Yl with 
trailing edge (see equation (13)) 

coordinates of intersection of tip Mach line with trailing edge 

coordinates of intersection of tip and trailing edge 

streamwise distance of x*,y* back from leading edge, as a 
fraction of the tip chord (equation (37)) 

distance of Xc behind leading-edge tip, as a fraction of the 
tip chord (equation (29)) 

In the following, all slopes are measured counterclockwise from a 
line extending downstream from the apex of the wing or of the pertinent 
elementary sector: 

m 

a 

slope of leading edge = 
slope of Mach lines 

slope of trailing edge 
slope of Mach lines 

13 cot A 

slope of ray from the oYigin 

slope of Mach lines 

slope of ray from trailing-edge apex 
slope of Mach lines 

13 -Y-
x-eo 
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TO 

slope of ray from leading-edge tip 

slope of Mach lines 

y-s 
= 13 x- M 

slope of ray from apex of element 

slope of Mach lines 
a 

slope of ray from apex of tip element 

slope of Mach lines 

13 

f3 

m 

Y-Ya 
x-xa 

y-s 

x-xc 

NACA TN 2093 

the value of a corresponding to a trailing-edge element of 
which the apex lies on the Mach fore cone of the point at which 
the load is being calculated (equation (22)) 

the smallest value of 
ahead of the leading 
is being calculated. 
TO = to = mx/(x-c o ) 

to along which cancellation of pressure 
edge can affect the point at which pressure 
For a point on the leading edge, 

Ta the smallest values of ta along which cancellation of pressure 
ahead of the l eading edge can affect the point at which pressure 
is being calculated . For a point on the leading edge, 
Ta = ta = (mx-j3Ya)/(x-xa ) 

Streamwise Components of Perturbation Velocity 

basic (uncorrected) perturbation velocity as given by solution 
for triangular wing (equation (1)) 

uo value of ~ at a=O (equation (2)) 

constant perturbation velocity on canceling (oblique) sector in 
wake (equation (6)) 

constant perturbation velocity on canceling sector outboard 
of tip 

(6u)o symmetrical trailing-edge correction to u6 (equation (3)) 

d6u 
da da, correction to U6 due to single oblique trailing-edge 

element (equation (5)) 

6u* value of tip correction to u at the point x*,y* (equation (36)) 
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Arbitrary Mathematical Symbols 

C.c,. value of coefficient of (mx~y)-1/2 in u6 at the leading 
edge (equation (19)) 

decrement in C6 
(equation (20)) 

due to reflection of (6U) O at leading edge 

cL6C -- da 
da 

decrement in C6 
(equation (21)) 

due to reflection of at leading edge 

a leading-edge correction coefficient defined by equation (17) 

as value of a at leading-edge tip 

Elliptic Integrals 

k modulus of elliptic integral, defined where used (also with 
subscripts) 

cp or 1jr argument of elliptic integrals, defined where used (also with 
subscripts) 

F(k,CP) incomplete elliptic integral of the first kind of modulus k 
and argument cp 

K,K(k) complete elliptic integral of the first kind of modulus k; 
that is, K = F(k, ~) 

E(k,cp) incomplete elliptic integral of the second kind 

E,E(k) complete elliptic integral of the second kind of modulus k' , 
E( k,~) 
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- - Mocn lines 

(a) M=1.50 (b) M=/.15 

~ 
Figure t. - Plan view of swept- bock wing at two supersonic 

Mach numbers. 
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fiy 
edge, x=m 

trailing edge, 

#Y - m 
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.~ 

Figure 3.- Coordinole Syslem and other Symbols. 
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50 

Figure 4. - Chart for the computation of the lift in region I. 
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