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NATIONAL ADVISORY CONNITTEIE FOR AERONAUTICS 

TECHNICAL NOTE 211i.O 

THEORETICAL ANTISYMMETRIC SPAN LOADING FOR WINGS OF 

ARBITRARY PLAN FORM AT SUBSONIC SPEEDS 

By John DeYoung 

SUMMARY 

A simplified lifting-surface theory that includes effects of com-
pressibility and spanwise variation of section lift-curve slope is used 
to provide charts with which antisymnietric loading due to arbitrary anti-
symmetric angle of attack can be found for wings having symmetric plan 
forms with a constant spanwise sweep angle. of the quarter-chord line. 
Consideration is given to the flexible wing in. roll. Aerodynini c char-
acteristics due to rolling, deflected ailerons, and sideslip of wings 
with dihedral are considered. Solutions are presented for straight-
tapered wings for a range of swept plan forms. 

INTRODUCTION 

Reference 1 has been for many years the standard reference for esti-
mating the stability and control characteristics, of wings. The lifting-
line theory on which this work waâ based gave generally satisfactory 
results for straight wings having the aspect ratios considered; however, 
tbe use of wing sweep combined with low aspect ratio has made an exten-
sion of this work desirable. Lifting-line theory cannot adequately 
account for the increased induction effects due to sweep and. low aspect 
ratio; consequently, it has been found necessary to turn to the more 
complex lifting-surface theories. 

Of the many possible procedures, a. simplified lifting-surface theory 
proposed by Weissinger and further developed and extended in reference 2 
has been found especially suited to the rapid computation of character-
1-stics of wings of arbitrary plan form. Comparisons with experiment have 
generally verified the theoretical predictions. In references 3 and -, 
this method has been used to compute for plain, unl'lapped wings,the aero-
dynamic characteristics dependent on symmetric loading. The same simpli-
fied lifting-surface theory can be extended to predict the span loading
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resulting from antisynunetric' distribution of the wing angle of attack. 
From such loadings, the damping moment due to rolling, the rolling 
moment due to deflected ailerons, and the rolling moment due to dihedral 
angle with the wing In sideslip can be determined. A recent publication 
(reference 5) makes use of the simplified lifting-surface theory to find 
span-loading characteristics of straight-tapered swept. wings In roll and 
loading due to dihedral angle with the wing In side slip. Experimental 
checks of the theory for the damping-in-roll coefficient and. rolling 
moment due to sideslip were very favorable. The range of plan forms 
considered in reference 5 is somewhat limited and. aileron effectiveness 
was not included. The loading due to aileron deflection normally involves 
excessive labor when computed by means of the simplified lifting-surface 
theory; however, development of the theory, presented in reference 6, 
that deals with flap and aileron effectiveness for low-aspect-ratio wings 
provides a means by which the simplified lifting-surface method can be 
used to obtain spanwise loading due to aileron deflection. 

It is the purpose of the present analysis to provide simple methods 
of finding aniisymmetric loading and the associated aerodynamic coeffi-
cients and. derivatives for wings with symmetric plan forms limited only 
by a straight quarter-chord line over the semispan. Means will be pre-
sented for finding quickly the aerodynamic coefficients of span loading 
due to rolling, of span loading due to deflected ailerons, and. of span 
loading due to sideslip of wings with dihedral. Flexible wIng, when 
the flexure depends principally on span loading as In loading due to 
rolling, can be included In the rni-lysIs. 

NOTATION 

A	 aspect ratio (
	 ) 

b	 wing span measured perpendicular to the plane of symmetry, feet 

c	 2wing chord, feet 

ca 2aileron chord, feet 

Cay 2mean wing chord (..), feet 

C 1	 local lift coefficient (local lIft'\ 
qc) 

1The word antisymmetric is understood to indicate that a distribution of 
loading or angle of attack Is equal in absolute magnitude on each half 
of the wing but of opposite sign. 

2Measured parallel to the plane of symmetry.
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induced drag coefficient (induced draR" 
qS	 / 

C1	 rolling-moment coefficient. (rolling moment 
qSb

1 
C1	 rolling moment due fo rolling	 j, per radian 

p

Cl 
Cl5	 rolling moment due to aileron deflection (__), per radian 

dC	 spanwise loading coefficient for unit rolling moment () 
ClCav	

Cj 

dv	 scale factor 

e	 factors of loading interpolation function 

G	 spa.nwise loading coefficient or dimensionless circulation 
(cic)(1') 

spanwise loading coefficient due to rolling(<>),
	

radian 

spanwise loading coefficient due to aileron deflection (-') , 
per radian	 " ' 

wing geometry, compressibility, and section lift—curve—slope 

r 7l7b 
parameter	 I d,,( 

L .\IvJ\Cv/13 

hn .	 integration factors for spanwise loading due to ailerons 

M	 Mach number 

in	 arbitrary number of span stations defined by r1 = cos
m+l 

p	 rate of rolling, radians per second 

pb/2V wing—tip helix angle, radians 

• coefficient depending on wing geometry and indicating the 
influence of antisyinmetric loading at span station n on 
the downwash angle at span station V
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q	 free-stream dynamic pressure, pounds per square foot 

	

S	 wing area, square feet 

	

t	 ratio of aileron chord to wing chord () 

	

V	 free-stream velocity, feet per second' 

	

w	 induced velocity, normal to the lifting surface, positive for 
downwash, feet per second 

	

- y	 lateral coordinate measured from the wing root perpendicular to 
the plane of symmetry, feet 

°v 2 section angle of attack at span station y, radians 

&LV 2angle of antisymmetric twist of the elastic wing produced by the 
loading due to rolling, radians 

- 2rate of change of wing-section angle of attack with control-sur-


	

(15	 face angle for constant section lift coefficient 

compressibility parameter (/li_M21) 

angle of sideslip, radians 

	

P	 dihedral angle measured perpendicular to the plane of symmetry, 
radians 

	

rc	 spanwise circulation, feet squared per second 

S	 2angle of deflection of full wing-chord control surface, radians 

5	 angle of deflection of full-wLng-chord control surface, measured
perpendicular to the hinge line, radians 

dimensionless lateral coordinate () 

a dimensionless aileron span (all on sPan) 

c.p. spanwise center of pressure on one wing panel (7 ) 
e	 trigonometric spanwise coordinate q, indicating the edge of the 

aileron span, radians 

2See footnote 2 p.2. 
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ratio of section lift-curve slope at a span station V to 
both at the same Mach number 

A	 sweep angle of the wing quarter-chord line, positive for sweep-
back, degrees

_1(taniJ compressibility sweep angle parameter [tan (,
	 ) j , degrees 

taper ratio (tiP chord 
root chord 

q)	 trigonometric spa.nwise coordinate (cos' ri), radians 

Subscripts 

n,V	 integers pertaining to specific span stations given by 
flit	 Vt 11 = cos - or i = cos 

k	 pertaining to span station k 

c.p.	 center of pressure 

a	 aileron 

t	 pertaining to fraction-of-dng-chord ailerons 

T	 wing tip 

B	 wing root 

av	 average or mean

DEVELOPIV NT OF METhOD 

The sinxplified lifting-surface method used herein replaces a lift-
ing surface by a lifting vortex located at the wing one-quarter-chord 
line. The boundary condition for determining the vortex strength dis-
tribution specifies that, along the three-quarter-chord line of the 
wing, there shall be no flow through the lifting surface. In effect, 
this specifies that, at the three-quarter--chord line, the ratio of the 
velocity normal to the mean camber line (induced by the bound and trail-
ing vortices) to the velocity of the free stream shall equal the sine 
of the angle of attack.
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Span loadings are theoretically additive. Since the symmetric 
angle-of--attack distribution contributes only to symmetric loading, it 
follows that the antisyinmetric loading is independent of symmetrically 
distributed wing twist or camber; hence, to find antisymmetric loading, 
it is only necessary to consider the loading resulting from the anti-
symmetric distribution of the angle of attack across the wing span. In 
the subject case, such a disribution is experienced by the wing as 
induced angle due to rolling , the effective twist due to aileron 
deflection, or sideslip of the wing with dihedral. 

For an antisymmetric angle-of-attack distribution, the loading dis-
tribution will be equal in absolute magnitude on each semispan, but of 
opposite sign. The loading therefore needs only to be found over the 
semispan, and, since the loading is zero at the wing root, only .span 
stations outboard need be considered. The mathematical development of 
the simplified lifting-surface method for.the case of antisymmetric 
loading is given in Appendix A. As shown in Appendix A, (m-1)/2 linear 
equations in terms of loading distribution are obtained which satisfy 
the wing angle-of--attack conditions at the three-quarter-chord line at 
m stations n, where m is an arbitrary odd integer. These equations 
are represented by the summations 

m-1 

= n=l 

p	 G,	 V = 1, 2, 3, . . . 	 .	 (1) 

31n considering the case of the angle induced by rolling as equivalent 
to an entisymmetric distribution of twist, it must be noted that 
account should be taken of the fact that a rolling wing leaves a 
twisted vortex trail; whereas a twisted wing does not. The difference 
in induction effects on the wing of the straight and twisted vortex is 
considered insignificant here, as has been assumed in other analyses. 

4The reader should note that the boundary condition is given by 
= V sin a from which (W/V) is seen to equal sin ay. The sub-

stitution of av for sin aV has the effect of increasing the value 
of loading on the wing above that necessary to satisfy the boundary 
condition. However, the boundary condition was fixed assuming that the 
shed vortices moved downstream in the exj ended chord plane. A more 
realistic picture is obtained if the vortices are assumed to move down-
stream in a horizontal plane from the wing trailing edge. It can be 
seen readily that, if this occurs, the normal component of velocity 
induced by the trails at the three-quarter-chord line is reduced and, 
if the boundary condition is to continue to be satisfied, the strength 
of the bound vortex must increase. It follows that substitution of av 
for sin v then has the effect of accounting for the bending up of 
the trailing vortices. It is not known how exact the correction is, 
but the calculations and experimental verification show it to be of 
the correct order.
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Li 

where

antisyimetric angle of attack at wing station v 

coefficients that for a given value of m depend on wing 
geometry, compressibility, and section lift-curve slope 

loading coefficients at span. stations n 

The application in Appendix A of the present report is with m=7. 
Since the loading at the midspan station is knowii to be zero, considera-
tion is required of only three stations: n=l,2,3, equal to wing semispan 
positions of	 = cos (nit/8) = 0.924; 0. 707; and 0.383. Equation(l)
thus becomes

=	 n G,	 V = 1,2,3	 (2) 
n=l 

w.aere the integer V pertains to span station r = cos (vr/8) 

To obtain the loading coefficients	 = (c 1 c/2b), it remains 
only to evaluate the coefficients p 	 and the spanwise variation of

the antisynunetric angle of attack ay. 

Evaluation of the Coefficients p 

Since m Is chosen, p	 becomes a function only of wing geometry,

compressibility, and section lift-curve slope. The effects of compressi-
bility and section lift-curve slope are equivalent to a change in wing 
plan form 5 and can be accounted for by.a proper adjustment of the Pvn 
values. As shown in Appendix B, PVn can be conveniently presented as 
a function of two parameters, namely, a compressible-sweep_angle paraine-
ter defined as A= tan-'(tan .A/) and a parameter fly involving the 
ratio of wing span to wing chord and variable section lift-curve slope, 
defined by

ll = d() (cy) 

where

ratio of experimental section lift-curve slope at span station v 

to the theoretical value of 2t/3, both at the same Mach number 

bCompressibility and section lift-curve slope are discussed In Appendix B. 

a.v 

pvn 

Gn
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cv wing chord at span station V 

The value d is a scale factor given by. 

dvO.O6lfOr V =1 

= 0.23 14. for V = 2	 (14.) 

= 0.381 for V = 3 

Equation (3) can be written in alternative form that gives Ev in 
terms of wing geometry parameters that are more significant; thus 

.HV=•dV()[(KV/Kav)l(cV/cv)] 	
(5) 

where 

av	
ratio of average section lift—curve slope to 2it/ both at 

the sane Mach number 

V/Kav	 spanwise distribution of section lift—curve slope for a 
given Mach number 

Cv/Cav	 spanwise distribution of the wing chord 

(3A/av) compressible aspect ratio and average section lift—curve-
slope parameter 

The term

	

	 1	 of equation (5) gives an effective aero-




('v/av (cv/cav) 
dynamic taper of a wing. The distribution of KV/av may vary with 
Mach number, particularly at transonic speeds (e.g., due to spanwise 
variation of airfoil section). However, since the distribution con-
tributes to taper effect, the loading distribution and not the total 
loading will be appreciably affected. 

With Hv determined from equations (3) or (5) and (14.), the values 
of Pvn, nine in all, are presented in figure 1 where p	 is given

as a function of H for various values of A. 

For the case of straight—tapered wings with arbitrary section lift-
curve—slope distribution for which the chord distribution is specified 
by taper ratio, evaluation of equation (5) is given in figure 2 where 
(KI KavYEv for each of the three span stations is shown as a function of 
(A/Kav) 
taper ratio.
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Evaluation of Antisymmetric Angle-of--ttack Distribution av 

The antisymmetric angle-of-attack distributions most commonly 
encountered are those resulting from rolling wings, aileron deflection, 
and side slip of wings with dihedral. Evaluation of the angle-of--attack 
distributions for these various cases is outlined in the sections imme-
diately following. 

Rolling wings.- For the case of the rigid wing, the induced veloc-
ity normal to the wing surface is equal to the upwash velocity experienced 
by the rolling wing. Thus, at span station V 

= = -(v)	
(6) 

where pb/2V is the tip helix angle. It should be 'noted that the rela-
tion given by equation (6) assumes the wing structure to be rigid in that 
the distribution of v is completely defined by the linear distribution 
of helix angle. In the case of flexible wings, however, the expression 
for	 must be modified to account for the streamwise angle-of--attack 

change which may occur due to bending or torsional deflections. In this 
case,

(7) 

where Lc represents the modifying influence of flexibility. Normally, 
is not considered for straight wings since only the effect of tor-

sion (which is usually small) is involved. On swept wings, however, the 
effect of bending can cause L LV to be quite large so that the. ay 
distribution may be affected considerably. Due to the interaction 
existing between the aerodynamic and structural forces,	 cannot be 
determined directly, but must be found through equations of equilibrium 
or by iteration. With the loading for the rigid wing provided, however, 
the iteration procedure becomes relatively easy to apply. The first 
approximation of v is found from the loading of the rigid wing and 
further refinements of 	 may be found utilizing the successive loadings 
for the flexible wing as determined. 

Deflected ailerons.- Where the spanwise distribution of the angle 
is to be considered equivalent to antisymmetric aileron deflection, 

it must suffer a discontinuity at the spenwise end of the control surface. 
The loading when such a discontinuity is present can be duplicated by a 
proper distribution of antisymmetric twist. In Appendix C, the anti-
symmetric twist distribution required by the present theory to give accu-
rate span loading distribution due to ailerons is found with the aid of 
zero-aspect-ratio wing theory given by reference.6. To minimize the 
computation inolved, it is convenient to consider both the case of out-
board and inboard ailerons.
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1. Outboard ailerons: With m=7, three different aileron spans 
can be conveniently defined for the outboard ailerons. For 
the aileron spans TLa, measured from the wing tip inboard, 
the antisynimetric twist distribution requiredper unit deflec-
tion of full-wing--chord ailerons, cLV/5, is given by

Case I II III 

0.169 o.144 0.805 _____

1.003 0.971 0.998 

.017 .996 .991 
S

•	 .006 .0114. .978 
S 

(8) 

2. Inboard ailerons: With m=7, three different aileron spans 
can be conveniently defined for the inboard ailerons. For 
the aileron spans a measured from the wing inidspan out-
board, the antisyinmetric twist distribution requiredper unit 
deflection of full-wing--chord ailerons, av/S, is given by 

Case TV V VI 

1 a 0.556 0.831 1.000 

0.0 0.013 1.016 

—.017 .961 .979 

1.087 1.095 1.101 
S

(9) 

Sideslip of wings with dihedral.— For calculating the rolling 
moment caused by dihedral angle for the sideslipping wing, the effect of 
the skewness of the vortex field in altering the effects of the dihedral 
angle will be assumed to be small (as assumed in reference 5). The 
problem then simplifies to finding the rolling moment due to antisynmietric 
angle of attack with the unskewed vortex field. The solution to this 
problem is the same as for the. ailerons which has already been solved. 
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The antisyminetric distribution of angle of attack for the side-
slipping wing with dihedral is gi r .n by 

cLV =r	 (10)


where 

a.v 	 effective angle-of-attack distribution 

angle of sideslip measured positive in the counterclockwise 
direction from the plane of syetry 

r dihedral angle 

The wing parameter	 is not affected by cpnipressibility. Equation (10) 
is approximate for small values of 	 and r. 

For unit f3F over the span of the ailerons considered, 

r=b	 (ii) 

can be substituted for	 in equations (8) and (9). 

APPLICAUON OF ThOD 

- For the cases of antisyinmetric angle-of-attack distributions result-
ing from rolling, aileron deflection, or side slip with dihedral, it is 
possible to present a set o± simultaneous equations which are required 
f or the solution. of the load distribution for an arbitrary plan form. 
With the loading known, integration formulas can be given to determine 
aerodynamic coefficients. 

The loading-distribution coefficient Gn determined from the solu-
tions of the simultaneous equations, are functions of Pvn which has 
been shown in a preceding section to be a function of wing geometry, 
compressibility, and section lift-curve slope. The aerodynamic coeffi-
cients are integrations of the load distribution and, therefore, will 
also be a function of wing geometry, compressibility, and section lift-
curve-slope parameters. Application of the method to the general solu-
tion for arbitrary chord distribution is outlined and solutions are pre-
sented for the case of straight taper.
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General Solution 

Aerodynamic characteristics due to rolling.- The solutions for the 
aerodynamic effects due to the rolling wing will be found and. loading, 
rolling moment, spanwise center of pressure, and induced drag will be 
obtained. 

1. Simultaneous loading equations: The p values are 
obtained from figure 1 and table I with values of ll 
given by equations (3) or (5). 

The simultaneous equations (2), for the rigid and flexible 
wing, respectively, become: 

-0.92 4 = P11G1 + P12 + P13G3 

-0.707 = p21G1 + p22 + p233 

-0.383 = p311 + p32 +

where

Gn 
G -

pb/2V 

and

-0 921i-	 '	 = p]] G1 + p122 + 
+ pb/2V 

-0.707 +	 = p211 + p222 + p233 

____	 } 

pb/2V 

-0.383 +	 = p311 + p32 + p333 
pb/2V

(32). 

(13) 

-	 G 
where Gn = ,	 and	 is the incremental angle of 

pb2V 
attack due to aeroelastic effects. 

2. Loading distribution: The loading-distribution coefficient 
is given by G = c j c/2b. Other forms of the loading coeffi-

cient are given by the identities 

6Values of p beyond the scope of figure 1 are includd in table I. 
For values of H., larger than those included in figure 1 and table I, 
the p	 curves can be obtained from equation (B8) which gives the 
linear asymptotes of the p 	 function. 
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dc	 (iii.) 

2A Cay 2A ClCav 

The loading is known to be zero at i = 0 and 1 and is 
determined at three intermediate span stations. Values of 
loading at other span stations can be obtained from a load-
ing function derived in Appendix B or, with equations (B23) 
or (B24). of Appendix B, the loading can be found at span 
positions i = 0.981, 0.831, 0.556, and 0.195. 

3. Rolling moment: The damping—in--roll derivative for the solu-
tions of equations (12) or (13) is derived in Appendix B and 
given by 

	

Ci	 ir/A\ 
av - j(') [2 + o.7o7(1 

li. Spanwise center of pressure: The equation giving center of 
pressure on the wing semispan is shown in Appendix B to be 

13C1 /K 

	

c.p. =	
(o.163G1 + 0.211.8G2 + 0.14.30G.) 

	

=	 1	
(16) ,'cc \	 / dc	 ( _cc 0.082	 + 0.1214 

C j cav)	 LCiCav, + 0.215 Cicav)s 

5. Induced drag: The induced drag is derived in Appendix B 
and given by 

CDj - x('A [ G
12 +G22 + G2 -4 G2(G1 + G3)]	 (iT) Kav2\avJ[ 

Aerodynamic characteristics due to aileron deflection.— The solu- - 
tions for the aerodynamic effects due to ailerons will be found for three 
different spans of outboard and inboard ailerons. Cross plots of these 
data provide curves for arbitrary aileron spans. 

1. Simultaneous loading equations: The Pyn. values are

obtained from figure 1 and table I with values of 
given by equations (3) or (5).

(is)
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(a) Deflected outboard ailerons: The aileron spans asured 
from the wing tip inboard are given by ia• The simultaneous 
solution for antisymmetric spanwise loading due to deflection 
of any of the three following aileron spans can be obtained 
from the appropriate set of the following equations: 

Case I II III 
T p 0.169 0.14.14.4 0.805 

1.003 0.971 0.998 

.017 .996 .991 

.006 .014 .978 

where Gn = G/5.

= Pi1GI. + P1202 .+ P133 

= p21G . + P22G2 + 

= P31G + p32G2 + p333 

(18) 

(b) Deflected inboard ailerons: The aileron spans measured 
from. the wing midspan outboard are given by ila• The 
simultaneous solution for ant isymmetric spanwise loading 
due to deflection of any of the three following aileron 
spans can be obtained from the appropriate set of the follow-
ing equations:

Case TV V VI 

0.556 0.831 1.000 _______ 

- 0.011-4 0.013 i.o16 

- —.017 .96]. .979 

1.087 1.095 1.101

=	 + P12G2 + p13G3 

P21G1 + P22G2 + P233 

= P31i + p32G2 + p333 

where 0n = Gn/• -

	
(19)' 
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2. Loading distribution: The spanwise loading distributions 
due to various aileron configurations include: 

( a Y Full-wing--chora ailerons: The loading is known to be 
zero at q = 0 and 1, and is determined at three inter-
mediate span stations. With equation (Cl3) and tables C6, 
Bl, and. C7, the loading can be found at span stations 

= 0. 981 , 0.831, 0.556, and. 0.195 for each of the aileron 
spans considered. With these given points and. the knowledge 
that the slope of the loading-distribution curve is theo-
retically infinite at the point of angle-of-attack discon-
tinuity (aileron spanwise end), the loading distribution can 
be faired. 

(b) Constant fraction of wing-chord ailerons: The spanwise 
loading of constant fraction of wing-chord ailerons is equal 
to the product of the loading due to full-wing-chord ailerons 
and the effective change of angle of attack with aileron 
angle, 7 da/d5. The factor da./d is a function of the 
ratio of aileron chord to wing chord t = ca/c. The change 
of section angle of attack with aileron angle dct/d is 
presented in figure 3, which is reproduced. from figure 18 of 
reference 7. 

Although figure 3 taken from reference 7 limits the Mach 
number range to Mach numbers less than 0.2, this limitation 
is believed to be unwarranted since theory indicates that 
dcL/dö is unaffected by compressibility for the two-- 
dimensional wing. However, as indicated in reference 6, 
dct/d is strongly affected by low aspect ratio and will 
change appreciably if the parameter 3A becomes much less 
than two; hence,the values of da/d.5 from figure 3 appear 
to be valid for 3A>2. 

(c) Arbitrary spanwise distribution o aileron chord: The 
aileron can be divided into several spans with constant 
dct/d., then the total loading is the sum of the products of 
the full-wing-chord loading of each span and its respective 
da/d5. 

'In using .da./d5 here, it should be noted that the assumption is made 
that the effective airfoil section is taken as being parallel to the 
plane of syimnetry and that the section approaches a two-dimensional 
section. The validity of this assumption can be questioned; however, 
limited checks with experiment show it to be at least approximately 
correct.
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3. Rolling moment: The rolling moment can be found. for the 
following aileron configurations: 

(a) Fufl-ijig--cord--ai1erons: The spanwise loading due to 
aileron deflection cannot be integrated with sufficient 
accuracy with equation (15). In Appendix C, a similar 
integration formula is developed that applies to each given 
aileron span. Equation (do) and table C5 give 

___ - (A '\ 

___ - -)	
+ h32 + hd3)	 (20) 

where for each of the cases of equations (18) and (19) the 
hn values are given by 

Case I II III IV V VI 

h1 0.140 0.139 0.138 0.146 0.141 0.140 

h2 .199 .196 .196 .200 .197 .198 

h3 .145 .139 .138 .1110 .139 .140

(b) Constant fraction of wing-chord ailerons: For constant 
fraction of wing-chord ailerons with aileron angle measured 
parallel to the plane of symmetry, the aileron effectiveness 
is given by

13C' 
tst - d (3C\ 

)Cav	 d5\Kav1 

(c) Arbitrary spanwise distribution of aileron chord: The 
deflection of ailerons for which t varies spanwise on the 
wing can be considered as an equivalent wing-twist distribu-
tion. The effective antisymnietric twist of the wing is 
given by

a4, = - 5 
"

(21)

(22) 
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where da./dP is now a function of spanwise position. The 
antisynimetric angle—of—attack distribution given by equation 
(22) can be divided into spanwise steps of constant angle of 
attack and the total rolling moment , can be found by the 
summation of the rolling moment due to each spanwise step. 
The rolling moments of . the spanwise steps are obtained from 


	

a curve of rolling—moment coefficient	 as a 

function of unit antisynimetric angle of attack from the wing 
root outboard. This step method is the procedure used in 
reference 1. 

A curve of Cj8/tcav as a function of unit antisynmietric 
angle of attack from the wing root outboard can be obtained 
from the solutions of equation (19) for the cases IV, V, and 
VI. An additional point can be obtained from the solution 
of case III of equation (18), applying the relations (dis-
c.ussed later) existing between inboard and outboard ailerons. 

The rolling moment due to the twist given by equation (22) 
can be obtained, by a method other than the step method, from 
the integral given by 

J31	
da d(f3C1/i) 

K ay	 dr	 dii	
(23) 

which can be integrated numerically by taking the graphical 
slopes of 13Ci,/Kav which is a function of extent of unit 

antisymmetric angle of attack from the wing root outboard. 

4. Spanwise center of pressure and induced drag: Spanwise center 
of pressure and induced—drag integration formulas for loading 
due to ailerons are not given; however, equations (16) and 
(17) can give approximate integrations of the loading to 
obtain center of pressure and induced drag. 

5. Additional considerations: 

(a) Relation between aerodynamic characteristics for outboard 
and inboard ailerons: The spanwise loading distributions due 
to outboard and inboard ailerons bear a simple relation to 
each other. Since loading is linearly proportional to angle 
of attack, loadings are directly additive. Then, for 
outboard and inboard ailerons with the spanwise ends of the 
ailerons at the same span station,
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Gjnboard' = G(il=1) - Goutboard 

Ci 5inboard = C1 5( ila=l) - 1	
(2k) 

TI	 lila 
a inboard	 outboard 

These relations do not apply for T1c.p. and CDi since 
these characteristics are not linearly proportional to 
loading. 

(b) Differential aileron angles: The effect of a differen-
tial between aileron angles can be taken into account by 
considering the C2 6 of each wing panel as one—half the 
antisyinmetric results of equations (20), (21), or (23). The 
total wing rolling moment is then the sum of the products of 
C/2 given by equations (20), (21), or (23) and the angle 
of deflection of each aileron. Although the total rolling 
moment can be found by this procedure, the spanwise loading 
distribution can be found only approximately by the products 
of the ant isyimnetric unit loading G/8 and the deflection 
of each aileron. However, the loading distribution so found 
will be quite accurate since this procedure neglects only 
the small change due to the induced effects of the differen-
tially different opposite wing panels. 

(c) Aileron angles measured perpendicular to the hinge line: 
The relationship between aileron angle measured perpendicular 
to the aileron hinge line and that measured parallel to the 
plane of symetry is given by 

tan 6 = tan 8	 (25) 
- cosAt 

where 

t sweep angle of the aileron hinge line 

8 angle measured perpendicular to the hinge line 

For constant fraction of wing—chord ailerons on straight—
tapered wings, At is given by
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tan At = tan A /4 -	 A 

	

t(o.75—t)	
\\	

(26) 

where t is the fraction of wing—chord aileron measured 
from the wing trailing edge. 

Aerodynamic characteristics due to sideslip of wings with dihedral.—
The total antisynimetric loading due to sideslip can be considered as the 
sum of that due to dihedral angle and that due to zero dihedral angle. 
For the unswept wing, the rolling moment due to sideslip for zero 
dihedral angle is generally considered negligible; however, for the 
swept wing, this effect can be appreciable. In the present report,only 
that part due to dihedral angle will be considered for the swept and 
nonswept wings. 

1. Simultaneous loading equations: The Pn values are 
obtained from figure 1 and. table I with values of B given 
by equations (3) or (5). 

The simultaneous equations resulting from the substitution 
of	 = ç (see equation (11)) and	 = G/3r in equations 
(18) and (19) are applicable in the determination of the 
effects of unit outboard or inboard dihedral angle over the 
span of the ailerons considered. 

2. Rolling moment: The rolling moment due to various dihedral 
angle distributions include: 

(a) Constant spanwise dihedral angle: For dihedral angle 
constant for the entire wing semispan, the loading is given 
by the solution of case VI in equation (19) for G = 
and the rolling moment f'rori equation (20) becomes 

___ -
	 ( o.l4o + 0.198G2 + 0.l0G 3 )	 ( 27) 

Kavr' - av 

(b)Gulledving: For the gulled wing, solutions of equation 
(19) for	 = G/F gives the loading, and the rolling 
moment from equation (20) becomes 

	

= - (h1d1 + h22 + h33)
	

(28) 
av	 av 

A plot of the results of cases IV, V, and VI gives the 
extent of unit dihedral angle from the wing root outboard.
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Then, for a gulled wing, the total rolling mOment equals the 
sum of products of dihedral angle of each span section aM 
the rolling-moment contribution of the respective span 
sections. 

(c) Variable spanwisé dihedral angle: If r varies spanwise, 
the rolling moment can be obtained by integration as in 
equation (23). The integral becomes 

____	 d(CZ/Ka) 
= / r(i 

Kay	 o	 th1	
dr1	 (29) 

d(C1_/Kr) is the sloe of the curve described in where
dT 

part (b) above.. 

Solution for Straight-apered Wings 

Charts of aerodynamic characteristics for straight-tapered wings can 
be presented in terms of geometric, compressibility, and average section 
lift-curve-slope parameters. These charts provide a ready means of 
obtaining data directly. 

Aerodynaxnic•characteristics due to rolling.- The application of 
equation (12) for a constant value of section lift-curve slope 8 provides 
the spanwise loadings at span stations 0.383, 0.707, and 0.92k which are 
presented in figure 4 for a wide range of plan forms.. The interpolation 
formula of equation (B24) will give values of loading due to rolling at 
span stations other than those presented. With equation (15), the 
d.anrping-in-roll coefficients 13C2p/K 	 can be obtained and. are presented 

in figure 5 for a wide range of plan forms. 

8Throughout the figures, 1av is the constant spanwise section lift-
curve slope or the average of a small variation. For large spanwise 
variations of i that follow the function given by equation (Bli) 
developed in Appendix B, the parameters A/Kav and X can be replaced 

by the parameters

	

	 A	 and .T X, respectively. For large 

( KR+KT x)1(l^x) 

spanwise variations of	 that do not follow the curve of equation 
(Bil), the simultaneous equations for the general solution can be 
solved for arbitrary distributions of K. The U values can be 
obtained from figure 2.
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Aerodyrianiic characteristics due to aileron deflection.- The appli-
cation of equation (19), case III of equation (18), and equation (20) 
provide aileron effectiveness in the coefficient form 13Clö/av for 
several aileron spans. In figure 6, 3C25/Kav is plotted against extent 
of unit antisymnietric angle of attack from the wing semispan root. 
outboard for a range of wing parameters. 

As presented, figure 6 gives directly the effectiveness of full-
wing-chord inboard ailerons for aileron spans measured from the plane of 
symmetry outboard. The effectiveness of full-wing-chord outboard ailer-
ons for aileron spans measured from the wing tip inboard is given by 
figure 6 directly by the relations of equation (2k). For full-wing-
chord ailerons located arbitrarily on the wing semispan, the aileron 
effectiveness can be obtained directly from figure 6 as indicated in the 
following example sketch. 

0	 1 

With the full-wing-chord values given above, the effecti4.reness of 
constant fraction of wing-chord ailerons or ailerons of arbitrary spanwise 
chord distribution can be found through use of equations (21) or (23) with 
the dct/d values of figure 3. 

Aerodynamic characteristics due to sideslip of wings with dihedral.-
The application of equation (19), case III of equation (18), but with 
= r, and	 = G/r, and the use of equation (28) provides rolling 

moments due to dihedral angle for the wing in sideslip. These rolling 
moments are given in the coefficient form 1 3C 2/tavF which is the same 
function of r as 3C 2/Iav and is presented with I3C j/Kav in figure 6. 
Figure 6 with equation t29) will provide the rolling moment due to 
sideslip for any symmetric spanwise distribution of dihedral angle. 

For dihedral angle constant spanwise, the rolling moment is given by 
the valueat i = 1 in figure 6. These values for constant spanwise 
dihedral angle are presented in figure 7 as a function of aspect ratio 
'for various values of sweep angle and taper ratio.
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DISCUSS ION 

Effects of plan—form parameters on aerodynamic characteristics for 
straight—tapered wings are shown by plots against the various parameters. 
Compressibility is discussed and formulas given for a range of plan forms 
at sonic speeds. Theoretical considerations and experimental comparisons 
indicate the order of reliability of the present theoretical results. 

Straight—Tapered Wings 

The spanwise loading distribution due to rolling for several plan 
forms is presented in figure 8. These curves are the result of applying 
figure Ii. and the loading interpolation formula of Appendix B. The 

/ c1c \\ 
loading coefficient is given as

	

	 (	 ) to make the total 

(hlc.p.)A...O \CjCavJ 

loading on the semispan constant and thus show more clearly the changes 
of distribution due to sweep and taper ratio. Figure 8 shows large 
changes in loading distribution for the zero tapered wing. The effects 
of sweep are generally as expected, namely, that sweepback shifts the 
loading outboard. 

Effects of plan form on the rolling moment due to rolling is shown 
from cross plots of figure 5 which are presented in figures 9 and 10. 
For higher aspect ratio, figures , 9, and 10 show the marked lowering 
of rolling moment due to sweep. Figure 9 indicates that for low aspect 
ratio, the rolling moment beàonies essentially independent of sweep and 
taper. The taper effects on rolling moment as seen in figure 10 are 
small except for values of taper ratio less than 0.25. 

Typical spanwise loading distributions due to full—wing—chord 
aileron deflection are shown in figure 11. These curves were faired 
with the aid of the loading interpolation function of Appendix C and, 
at the aileron spanwise end, care was taken to make the slope large. 

Wing geometry effects on aileron effectiveness for full—chord 
outboard partial—span ailerons (with aileron angle measured parallel to 
the plane of symmetry) are given in figure 12. The geometry effects on 
f3CZ/Kav are similar to those on the damping—in—roll coefficient. Com-
parison of figure 12(a) with figure 9 shows that Ci5 approaches the 
zero—aspect—ratio value in the same manner as does Ci v . Figure 13 gives 

comparative effectiveness of inboard and outboard ailerons for swept 
wings. As sweep increases, the difference of effectiveness between 
inboard and outboard ailerons decreases showing that inboard ailerons 
for highly swept—back wings approach the effectiveness of outboard -
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ailerons. Since d.a/d becomes large rapidly at small values of t 
(fig. 3), then, for a given aileron area, narrow full-span ailerons for 
swept-back wings may be more desirable than larger-chord outboard 
ailerons. The relative effects of figures 12 and. 13 apply equally well 
for constant fraction of chord ailerons, since the data would differ only 
by a constant factor dcx/d.

Compressibility 

From the three-dimensional linearized-compressible-flow equation, 
it can be shown that the effects of compressibility will be properly 
taken into account if the longitudinal components of a wing plan form are 
increased by the factor 1/13. Or, alternatively, if the linearized com-
pressible flow equation be divided through by . 132 ,' then the lateral and 
vertical components of a plan form are decreased by the factor 3. In 
both cases, the incompressible local lift is increased by the factor 1/13 

ami the compressible local lift coefficient can be written as the 
parameter 13c1. 

With these relations known, an incompressible theory can be made 
into a compressible theory subject, to the limitations of the linearized. 
compressible flow equation. The geometric parameters' of a wing are 

simply substituted by 13A,Ap = tan 1	 and 13b. With local lift 

coefficient given by 3c j , the dimensionless loading becomes 

f3cjc - c1c 

G = 213b - a The wing-chord distribution remains unaltered. 

The sonic speed results of reference 6 can be used as a limit point 
in the present theory for a curve of the variation of ant isynmietric 
aerodynamic characteristics with Mach number. The following equations 
apply at the speed of sound to plan forms with all points of the 
trailing edge at 'or behina the upstream line of maximum wing span: 

Clp =-

For outboard ailerons, 

= sin3 e, where a = 1 - cos e 

For inboard ailerons, 

=	 (1-sin3 0), where 11a = cos o
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Reference 6 shows that aileron effectiveness at the speed of sound is 
independent, of the .chordwise location of the aileron hinge line,pro-
vided the hinge line remains ahead of all points of the trailing edge. 

Accuracy of the Seven-Point Solution for Ailerons 

The prediction of aileron effectiveness for given aileron spans 
with wing twist determined by zero-aspect-ratio theory at only seven span 
points to satisfy the boundary conditions has been theoretically shown to 
be sufficient by comparing results with the computation of a typical 3.5 
aspect ratio, 45° swept wing with 15 span points satisfying the boundary 
conditions. The process of finding aileron spans for the 15-point method 
was the same as that in Appendix C. The curves showing the variation of 
C with aileron span for the 7- and 15-point computations were identical. 

The solution for the angle-of-attack distribution that includes a dis-
continuity can be compared with the solution for the continuous angle-of-
attack distribution by considering an aileron such that the angle-of-, 
attack distribution is equivalent to that of the rolling wing. The damp-
ing-in-roll coefficient then can be found by use of equation (23) which 
reduces to the form

&- dCj

Cj=/ a	 di'1 

J0	 th1 

(pb '' and integrating by parts for

(1 
= / C di - 
Jo 

This relation states that Ci is equal to the area between a curve of 
figure 6 and. the line of Ci8 for	 = 1. The curves of figure 6 were 
found by the simplified lifting-surface theory with antisyimnetric twist 
determined by zero-aspect-ratio theory. The values of Ci obtained in 
this tnnner from figure 6 were identical to the Ci values given by 
simplified lifting-surface theory for continuous linear antisynimetric-
twist distribution. 

As further theoretical check, the values of rolling moment due to 
constant spanwise dihedral angle are obtained from 15-point computations 
in reference 5 for taper ratio equal to one, with which the present 
theory for the 7-point method is in exact agreement.
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Comparison of Theoretical and. Experimental Results 

The electro-magnetic analogy method of reference 8 provides damping-
in-roll coefficients for an aspect-ratio range of unswept, tapered wings. 
The results of the present theory and those of reference 8 re compared. 
in figure 11.. Except, for the taper ratio effects on Ci the comparison 
is good. The rounded-wing-tip values of Cp given by NACA Rep. 635 
(reference 1) are included in figure l. Since rounded wing tips gener-
ally give values of Ci about 6 percent lower than straight wing tips, 
the values of NACA Rep. 635 appear to be appreciably too high for lower-

..aspect-ratio wings. The present theory and the theory of reference 8 
approach the value given by the zero-aspect-ratio theory of reference 6 
quite satisfactorily. The results of the present theory may be further 
assessed by the comparison with the results of low-speed experiment as 
given in figure 15 for the range of plan forms presented. For further 
experimental verification of the accuracy with which Ci can be deter-
mined by the present theory, the reader is referred to reference 5 which 
s.tpports the theory as well or better than figure 15 of the present report. 

The loading distributions due to rolling as given by the present 
'theory are compared in figure 16 with low-speed experimental results for 
a range of swept wings. The sweep angle seems to have considerably more 
influence on loading distribution as given by experiment than the theory 
indicates. The experimental pressure data, however, were very erratic 
and no firm conclusion can be made. 

Experimental values of rolling effectiveness due to aileron deflec-
tion are compared with theoretically predicted values in a correlation 
diagram given by figure 11. Included are the results of a wide range of 
plan forms which do not vary consistently with any geometric parameter or 
aileron configuration. Sketches of the plan forms and ailerons are drawn 
about the points of correlation. The theory makes use of the curve of 
figure 3 giving da/dô for a sealed-gap aileron over a range of deflection 
of ±100. Experimental results for aileron deflections greater than 15° 
measured perpendicular to the hinge line were not included. The correla-
tion points of figure 17 scatter appreciably; however, the mean line of 
the points does approximate the line of perfect correlation. 

Figure 17 does not account for effective plan-form change due to 
da/d8. Only the effectiveness of the low-aspect-ratio triangular wing of 
figure 17 is exceedingly in error,which is the result of neglecting plan-
form change. 

The plan-form change due to da./d8 can, in part, be considered anal-
ogous to that due to section lift-curve-slope change. Thus, the total 
section lift of a wing,, the chord of which is reduced by dcv/d.8 and which 
is at an angle of attack 8, is equal to the lift of the wing-aileron 

section for which the aileron only is deflected at the angle 8. This
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change in plan form, unlike the section lift-curve-slope change for which 
the chordwise loading remains constant, does not account for a large 
change in chordwise loading. If the lifting line is considered to be at 
the chordwise center of pressure, then, for partial-wing-span ailerons, 
the lifting line is in effect broken at the aileron spanwise end and the 
present theory becomes invalid. For the case of full-idng--span ailerons, 
the lifting line in effect remains uxthroken and lies along the center of 
chordwise pressure. For this case the wing chord can be reduced by d./d5 
to account for plan-form change; however, although in the limit of zero 
aspect ratio the results are the same as those of reference 6, this pro-
cedure does .not with sufficient accuracy account for the chordwise loading 
shifting aft at intermediate aspect ratios. For control surfaces, the 
effective plan-form change due to da./db is appreciable for the low-
aspect-ratio wings such that in the limit of zero aspect ratio the span-
wise loading is independent of the ratio of aileron chord to wing chord 
(reference 6). However, for moderate aspect ratios, dcx./d5 can be used 
without accounting for plan-form changes as comparison with experiment 
indicates. 

Experimental values of 	 are not compared with the present 


theory since reference 5 gives ample support of the theory. 

CONCLtJDING REMkRKS 

The determination of antisymtric loading for arbitrary wings is 
shown to be easily obtained by the solution of three simultaneous equa-
tions. The coefficients of the simultaneous equations are presented in 
charts of parameters that include wing geometry, compressibility, aM 
section lift-curve slope as arbitrary quantities. Thus the loading for 
an arbitrary antisymmetric angle-of--attack distribution can be simply 
found once the angle-of-attack distribution is chosen. 

For the important cases of antisynmetric loading, roll, and aileron 
deflection, the angle-of-attack distribution is given and the simultaneous 
equations are formed. Loading for these cases can be found by simply 
obtaining from charts the coefficients corresponding to the wing geometry, 
Mach number, and lift-curve slope, inserting in the appropriate equations 
and solving. 

Integration formulas for the loading distributions are given which 
enable the aerodyiirniilc coefficients C 	 and Cj6 to be found. The 

rolling moment due to side slip of a wing with dihedral is shown to be 
equivalent to that of aileron deflection and a procedure for determining 
its value is given. 

For the special case of straight-tapered wings, the loading distri-
butions and. values of	 and C15 are given in the chart form for a 

range of wing plan forms.
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Experimental and theoretical verification of the theory is shown to 
be good. The theory is applicable for large aerodynamic an.gles,provided 
the flow remains unseparated.. The compressibility considerations are 
reliable to the speed of sound subject to the limitations of the linear-
ized compressible—flow equation. 

Ames Aeronautical Laboratory, 
National Advisory Conmiittee for Aeronautics, 

Moffett Field, Calif., Dec. 22, 1949. 

APPENDIX A 

EQUATIONS FOR THE DEIR1'ffNATION OF AITISYMIThIC LOADING 

Unsymmetric Loading 

From NACA TN 1476 (reference 2), the aerodynamic loading is obtained 
by solution of the linear simultaneous equations 

=b*v G v	 b*vn,	 V 1, 2, . . . m	 () 

(The prime indicates the value for n=V is not summed) 

where 

G
bV 

= 2bvv +	
(A2) 

(b\
*	 (A3) 

and b	 are coefficients independent of plan form. 

M 
[L(V,O) no + L(v,M-4-1) n,M+i	

L(,.t)f	
]	

(A4) 
—1 

= 2(M^l)	 2	 '=1
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The above equations involve computations over the entir& wing. 
However, if the loading is assumed to be symmetric or antisymmetric, the 
computations can be reduced to less than half the work. The case of 
symmetric loading is developed in reference 2 and the antisymmetric case 
is developed in the following section. 

Anti symmetric Loading 

For antisynmietric loading, the loading on each side of the wing has 
the same magnitude and distribution but with opposite sign, or 

=

(A6) 
Gv = m+i—v' or Gn = 

Equation (Al) can then be written as 

2, 

cLv=* _b* V	 m^i_v)Gv	 (b*vn_b*v, m+i_n) Gn	 (A7) 

n=l 

	

where the summation is only to	 since	 = 0 for antisyxmnetric 


loading. 

With equations (A2) and (A3), equation(A7) becomes 

= [2 (bvv v,m+i_v)	 ]Gv - 

1

	

[ 

2 (bv m+i )
	

(vn	 ,m+i) ]G	 (A8) 

n=1
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Now, from equation (Ali)

-1	 _______________________ 

= 2 ( M^1) 

[L( V 0) ( nom^i-i, ) + 

	

L( v,M+1) (n,M+i.	 m+i-n, M-1-1)
+ 

2 

M

L(vi) (nin+i-n, )]	 (A9) 

where

m 

=	 r	 1.11 sin	 cos	 (Alo)

I.Li1 

and.

n1 
q;	 ,cPit=


m+1 

From equation (A9), 	 can be defined as 

f*	 f	 f 
ni	 nit	 m+1-n, p. 

then, using equation (Alo) 

	

f* =	 p. cos	 (sin in - sin 

	

=	 p.i cos	 Slfl 1fl (1+ cos 

and, since the terms of the summation for odd p. vanish, 

=

	

	
sin	 cos	 (All) 

even
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From equation (All),

= f*fl, M+1 	 (Al2)


Combining equation (A9) with (Al2) and defining 

vn 

then

2 
-1 g* fl =
2(M+l)	

+ L(,M^1-j.i) ]f*	 (A13) 

where for	 = 0 and	 f*	 is equal to half the values given by 

equation (An) in order that the products can be fitted into the sunmia-
tion. With equation (A13), equation (A8) can be written as 

rn-i 
2, 

( 2Cv +	 g*)G -	 (2C -	 vn)Gn	 (A114.) 

-	 V = 1,2,3,... 

where

CV = bvV - 

Cvn = bvn - bv,m^i...n 

From reference 2,

b -
	 sin n	

________ Vii	 2 I (cos n - cos	 L 2(m-i-i) 

which gives zero values for	 for even (n-v) values. Then, since 
m isodd.,

b	 =0 
v,m+i-v 

and.

= b.
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It should be noted that L( v,.i) simplifies somewhat, for the anti—
symmetrically loaded wing since 	 now is only positive in equation 
(A5). If only positive values of	 are used, then equation (A5)'can 
be written as

L*(V,L) = L*v = L(i,) + L(T,) 

= L(V,i.t) + L(v,M+l—i.i) 

In summary, the foregoing analysis for the antisymmetrically loaded 
wing gives

	

n=l pG

	 (A15) 

V = 1,2,3,... 
-	 2 

where

p = 2b +	 for nV	 (Al6) 

• =••2C	 + . g*	 for nv 

= b. - 

bVVJsincp 

b -
	 sin P	

'	 [ll)n—v 

Wi	 (cos CP - cos	 )2 L 2(m-i-1) 

= g* for n=v 

= 2(M+l)	
L*W f* 

=even
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for = 0 

I	 f*	
= 
2 for = 

For M=m, f*	 simplifies to

/—sin 11.(P 
f*	 _	 ______ 

Lcos 2 CP_ cos	 \l—cos 4p11 

f* = flUforiO 
110	 2

IJ,Lt
for	

2 2 

L* -	 1	 A]2 () 
CV 
2(_)2 

—1 } 
+ 

VIL -
CV 

(-9) 

1	

{ J[

l^(()tan Al 2 + ()2(v+)2 - 

1 
J + (b—) 

CV	
1 + 2 (b—) 

2tanAJ b	 2 b 2. 2 [l+(	 i tan A] +	 V 

l+2()riv tan A 

= cos	 where	 -
m+l 

lilt 
T =coscp wherecp

M+l 

nit 
= cos	 where cp = — 

m+l 

For a discussion of the relative accuracies obtained for a choice 
of values .of M and m, see reference 9. The most favorable applica--
tion is with M=m.

£
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APPENDIX B 

DERIVATION OF RELATIONS USED IN TEE METHOD 

Application of Appendix A 

With Appendix A, the antisymmetrical loading on a plan form for any 
antisymmetrical distribution of a,v can be found. The principal work 
in the computations is to obtain the coefficients of the simultaneous 
equations (A15). These coefficients can be presented in charts for the 
complete range of geometric plan-form parameters into which are intro-
duced the effects of compressibility and section lift-curve slope. With 
the loading dü to rolling knowa, the coefficients and derivatives are 
obtained by integration formulas. 

Section lift-curve-slope effect.- For a two-dimensIonal wing with 
the loaded line at the quarter-chord position, the position x aft of 
the loaded line where the induced downwash equals the angle of attack of 
the wing can be obtained by the Blot Savart Law as 

- c1cV 
w = - where r 

	

2ixx	 - 2 
or	 w cjc 

= - = a. 

	

V	 11-itx

or

	

dcx.	 c 

then

	

_c	 dc1 

	

Il-it	 dcx. 

where dc 1 /dcv is the section lift-curve slope. Two-dimensional section 
compressibility effects that do not follow the Prandtl-Glauert rule can be 
given consideration by taking the ratio of (dcz/da.)compressible at a given 
Mach number to 2it/13. Let i be the ratio of the section lift-curve slope 
at a given Mach number to 2it/13 or ( dc j/da.)compressible = 2in/13 , then 

x = lc(c/2) 

Then the induced angle, pc (c/2) aft of the loaded line, is equal to the 
angle of attack of the wing. For i = i, this is at the three-quarter-
chord line. For section lift-curve slope less than 2it, i is less than 
one and the downwash is equal to the angle of attack at some point between 
the one-quarter- and three-quarter-chord line.
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To take into account the section lift—curve—slope variation in the 
prent theory, the downwash must be found at a distance ( c/2) aft of 
the ioded line. From the formulas of the sunnnation in Appendix A, 
b/cv should be taken as b/KVCV, where 'v is the ratio of section 
lift—curve—slope for a given Mach number at span station v, to 2t/3. 

Derivation of parameters for p.— The p	 coefficients, as 
defined by equation (A16) in Appendix A, depend on plan—form geometry in 
the (b/c)L*	 functions only, or p	 is a function of b/cv and

sweep angle. As previously shown, b/cv is also a function of the span—
wise variation of section lift—curve slope and is effectively equivalent 
to b/Kvcv, where 'v is the ratio of section lift—curve slope for a 
given Mach number at span station V to 2n/13. The p	 coefficients

can be plotted against b/cvcv with sweep angle as a parameter; however, 
b/ I VCV will vary from zero to very large values for a range of plan—
form geometry, and the plots become unwieldy. For a range of aspect 
ratio, the values of b/ Ic v Cv are a maximum for the zero tapered wings 
when n v ^ 0.5 (provided plan—form edges are not concave) and a maximum 
for the inversed—tapered wings for nv ^ 0.5. The ratio of b/KjCv 
for nv ^ 0.5 for any plan form to those of the zero tapered wing or 
the ratio of b/KVOV for n v < 0.5 for any plan form to those of the 
inversed--tapered. wing gives a geometric parameter for any plan form that 
has maximum values that depend only on aspect ratio. 

The chord distribution for straight—tapered wings is given by 

-	 A(l+) 

C V 	 2 [1— J1p(l—?)]	
(Bl)


Then, for ?'. = 0,

	

1	
(B2) 

	

AC v	 2(1— inI) 
and for ?=l.5

	

5	
(3) 

	

Acv	 2(2+ In I) 
The ratioof b/cv to equations (B2) and (B3) gives, respectively, 

a geometric parameter as 

b/Ivcv 

	

(b/Acv)0 
= 2(lv)(	 )for 0.5 ^nv < 1	 )

(Bli-) 
bfr c	 - 2 ( 2+ v) ( b

I for 0< 
(b/Acv) 15 -	 5	 c)	 - n ^0.5 j
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Let H be defined as two—fifths timesthe values of equation (314.) 
(the fraction two—fifths is introduced to give H, the approximate 
values of p., to simplify plotting procedures), then adding effects of 
compressibilIfy (see Discussion section)

(B5) ¼\IcVcV) 

where

dv 
= 4(lv) for 

0.5<i <1 

- 4(2+TIv) 
- 25	 for 0^i^ 0.5 

For tapered wings, 11v simplifies to 

2(l—r)(l-4-X) (13	
for 0.5^i 

= 5[lv(l—x)] KV) 

- 2(2^)(l+X) () for 0<v^0.5	
}	

(B6)


- 25{l_rv(l_x)l 'v 

Plot of p	 against H,, in the range of Hv = 0 to 4 will give 
p	 coefficients for wings of any chord distribution for aspect ratios 
up to 10 or 12. 

Linear asymptotes of Pvn• For large values of Hv, the 
functions become linearly proportional to liv. Since this linear char-
acteristic appears at relatively low values of liv, the simply linear 
relation between p	 and. liv is quite usable.
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The L*Vn function of Appendix A is ultip1ied by b/Cu and the 
product is linearized. 

= 2 "b	 _ 211 +( 1l"\ .	 i	 A 

	

sinA	 tan - - 
°V I	 .L cos A	 2 -2 

	

.11-TI	 '\!1111! 11)	 21	 2 

L r	 (i t A)	 ... for < 11 
211L 

-2	 / 1	 1'\	 1	 A -	 +(	 ^ - ) Sin A --tan - - 
- , 2_ j2 \ I11-iI	 11	 211 

I l_Jl^(tanA)	
... or> tanA 

-	 ("1 ^tanA)(_!_^!sinA_!_tan 
\.cosA	 \cvl 211 TI	 211	 2 

for =11 

=	 (b-242 sin A 
••• for •=0 cos A\c ,,J	 TI	 TI 

With the values of equation (B7) substituted into equation (A16) 
the values of p	 for arbitrary sweep angle are obtained. Thus, 

	

for m=7, the following equation (B8) gives values for p	 as

(B7)
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(3.928 + 1.026 tan A) 111 + 7.968 - 	 sin A + O.0l tan	 + ll 
= \.cos A 

0 082 
(i_li 

+ 0.0016 tan2 A) - o.o68 (i_ J 1 + 0.0177 tan2A 
tanA tan A. 

0.03k (i— A! 1 + 0.1717 tan2A) 
tanA 

(0.851 
12

- 2 .901 tan A)Hi - 3.138 + 1.080 sinA - 0.03k tan A 
'sCOS A 

0.03k (1—A/I+ 0.0016 tan2 A)	 0.1717 tan2A) 
—0.096 ( 

tanA tan A 

(.176 + 1.026 tan A) H	 + 0.129 - 0.869 sinA + 0.082 tan	 + 
= I

(1_	
1 ^ 0.0016 

tan2A > 0.068 (i_ i + 0.0177 tan2A)^ 
tan A tanA 

(i_ri + 0.1717 tan2A) 
tan A. 

(0.221 
=

+ 0.53k tan A)112 - 2.088 - 0.383 sin A— 0.018 tan	 - 
Os 2 

i—A/l + 0.0177 tan2A ) 
o.oa	

(i_ fi + 0.029 11 tan2A) - 
- 

(	 tan A tanA 

0.037 (1_ 1 1 + 0.0886 tan2A) 
tanA

p22 = ° 975 H2 + .;96 - o.i6 sin	 tan	 + 

0.125 (i_ / 1 + 0.0177 tan2A —	 (i_ Ii + 0.029k tan2A - 
tanA	 I	 tanA 

(i_ AJi + 0.0886 tan2A'\ 
U.125	

tanA	 ,•1 
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p0.221 ____	 A = _____ - 0.53k tan A) 112 - 1.9	
2 

12 + 0 221 sin A + 0 107 tan --

	

(i_/i + 0.0177 tan2A 	 8(1- Ji + 0.0291 tan2 A) + 
tan A	 )+ 

0.01
tanA 

0. C)14-4. 
(1_ f i + 0. o886 tan2 A 

tan A 

/-0.028 A - o.i61 tan A) 113 + 0.]A9 + 0.3214. sin A + 0.034. tan 	 - 

0 082 
(1_Al 

1 + 0.1717 tan2A ) -o 163 (1_ '1 1 + 0.0886 tan2 A'\ 
tanA	 tanA	 ) 

0.197 (i_
*J 1 + 0.1993 tan2A) 

tanA 

- (0.136 +	 tanA)Ha = 1.570 - 0.389 sin A .082 tan 	 + 
32	 cosA 

0 231 
(i_d 1 + 0.1717 tan2A )
	

(i_Ii + 0.1993 tan2A) 
tanA tanA 

70.628 o.i6 tanA 11 3 + 3.17 + 0.083 sin A+ 0.197 tan	 - 33

0 082 (1_Al 1 + 0.1717 tan2A ) + 0 163 (i_ Al 1 + 0.0886 tan2 A) + 
tanA	 ..	 tanA 

	

0.0311 
(i_I 1 + 0.1993 tan2 A)	 (B8) 

tanA 

Linear spanwise distribution of (IC)v/(Kc)py._ With the condition 
that the product of section lift-curve slope and. wing chord varies 
linearly spanwise, then

2b = _____________ 

{l+(T/p)x] {
1 [ l /Kfl )x ) }



The distribution of K for straight—tapered wings is given by 

	

(Kc)	 11V [l-_(icT/KB)X] 
=

	

C)	 1v ()
(Bil) 

11.0
	

NACA TN 2111.0 

and equation (3) becomes

i+( KT/KB)X 
= dv ( MK )	 (B9) 

2 { 
i—s 

where AK is the aspect ratio based on the wing chord equal to 1W. 

In equation (B9), Hv is reduced to terms of two parameters. Expressions 
of AK in terms of aspect ratio for straight—tapered wings and the dis-
tribution of section lift—curve slope can be found. 

For straight—tapered wings

2b 
A=

°R ( i+x) 

and since c is linear

2b 
K 

then

A	
A 

K 

and equation (B9) becomes 

[ = dv 
L (+x)/i+x

1 
i2 {i
	 [lT/K)XJ}

(Blo) 

Equation (BlO) is in terms of two parameters given by r 
L(KB-Tx)/l+x 

and. (KT/Icp)X. Solutions for spanwise loading in terms of these two 
parameters and A are valid for the distributions of section lift—
curve slope given by equation (Bll). Equation (Bll) indicates that at 
= 1, Ky is a linear function and at X = 0, Ky is a constant.
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For values of X between 0 and 1,	 is a curve in the region 
between the linear function and a constant. 

Equation (BlO) is given by figure 2 for in=7, but with the ordi-

Hv 

	

nate given by the parameter	 and the abscissa by 

For the case of linear distribution of (Ic)V and straight-
tapered wings for whi'th the chord a.id section lift-curve slope can be 
specified in three parameters, the loading and associated aerodynamic 
characteristics can be presented for a ralige of the parameters Ar, 

, and 

Integration of Antisymmetric Loading 

Rofling-noment coefficient and derivatives. - Rolling-moment c oef-
ficient is given by

3C 1 = . f G()d	 (B12) 

where
= cos cp 

which, by an integration formula, 

m 

f f()d =	 f(n) sin Pn 

n=l 

becomes
itl3A	 çi 

3C, =	 )	 G cos	 sincp 

	

2(m-i-l) L	 n	 n	 n 
n=l 

m 
itI3A	 s;:-' 

= 14-(m+l) L Gn sin
fl.L
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Since the loading is antisymmetric, G+1= 0, and 
2 

rn—i 

13C1 = 2( rn+l) fl1 G sin

	
(Bill.) 

For spanwise loading due to rolling, the loading is found as a 
function of pb/2V, then equation (Bill.) divided by pb/2V gives 

in—i 

=	 A)	
sin	 (Bi5) 

where
= G/(pb/2V) 

The roiling moment due to. ailerons will be found in Appendix C. 

Induced drag.— The induced drag coefficient is, with equation (Bi3), 
given by

P1 
13C:r. = 13A J aGth = r L Gv1i Si.fl cPv 

-1	 v:::1 

where a.	 is one—half the induced angle of the wing wake given by 
equation 'Aill.) for c = , then for antisyimnetric loading 

rn—i 

= 2A 1 
bvvG ,2 - Gv .	 Cvn Gn) sin	 (Bi6) 

where the prime indicates the value of n = V is not summed. 

Spanwise center of pressure.— The center of pressure on the wing 
half panel is given by	 1 

f 
1lc.p. =

Gd 
0
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The numerator is equal to 13C1/f3A. If the Fourier series for loading is 
assumed, 

	

G() =	 sin	 , the denominator becomes 

.t1=even 

a f2sin sin	 =	 (—i) () 

t1=even	 0	 p1=even 

then

Tlc.p. =	 m	 (B17) 

(—l) (i) 

1=even 

	

where	 are the Fourier coefficients. 

Loading-due—to—rolling function and interpolation table.— The 
Fourier series that approximates the antisymmetric loading with only a 
few terms is given by 

G() =

	

	 sin	 (B18) 

i1=even 

The loading G is determined at span positions of j = cos cp where 

=	
The a	 are given by 

=	 fG(cp) sin i icpdip	 (Bl9 

With the quadrature formula of equation (Bl3), equation (B19) becomes, 
for antisymmetric loading, 

	

•	 rn—i 

	

•	
2 

	

-	 at1 = -	 G sin	 -	 (B2(
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For m = 7, the a	 coefficients are equal to (for even 1.11) 

1	
G1 + G2 + a2 = - 

2\2	 21 

a =	 -	 +	

} (B21) 

6 22 

Equation (B18) with (B21) can be arranged to give 

G(p)=1( Sifl2W+S.in4P+'6P)G1+ - sin 
2	 2	 2 

I (sin 2 p - sin 6cp )G2 +	 (B22) 
2 

l(*[

	

	 sin6)G3 sin 2 p - sin 4 p + 

With equation (B22) the loading due to rolling can be determined at any 

span position. Letting p = cpk = 	 and tabulating the factors of 

as e, an interpolation table may be obtained to determine loading at 
span station k.

TABLE B1, e 

fm=7 I 

k 0.981 0.831 0.556 0.195 

1/2 3/2 5/2 7/2 

1 0.8155 0.5449 —0.1622 0.1084 

2 —.2706 .6533 .6533 —.2706 

3 .1084 —.1622 .5449 .8155

where

= .1: eG
	

(B23) 
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Equation (B23) may be used for interpolation of any form of loading coef-
ficient, thus

3 
/	 e ( c1c \ (CC) 

= n=l	
C2cav)	

(B24) 

n 

APPEI'IDIX C 

DETEIRMINATION OF ANTISYMMEThIC WING TWIST FOR FINDING 

SPANWISE LOADING DUE TO AILERON DEFLECTION


Wing Twist for a Given Aileron Span 

The determination of loading for an angle-of-attack distribution 
that contains a discontinuity by a method which satisfies the boundary 
conditions at a finite number of points can be made by increasing the 
number of points until the solutions become sufficiently accurate., For 
the method as given in Appendix A, the number of points that satisfy the 
boundary conditions is given by m. For the large value of m required 
for accurate results, the computations become exceedingly laborious; how-
ever, a procedure using a moderate value of m can be determined by use 
of a low-aspect-ratio theory with which a wing twist can be found that 
duplicates the results of' the discontinuous angle-of-attack distribution. 

A theoretical but relatively simple method of finding spanwise load-
ing due to inboard and outboard ailerons for wings of low aspect ratio is 
given by reference 6. In the present theory, as apect ratio approaches 
zero, g* values of Appendix A become zero and the PVn coefficients 
given by equation (Al6) become constant or independent of plan-form shape 
and equal to

Vn = 2Cvn 

= 2bvv 

These coefficients are given by the relations under equation ( A15) and 
p	 can be tabulated.
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TABLE. Cl.- p


[For m=7 and A=0] 

2 3 

1 10.1+521+ -2.0000 0 

2 -3.6951+ 5.6568 -1.5308 

3 0 -2.0000 1+.3296

With equation (A15), antisymznetric loading can be found for zero-aspect--
ratio wings. As a comment on the accuracy of the present theory for 
rn=7, the solution of equation (Al5), with the A=0 p	 values for load-
ing due to rolling gave the same values at the three semispan stations as 

(pb/2V) sin 2cp 
does reference 6, namely, G(cp)	

-	 1+ 

The zero-aspect-ratio theory of reference 6 shows that all span 
loading characteristics are independent of plan-form shape for zero 
aspect ratio. This independence makes that theory ideal for obtaining 
the boundary conditions of the present theory for zero aspect ratio,which 
should apply with the present theory for higher aspect ratios for which 
plan-form shape has an effect on spanwise loading, The boundary condi-
tions of the present theory are, given by the antisyminetric values of 
in equation (A15). The problem is to find what antisymmetrical distribu-
tion of a is required for the present theory to duplicate the exact 
loading distribution given by reference 6 for a given aileron span. 

The aileron spans are arbitrarily chosen for the present theory as 
the mean value of the spanwise trigonometric coordinate of the downwash 
point at a section angle of attack equal to zero. For m=7, three 
aileron spans can be defined for both outboard and inboard ailerons. 
Let Ta be the aileron span, and e the spanwise point of the end of 
the aileron, then

= 1 - cos 8 for outboard ailerons 

cos 6 for inboard ailerons 
a

LI 
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For the present theory, the aileron spans defined are tabulated as fol-
lows:

TABlE C2 

Outboard Inboard 

Case I II III IV V VI 

e 3n 
16 16 16 16 0 

a 0.1685 O.Iii4J14 0.8O !.9 0.5556 0.8315 1.0000

For the aileron spans listed in table C2, the exact span loading

distribution can he found from reference 6. With the p	 values listed 
in table Cl and the exact values of G1 , G2 , and G3 from reference 6, 
equation (A15) gives the twist required for the present theory to give 
the loading distribution for each case listed in table C2 or 

10. 1.521l. ()- 3. 6951i. ()

(c2) 

= _l.5308()^.1i..3296() 

The spanwise loading distribution from reference 6 for outboard ailerons 
is given by

e+cp I 
[ G()1	 =1	 _____ I sin -p-- I in 

outboard	

_[(cos - cos 0)	
sin L 6 J

Icos1 
(cos + cosO ) in	 I	 (c3) 

V0.2j 
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For the full-wing-span aileron, e =	 or Via = 1 

[G(P)]	 =	 cos cp in	 + sin	 (c4) 
COSEP 

For inboard ailerons, with the same value of e 
rG() 1	 [G(cPfl	 - [G(P) 

	

I	 (c5) 
L	 -I inboard L	 Tl	 L	 outboard. 

With equations (c3), (c4), and (c5), the spanwise loading G1 , G2, 
and G3 at span stations cp = i/8, it/4, and. 3/8, or	 = 0.9239, 
0.7071, and 0.3827 can be tabulated for each of the cases given in table 
C2.

TABLE C3 

Case I II III IV V VI 

0.1136 0.1919 0.2316 0.0454 0.1237 0.2373 

.0500 .2800 .3851 .11614. .3464 .3964 

.0190 .1022 .3620 .2922 .3754 .39414. 

The twist distribution required for each case is obtained with 
equation (C2) and. table C3, tabulating 

TABLE c4 

Casel II III TV V VI 

1.0029 0.9713 0.9979 0.04414. 0.0128 1.0157 

.0174 .9957 .9913 -.0169 .9614 .9788 

.0056 .0139 .9777 i.o868 1.0951 1.1007

With the twist distribution given by table C4, equation (A15) can be used 
to solve for spanvise loading due to ailerons for any of the six cases. 
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Rolling Moment Due to Aileron Deflection 

The rolling moment is given by 

=	 f(	 sin 2 pdp	 (C6) 

For span loading due to ailerons, the loading distribution is distorted 
sufficiently such that the quadrature formula given by equation (B13) is 
not thffficiently accurate for in = 7 to integrate equation (c6). With 
equation (B18)

	

Cj =	 a.2
	

(c7) 

	

Expanding equation (B18) for 	 = i/8, t/14., and 3i/8, or obtaining 
G1 , G2 , and G 3 in series of a's, the sum of the G's gives 

a2 = (o.7o7lG1 + G2 + o.7071G 3) + a14 - a18 + a30 - 834	 (c8) 

The higher harmonic coefficients can be put as factors of the G. The 
rolling-inoinent coefficient becomes 

= A 1O.7071n [ 
+ (a 4 - a 18 + a30 - 834) 1 G1 + 16	 L	 1.2071G1	 J 

- [l^(814_a18^a3o_4)1G2+ 
16 [	 1.2071G2	 j 
O.7O7lt [1 + ( 8 14- a 18 + a 30 - 

a) ] G3 }
	

(c9) 16	 l.2O7lG3 

When h is defined as the coefficients of Gn 

C j = A (h1G1 + h2G2 + h3G3 )	 (cio) 

The ratio of (a14 - 818 + a30 - 834) to G can be evaluated by 
the zero-aspect-ratio theory. It . is expected this ratio will not vary 
appreciably- with aspect ratio. From reference 6, the loading in series 
expansion gives for equation (B18)
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(a1

outboard 

(a 

b '1inboard

14.
(cos e sin	 e -	 e cos 

- _') 2	
(du) -

\ 

=	 = i ( 	 outboard 

These high harmonic coefficients are smnafl, but are not negligible for 
loading due to ailerons. The hn are tabulated for each of the cases. 

TABLE C5 

h Case I II III IV V VI 

0.1398 .1388 0.1379 0.1.14.62 0.111.07 0.11102 

h2 .19914. .1963 .1955 .20011. .1973 .1975 

h 3 .114.11.6 .1388 .1382 .1400 .13914W .1397

Spanwise Loading Distribution 

The spanwise loading distributions due to the twist distributions 
of table C14. are found at three span stations, and, since these loadings 
are not completely defined by a few terms of the assumed loading series, 
the values of loading at other span stations cannot be found accurately 
by direct use of equation (B23) and table B1. For zero-aspect-ratio 
wings, the spanwise loadiné distribution due to aileron deflection is 
given at all span stations by equation (C3). The loading distribution 
for other than zero-aspect-ratio wings will fluctuate about the value 
given by equation (C3) in a mrnrner similar to the mrnrner that loading 
due to rolling varies about the function sin 2 q) of zero-aspect-ratio 
theory. Since the interpolation table of equation (B23) applies only to 
loadings that vary about the function sin 2	 the loading due to 
aileron deflection can be divided by the ratio of equation (C3) to sin 2 (p 

and the resulting loading will be approximately given by sin 2Cp. 
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The zero-aspect-ratio values of equation (c3) can be tabulated as 
G(cp)/ 

	

ratios of	 . Define 
sin 2cp 

	

-	
= sin	

(c12) 

The ,zero-aspect-ratio values of Rn can be tabulated for each aileron-
span case considered.

TABLE c6.- Bh 

Outboard Inboard 

Case I II III IV V VI 

0.1685 0.4l14 0.8014.9 0.5556 0.8315 1.0000 

1 0.1607 0.27l14 0.3275 0.0614.2 0.l7I 9 0.3358 
2 .0700 .2800 .3851 .11614. .31464 .39614 
3 .0269 .iliJ.4.S .5119 .14132 .5309 .5578 

The interpolation series of equation (B23) becomes 

e ()	 (C13) 

where G =	 and e	 are given by table Bi. With k tabulated, 
kit values of loading at span stations 

flk cos	 are obtained. 

TABLE CT.- Bk 

______
Case

I II III IV V VI 

0.981 1/2. 0.1738 0.2663 0.3162 0.0559 0.114.814. 0.3222 
.831 3/2 .l056 .2787 .311.99 .0802 .2533 .3589 
.556 5/2 .0311.1 .2250 .14. 365 .224 .14225 .11.566 
.195 7/2 .0233 .1212 .53011. .6363 .7311.3 .7575
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TABLE I.- ANTISMEThIC INFLUENCE COEFFICIENTS, p, 
BEYOI'ID TEE SCOPE OF FIGURE 1 

______ ______ _____ ______	 p11 

-50 -40 -20 0 20

______ 

4o

______ 

50

______ 

60

______ 

70

_____ 

75 
-- -- -- -- -- -- -- -- -- 14.22 

.6 -- -- -- -- -- -- -- -- 15.23 17.99 

.8 -- -- -- -- -- -- -- 14.6i 18.05 21.84 

1.2 15.15 -- -- -- -- 14.69 15.93 18.36 23.86 29.34 

1.6 17.05 15.68 15.01 14.78 15.23 16.91 18.77 22.17 29.81 37.09 
2.0 18.89 16.91 i6.48 16.25 16.96 19,25 21.62 26.03 35.88 - - 

2.4 - - 19.35 17.93 17.73 18.68 21.60 24.46 30.02 - - --

2.8 -- -- 19.53 19.26 20.46 23 . 91 27.32 34.07, -- --

3.2 -- -- 21.19 20.81 22.27 26,22 30.20 38.24 -- --

3.6 - - - - - -. 22.42 24.08 2853 - - - - - - - - 

4.0 -- -- -- 24.05 25.86 30.84 -- -- --

______ ______ _____ ______	 p12 

-5° -40 -20 0 20

______ 

4o 50 60 70 75 
-1.17 -- -- -- -- -- -- -- -- -6.59 

.8 -.25 -1.11 - - - - - - - - - - - - -6.51 -8.17 
1.2 1.70 .26 -1.33 -- -- -- -- -6.29 -8.71 -9.67 
i.6 3.64 1.68 -.52 - - - - - - - - -7.58 -11.01 -11.18 
2.0 3.61 3.12 .28 - - - - - - -6.66 -8.90 -13.23 -14.19 
2.4 - - 4.62 1.08 -1.22 - - - - -7.50 -10.24 -15.54 - - 
2.8 -- -- i.86 -.87 -- -- -8.35-11.57 -- --

3.2 - - - - 2.61 -.51 - - -6.70 -9.21 -12.92 - - - - 

3.6 - - -. - 3.37 -.16 - - -7.20 -10.09 - - - - - - 
-- -- -- .18 -- -7.72 -10.95 -- -- --
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Figure 2.- Variation of the geometric parameter 	 with taper ratio A for 

straight-tapered wings.
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Figure 3.- Variation of I/ft -effectiveness parameter with aileron chord ratio, 
t: --. Average trolling- edge angle about /0; M 0.2. Curves from 

reference 7.



72 NACA TN 214.O 

5 

4 

3 

4 

3 

2 

4 

czc 
cz Ca.,

2 

4 

3 

2 

4 

3

0 /0203040506070 
A ,8 

2 

-50 -40 -30 -20 -/0 

(0) v =0.3827 

Figure 4. - Variation of loading due -to -rolling coefficient C C with com-
z Ccv 

pressible sweep parameter Aft ,degrees, for straight- tapered wings.
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Figure 4.- Continued.
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(c)	 =0.9239. 

Figure 4- Gonc/uded.
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I9 
Figure 5.- Voriotion of damping-in -roll parameter j' with compressible 

sweep parameter Afi degrees, for straight - tapered wings.
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Figure 5. - Continued.
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Figure 5.- Continued.
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(e) A:/5. 

Figure 5- Concluded.
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Figure 6.- Aileron rolling-moment parameter -- , 	 radian, and rolling 

,8C1.. 
moment due to sideslip with dihedral	 ,per radian squared, for 

extent of unit ant/symmetric angle of attack from the wing root 
outboard.
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(c) A = 1.0. 
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Figure 8.- Spanwise loading due to rolling of wings with various taper 
ratio and sweep angle parameters of aspect ratio parameter 4!- = 
The curve for 4=0 serves as a basis for comparison and the factor 

CP	 gives the curves constant area equal to 3.454. 
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Fiqure /5- Correlation of theoretical and /owspeed experimental darnpig-

ñi- roll coefficient C21, for various plan forms.
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Figure /7 - Correlation of theoretical and low-speed experimental aileron-
effectiveness C1 ,per radian, due to two ant/symmetrically deflected 
ailerons, for various plan forms. 
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