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A detailed exploration of the field of mean and fluctuating quan-
tities in a two-dimensional turbulent channel flow is presented. The 
measurements were repeated at three Reynolds numbers, 12,300, 30,800, 
and 61,600, based on the half width of the channel and the maximum mean 
velocity. A channel of 5-4nch width and 12:1 aspect ratio was used for 
the investigation. 

Mean-speed and axial-fluctuation measurements were made well within 
the laminar sublayer. The seitheoretical predictions concerning the, 
extent of the laminar sublayer were confirmed. The distribution of the 
velocity fluctuations In the direction of mean flow u' shows that the 
Influence of the viscosity extends farther from the wall than indicated 
by the mean velocity profile, the region of influence being approxi-
mately four times as wide. 

Fluctuations perpendicular to the flow in the lateral and vertical 
directions v' and w', respectively, and the correlation Qoeff 1-

u'v' 
cient k =	 were also measured. The turbulent shearing stress 

F
u-, 2 jv,2 

was computed by three different methods. The results show satisfactory 
agreement for the two lower Reynolds numbers. In the case of the highest 
Reynolds number, however, the total shearing stress T obtained.from the 
fluctuation measurements was approximately 20 percent lower than that 
computed from the mean-velocity and mean-pressure measurements. All 
dimensionless mean fluctuating quantities were found to decrease with 
increasing Reynolds number. Measurements of the scales of turbulence 
and Lz and microscale' of turbulence A,y and Xz across the channel 
are presented and their variation with Reynolds number is discussed. 
Using a new technique, values for the microscale Xx were obtained; a 
new method for estimating the scale L is also given.
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The energy balance in the turbulent flow field was calculated from 
the measured quantities. From this calculation it is possible to give 
a descriptive picture of turbulent-energy diffusion in the center 
portion of the channel cross section. 

For the flow corresponding to a Reynolds number of 30,800 the 

energy spectrum of the u' 2-fluctuations at various points across the 
channel, including one in the laminar sublayer, was obtained. 

At station 1 = 0.4, where y is lateral distance and d is half 

width of the channel, the contribution to the turbulent shear stress 
from various frequency bands was measured and it was found that the con-
tribution corresponding to frequencies above 1500 cycles per second is 

negligible. Since the spectrum of u12 at this point extends to about 
5000 cycles per second it is evident that the high frequencies are 
nearly isotropic in agreement with Kolmogoroff's hypothesis. 

INTRODUCTION 

In recent years a considerable step forward was made in the theory 
of turbulence. Kolmogoroff (reference 1), Heisenberg (reference 2), 
and Onsager (reference 3) obtained independently an energy-spectrum law 
that holds in rather restricted types of turbulent flows. This progress 
gave a new impetus to both theoretical and experimental investigations. 
The experimental worker may follow two principal methods of approach to 
the problem. First, he may establish flow fields which satisfy suffi-
ciently the assumptions of the new theory, namely, that the flow is 
isotropic and of high Reynolds number so that the influence of viscosity 
• is a minimum and the effect of the turbulence-producing mechanism is 
small. Under these conditions he may measure quantities such as corre-
lation functions, scales, and microscales that are defined exactly in 
the flow field and may compare his results with those predicted by the 
theory. The main difficulty with this method is to predict how closely 
one has to approximate in the actual flow the conditions assumed in the 
theory. In other words, the sensitivity of the theory to deviations 
from true isotropic conditions is not known and in case the measurements 
do not agree with the theory one does not know whether to attribute the 
disagreement to faulty assumptions in the theory or to the incomplete 
isotropic conditions of the flow. Furthermore, the imposition of the 
condition of isotropy to fluctuating fields may be a very strong 
restriction and the study of such fields may not yield the complete 
picture of the turbulence mechanism.
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The second method of approach is to establish a simple nonisotropic 
turbulent flow field with well-defined boundary conditions and, in the 
light of the existing theories, to try to obtain information on the 
mechanism of energy transfer from the low frequencies of the energy 
spectrum to the high ones. The present investigation of aturbulent 
channel flow has this purpose in mind in its long-range program. 

The difficulties of this method are immediately realized. Because 
of the nonisotropic nature of the flow, characteristic quantities such 
as scale and microscale are no longer well defined and it is very 
possible that in the first stages of the investigation certain quan-
tities will be measured that later will prove to be trivial. On the 
other hand, the main advantage of a fully developed channel flow is 
the fact that, in contrast with the flow behind grids, flow conditions 
are steady; no decay of mean or fluctuating quantities exists in the 
direction of the flow. Consequently, the turbulent energy goes through 
all of its stages of transformation across the channel section - 
turbulent-energy production from the mean flow, energy diffusion, and 
turbulent and laminar dissipation - and one may study these transforma-
tions in detail. 

It has become clear that the phenomenological theories of turbulence, 
such as the mixing-length theories, have lost most of their importance. 
These theories, developed in the late twenties and early thirties, were 
aimed specifically at an evaluation of the mean-velocity distribution in 
turbulent flow. The existing experimental evidence shows clearly that 
the mean-velocity distribution is very insensitive to the essential 
assumptions introduced into the phenomenological theoriOs. In fact, 
purely dimensional arguments generally sthffic'e to give the shape of the 
mean velocity profile with sufficient accuracy. For the further develop-
ment of an understanding of turbulence, detailed measurements of the 
field of fluctuating rather than of mean velocities are necessary-. The 
program of experimental research of which this work is one part is based 
on this reasoning. It is quite apparent and natural that the same con-
clusions have been drawn by workers in the turbulent field elsewhere 
and that, in general, the main emphasis of current experimental inves-
tigation is the exploration of the field of the fluctuating-velocity 
components. 

The present set of experiments deals with flow in a two-dimensional 
channel, that is, with pressure flow beteen two flat walls. Channel 
flow of this type is the simplest type of turbulent flow near solid 
boundaries which can be produced experimentally. The simpler Couette 
type flow requires that one wall move with constant velocity, a con-
dition which is difficult to realize experimentally. It can be 
approximated, by the flow between concentric cylinders, but complications 
due to centrifugal forces arise here. The simple geometry of a
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twb-dimensional channel allows an integration of the Reynolds equations, 
and the turbulent shearing stress can then be related directly to the 
shearing stress on the surfaces which, in turn, can be determined from 
the mean-pressure gradient or the slope of mean velocity profile at 
the wall.	 - 

The relation between the apparent stresses and the wall shearing 
stress can be used to advantage in two fashions. It is here possible 
to obtain the magnitude of the correlation coefficient responsible for 
the apparent shear by measuring only the intensities of the turbulent 
fluctuations. The turbulent shearing stress can also be measured 
directly by means of the hot-wire anemometer. A comparison with the 
shear distribution obtained from mean-pressure-gradient or mean-
velocity-profile measurements serves then as a very useful check on 
the underlying assumptions, on the one hand, and specifically as a 
check on the reliability and accuracy of the direct measurements, on 
the other. 

Measurements of channel flow have previously been made by Doench 
(reference Ii-), Nikuradse (reference 5), Wattendorf and Kuethe (refer-
ences 6 and 7), and Reichardt (references 8 and 9). A few unpublished 
measurements have been made recently at the Polytechnic Institute of 
Brooklyn. 

•	 Doench's and Nikuradse's measurements were concerned only with 
the mean-velocity distribution and are thus of not too much interest for 
a comparison with the present set of measurements. Wattendorf measured 
the intensity of the fluctuating-velocity components and then deduced 
the correlation coefficient from the mean-pressure measurements. The 
technique for measuring the axial component of the velocity fluctuation 
was well developed at the time, but the cross component was only 
tentatively measured. 

The most complete set of measurements is due to the work of 
Reichardt, who measured velocity fluctuations in the direction of the 
flow and normal to the wall as well as the turbulent shear directly. 
Reichardt found. very good agreement between the shearing stress deter-
mined In these two ways; his paper comes closest to the present inves-
tigation and his results will be used for comparison. The Reynolds 
number in Reichardt's measurements was 8000,'which is lower than the 
range covered by the present measurements. A criticism which can be 
made of Reichardt's investigation is his use of a tunnel of only 
1:4 aspect ratio. The two-dimensional character of the flow is thus 
somewhat doubtful. Wattendorf's experiments were made in a channel of 
very large aspect ratio (18:1) and are thus free of this criticism.

- 

In a preliminary Investigation a channel 1 inch wide and 60 inches 
high was chosen. The measurements, however, have shown that In this
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case the scale of turbulence is so small that great care must be taken 
to correct the hot-wire readings for the effect of wire length. Measure-
merits of the inicroscales were .,-in fact, impossible in the 1-inch channel. 
The inicroscales were about 0.1 centimeter and thus smaller than the 
length of the wire. The corrections for the case of measurements of v 
and w' were about 30 percent. Since the method of-correction becomes 
very inaccurate for such large ratios of wire length to microscale, the 
measurements were repeated in a 5-Inch channel with a 12:1 aspect ratio. 
This ratio was still large enough to insure two-dimensional flow and the 
length corrections were greatly reduced.. 

This Investigation was conducted at the Guggenheim Aeronautical 
Laboratory, California Institute of Technology, under the sponsorship 
and with the financial assistance of the National Advisory Committee 
for Aeronautics. 

The author wishes to acknowledge the constant advice and help - - 
in both experimental methods and interpretation of results of 
Dr. H. W. Liepinaun during this investigation. He also wishes to than 
Dr. C. B. Miflikan for his continuous interest In this research. The 
cooperationof Dr. F. E. Marble and Mr. F. K. Chuang is much appreciated. 

SYMBOLS 

x	 longitudinal coordinate in direction of flow; x = 0 corre-
sponds to channel exit 

y	 lateral coordinate; y = 0 corresponds to channel wall 

z	 vertical coordinate 

d -	 half width of channel (2.5 in..) 

thickness of laminar sublayer 

u	 mean velocity at any point in channel 

U0	 maximum value of mean velocity 

u t	 -	 instantaneous value of velocity fluctuations in direction of 
mean flow x	 . 

v? Y w i	 instantaneous values of velocity fluctuations normal to mean 
flow in directions y and z, respectively
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root—mean—square value of velocity fluctuations in 
direction of mean flow x 

root—mean—square values of velocity fluctuations normal 
to mean flow in directions y and z, respectively 

p	 pressure at any point In channel 

P	 air density 

T	 total shearing stress 

To	 shearing stress at wall 

UT	 friction velocity VT 0 P) 

absolute viscosity of air 

V	 kinematic viscosity 

R	 Reynolds number based on half width of channel and maximum 
mean velocity 

k	 correlation coefficient responsible for apparent 

shear	
Ut Vt 

t2 vt2) 

correlation coefficients as functions of X. Y. and Z. 
respectively 

inicroscales of turbulence 

	

- f\2	 - lfu\	 ut2	 l(ut\2 
=	 ,	 ,	 -
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scales of turbulence 

/ 

(i J
dI, Rx 

0 
ly a	 Ry dY,	 L 

JO
/	 F	 d.z) 
JO

7 

in 

x,Y,z	 distances (in the x-, y-, and z-direction, respectively) 
between points at which correlation fluctuations are 
measured-

Cr

 

ratio of square of compensated and unconipensated. 
fluctuations 

M	 time constant expressing thermal lag of hot-wire 

n	 frequency, cycles per second. 

F1 7(n),F(n)

	

	 fraction of turbulent energy u' 2 associated with band
width dn 

F-j--j (n)	 fraction of turbulent shear u'v' associated with band 
width d.n 

W	 dissipation of turbulent energy 

t	 time 

e1 ,e2	 voltage fluctuations 

ANALYTICAL CONSIDERATIONS 

Equations of Motion for Two-Dimensional Channel Flow 

The mean- and fluctuating-velocity components are denoted. by Uj 
and uj', respectively; Cartesian coordinates are designated-by xi; 
and Pik denotes the components of the stress tensor which includes 
both the viscous and apparent (Reynolds) stresses. The Reynolds equa-
tion and the continuity equation for steady flow can thus be written, 
using Cartesian tensor notation,

u1	 ik	
(la)puk—= 

c'x Tx —k 

0	 (lb)
xi 

ri
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where x, y, and z replace Xj and Ut, v i , and w' replace u1' 
for convenience in writing the now much simpler equations. Equation (lb) 
is thus automatically satisfied and equation (la) becomes: 

o(P)+ ;)

(2) 

O=— -p 7\ -pv	 )+—(.1---pu'v') 'du	 -\ 

x\ dy

In fully developed turbulent flow the variation of mean values of the 
fluctuating quantities with x should be zero; that is, the flow 
pattern is independent of the streaiawise direction. Hence, , equations (2) 
become:

P 6	 dy.2	 dy 

or

(3a) 
Px' Pdy

(3b) P3r

l2p 
Differentiating equation (3b) with respect to x gives - 	 = 0; 

p xy 
consequently 6p/'6x is independent of y and equation (3a) is 'iimnedi-
ately Integrable. Thus 

ypdu - - - = v - - U'V' + Constant 
Px	 dy 
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In the center of the channel the shear vanishes; hence. if the channel 
has the width 2d,

Constant = d. 6p- - 
P x 

and hence

4y —d)  
du

 - 
P	

= V	 - U'VT
dy 

Or in nondi2nenslonal form: 

y — dpvduu'v'	
(1I.) 

pUO2 ' UO2 dy	 02 

In term of the shearing stress at the wall, 

	

- T0 y — d_Vduutvt	
() 

pUO2 d	 UO2 dy UO2 

It is evident from equations (4) and (5) that T can be determined in 
three different ways: 

(a) From the mean-pressure gradient 

T0=-d 

(b) From the slope of the mean velocity profile near the wall 

/du 
TO =

dy y=O 

(c) From a direct measurement of utvt 

T0 = (
du	 d 
dy 

-	
y - d
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since if y/d is not too small,

du - 
Pulvi 

dy 

and item (c) becomes

T0 = PU1 	
d Vt

y - d 

The technically simplest way to determine T 0 , and thus in fact the 
complete shear distribution, is a measurement of )p/)x. This is the 
method applied in most investigations. 

To determine the slope of the velocity profile near the wall, the 
profile has to be known up to points very close to the wall, that is, 

at least to distances = This. in general requires the use of 

the hot-wire anemometer and very precise measurements. 

The third method requires a direct measurement of the correlation 
between the axial and lateral velocity fluctuations. The technique of 
this type of measurement is known and was first applied by Reichardt 
and by Skraznstad and, in somewhat different form, in recent investi- 
gations at the National Bureau of Standards, Polytechnic Institute of 
Brooklyn, and California Institute of Technology. 

In the present investigation all three methods.have been applied 
and the results compared, with the exception of the flow at the lowest 
Reynolds number. In this case the pressure gradient is extremely small 
(approx. 0.0003 nmi of alcohol/cm) and reasonably accurate measurements 
were not possible. This comparison of the three methods has the 
advantage that it gives a good indication of the absolute accuracy of 
measurements of the fluctuating quantities and the correlation coef-
ficient k.

Energy Equation 

Writing equation (la) in the form 

ui  
Pak - -+LVU1	 (6) =

xi
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and. multiplying It by uj, the following relation is obtained.: 

1	 UjUjUç	 PUI	 2Uj 

	

—p	 =-	 +iuI 
2	 6xk	 6xi	 3xJXJ 

Transforming the last tern by partial Integration the energy equation 
of the mean flow becomes 

1	 UjUjU	 pui 1 62uiuj 

= - xI +	 XjXj -
	

(1) 

The velocity perturbations, can now be Introduced.: 

U1 = U + U' 

U2 = VT 

U3 =. w' 

• Since the velocities are independent of the coordinates x and z the 
following equation Is obtained after averaging: 

-j-	 du	 d.u'v'	 1	 d	 t(t 2 + v' 2 + wt2)	 P	 ?VP +pU	 + p	 v 

	

dy	 d,y	 2 dy	 _uxy+ 

d.2u ' 1 d2 '2 + v' 2 + wt 2) 
 

U 

	

2	 (	 -	
Xj )) 

Making use of equation (3a) this simplifies to 

du d ç 1 ( t2 + V t2 + wt2) +
	 (du 2	 (ut2 + v' 2 + wt2) 

ay dy	 -	 dy2 

	

T [	
2 

t1	 LII 
\Xj j\Xj
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This form was obtained by Von K.rmán (reference 10) while discussing a 
nonisotropic flow in terms of the statistical theory of turbulence. In 
order to see the relative orders of magnitudes of the different terms 
in the equation, Von Krmn expresses them in terms of a single 

velocity q =\Ju 12 + v 12 + wv2 and a characteristic length D corre-
sponding to the width of the channel. Since 

-u	 = 0(q2) 

-I.

±
urr\ 

= (Lj 
O(T) dy	 \D/	 \D 

the above equation may be written as 

Al

	

	
q3	

14. vq
2 +	 vq2 - A2 = —+A —+A - A5— 

D	 3D2 

where the coefficients have the characteristics of correlation functions 
and X is the inicroscale of turbulence. For a high Reynolds number 

D	 ,3 
flow s- >> 1	 -- , it follows that	 <c(—. Thus the second and third 

V	 D2	 D 
term on the right side of the equation may be neglected. Since the 
pertinent quantities have been measured durix the present work, the 
order of magnitude of these terms can be directly evaluated and the 
omission of the terms is found to be justified. The above equation thus 

contains only terms of the forms q .3/D and vq2/X2 ; these terms should 

be of the same order of magnitude and therefore '- = 0(1). It is 
vD 

of considerable interest to see whether experimental results confirm 
this relation. Taking as an example results from the measurements 

at P = 30,800 and I = 0.5 (where .. 11 x 10 3' and	 i. x 103 
X 

= 52 centimeters per second 

Xy = 0.5 centimeter 

therefore
qX	 52x0.25 -66 
VD	 0.155 x 12.7 -
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This ratio seems to be fairly constant for different Reynolds numbers 
and across the channel cross section. 

In view of the above dimensional considerations, the energy 
equation may be written

\ 	 jaui \1u.'\T	 =	 (pvt	 +	 + w'2+ 	
+	

1 

dr dy\	 2	 1	 \Xj )xj)	 () 

The equation expresses the fact that the energy produced by thp 
turbulent shear forces at a certain point is partly diffused and partly 
dissipated. This equation has been used in estimating the energy 
diffusion across the chanel, since from the measured quantities the 
production terni and dissipation can be calculated. 

EQUIPMENT AND PROCEDURE

Wind Tunnel 

The investigation was carried out in the wind tunnel shown in 
figure 1. The turbulence level is controlled by ahoneyconib and seam-
less precision screens, followed by an approximately 29:1 contraction. 
The screens have 18 meshes per inch and a wire diameter of 0.018 inch. 
The honeycomb consists of paper mailing tubes, 6 inches long and 1 inch 
in diameter. 

The over—all length of the channel is 23 feet. At the entrance 
section it is 3 inches wide and has an aspect ratio of 20:1. In a 
distance of 7 feet it expands to a width of 5 inches and the aspect 
ratio is reduced to 12:1. The walls of the exit portion of the channel 

(about 6 ft) are made of i--inch—thick plywood with a !—inch birch 

inside cover. They were specially treated in order to acquire a smooth 
finish and were reinforced in order to avoid warping (fig. 2); in spite 
of this a few percent of width variation existed. 

0 

The tunnel is operated by a 62—horsepower stationary natural—gas 
engine - normally operating at a fraction of its rating - which drives 
two eight—bladed fans. The speed is remotely controlled by means of a 
small electric motor which drives the throttle through a ge'ar and lead—
screw system. 

The experiments were carried out at speeds of 3, 7.5, and 15 meters 
per second.
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Traversing Mechanism 

Figure 3 shows the type of traversing mechanism used during the 
experiments. It consists simply of a micrometer screw on which the 
hot-wire support is fastened. The support can rotate freely In a plane 
perpendicular to the air flow; thus, th3 hot-wire may be adjusted 
exactly parallel to the wall. 

The zero reading of the traversing mechanism (y = 0) was care-
fully found using the following method: The ht-wire was placed close 
to the wall (approx. 0.025 cm away); the distance between-the wire 
and its Image in the polished wall was measured by means of an ocular 
micrometer. The position of the wire is, of course, one-half of the 
observed distance and could be determined with an accuracy of. 
±0.0005 centimeter. 

In order to obtain the pressure distribution along the middle of 
the channel a 6-inch-long thin-walled tube 3/8 inch in diameter was used 
with a small static-pressure hole drilled close to its end. The tube 
was free to slide in a support at. the entrance of the channel so that 
the position of the pressure hole relative to the channel exit could be 
changed. The tube was kept straight and under tension by means of 
weights.	 - 

Hot-Wire Equipment 

All velocity measurements were made with hot-wire anemometers. 
The frequency response of the amplifier-compensator unit of the hot-
wire equipment, using a 0.0002 1-Inch wire at standard operating qon-
ditions, is flat from approximately 2 to 10 5 000 cycles per second. 

The compensation of the hot-wire for thermal lag Is accomplished 
by a capacity network. The range of time constants was chosen from 0 
to 1 millisecond corresponding to the characteristics of 0.00005- to 
0.000211-Inch wires at the operating conditions employed in general at 
GALCIT. No attempt was made to extend the range of compensation to 
larger values of M, since in this case the noise level soon becomes 
appreciable. 

The correct setting of the compensating unit was found using the 
square-wave method described by Kovsznay (reference 11). The time 
constants of the wires used for turbulence measurements fell between 0.1 
and 0.9 millisecond. 

The output readings were taken with a thermocouple and preéision 
potentiometer.
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Mean-speed measurements.- A --mil (0.0005-in.) platinum wire of 

1-centimeter length was used to measure the mean speed. The measure-
ments were made by the constant-resistance method. This method has the 
advantage of keeping the wire temperature constant through the velocity 
field. 

Turbulence measurements. - For the investigation of turbulent fluc-

tuations, 0.0002 11-inch Wollaston wire was used. The wire was soft-
soldered to the tips of fine sewing needles after the silver coating 
had been etched off. The two lateral components v' and w t and the 

UTVT correlation coefficient k = 	 were measured using the x--wire

FU—, 2 rvt 2 - 

technique. The method was essentially the seine as described in detail 
in previous reports from this laboratory. (See, for example, refer-
ence 12.) 

The x-meters for shear measurements had angles between the wires 
of approximately 900. The angles of the vt,wt_meter were of the order 
of 300 . The wire length of the ut.meter was about 1.5 millimeters and-
that of the v' -neter was 3 millimeters 

The parallel-wire technique used recently at the Polytechnic 
Institute of Brooklyn was also tried in order to obtain the lateral 
component of the velocity fluctuation and the shear close to the wall. 
The parallel-wire instrument is superior to the x-meter since it allows 
an exploration of the turbulent field up to distances of a few thous-
andths of an inch from the wall. Eowever, it was found impossible to 
obtain reliable valueà with this instrument. The corrections due to 
u'-fluctuations and to unequal heating of the wires were pronounced and 
not easily accountable. The method was therefore temporarily abandoned 
after considerable time and labor had been spent on it. 

Measurements of correlations between two points.- The correlation 
functions between values of u' at points along the y- and z-axis, 
that is,

ut (0)u' (y) 

ut(0)2\Jut(y)2 

- u'(0)u'(Z) 
z

u'2 

By =
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were measured using the standard technique (reference 12). The scales of 
turbulence I and LZ and the microscales lyand Xz at different 

points across the channel were obtained, from these measurements. 

Measurements of Xx.- A method suggested by Townsend (reference 13) 

was applied to measure X. Using an electronic differentiation circuit 
the enipiffier output signal was differentiated. and Xx computed from 
the following relation: 

I-s	 2	 ,-	 2 
I OU t I	 2iou'	 ut 

U	 = u - 

The error involved In the approximation	 ----> u - can be esti-

mated and it may be seen that the above relation holds with reasonable 
accuracy over the large centex portion of the channel. 

A new technique for the measurement of X, has also been applied. 
The method is described in detail in reference 14 and consists in 
counting the zeros of an oscillograph trace of the ut_fluctuations. 
From these counts Xx may be calculated directly by assuming a normal 
and independent distribution for both u' and u'/x: 

=	 x Average number of zeros of u' per second 

It is known that the distribution of u' is closely a Gaussian one 
even in nonistropic turbulence (see, for instance, reference 15); 
however, for the case of U?/X a small deviation from the normal dis- 
tribution was found (reference 13). For the preliminary measurements 
of Xx reported presently, no corrections were applied as yet for this 
effect. Figure 4 shows an oscillograph trace of the u'-fluctuation in 
the middle of the channel at P = 30,800. The trace represents an 
interval of approximately 1/20 second. 

Measurement of Lx.- The following simple procedure 3- was applied 

to obtain a rough estimate of scale of turbulence corresponding to 
correlations between points along the x-axis: Denote by F(n) the 

Phis method was suggested by Dr. H. W. Liepmenn.
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fraction of turbulent intensity which Is contributed by-frequencies 
between n and n + dn; that is, 

U t (n) 2 dn = u' 2F(n) dn 

and thus

co 

0
F (n)d.n = i 

Consider now an uncompensated hot--wire. If the time constant of this 
uncompensated wire is M, the response will be 

[t()2]
uncomp. 

where

[u	
= ut(n)2 

uncomp.	
i + 

The total intensity for the uncompensated wire will then be given by  

r,2 Iuncomp. -	 J0 l+Mn 

Thus, if the ratio of the response of the same wire compensated and 
uncompensated is denoted by a, 

=
f
	

F(n)	
dii	 (9) a 	 1+M2n2 

In order to estimate	 F(n) is assumed to have the simple form 

Ic 

2  

UO2 

2Formulas of this general type have been proposed by Kamp de Feriet 
and by Frenkiel for determining the spectrum of turbulence from uncom-
pensated hot-wire measurements by varying M (reference 16).
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which was given by Dryden (reference 17) and corresponds to an experi-
mental correlation curve. 

Then

LX

dn. 
CT	 Tr

(i + •n2	 + Mn) 

or with

T)	

Lxn 

UO 

MU 

	

=	 Q. 

L 

then

i_fo
	 dr1	 = 

a - 
	
(i + 2)(1 + a22) 1 + a 

Hence

MU 
L 

= Cr —1 

Thus by measuring the ratio of the mean squares of the fluctuating 
velocities with and without compensation, L can be estimated. 

The procedure was checked in the flow behind a i—inch id where 

the lateral scale was measured and where because of isotropy the rela-
tion I = 2I should hold fairly well. 

The results were:

a = 1.85 

M = 7 X lO second

U0 = 1.5 x io3 centimeters per second
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therefore

Lx = 1.24 centimeters 

Direct measurements gave I = 0.773 centimeter. Hence 

L = 1.11 centimeters which shows that this method of estimating the 
value of Lx is satisfactory. 

Measurement of turbulent-energy spectrum.- In order to be able to 
measure accurately the energy distribution over a wide frequency band, 
it was found necessary to use extremely thin wires with small time 
constants and thus to increase the signal-to-noise ratio. Wires of 
0 . 00005-inch diameter, operating with time constants of approxi- 

mately 2 x 10 second, were used. In this way it was possible to 
detect energy values in the high-frequency bands that were 107 times 
the value corresponding to zero frequency. 

The hot-wire signal was fed into a. Hewlett-Packard wave analyzer, 
the output circuit of which was somewhat altered in order to be able to 
feed the output signal into a root--mean-square voltmeter.. The averaging 
characteristics of the root-mean--square meter were checked and, for a 
narrow-band-width signal, were found to give the same mean values as 
those calculated from thermocouple readings. 

With this method the energy of the u' 2-fluctuation was measured at 

different points across the channel. At L = 0.4 the spectrum of the 

turbulent shear u'v' was also obtained. 3 An x-type meter was used, 
both wires making an angle of 470 with the free-stream direction. 

If e12 and e22 are the mean-square voltage fluctuations (corrected 

for time lag) across the two wires it may be shown (reference 12) that 

e12 - e22 = Constant x u'v' 

If e1 and e2 are fed into the wave analyzer then the above relation 

holds for all band widths &n; that is, 

el(n ) 2 - e2(n ) 2 = Constant x u'v' (n) 

This method appears to have been first used by Dr. Stanley Corrsln 
in a turbulent jet (private connnunication).
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PRELIMINARY MEASUREMENTS IN A 1-INCH CHANNEL 

In the initial stages of the turbulent-channel-flow investigation 
a two-dimensional channel of 1-inch width was used. Measurements of 
mean and fluctuating velocities and of the correlation coefficient k 
were completed. The scales Ly and Lz were also measured at the 
channel center and were found to be about 0.2 to 0.3 centimeter. This 
small-scale turbulence existing in the channel imposed a definite limi-
tation on the accuracy of the fluctuating measurements. Wire-length 
corrections as high as 30 percent had to be applied to the measurements 
of V t and wt. Furthermore, no microscales could be measured accu-
rately; thus one of the objectives of the investigation, the calculation 
of the energy dissipation across the channel, could not be obtained. 
Nevertheless, results show good consistency; the three independent 
measurements of the turbulent shear indicate satisfactory agreement. 

It is of interest to present these preliminary measurements, the 
Reynolds number of which was 12,200, and to compare them with those 
obtained in the 5-inch channel. Figure 5 shows the distribution of all 
the measured quantities in the 1-inch channel and it may be directly 
compared with figure 16 which shows the quantities measured in the 
5-inch channel at nearly the sane Reynolds number. 

Although the slopes of the mean velocities at the wall are alit. I  
the same	

T 
in each case for the 1-inch channel 	 02 = 0.0019; for the 

pU0 

5-inch channel

	

	 = o.0018, the velocity ratios u 0 in the 5-inch
pU0  

channel seeiu to be lower across most of the channel. This indicates that 

a more intenseturbulent-eneri production T- takes place in the 
dy 

5-inch channel. Indeed, the turbulent-velocity fluctuations i'/[Jo, 

'/tJo, and	 /tj0 (especially a'/U0 ) increase at a faster rate toward

the wall in the wider channel, although their values at the channel 
center check very well in the two cases. The shear distribution i-/pUO2 
is almost the seine for the two channels; it follows, therefore, from 
the relation

utvt	
k u 

UO2 -	 oo
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that k must have a higher absolute value in the 1—inch channel since 
both i' Itro and V , /to are smaller there. Indeed the maximum value value 
of k in this case is -0.6, while in the 5—inch channel it is —0.5.. 

As a matter of interest it could be mentioned that if the basis of 
comparison is not Reynolds number but maximum mean speed (for the 1—inch 
channel U0 =15 in/sec) then figure 5 shows a distribution of ii', 	 , 

and ' very similar to that of figure 18, the absolute values being 
somewhat lower in the 5—inch channel. 

RESULTS AND DISCUSSION

Mean—Velocity Distribution 

• A careful study of the two—dimensional nature of the channel flow 
was first made. Mean—velocity measurements were carried out at approxi-
mately x = —2 inches. at different heights in the channel: At positions 
6 inches from the bottom, 6 inches from the top, and at the middle. 
Agreement among the three sets of measurements confirmed the two-
dimensionality. A further check was made on possible end effects that 
might influence the results. The length of the channel was extended 
by 6 inches and the mean—velocity measurements were repeated at 
x = -8 inches. No change In the profile was noticed. Figure 6 shows 
the mean—velocity distributions at three Reynolds numbers, R = 61,600, 
R = 30 2 800, and R = 12 ,300. The distributions follow Von Krm.n's 
logarithmic law very well, except, of course, near the wall and at the 
center of the channel (fig. 7). The values of UT were obtained from 

the velocity gradients at the wall. 

Measurements were made with special care close to the wall. 
Velocities at a large number of points were recorded within the laminar 
sublayer in order to establish with reasonable accuracy the shape of 
the velocity profile at the wall (fig. 8). The thickness of the laminar 
sublayer (the point where the velocity distribution deviates from the 

logarithmic law) was found to be 	 30 - (fig. 7). 
UT 

In figure 8 it can be seen that for the case of the lowest Reynolds 
number a few points near the wall indicate very low velocities. Since 

the point at which L = 0 has been determined with great acburacy and 

since the equations of motion of the channel flow require a negative 
curvature for the velocity profile, it was concluded that the hot—wire 
indicated too low velocities near the wall for the lowest Reynolds 
number. (The dashed curve for this case in fig. 8 shows the Interpolated
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velocity distribution for 0< Z < 0.01.) It can be shown that very 

high local—velocity fluctuations cause the hot-wire to read velocities 
lower than the true mean value • Since the mean current of the wire 
varies with the fourth root of the velocity, 

1̂  I -u 7	 HT) +
(VUL,\2 Na'-)

2Th-/8 
+ j + 	

I/	 j 

where u is the velocity to which the hot—wire responds and	 is the 
/ ,\2 

true mean velocity. Near. the wall (!	 << 1 and can therefore be
\uJ 

neglected. Because of the cosine—type directional characteristics of the 
hot—wire the effect of the w'—fluctuation can also be neglected. The 
velocity measured by the wire can be written, after expanding the above 
expression, as

U = liii - -i-i-i + 
i6	

. 
L	 \/ 

Since the average of the odd terms is zero the series converges rapidly. 
In the region In question, the velocity fluctuations obtained were very 

high Indeed (u.!- >0.30). Their absolute values, however, are probably 

even larger, since the nonlinearity effect of the large fluctuations on 
the hot—wire response still further amplified by the very low mean 
velocities Is not taken into account because the wire—length corrections 
are neglected. The mean—velocity correction therefore given by the 
above relation is too smell to give the required'negatIve curvature of 
the profile.

Turbulence Levels 

Figures 9 to 1 represent the results of measurements of the three 
components ii', v', 	 and w' of the turbulent—velocity—fluctuation 
distribution in the channel for the three Reynolds numbers. 

The velocity fluctuations u l relative to local speeds increase 
very rapidly near the wall as Is shown in figures 9 and 10. Measure-
ments very close to the wall . indicate that	 /u reaches a maximum 

within the laminar boundary layer (YU,1V 17) and it tends toward 

a constant value, at the wall which is independent of the Reynolds number. 
This point will be discussed in detail under Reynolds Number Effect.



2
	

NACA TN 2123 

The absolute values of the distribution of ' show the same 
general shape as that obtained by Reichardt (reference 9), having the 
characteristic maxim= near the wall and thus showing the strong action 
of viscosity even for values of y 

Using the x-type hot-wire technique for obtaining the velocity-
fluctuation components v' and w', no measurements could be obtained 
near the wall. Figures 13 and ]A show that, while In the center of the 
channel the inaiitudes of v' and w' are the same, w' increases 
faster toward the wall. This agrees with the ultramicroscope measure-
ments In a pipe by Fage and Townend (reference 18). 

No length corrections were necessary to the measurements of u' 
except near the wall; however, no corrections were applied in this 
region since no measurements of Xz could be made. In this region, 
furthermore, the fluctuations are very large and the values given in 
figure 10 must be accepted with reserve. The hot-wire response for 
large velocity fluctuations is not well understood yet and no correction 
was attempted. Length corrections were applied to the measurements 
of v' and w'.e 

Correlation Coefficient and Sheer Distribution 

The correlation coefficient is fairly constant across most of the 
channel (fig. 15) as indicated already by Wattendorf and Kuethe (refer-
ence 6). The maximum values of k obtained decrease slowly with 
increasing Reynolds number and thus show a definite Reynolds number 
dependence. Existing results Indicate, however, that parameters other 
than Reynolds numbers also influence the value of k. The following 
table shows magnitudes of the maximum correlation coefficient as obtained 
by different investigators working with channels of various widths and 
with various Reynolds numbers: 

Experiments by Channel width 
(cm)

B knia x 

Reichardt (reference 9) 24.6 8,000 -0.45 
Laufer (present paper) 2.5 (1 in.) 129200 -.63 
Laufer (present paper) 12.7 (5 in.) 12,300 -.50 
Wattethorf (reference 7) 5.0 15,500 -.52 
Laufer (present paper) 12.7 (5 in.) 30,800 _.145 
Laufer (present paper) 12.7 (5 in.) 613600

Wattemiorf obtained his value of k from his measurements of the quan-

tities u t /to,	 /tJo, and	 /u02. Unfortunately his preliminary Ti Rry 
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measurements of v' are incorrect; their magnitude is larger than that 
of	 at all values of	 across the channel contrary to results 
obtained by Reichardt and by the present writer. Wattendorf himself 
points out the inaccuracy of the values of Vt in his paper. Because 
of the large values of v t his computed correlation coefficients are 
too low. The value kmax = -0.52 listed in the above table was obtained 

by using Wattendorf's values u'v' = 0.001 and ._. = 0.055 and the 
u02	 U0 

value !-= 0.035( = 0.5. 	 obtained by the author for both the 
UO 

1-inch (2.5-cm) and 5-inch (12.7--cm.) channel at P = 12,200 and 
P = 12 ,300 , respectively.	 - 

The variation of k indicates that for the seine Reynolds number 
the correlation coefficient tends to increase with increasing maximum 
mean velocity (i.e., in a channel of decreasing width). 

Figures 16 to 18 show the distribution of all the measured quan- 
tities including the shear distribution. For the case of the two 
higher Reynolds numbers, three independent measurements were made for 
the determination of the shear distribution by niethods.indicated in 
Equations of Motion for Two-Dimensional Channel Flow. Figure 19 
indicates that consistent results are obtained for the value of T 
whether calculated from the pressure gradient along the channel or 
from the velocity gradient at the wall. The turbulent-shear distri-
butions obtained from hot--wire measurements and.those calculated from 
figure 17 show satisfactory agreement. However, for the flow at the 
highest Reynolds number, the hot--wire measurements gave a 20-percent-
lower value for the shear coefficient, as may be seen in figure 18) 
At present, the writer can give no satisfactory explanation for this 
discrepancy. In the flow at the lowest Reynolds number, no pressure 
measurements were made because the very low pressure gradient 
(approx. 0.0003 nun of alcohol/cm) did not permit accurate measurements. 
However, in this case the wall shear computed from the measured mean 
fluctuating quantities iP,	 T, and k and the mean-velocity 
measurements may be compared with that obtained in the 1-inch-channel'. 
flow having nearly the same Reynolds number. The comparison shows 

T 
satisfactory agreement: For the 1-inch channel 	 ° = 0.0019; for 

-	 pUO2 

the 5-inch channel 
T0 

= 0.0018. 
pUO2 

This  result was accepted: after the absolute values were carefully 
checked; the v'-wire response was compared with u'-fluctuations in an 
isotropic field and the two-dimensional character of the flow was 
checked.
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Scale and Microscale Measurements 

For a further understanding of the structure of the turbulent 
field, correlations of u'—fluctuations at two different points were 
carried. out. Since the field is not isotropic, the scale and microscale 
measurements were repeated both in the y— and z—direction for different 
values of y/d. 

R—correlations.- Figure 20 shows typical Rz—correlation distribu-

tions at different values of y/d corresponding to R = 30,800. For 
larger values of z, inaccuracies in the measurements did not permit 
the exploration of the negative region of the correlation distribution. 
From the measured distributions of Rz at four stations across the 
channel and for different values of R, the values of L7 and 
were calculated (figs. 21 and 22). In these figures Lz is seen 
to be decreasing uniformly toward the wall, while X Z reaches a definite 

maximum at about Z = 0.7 and then decreases with decreasing y/d. 

By--correlations.— Distributions of the Ps—correlation at a given 

value of y/d were obtained by fixing the stationary hot—wire at the 
given value of y/d and traversing with the moving hot—wire away from the 
fixed one toward the channel center. Values of Ly and Xy were then 
calculated from these distributions of Ry. In the region 1.0> 	 0.1 

the gradients of the various quantities are slight; no significant asym-
metry in the function Ry is therefore expected. Measurements of the 
top part of the Ili—correlation distribution (1.0> Py> 0.8) by Prandtl 
and Reichardt (reference 19) justify this belief fairly well. 

By comparing figure 20 with figure 23, the strong effect of the 
existing nonisotropy can immediately be seen. Although both P and 

correspond to Von K&rinn t s g—function (reference 10) they exhibit dif-
ferent behaviors across the channel. The Ps —correlation function falls 
more and more rapidly to zero with decreasing y/d. Traversing 

from	 = 1.0 to	 = 0.70 the distribution of Py is found to behave 

similarly; however, the dashed curve measured at 1 = 0.4 (fig. 23) 
indicates considerably increased correlations for larger values of Y. 
It is thus seen that around I = 0.7 there is a definite decrease in 

energy content of the fluctuations having low frequencies. Further con-
sideration of this fact is given later in the discussion of the energy 
balance in the channel.
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The values of I, = f R di (fig. 21) are not so reliable as 

those of Lz since R could not be measured at sufficiently large 
values of Y because of the limitation of the traversing mechanism 
used.

The distribution of Xy across the channel is similar to that 

of X (fig. 22). From E = 1.0 to	 0.7 bothand X 

increase almost proportionally to u', indicating that the turbulent—

energy dissipationW 	 is approximately constant In this region.

It should be noticed, however, that Xz is consistently larger than 
throughout the channel cross section. Some measurements of close 
to the wall are also indicated in figure 23. No length correction was 
found to be necessary for the measured values of Xy and X. 

A rough estimate of LX by the method already described gave a 
value approximately twice that of I, at the center of the channel 

(fig. 21). Its value increases to a maximum at 	 0.5 and then 

decreases rapidly. No values for Lx are given for the lowest Reynolds 
number; in this case the value of a Is very close to unity and, .since 

Lx is proportional to ,. 1' a should be known within an accuracy 

of 1 percent to give consistent results for Lx. Unfortunately measure-
ments of Lx cannot be made with this accuracy, particularly when the 
u T —fluctuations are of rather low frequencies as is the case 
for P = 12 , 300 . It should be mentioned that the accuracy of the deter -
mination of Lx is more limited by the inaccurately measured value 
of a than by the fact that an approximate spectrum function F(n) is 
used in equation (9). 

The distribution of Xx obtained by the differentiation method 
shows the same behavior as that of Xy and X (fig. 22). It has 

the characteristic maximum at	 0.7. No measurements were made 

for R = 12 , 300 because of the inaccuracy due to the large noise—to-
signal ratios. 

As a matter of interest the results of some measurements of X. 

obtained with the zero—counting method are compared with those described 
above. (See fig. 22.) Since the validity of the assumptions involved 
in this method is not clarified yet, these measurements should be 
regarded as preliminary.
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Spectrum Measurements 

The spectrums of the velocity fluctuations 	 have been obtained 
at various values of y/d across the channel. With improved instru-
mentation it was possible to reduce experimental scatter by a consid-
erable amount. The accuracy of the present measurements is believed to 
be within ±10 percent with the exception of values corresponding to low 
frequencies (n < 100 cps) because of the large-amplitude fluctuations 
and with the exception of values corresponding to high frequencies 
(n > 4000 cps) because of noise and of possible wire-length effect. A 

typical spectrum distribution taken at E = 1.00 is shown in figure 24. 

(The measured spectrums at various positions of y/d are given in 
table I.) No attempt is made to compare the measured distributions with 
existing theories since the restrictive assumptions of these theories 
(isotropy and flows at high Reynolds numbers) are not satisfied in the 
present experiments. The only frequency range where comparison is 
possibly justified is the viscous region, that is, the high-frequency 
part of the spectrum where viscosity plays a dominant role. Unfortu-
nately here the accuracy of the measurements is not good enough to afford 
any definite conclusions. Therefore, the rather close agreement of the 
measured spectrum (for all values of y/d except in the laminar sub-

layer) with the n 7-1aw predicted by Heisenberg (reference 2.) should be 
accepted with reserve (fig. 24). 

For a comparison of the energy spectrums at different points in 
the channel, figure 25 shows the distribution of n 2F(n) instead of 
that of F(n) as a function of the frequency. This method of presen-
tation. emphasizes energies corresponding to the higher frequencies but 
gives a clearer over-all comparison of the different sets of measure-
ments. The characteristic maximum of the distribution of ? imme- 
diately becomes apparent in this figure. From the fact that the 
correlation coefficient Is a Fourier transform of the spectrum function 
it follows that

___	 i 42 
cofn2F(n) dii 

6X 2)x=0 
= 5; =  

Thus Xx can be computed from the distributions of n2F(n). The 
calculated values check within a few percent with direct measurements 
(fig. 22).
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Reynolds Number Effect 

Figure 7 shows the distribution of mean velocities plotted, in 
the form, of "friction velocity" U/UT against "friction—distance 
parameter" YUT/V. In this form, the profiles are independent of the 

Reynolds number U0d/v and follow Von Krmn's logarithmic law: 

= A log YUT 
UT 

The constants A and B are 6.9 and 5.5, respectively. Comparing 
the present measurements with previous ones It is to be noted that 
because of the very smooth wall surfaces used, the value B is larger 
than that of other investigators. Making allowances for this effect, 
measurements are in fairly good agreement with those of Doench (refer-
ence 4) and Reichardt (reference 9.). Nikuradse's channel results 
(reference 5) differ from all other existing experiments. It is 
pertinent to mention that for the Reynolds number range in question 
(R <100,000) the slope of the logarithmic mean—velocity distribution 
(the constant A) both in pipes and channels is larger than that 
established by Nikuradse's pipe measurements (A = 5.75). 

The Reynolds number has a definite influence on the velocity 
fluctuations also. Along most of the cross section where the influence 
of the viscosity is negligible the fluctuations	 ',v 1  and w' 
decrease slowly with increasing Reynolds number. 

Very- close to the wall, according to Prandtl t s hypothesis, all 
velocities of the form Velocity/UT must be a function of the friction—
distance parameter only. It has already been pointed out that the mean 
velocity obeys this similarity law. Figure 26 shows the distribution 
of '/UT as a function of yU-r/v for the different flow conditions 
investigated. The following remarks can be made with reference to this 
figure:

yU 
(1) For values , of - <100, values of -U' /UT corresponding to 

the various cases indicate similar behavior. They reach a maximum at 
yUT  

about - 17.
V
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(2)It is believed that the similarity Is actually more conlete 
than Indicated in figure 26. Because the microscale is not known In 
regions very close to the wall, no length corrections could be applied. 
These corrections would of course be appreciably higher for the two 
high—velocity flows (R = 61,600, 2d = 5 in. and B = 12,200, 
2d.= 1 in.), and would therefore bring the various distributions of 
closer together in the region in questions 

(3) The effect of viscosity is more pronounced on the fluctuating 
quantities- than on the mean velocity. 

(4) Taylor pointed out In 1932 (supporting his argumants:by Fage 
and Townend's ultramicroscope measurements) that t'/u and w'/u 
approach a finite value at the wall (reference 18). It follows from 
the similarity law that this value should be an absolute constant inde-
pendent of the Reynolds number. Figure 10 indicates this to be true, 
the constant being (u'/u)10 0.18. 

It is of considerable interest to discuss the variation of the 
scale and microscale with Reynolds number. For flows behind grids where 
the turbulence is isotropic the scale Is independent of the mean velocity 
and depends on the mesh size of the grid. Similar behayior was found for 
the channel flow. Figure 21 shows the distributions of Ily and Lz for 

different velocities. These distributions Indicate no consistent varia-
tion with velocity. Furthermore , measurements in a 1—inch channel give 
a value for L five times lower and a ratio for L.somewhat larger 
than the values obtained in the present investigation.	 - 

The variation of X depends, of course, on the velocity and channel 
width. The values of ?. decrease with increasing velocity; however, the 
variation of X with channel width is less than that of L. 

Fully Developed Character of Turbulence 

The flow In the channel Is called fully developed if the varia-
tions of the mean values of the velocity and the mean squares of the 
velocity fluctuations with x are very small. That the mean velocity 
profile does not vary downstream is evident from the pressure—gradient 

measurements (fig. 19). The gradient in x of u' 2 was measured on 

the axis of the channel. It was found that 	 was Indeed decreasing 
1 6p with x. The gradient, however, was very small as compared with . 
P x 

0.01 1
P 6
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Hence for all practical purposes	 /x can be neglected. No 
measurements have been made concerning U T V ? /X, since the scatter 
in the values would cover any effect. However, there is little doubt 

that UtV? /x is of the same order as 6u, 2 /6x and that the use of 
equations (3a) and (3b) is therefore justified here. 

Energy Balance in Fluctuating Field 

The energy equation for a two--dimensional channel has the form 
given by equation (8) and 	 valid throughout the cross sectioñ.of 
the channel with the exception of a small region near the wall.. 
The term T	 on the left side of equation (8) corresponds to the 

energy produced by the shearing stresses and It can be obtained directly 
from the measurements of -r and from the mean velocity profile. The 

fu4'\/u4'\ 
second term on the right i4	 J expresses the amount of energy \XJ/\xj / 
that is being dissipated because.of the breaking down of the larger 
eddies to smaller ones. The term may be written explicitly 

 2(	
2	 (t	 \2 	 (^	 2] (5c;7-)
	 z 1	 \3x	 y /	 \y	 z Ikaz x I J 

The problem is to express these functions in terms of easily meas— - 
urable quantities. In the case of isotropic turbulence Taylor solved the 
problem by introducing the nLicroscale of turbulence X, and obtained, for 
the dissipation

U'2 W = l5i - 

It is attempted here to carry over his analysis to the case of 
channel. flow. The following assumptions have to be made in this 
connection: 

(a) The gradient of the velocity fluctuations is small in all three 
directions. With the exception of the region near the wall this is 
Justifiable from the measurements.

(10)
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(b) Since only correlations of u' have been measured, it is 
assumed that the correlations of w' as functions of z (Von Karmn's 
f—function) have the same curvature at the origin (y = z = 0) as the 
correlation of u t has as a function of X; that is, 

12w t\ - 

(2;U'\ - - \ z2 )o -	 x2 )o - 

Furthermore the correlations of v' as functions of X and Z and 
the correlations of w' as ,functions of X (V9n KarInn?s g—functions) 
have the same curvature at the origin as the correlation of u' has as 
a function Z; that is, 

(2v t\\ 	 - (2Rvt\	 - (2wt\\	 - (6^Rzu'U\\ 

 x2 )  \.	 z2 o  o z2 	 )o  - 

Finally,

(21;v'	 - (2w t 	 - (2 U t 	 - - ---
r2 'o - \ !.2 'o - 

(c) The cross products were calculated using similar arguments; 
thus,

V I 6u ,	 lvt 

6x -6y - 2XZAY 

J I V I ltt - 

6y

6
z 	 - 2XyXz 

1	 ' 

6z 6z- 2XXz
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With these assumptions the derivatives of the fluctuations could 
be expressed in terms of the measured values of X, Xy, and Xz:

Ut2
W	 (U—. 2	 2	 271	 v12 ___	 ;;- 

+2-- 
x 2 Xz	

2 2–+ 
z 17 

2 

"a ad 

._ ' 
21 

2	 u'w'	 2 —+2 2
	

2 + XzJ Xz	 Xz	 Xz 

At the middle of the channel W turned, out to be 2.86 ergs per cubic 
centimeter per second for P = 30 1 800. Using the isotropic relation 

U'2 
W = 15 - =15&	 = li 

Xy	 Xx 

the values 2.88, 1.38, and 2.24 ergs per cubic centimeter per second 
were obtained depending upon whether X1, A, or X was used. 

(For the value of u' 2 the algebraic mean of the squares of the fluc-
tuatlons was used.) 

Figure 27 shows the distribution of W in the center region of 
the channel. Taylor obtained a similar distribution of the dissipated 
energy across the channel (reference 20); however, his numerical magni-
tudes are too high since he substituted in the isotropic relation, in 
equation (10), the values of Xy, which turn out to be less than those 
of X. and X. - 

From the known distributions of the energy production and dissi-
pation the diffusion of energy is easily calculated from equation (8). 
It should be pointed out that because of the approximations involved in 
the calculation of the dissipation and diffusion terms, the conclusions 
derived from them are more or less of a qualitative nature. It is seen 

from figure 27 that at	 0.7 the diffusion term is zero. It was 

also pointed out earlier that in this region the Ry-correlations show 
a considerable change In shape indicating a shift in energy from the 
lower to higher frequencies of the velocity fluctuations. These two 
facts suggest that the energy diffusion is associated mainly with the 
low frequencies of the fluctuations.

33
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The equation expressing the balance of the three forms of energy 
furnishes the following picture of the turbulent flow field in the 
channel where viscous dissipation is still negligible: Two planes 
passing through points where the diffusion of energy vanishes divide 
the channel flow into three parts. From these planes energy is being 
transported toward the channel center and the walls. The middle region, 
the width of which is of the order of L, receives most of its energy 
by diffusive action and this energy is dissipated here at a constant 
rate. In the two outside regions all three energy terms increase 
rapidly, the production tern being the dominant one, and their inter-
action is more involved.	 - 

This picture of the flow field is only of a descriptive nature. 
The purpose of further investigations should be to obtain information 
on the development and mechanism of such an energy balance. 

Locally Isotropic Character of TurbulexIt Channel Flow 

•	 The concept of locally isotropic turbulence obtained by Kolmogoroff 
requires the smaller eddies in turbulent flow to approach isotropy. 
Smaller eddies are the ones with length dimension 1 small compared 
with the scale of turbulence L. The smallest characteristic length in 
turbulent motion is Kolmogoroff's Tj defined as 

TI = 

where E is the total dissipated energy. Clearly, to approaàh locally 
isotropic conditions it is necessary that 

L>> TI 

It follows from this hypothesis that beyond sufficiently high 
u' frequencies (of the order of /ri, say) no correlations exist between 

the components of the velocity fluctuations. Figure 28 shows the meas-

ured spectrum of u 12 as compared with the spectrum of u'v' 

at	 = 0.4. It is seen that the shear spectrum tends to zero at a

frequency of about 1500 cycles per second while F— (n) still has a 
u'2 

detectable value at 5000 cycles per second. This result verifies 
Kolmogoroff's assumption. It should be mentioned that the absolute 
values of F— (n) are not so accurate as those of F— (n) since 

u'v' 
they represent the small difference between two large values of hot-
wire signal.
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It is to be noted that even though local isotropy was shown to 
exist in the channel flow, the values of the various vofticity 

(

Uu 2\
terms	 differ appreciably, indicating that the relative magni— 

Xj / 

tudes of these terms do not constitute a sensitive test for the existence 
of local Isotropy. This is evident from the comparison of the distribu-

tions n2F—(n) and n2F----(n) (fig. 28). It is apparent from the U  
figures that a large part of the contribution to foo n2F(n) dii comes 

from a frequency well below 1500 cycles per second. Local Isotropy, 
according to the shear spectrum, exists only above a frequency of 
1500 cycles per second.

I3ONCLtJDING REMARKS 

The measurements presented here confirm the general conceptions 
concerning the mean velocity profile in a turbulent channel. The extent 
of the l'ii1nv sublayer, the velocity profile in the sublayer, and the 
over—all velocity distribution as measured here are in good agreement 
with general theoretical expectations. 

Measurements of the turbulent field show that the hot—Wire tech-
nique Is well enough developed to give consistent results for the 
intensities and correlation functions. 

Detailed measurements of the velocity fluctuations in the direction 
of the flow u' were carried out well within the laminar sublayer. It 
was found that the similarity law for '/UT, where UT is friction 
velocity, holds fairly well in the vicinity of the wall and as a con-
sequence the magnitude of u'/u, where u is local mean velocity, 
approaches an absolute constant at the wall (approx. 0.18), the value 
being independent of the Reynolds number. The magnitudes of the 
velocity fluctuations normal to the flow in the lateral and vertical 
directions v' and v' are nearly the same in the middle region of 
the channel,	 ' increasing more rapidly toward the wall. 

The measured. inicroscales of turbulence X,, X, and X z con-

sistently show a maxiimnn at 	 0.7, where y is lateral distance 

and d is half width of the channel; they increase proportionally 
with P, indicating a constant rate of energy dissipation W in the 

u'2 
center portion of the channel since W -.
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The scales of turbulence Iy and Lz in the center region are 

independent of Reynolds number and depend only on the channel width. 
The inicroscales, however, show a dependency on the Reynolds number. 

From the calculated magnitudes of the energy produced by the 
shearing stresses and of the dissipated energy a descriptive picture of 
the energy diffusion in the center region,of the channel is obtained. 

The spectrum measurements of the u' 2—fluctuations tend to indicate 

that F-(n) behaves as n 1 over a large band in the high—frequency 

region (where F--(n) is fraction of turbulent energy associated with 

band width dii and n is frequency). From the comparison of the 

spectrums of	 and of the turbulent shear the existence of local 
isotropy in the channel flow is verified. 

Guggenheim Aeronautical Laboratory 
California Institute of Technology 

Pasadena,. Calif., September 1, 1949
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TABLE I. - MEASURED VALUES OF THE SPECTRUM OF u 

Frequency

F(n) 
(sec)   

(cps)
1.0 = =0. 4 0.1 .= 0.005 

x ia-5' 30 -- 1,772 
86 

561 x i -5 585.x i- 5 571 x 10-5 664 x io-5 t6o4 
50 519 
6o 3)49 )436 
70 1373 

3)45 
80 273 211 252 308 309 

90 f25)4 
1,272 

100 186 141 182.5 226 222 
125

f150 

------

150 95.4 77.3 91.6 1140 f114 
f 86.5 

175 '	 74•9 

200 68.2 52.6 56.8 97.2
f 

250 23.1 37.9 45.8 64.9
f 

00 33.9 23.5 

------

32.2 44.8 23.8 
25.6 34.7 51.3 21.5 

400 19.8 15.0 19.17 25.2 8.03 
500 18.9 8.09 

------

12.25 15.5 3.74 
600 7.57 5.86 7.6 12.5 .1.83. 
700 5.27 La 5.14 8.73 i.o6 
800 3.31 2.67 3.53 6.07. .531 
900 2.29 1.77 

------

2.51 )4.0)4 .352 
1000 1.50 1.08 1.76 2.99 .185 
1200 .764 .677 1.01 1.80 .090 
1500 .295 .257 .379 .787 .016 
1750 .147 .16 .221 .422 .008 
2000 .0832 .0584 .109 .224 .0039 
2500 .0192 .oi86 .o487 .0873 .00102 
3000 .00682 .00668 .0141 .0313 .000354 
3500	 . .00196 .00272 .00492 .00121 .000133 
4000 .000855 .00074 .0021 .00435 .0000664 
4500 .000608. .00157 .0029 
5000 .000170 0 .00052 .00117 
5500 .00062 
6000 0
-

.000252 .000313 
7000 - .000109-
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Figure 2.- Exit of channel.
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Figure 3.- Traversing mechanism. 

:	

V 

Figure 4.- Typical oscillogram of u'-fluctuation at R = 30,800 and 
y/d = 1.0. Horizontal line corresponds to u'(t) = 0; interval is 
approximately 1/20 second. 

A.

13



NPLCA TN 2123
	

145 

0	 0 
'-4 

x	 x 

I?' 
a	 ii 

co	 0	 CD	 C']	 co c' 1 	 c'1 	 C")	 '—I

0 
0 
C") 

C") 
'—I 

0
0 .4 

--
.0 0 

I!JIK I

I

0 
C. 

OR 

ro

Ul 
LO	 0 

Ul 

'—I 

0 

4-
(1.1 

0	 I 
Cli	 a	 w	 CL) 

	

•	 * 
0 0 0 

I0
o 

>lJ

C'	 0 Ic; 

U) 

ho



U) 

0 

Cd 

'-4 

0 
-4-, 
a) 

0 
'-4 

U) 

li 

a) 

Cl) 

Cd 

a) 

rl 
0 
"-I 
-I.-) 

Cl) 

"-I 
C.) 

a) 

a) 

CO 
ci) 

ho 
-4 

r-i 

NACA TN 2123 

a	 C' 

ol 0 

000 
Q00 
^00 to 

C'iQr 

o• l\l

0 



NACA TN 2123
	

11:1 

0 0 0 

0 0 co 
0 

0 0

0 
—I 

o 0

•r-I 

0 0 
—4 

D :0 

:0	 ci 

0 

0 
ctj 

Cd 
bD 

0	 0 c'1	 c'ci

000c) 

.-	 .l	 .,-I	 .,-4 
III	 I 

GOOD 
0000

*0  

^(l D 
• 0 ____

--4 
0 



I.I	
NACA TN 2123 

c'. 

0

0 

0

-1 
cd 

cd 

N	 0 

-Q 

-4-, 
tn -I 

q
0	

U 

LO 

co	 eo 

0



NACA TN 2123

kH c 

z

zx 

000 
000 

- ______ ______ 

o.

CC 

cr

0•

Cl) 

ci) 
ci) 

Cl) 

U 
0 

0 

bD 

PTA

ci) 

0 



50 

L'	 0	 0	 IL)	 0	 IL) 9	 9	 9	 9	 '1

NACA TN 2123 

-. 
I	 i. 

IC) 

0 

0 
'0

C') 

a) 
I	 a)C)

U 0•	 )

C-) 
0 

0 

Lo 

cq

ci) 

0
f) 

:7	
1• 

IL) 
0 
0 

-Jo 
0 

000 

09 0



NACA TN 2123
	

51 

0 

0) 

aD 

N

, 
LC)	 9 

U) 

U) 

ho 

co 

-I 

1 

CD

c'1	 o	 aD	 (0. 

5	 5	 5	 5
0 



0	 00	 r10 

	

I0	 0 0	 0	 0 

- 0 

•__
11

____ 
r-f co	 co 71

( 

C, 

C 

- C

52 NACA TN 2123 

0 

I

0 

0

Cd 

Cd 

0 

D

0 

-I 
0 
0 

w 

'-I 

w 

)

1I 



L 

C 
a: 

C 

0 
LC 

000 
Q00 

coc  

I	 i—lC)c0 

oe•,

0 

_

Co	 c': 
0	 0	 0 

- 0 

NACA TN 2123
	

53 

0 

4 

z

. 

0 
N

0 

o

rl 

o 

ODO 
QQO 

D3	 r-i 

oe•

N 

—I 

— -o 
0 

o	 0 

- 0

(1) 

0 

CIS 

I c) 

PXA



51
	

NACA TN 2123 

C) 

co

-I—) 
ci) 

CD

cD 

0 

0 
0 

:	 I 

co CIO 

—1	 CIO

: 

--.

•0 0 



0	 0 
'—I 

x 

Ic'a
I 

Ia 

0	 co	 aD 
cq 	 —4	 —1 GD 

r'1

C
.	 0	 cx

'-4

0

C\. 

cD
—1 

x	 X 

0	 - 0

NACA TN 2123
	

55 

O-)
 
z ill 

-I-, 

0 
0 

'-4 

ci) 

0

jIJ0 
ii 

_-
 0	 0 / 

/ 

I r 

a -

0

cD 

GD	 Cci 

to 

-4-, 
Cd 

-4-, 
CD	 0 

0 

-Q 

	

GD	 (I] 

(0 

	

•	 ci) 

'--4 

M. 



NACA TN 2123 

0 0 
—I 

x 

Ic' a—IC'1 

Ii 1 

co 0 C\l co 0 
rf .-

I 
I

I 
I

¼.) 
< 
z

a 

0

0

0-
ul 

CTJ

cr 

ID

C	 co	 co 

0 0 0 

0-Y0

0 
0 

tH 

ci) 

ti-4 

0 

rl 
0 

cci 

ci) 

ho 



xl) 
0 

9
4-, 

Di	 00 

U) 

xl) 
ho 

NACA TN 2123 

0 '-I 
x 

-C')

co 

C111 ,	 0	 cx

00 0 

y o yo 
;jhj 

a)	 ' i. 
c'1	 c;i

57 

C)

C. 

•00

z 

Z

Lo-

-
 /  

to	 0 Jt
1/, 

\iI

0 
0 

—I 
Co 

co

U) 
xl) 

-I-, 

bD 



0 
c'. 

CD 
—1 

CO

0 
0 
CO 

CO 

'-4 

0 

co 

CO 

-Jo 
0 

58

o

0
0 

CO

0 

IcN

CO 
q	 0.

c':1
0 

CL 
r1IC'

NACA TN 2123 

CO

0 

0:3 

0:3	 0 
0:3	 - 

w 

CIZ

---4 

Cd 

ho 

co

J) 
.4-, 
Cd 
0 -1 CO 

—1

0 

co 

II

o-4 

co	
0 

CD	 TI 

ca 

bD



NACA TN 2123
	

59 

0	 aD	 aD	 • 

N 

• 0

a) 

ci 

LO 

-I-, 
a)

II 

O N 

0 
çf

NQ) 

c 

LC O 	 II

LO 
LC) 

-4-,	 II 

CD 

N 

II 

-1

0 

0

rlj

0 

y
N 

0 
ci-) 

• • _ _

I 

L 1HZ' 

/-7-

i 

I __



NACA TN 2123 

SL 
01 LZ

) 

6o

2.0 

L, cm 

-	 0( 

6.0 

4.0 

L y cm

2.0

y/d 

(a) R = 12,300. 

Y/ 91 

(b) R = 30,800.

6.0 

4.0 

L p cm

2.0 

00

cPLZ 
0Ly 

o-t -TJ :
.2	 .4 

y/d 
.6	 .8	 1.0 

(c) R = 61,600. 

Figure 21.- Scale of turbulence distribution. 
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Figure 24.- Frequency spectrum of u' 2 at channel center. Scale values 
within parentheses correspond to curve on left.
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