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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2140

THEORETICAL ANTISYMMETRIC SPAN LOADING FOR WINGS OF
ARBITRARY PILAN FORM AT SUBSONIC SPEEDS

By John DeYouﬁg
SUMMARY

A simplified lifting—surface theory that includes effects of com—
pressibility and spanwise variation of section lift—curve slope is used
to provide charts with which antisymmetric loading due to arbitrary anti-
symmetric angle of attack can be found for wings having symmetric plan
forms with a constant spanwise sweep angle.of the quarter—chord line.
Consideration is given to the flexible wing in roll. .Aerodynamic char—
acteristics due to rolling, deflected ailerons, and sideslip of wings
with dihedral are considered. Solutions are presented for straight—
tapered wings for a range of swept plan forms.

INTRCDUCTION

Reference 1 has been for many years the standard reference for esti-—
mating the stability and control characteristics of wings. The lifting—
line theory on which this work was based gave generally satisfactory
results for straight wings having the aspect ratios considered; however,
the use of wing sweep combined with low aspect ratio has made an exten—
sion of this work desirable. Lifting—line theory cannot adequately
account for the increased induction effects due to sweep and low aspect
ratio; consequently, it has been found necessary to turn to the more
complex lifting—surface theories.

Of the many possible procedures, a simplified lifting—surface theory
proposed by Weissinger and further developed and extended in reference 2
‘has been found especially suited to the rapid computation of charscter—
istics of wings of arbitrary plan form. Comparisons with experiment have
generally verified the theoretical predictions. In references 3 and &4,
this method has been used to compute for plain, unflapped wings,the aero—
dynamic characteristics dependent on symmetric loading. The same simpli—
fied lifting—surface theory can be extended to predict the span loading
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resulting from antisymmetric! distribution of the wing angle of attack.
From such loadings, the damping moment due to rolling, the rolling
moment due to deflected ailerons, and the rolling moment due to dihedral
angle with the wing in sideslip can be determined. A recent publication
(reference 5) makes use of the simplified lifting—surface theory to find
span—loading characteristics of straight—tapered swept wings in roll and
loading due to dihedral angle with the wing in sideslip. Experimental
checks of the theory for the damping—in-roll coefficient and rolling
moment due to sideslip were very favorable. The range of plan forms
considered in reference 5 is somewhat limited and aileron effectiveness
was not included. The loading due to aileron deflection normally involves
excessive labor when computed by means of the simplified lifting—surface
theory; however, development of the theory, presented in reference 6,
that deals with flap and alleron effectiveness for low-aspect-ratio wings
provides a means by which the simplified 1lifting—surface method can be
used to obtain spanwise loading due to aileron deflection. '

It is the purpose of the present analysis to provide simple methods
of finding antisymmetric loading and the associated aerodynamic coeffi—
cients and derivatives for wings with symmetric plan forms limited only
by a straight quarter—chord line over the semispan. Means will be pre—
sented for finding quickly the aerodynamic coefficients of span loading
due to rolling, of span loading due to deflected ailerons, and of span
loading due to sideslip of wings with dihedral. Flexible wings, when
the flexure depends principally on span loading as in loading due to
rolling, can be included 1n the analysis.

NOTATION

A aspect ratio <g—ﬁ >

b wing span measured perpendicular to the plane of éymme;ry,‘feet
c 2wing chord, feet |
ca 2aileron chord, feet

Cgv 2mean wing chord'< %) , feet

cy local lift coefficient <____1°°a;clift>

1The word antisymmetric is understood to indicate that a distribution of
loading or angle of attack is equal in absolute magnitude on each half
of the wing but of opposite sign. -

2Measured parallel to the plane of symmetry.
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cic .

CiCav

€nk

@

@l

pb/2V

Pvn

induced drag coefficient <_______Eindu°:g dra >

rolling-moment coefficient. <mlllng—m
' aSb _

BC],.

m ], per radia.n

rolling moment due to rolling [
3,
rolling moment due to aileron deflection 8_5_> , per radian

spanwise loading coefficient for unit rolling moment < >

scale factor

factors of loading interpolation function

spanwise 1oa.ding’ coefficient or dimensionless circulation

(%)= ()

spanwise loading coefflcient due to rolllng< , per radian

pb/2v

spanwise loading coefficient due to aileron deflection ( >
“per radian .

wing geometry, compressibility, and section lift—curvé—-slope

e Ey

integration factors for spanwise loading due to ailerons

Mach number

arbitrary number of span stations defined by ¢ = cos m——l
m+

rate of rolling, radians per second
wing—tip helix angle, radians

coefficient depending on wing geometry and indicating the

influence of antisymmetric loading at span station n on
thg ‘downwash angle at span station V
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q free—stream dynamic pressure, pounds per square foot
S wing area, square feet

t 2ratio of aileron chord to wing chord. ( >

v free—stream velocity, feet per second’

w induced velocity, normal to the lifting surface , positive for
downwash, feet per second

y lateral coordinate measured from the wing root perpendicular to
the plane of symmetry, feet

Q) 25ection angle of attack at span station , radians

Ja's 2 2angle of antisymmetric twist of the elastic wing produced by the
loading due to rolling, radians

da : ) -

— 2rate of change of wing-section angle of attack with control~sur-—

ad face angle for constant section lift coefficient

B compressibility parameter (,/ |l—M2|>

B angle of sideslip, radians '

r dihedral angle measured perpendicular to the plane of symmetry,
radians

l"C spanwise circulation, feet squared per second

o] 2angle of deflection of full wing—chord control surface, radians

_6_ angle of deflection of full-wing—chord control surface » measured
perpendicular to the hlnge line » radians

di ionl lateral dinat
m imensionless lateral coor 1na.e (%)

aileron span
b/2

Na dimensionless aileron span (

. . ¥
Ne.p. spanwise center of pressure on one wing panel °-P: >

b/2

6 trigonometric spanwise coordinate @, indicating the edge of the
alleron span, radians .

28ee footnote 2 p.2.
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Ky ratio of section lift—curve slope at a span station v to %E,

both at the same Mach number :
A sweep angle of the wing quarter—chord line, positive for sweep—

back, degrees

e3 2 s ) -3 tan A
Aﬂ compressibility sweep angle parameter | tan B s degrees
A taper ratio tip chord
root chord
P trigonometric spanwise coordinate (cos™ 1), radians
Subscripts
n,v integers pertaining to specific span stations given by
ns : v :
= cOS v or = coSs

n 8 n 8
k pertaining to span station k
C.p. center of pressure
a aileron
t pertaining to fraction—of-wing—chord ailerons
T wing tip
R wing root
av average Or mean

DEVELOPMENT OF METHOD

The simplified lifting—surface method used herein replaces a lift—
ing surface by a lifting vortex located at the wing one—quarter—chord
line. The boundary condition for determining the vortex strength dis—
tribution specifies that, along the three—quarter—chord line of the
wing, there shall be no flow through the lifting surface. In effect,
this specifies that, at the three—quarter—chord line, the ratio of the
velocity normal to the mean camber line (induced by the bound and trail-~
ing vortices) to the velocity of the free stream shall equal the sine ’
of the angle of attack.
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Span loadings are theoretically additive. ©Since the symmetric
angle—of—attack distribution contributes only to symmetric loading, it
follows that the antisymmetric loading is independent of symmetrically
distributed wing twist or camber; hence, to find antisymmetric loading,
it is only necessary to consider the loading resulting from the anti-—
symmetric distribution of the angle of attack across the wing span. In
the subject case, such a disgribution is experienced by the wing as
induced angle due to rolling , the effective twist due to aileron
deflection, or sideslip of the wing with dihedral.

For an antisymmetric angle—of—ettack distribution, the loading 4is—
tribution will be equal in absolute magnitude on each semispan, but of
opposite sign. The loading therefore needs only to be found over the
semispan, and, since the loading is zero at the wing root, only .span
stations outboard need be considered. The mathematical development of
the simplified lifting—surface method for.the case of antisymmetric
loading is given in Appendix A: As shown in Appendix A, (m-1)/2 linear"
equations in terms of loading distpgbution are obtained which satisfy
the wing angle—of-attack conditions™ at the three—quarter—chord line at
m stations n, where m 1is an arbitrary odd integer. These equations
are represented by the summations

1
2

a'\):Z Pwn Gp» vV=1,2,3, . .. In-—__2_l . (1)
n=1

aIn considering the case of the angle induced by rolling as equivalent
to an antisymmetric distribution of twist, it must be noted that .
account should be taken of the fact that a rolling wing leaves a
twisted vortex trail; whereas a twisted wing does not. The difference
in induction effects on the wing of the straight and twisted vortex is
considered insignificant here, as has been assumed in other analyses.

e reader should note that the boundary condition is given by
=V sin ay from which (w/V)y 1is seen to equal sin ay. The sub—

stltutlon of ay for sin ay has the effect of increasing the value
of loading on the wing above that necessary to satisfy the boundary
condition. However, the boundary condition was fixed assuming that the
shed vortices moved downstream in the extended chord plane. A more
realistic picture is obtained if the vortices are assumed to move down—-
stream in a horizontal plane from the wing trailing edge. It can be -
seen readily that, if this occurs, the normal component of velocity
induced by the trails at the three—quarter—chord line is reduced and,
if the boundary condition is to continue to be satisfied; the strength
of the bound vortex must increase. It follows that substitution of Qy
‘for sin ay then has the effect of accounting for the bending up of
the trailing vortices. It is not known how exact the correction is,

but the calculations and experimental verification show it to be of
the correct order.
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where

ay antisymmetric angle of attack at wing station v

Pyp  coefficients that for a given value of m depend on wing
geometry, compressibility, and section lift—curve slope

'Gn.‘ loading coefficients at span stations n

The application in Appendix A of the present report is with m=7.
Since the loading at the midspan station is known to be zero, .considera—
tion is required of only three stations: n=1,2,3, equal to wing semispan
positions of n = cos (nn/8) = 0.924; 0.707; and 0.383. Equation' (1)
thus becomes :

oy = i Pyn Gp» v =1,2,3 , (2)

n=1

where the integer Vv pertains to span station g = cos (vr/8)

To obtain the loading coefficients Gy = (cz¢/2b)n, it remains
only to evaluate thé coefficients Pw and the spanwise variation of
. the antisymmetric angle of attack Ly .

Evaluatibn of the Coefficients Pyn

Since m 1is chosen, Pyn becomes a function only of wing geometry,
compressibility, and section lift—curve slope. The effects of compressi—
bility and section lift—curve slope are equivalent to a change in wing
plan form® and can be accounted.for by.a proper adjustment of the Pvn
values. As shown in Appendix B, pyp can be conveniently presented as
a function of two parameters, namely, a compressible—sweep—angle parame—
ter defined as Ag= tan—1(tan A/B) and a parameter Hy involving the
ratio of wing span to wing chord and variable section lift—curve slope,
defined by '

5, = 4, %) (c‘ﬁ@ | (3)

where

Ky ratio of experimental section lift—curve slope at span station v
. to the theoretical value of 2n/B, both at the same Mach number

DCom.pressibility and section lift-curve slope are discussed in Appendix B 
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cy wing chord at span station V

The value dy 1is a scale factor given by

dy = 0.061 for v =1
= 0.234 for v =2 (4)
= 0.38L for v =3

Equation (3) can be written in alternﬁtive form that gives Hy in
terms of wing geometry parameters_that are more significant; thus

<nav>‘[(nv/,gav)%(¢v/cdv)} - - (5)

_ where
av ratio of average section lift—curve slope to Qﬂ/B both at
the same Mach number
Ky/Kgy spanwise distribution of section iift-curve slope for a
given Mach number
Cy/Cav spanwise distribution of the wing chord

(BA/nav) compressible aspect ratio and average section lift—curve—
slope parameter

1
(ky/% av) (CV/cav
dynamic taper of a wing. The distribution of ky/k gy DAYy vary with
Mach number, particularly at transonic speeds (e.g., due to spanwise
variation of airfoil section). However, since the distribution con-—
tributes to taper effect, the loading distributlon and not the total
loading will be appreclably affected.

The term of equation (5) gives an effective aero—

With Hy determined from equations (3) or (5) and (4), the values
of pyp, nine in all, are presented in figure 1 where pyn 1is given
as a function of Hy for various values of Aﬂ’

For the case of straightdtapered wings with arbitrary section 1ift—
curve—slope distribution for which the chord distribution is specified
by taper ratio, evaluation of equation (5) is given in figure 2 where
(*y/ Kay By
(BA/kav)

taper ratio.

for each of'the three span stations is shown as a function of
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Evaluation of Antisymmetric Angle—of-Attack Distributioﬁ Oy

The antisymmetric angle—of-attack distributions most commonly
encountered are those resulting from rolling wings, aileron deflection,
and sideslip of wings with dihedral. Evaluation of the angle—of—attack
distributions for these various cases is outlined in the sections imme—
diately following.

Rolling wings.— For the case of the rigid wing, the induced veloc—
ity normal to the wing surface is equal to the upwash velocity experienced
by the rolling wing. Thus, at span station Vv .

w b :
ay == —(%7) Ty | (6)

where pb/2V ~is the tip helix angle. It should be noted that the rela—
tion given by equation (6) assumes the wing structure to be rigid in that
the distribution of a4y 1is completely defined by the linear distribution
of helix angle. In the case of flexible wings, however, the expression
for a‘, must be modified to account for the streamwise angle—of-attack
change which may occur due to bending or torsional deflectiqns. In this
case, '

pb / :
a‘,=-—<é§:>]v+-Aav _ | (7)

where Aoy represents the modifying influence of flexibility. Normally,
Amv is not considered for straight wings since only the effect of tor—
sion (which is usually small) is involved. On swept wings, however, the
effect of bending can cause Ay to be quite large so that the. ay
distribution may be affected considerably. Due to the interaction
existing between the aerodynamic and structural forces, Aa,, cannot be
determined directly, but must be found through equations of equilibrium
or by iteration. With the loading for the rigid wing provided, however,
the iteration procedure becomes relatively easy to apply. The first
approximation of a4y is found from the loading of the rigid wing and
further refinements of a, may be found utilizing the successive loadings
for the flexible wing as determined.

Deflected ailerons.— Where the spanwise distribution of the angle
ay 1s to be considered equivalent to antisymmetric aileron deflection,
1t must suffer a discontinuity at the spanwise end of the control surface.
The loading when such a discontinuity is present can be duplicated by a
proper distribution of antisymmetric twist. In Appendix C, the anti-
symmetric twist distribution required by the present theory to give accu—
rate span loading distribution due to ailerons is found with the aid of
zero—aspect-ratio wing theory given by reference.6. To minimize the
computation involved, it is convenient to consider both the case of out—
board and inboard ailerons.
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1. Outboard ailerons: With m=7, three different aileron spans
can be conveniently defined for the outboard ailerons. For
the aileron spans 14, measured from the wing tip inboard,
the antisymmetric twist distribution required per -unit deflec—
tion of full-wing—chord ailerons, mv/B, is given by

Case I IT IIT
Na 0.169 0. lhk 0.805
Q)
o~ 1.003 - 0.971 0.998
(8)
gé .017 .996 .991
gﬁ .006 .| .ok .978

2. Inboard ailerons: With m=7, three different alleron spans
can be convenliently defined for the inboard ailerons. For
the aileron spans mng measured from the wing midspan out—
board, the antisymmetric twist distribution required per unit

" deflection of full—wing—chord allerons, Gv/&, is given by

Case Iv \2 Vi
Na 0.556 0.831 1.000

%ﬁ 0.0k 0.013 1.016

. _

— —.017 .961 .979 (9)
CLS ‘

5_ 17087 1.095 1.101

Sideslip of wings with dihedral.— For calculating the rolling
moment caused by dihedral angle for the sideslipping wing, the effect of
the skewness of the vortex field in altering the effects of the dihedral
angle will be assumed to be small (as assumed in reference 5). The
problem then simplifies to finding the rolling moment due to antisymmetric
angle of attack with the unskewed vortex field. The solution to this

problem is the same as for the ailerons which has already been solved.
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The antisymmetric distribution of angle of attack for the side—
slipping wing with dihedral is gir:n by .

ay =B T (10)
where

oy effective angle—of-attack distribution
B angle of sideslip measured positive 1n the counterclockwise
direction from the plane of symmetry

r dihedral angle

The wing parémeter I' is not affected by compressibllity. Equation (10)
is approximate for small values of B and T.

For unit BT over the span of the ailerons considered,
Br=2% (11)

can be substituted for & in equations (8) and (9).
APPIICATION OF METHOD

- For the cases of antisymmetric angle—of-ettack distributions result—
ing from rolling, aileron deflection, or sideslip with dihedral, it is
possible to present a set of simultaneous equations which are required
for the solution of the load distribution for an arbitrary plan form.
With the loading known, integration formulas can be given to determine
aerodynamic coefficients.

The loading-distribution coefficient Gp determined from the solu—
tions of the simultaneous equations, are .functions of pyn which has
been shown in a preceding section to be a function of wing geometry,
compressibility, and section lift-curve slope. The aerodynamic coeffi—
cients are integrations of the load distribution and, therefore, will
also be a function of wing geometry, compressibility, and section lift—
curve—slope parameters. Application of the method to the general solu—
tion for arbitrary chord distribution is outlined and solutions are pre—
sented for the case of straight taper.
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General Solution

The solutions for the

aerodynamic effects due to the rolling wing will be found and loading,
rolling moment, spanwise center of pressure, and induced drag will be

obtained.

1. Simultaneous loading equations: The pyy, values are
obtained from figure 1 and table 1° with values of Hy
glven by equations (3) or (5).

The simultaneous equations (2), for the rigid and flexible
wing, respectively, become:
-0.92% = py1G1 + Py L2 + praGg
=0.707 = P16y + P22z + Pogly (12).
-0.383 = pSlal + Dalp + Pgala
where
_ G
G’n = n
b/
and
Ja%e 5% - = < - N
- =0.92k + Y Py,Gy + PG, + Py o0
Ja's 2 - - -
—0.797 + oy = PGy + PG + Poglg > (13)
Aag - - -
~0.383 + ;€7§; = Pgyly + Pal, + Pagly )
h G, %0 and my, is the incremental angle of
where =
: 2oy T TV ~
attack due to aeroelastic effects.

2. Loading distribution: The loading-distribution coefficient
is given by G = clc/2b. Other forms of the loading coeffi-.
cient are given by the identities

6Values of beyond the scope of figure 1 are included in table I.

For values of

the

linear asymptotes of the

larger than those included in figure 1 and table I,
curves can be obtained from equation (B8) which gives the

Pyn function.
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1 c;c C; ¢ (lh)

The loading is known to be zero at n =0 and 1 and is
determined at three intermediate span stations. Values of
loading at other span stations can be obtained from a load—
ing function derived in Appendix B or, with equations (B23)
or (B24). of Appendix B, the loading can be found at span
positions n = 0.981, 0.831, '0.556, and 0.195.

. 3. Rolling moment: The damping-in-roll derivative for the s‘olué
tions of equations (12) or (13) is derived in Appendix B and

given by

BCip n / BA = qm .= .
_— = e[ —— G 0.70 G

- I m)[a" 77(1+G3)J (1)

4, Spanwise center of pressure: The equation giving center of
pressure on the wing semispan is shown in Appendix B to be

BCy /"av

&‘% (0.163Gy + 0.24865 + 0.430G,)

c.p.

cic . cic v cic (16)
o.082< ) + o.12k< 2 + 0.215 ( L )
Clcav 1 CiCav . CiCay a

5. Induced drag: The induced drag is derived in Appendix B

and given by
BcDi x [ BA ) V2
. 2 2 2
Kay D E;"'v>[ G1% +G2% + Ga® - > G2(Gy + Gs) : (17)

Aerodynamic characteristics due to aileron deflection.— The solu—
tions for the aerodynamic effects due to ailerons will be found for three
different spans of outboard and inboard aileroms. Cross plots of these .
data provide curves for arbitrary aileron spans.

1. Simultaneous 1oading'equations: The Pyn values are
obtained from figure 1 and table I with values of Hy
given by equations (3) or (5).
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(a) Deflected outboard ailerons: The aileron spans measured
from the wing tip inboard are given by 1,. The simultaneous
solution for antisymmetric spanwise loading due to deflection
of any of the three following aileron spans can be obtalned
from the appropriate set of the following equations: :

Case I IT | III

Mg, 0.169 | o.M4h | 0.805

a : = - _
;‘ 1.003 | 0.971 | 0.998 |= p1ab1 + Prcfiz + Pros
¢ 5-] ‘ = = B~
3 -017 -996 991 | = P21G1 + P22z + Py G,
> 006 | = .01k 978 | = p.,G1 + D G2 + DPusl
) . . . = PgiU1 ¥ Pgpliza + Paglg

_ (18)
where én = Gn/B.

(b) Deflected inboard ailerons: - The aileron spans measured
from the wing midspan outboard are given by 1,. The
similtaneous solution for antisymmetric sPanW1se loading

due to deflection of any of the three following aileron

spans can be obtained from the approPriate set of the follow—
ing equations:

Case ™ v VI

Mg 0.556 0.831 1.000

a3 = = ) =
5 0.0kk 0.013 | 1.016 | = p11G1 + P12G2 + DPy5Ga
o ) - = = =
—52- -.017 961 2979 | = P21G1 + P22G2 + Paglsa
ag o 5 a G
E‘ 1.087 | 1.095 1.191 = pSJ_Gl + P32G2 + PsaGa‘

= , (19) *
where Gy = Gn/a
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2.

Loading distribution: The spanwise loading distributions
due to various aileron configurations include:

(a) Full-wing—chord ailerons: The loading is known to be
zeroat 1 =0 and 1, and is determined at three inter—
mediate span stations. With equation (Cl3) and tables C6,
Bl, and C7, the loading can be found at span stations

n = 0.981, 0.831, 0.556, and 0.195 for each of the aileron
spans considered. With these given points and the knowledge
that the slope of the loading-distribution curve is theo—
retically infinite at the point of angle—of—attack discon—
tinuity (aileron spanwise end), the loading distribution can
be faired.

(b) Constant fraction of wing—chord ailerons: The spanwise
loading of constant fraction of wing—chord ailerons is equal
to the product of the loading due to full-wing—chord ailerons
and the effective change of angle of attack with aileron
angle,?” doa/dd. The factor da/dd is a function of the
ratio of aileron chord to wing chord t = ca/c. The change
of section angle of attack with aileron angle da/ds is
presented in figure 3, which is reproduced from figure 18 of
reference 7.

Although figure 3 taken from reference 7 limits the Mach
number range to Mach numbers less than 0.2, this limitation
is believed to be unwarranted since theory indicates that
da/dﬁ is unaffected by compressibility for the two—
dimensional wing. However, as indicated in reference 6,
da/d& is strongly affected by low aspect ratio and will
change appreciably if the parameter BA becomes much less
than two; hence,the values of da/dd from figure 3 appear
to be valid for BA >2. ’

(c) Arbitrary spanwise distribution of aileron chord: The
aileron can be divided into several spans with constant
da/dB, then the total loading is the sum of the products of
th7 full-wing—chord loading of each span and its respective
da/dd.

n using ,da/dﬁ here, it should be noted that the assumption is made
that the effective airfoil section is taken as being parallel to the
plane of symmetry and that the section approaches a two—dimensional

section.

The validity of this assumption can be questioned; however,

limited checks with experiment show it to be at least approximately

correct.
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Rolling moment: The rolling moment can be found for the
following aileron configurations: .

(a) Full-wing—chord—ailerons: The spanwise loading due to .
aileron deflection cannot be integrated with sufficient

accuracy with equation (15). In Appendix C, a similar
integration formula is developed that applies to each given
aileron span. Equation (C1l0) and table C5 give

BCyy
Key

BA ) <h1C=}1 + hofip + hsG=s> (20)
Kav, /

where for each of the cases of equations (18) and (19) the
h, values are given by

" (b) Copstant fraction of wing—chord ailerons:

Case I II 111 v v VI
hy | 0.130| 0.139 | 0.138 | 0.146 | 0.141 0.140
hy | .199] .196 196 | .200 197 | .198
hga 145 .1'39- 138 | .10 | .139 | .1ko

For constant
fraction of wing—chord ailerons with aileron angle measured
parallel to the plane of symmetry, the aileron effectiveness
is given by

ﬂCZSt

8Oy
av < > (21)

1

(c) Arbitrary spanwise distribution of aileron chord: The
deflection of ailerons for which t varies spanwise on the -
wing can be considered as an equivalent wing—twist distribu—
tion. The effective antisymmetric twist of the wlng is
given by

da
aQy = — B 22
V=g Ot (22)



NACA TN 21kO

17

)

where dm/dS is now a function of spanwise position. The
antisymmetric angle—of-attack distribution given by equation
(22) can be divided into spanwise steps of constant angle of
attack and the total rolling moment can be found by the
summation of the rolling moment due to each spanwise step.
The rolling moments of the spanwise steps are obtained from
a curve of rolling—moment coefficient ﬁCZS/nav as a

function of unit antisymmetric angle of attack from the wing
root outboard. This step method is the procedure used in
reference 1.

" A curve of Bcla/“av as a function of unit antisymmetric

angle of attack from the wing root outboard can be obtained
from the solutions of equation (19) for thé cases IV, V, and
VI. An additional point can be obtained from the solution
of case III of equation (18), applying the relations (dis—
cussed later) existing between inboard and outboard ailerons.

The rolling moment due to the twist given by equation (22)
can be obtained, by a method other than the step method, from
the integral given by

= dn (23)

PCag, f‘l aa WBC15/k,)
(0]

Rav ad ~ dn

which can be integrated numerically by taking the graphical
slopes of BCZS/Kav which is a function of extent of unit

antisymmetric angle of attack from the wing root outboard.

Spanwise center of pressure and induced drag: Spanwise center
of pressure and induced—drag integration formulas for loading
due to ailerons are not given; however, equations (16) and
(17) can give epproximate integrations of the loading to
obtain center of pressure and induced drag.

Additional considerations:

(a) Relation between aerodyﬁamic characteristics for outboard
and inboard ailerons: The spanwise loading distributions due .
to outboard and inboard ailerons bear a simple relation to

~ each other. Since loading is linearly proportional to angle

of attack, loadings are directly additive. Then, for
outboard and inboard ailerons with the spanwise ends of the
ailerons at the same span station,
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%mwm;Gm;ﬂ—wawm
CZ = CZ(\ -— Cl .
Sinboard °(ny=1) Soutboard (24)
Ul =1-n
& i nboard &outboard

These relations do not apply for n¢,p, and Cp; since
these characteristics are not linearly proportional to
loading.

(b) Differential aileron angles: The effect of a differen—
tial between aileron angles can be taken into account by
considering the Cig of each wing panel as one—half the ‘
antisymmetric results of equations (20), (21), or (23). The
total wing rolling moment is then the sum of the products of
C;./2 given by equations (20), (21), or (23) and the angle
of deflection of each aileron. Although the total rolling
moment can be found by this procedure, the spanwise loading
distribution can be found only approximately by the products
of the antisymmetric unit loading G/S and the deflection
of each aileron. However, the loading distribution so found
will be quite accurate since this procedure neglects only
the small change due to the induced effects of the differen—
tially different opposite wing panels.

(c) Aileron angles measured perpendicular to the hinge line:
The relationship between aileron angle measured perpendicular
to the aileron hinge line and that measured parallel to the
plane of symmetry is given by

(25)

where
Ay sweep angle of the aileron hinge line
5 angle measured perpendicular to the hinge line

For constant fraction of wing—chord ailerons on straight—
tapered wings, Ay is given by
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L(0.75-t 1
tan Ay = tanAg/, — ( ZS_.) <1+X> (26)
where t 1is the fraction of wing—chord aileron measured
from the wing trailing edge.

Aerodynamic characteristics due to sideslip of wings with dihedral.-—
The total antisymmetric loading due to sideslip can be considered as the
sum of that due to dihedral angle and that due to zero dihedral engle.
For the unswept wing, the rolling moment due to sideslip for zero
dihedral angle is generally considered negligible; however, for the
swept wing, this effect can be appreciable. In the present report,only
that part due to dihedral angle will be considered for the swept and
nonswept wings.

1. ©Simltaneous loading equations: The pyp values are
obtalned from figure 1 and table I with values of H,, given
by equations (3) or (5).

The simultaneous equations resulting from the substitution
of ® = Bl (see equation (11)) and G = @/BT' in equations
(18) and (19) are applicable in the determination of the
effects of unit outboard or inboard dihedral angle over the
span of the ailerons considered.

2. Rolling moment: The rolling moment due to various dihedral
angle distributions include:

(a) Constant spanwise dihedral angle: For dihedral angle
constant for the entire wing semispan, the loading is given
by the solution of case VI in equation (19) for G = G/BT
and the rolling moment from equation (20) becomes

BCZ— = = =
»_% - BA (0.140G, + 0.1985, + 0.1k0G,) (27)
Rav Kav

(b) Gulled wing: For the gulled wing, solutions of equation
(19) for G = G/ET gives the loading, and the rolling
moment from equation (20) becomes

BCy= - - _
—B - BA (1§, + oGz + hals) (28)
Kavr KB.V ’

A plot or the results of cases iV, V, and VI gives the
extent of unit dihedral angle from the wing rocot outboard.
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Then, for a gulled wing, the total rolling moment equals the
sum of products of dihedral angle of each span section and
the rolling-moment contribution of the respective span
sections. ‘

(c) Variable spanwisé dihedral angle: If T varies spanwise,

the rolling moment can be obtained by integration as in
equation (23). The integral becomes

BCy~ : A(BC/kgyT) ,
- fI‘(n)- an (29)
av o dn
d(BCZE/KavP) .
where an — 1s the slope of the curve described in

part (b) above.

Solution for Straight-Tapered Wings

Charts of aerodynamic characteristics for straight—tapered wings can
be presented in terms of geometric, compressibility, and average section
lift—curve—slope parameters. These charts provide a ready means of
obtaining data directly.

Aerodynamic-characteristics due to rolling.— The application of
equation (12) for a constant value of section lift—curve slope8 provides
the spanwise loadings at span stations 0.383, 0.707, and 0.924 which are
presented in figure 4 for a wide range of plan forms.. The interpolation
formula of equation (B24) will give values of loading due to rolling at
span stations other than those presented. With equation (15), the
damping—in-roll coefficients BCzp/Kav can be obtained and are presented

in figure 5 for a wide range of plan forms. .

8Throughout the figures, Kgy 1s the constant spanwise section lift—
curve slope or the average of a small variation. For large spanwise
variations of «x that follow the function given by equation (B1ll)
developed in Appendix B, the parameters BA/KaV and A can be replaced

’

by the parameters BA and —T M, respectively. For large
(KR+KT )\,)/(l+7\.) KR .

spanwise variations of & that do not follow the curve of equation

(B11), the simultaneous equations for the general solution can be

solved for arbitrary distributions of k. The Hy values can be

obtained from figure 2. '
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Aerodynamic characteristics due to aileron deflection.— The appli-—
cation of equation (19), case III of equation (18), and equation (20)
provide aileron effectiveness in the coefficient form BC; /Kav for
several aileron spans. In figure 6, Bclg/nav is plotted against extent
of unit antisymmetric angle of attack from the wing semispan root.
outboard for a range of wing parameters.

As presented, figure 6 gives directly the effectiveness of full-—
wing—chord inboard ailerons for aileron spans measured from the plane of
symmetry outboard. The effectiveness of full-wing—chord outboard ailer-—
ons for aileron spans measured from the wing tip inboard is given by
figure 6 directly by the relations of equation (24). For full-wing—
~chord ailerons located arbitrarily on the wing semispan, the aileron
effectiveness can be obtained directly from figure 6 as indicated in the
following example sketch. ' '

With the full-wing—chord values given above, the effectiveness of
constant fraction of wing—chord ailerons or ailerons of arbitrary spanwise
chord distribution can be found through use of equations (21) or (23) with
the da/dd values of figure 3.

Aerodynamic characteristics due to sideslip of wings with dihedral.—
The application of equation (19), case III of equation (18), but with
8 = BT, and G = G/BT, and the use of equation (28) provides rolling
moments due to dihedral angle for the wing in sideslip. These rolling
moments are given in the coefficient form BCZE/KavP which is the same
function of 1 as BCy /Kav and is presented with BCza/Kav in figure 6.
Figure 6 with equation ?29) will provide the rolling moment due to
sideslip for any symmetric 'spanwise distribution of dihedral angle.

For dihedral angle constant spanwise, the rolling moment is given by
Athe value'at n =1 1in figure 6. These values for constant spanwise
dihedral angle are presented in figure 7 as a function of aspect ratio
‘for various values of sweep angle and taper ratio.
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DISCUSSION

Effects of plan—form parameters on aerodynamic characteristics for
straight—tapered wings are shown by plots against the various parameters.
Compressibility is discussed and formulas given for a range of plan forms
at sonic speeds. Theoretical considerations and experimental comparisons
indicate the order of reliability of the present theoretical results.

Straight—Tapered Wings

The spanﬁise loading distribution due to rolling for several plan
forms is presented in figure 8. These curves are the result of applying
figure 4 and the loading interpolation formula of Appendix B. The

. Ne.p. AR _
loading coefficient is given as /) to make the total
(T]C.p. )A=o Clcav

‘loading on the semispan constant and thus show more clearly the changes
of distribution due to sweep and taper ratio. Figure 8 shows large
changes in loading distribution for the zero tapered wing. The effects
of sweep are generally as expected, namely, that sweepback shifts the
loading outboard. '

Effects of plan form on the rolling moment due to rolling is shown
from cross plots of figure 5 which are presented in figures 9 and 10.
For higher aspect ratio, figures 4, 9, and 10 show the marked lowering
of rolling moment due to sweep. Figure 9 indicates that for low aspect
ratio, the rolling moment becomes essentially independent of sweep and
taper. The taper effects on rolling moment as seen in figure 10 are
small except for values of taper ratio less than 0.25.

Typical spanwise loading distributions due to full-wing—chord -
aileron deflection are shown in figure 11. These curves were faired
with the aid of the loading interpolation function of Appendix C and,
at the aileron spanwise end, care was taken to make the slope large.

Wing geometry effects on aileron effectiveness for full—chord
outboard partial—span ailerons (with aileron angle measured parallel to
the plane of symmetry) are given in figure 12. The geometry effects on
BCZS/Kav are similar to those on the damping—in-roll coefficient. Com-
parison of figure 12(a) with figure 9 shows that Cigy approaches the
zero—aspect—ratio value in the same manner as does Cj_. Figure 13 gives
comparative effectiveness of inboard and outboard ailerons for swept
wings. As sweep increases, the difference of effectiveness between
inboard and outboard ailerons decreases showing that inboard ailerons
for highly swept—back wings approach the effectiveness of outboard
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ailerons. Since da/dS becomes large rapidly at small values of t
(fig. 3), then, for a given aileron area, narrow full-span ailerons for
swept—back wings may be more desirable than larger—chord outboard
ailerons. The relative effects of figures 12 and 13 apply equally well
for constant fraction of chord ailerons,since the data would differ only
by a constant factor da/dd.

Compressibility

From the three—dimensional linearized-compressible—flow equation,
it can be shown that the effects of compressibility will be properly
taken into account if the longitudinal components of a wing plan form are
increased by the factor 1/B. Or, alternatively, if the linearized com—
pressible flow equation be divided through by B2, then the lateral and
vertical components of a plan form are decreased by the factor B. 1In
both cases, the incompressible local 1ift is increased by the factor 1/B
and the compressible local 1ift coefficient can be written as the

parameter fc,.

With these relations known, an incompressible theory can be made
into a compress1ble theory subject to the limitations of the linearized
compressible flow equation. The geometric parameters of a wing are

simply substituted by BA,Ag = tan™? 3§%—£=and Bb. With local 1lift
coefficient given by Bc;, the dimensionless loading becomes

_PBcic ¢
28b  2b
The sonic speed results of reference 6 can be used as a limit point
in the present theory for a curve of the variation of antisymmetric
aerodynamic characteristics with Mach number. The following equations
apply at the speed of sound to plan forms with all points of the
trailing edge at or behind the upstream line of maximum wing span:

The wing-chord distribution remains unaltered.

—~nA
C = —
lp T 32
For outboard ailerons,
C .\ sin® @ where =1 —cos 6

For inboard ailerons,

¢,

0\|Il>

5 = (1-sin® 6), where 7, = cos 0
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Reference 6 shows that aileron effectiveness at the speed of sound is
independent. of the chordwise location of the aileron hinge line, pro—
vided the hinge line remains ahead of all points of the trailing edge.

Accuracy of the Seven~Point Solution for Ailerons

The prediction of aileron effectiveness for given aileron spans
with wing twist determined by zero—aspect—ratio theory at only seven span
points to satisfy the boundary conditions has been theoretically shown to
be sufficient by comparing results with the computation of a typical 3.5
aspect ratio, 45° swept wing with 15 span points satisfying the boundary
conditions. The process of finding aileron spans for the 15-point method
was the same as that in Appendix C. The curves showing the variation of
Clpy :with aileron span for the 7— and 15-point computations were identical.

L[]

The solution for the angle—of-attack distribution that- includes a dis—.
continuity can be compared with the solution for the continuous angle—of—
attack distribution by considering an aileron such that the angle-—of—
attack distribution is equivalent to that of the rolling wing. The damp—
ing—in-roll coefficient then can be found by use of equation (23) which
reduces to the form

for o = —<§% , and integrating by parts

1 .
Czp =J/\ Cza dn f C15ﬂ=1
o)

N

This relation states that Czp is equal to the area between & curve of
figure 6 and the line of Cigy for n = 1. The curves of figure 6 were
found by the simplified 1lifting—surface theory with antisymmetric twist
determined by zero—aspect-ratio theory. The values of (3 obtained in
this manner from figure 6 were identical to the C3, values given by
simplified lifting-—surface theory for continuous linear antisymmetric—
twist distribution.

As further theoretical check, the values of rolling moment due to
constant spanwise dihedral angle are obtained from 15-point computations
in reference 5 for taper ratio equal to one, with which the present
theory for the T—point method is in exact agreement.
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Comparison of Theoretical and Experimental Results

The electro—magnetic analogy method of reference 8 provides damping—
in-roll coefficients for an aspect—ratio range of unswept, tapered wings.
The results of the present theory and those of reference 8 dre compared
in figure 1k. Except for the taper ratio effects on Czp the comparison
is good. The rounded—w1ng—t1p values of Czp given by NACA Rep. 635

(reference 1) are included in figure 14. Since rounded wing tips gener—
ally give values of (3 about 6 percent lower than straight wing tips,
the values of NACA Rep. 635 appear to be appreciably too high for lower—
.-aspect—ratio wings. - The present theory and the theory of reference 8
approach the value given by the zero-aspect—ratio theory of reference 6
quite satisfactorily. The results of the present theory may be further
assessed by the comparison with the results of low~speed experiment as
given in figure 15 for the range of plan forms presented. For further
experimental verification of the accuracy with which €3 can be deter-—
mined by the present theory, the reader is referred to reference 5 which
supports the theory as well or better than figure 15 of the present report.

The loading distributions due to rolling as given by the present
theory are compared in figure 16 with low—speed experimental results for
a range of swept wings. The sweep angle seems to have considerably more
influence on loading distribution as given by .experiment than the theory
indicates. The experimental pressure data, however, were very erratic
and no firm conclusion can be made .

Experimental values of rolling effectiveness due to aileron deflec—
tion are compared with theoretically predicted values in a correlation
diagram given by figure 17. Included are the results of a wide range of
plan forms which do not vary consistently with any geometric parameter or
aileron configuration. Sketches of the plan forms and ailerons are drawn
about the points of correlation. The theory makes use of the curve of
'flgure 3 giving da/dﬁ for a sealed—gap aileron over a range of deflection
of +10° Experimental results for aileron deflections greater than 15°
measured perpendicular to the hinge line were not included. The correla—
tion points of figure 17 scatter appreciably; however, the mean line of
the points does approximate the line of perfect correlation.

Flgure 17 does not account for effective plan—form change due to ,
da/d&. Only the effectiveness of the low—aspect-ratio triangular wing of
figure 17 is exceedlngly in error,which is the result of neglecting plan—
form change.

The plan—form change due to da/d& can, in part, be considered anal—
ogous to that due to section lift—curve—slope change. Thus, the total
section lift of a wing, the chord of which is reduced by da/d& and which
is at an angle of attack &, 1is equal to the. lift of the wing-aileron

section for which the aileron only is deflected at the angle 8. This



26 NACA TN 2140

change in plan form, unlike the section lift—curve—slope change for which
the chordwise loading remains constant, does not account for a large
change in chordwise loading. If the lifting line is considered to be at
the chordwise center of pressure, then, for partial-wing—span ailerons,
the lifting line is in effect broken at the aileron spanwise end and the -
present theory becomes invalid. For the case of full-wing-span ailerons,
the lifting line in effect remains unbroken and lies along the center of
chordwise pressure. For this case the wing chord can be reduced by da/dS
to account for plan—form change; however, although in the limit of zero
aspect ratio the results are the same as those of reference 6, this pro-
cedure does not with sufficient accuracy account for the chordwise loading
shifting aft at intermediate aspect ratios. .For control surfaces, the
effective plan—form change due to da/d& is appreciable for the low—
aspect—ratio wings such that in the limit of zero aspect ratio the span-—
wise loading is independent of the ratio of aileron chord to wing chord
(reference 6). However, for moderate aspect ratios, da/d® can be used

without accounting for plan—form changes as comparison with experiment
indicates.

Experimental values of CIE/F are not compared with the present °
theory since reference 5 gives ample support of the theory.

CONCLUDING REMARKS

The determination of antisymmetric loading for arbitrary wings is
shown to be easily obtained by the solution of three simultaneous equa—
tions. The coefficients of the simultaneous equations are presented in
charts of parameters that include wing geometry, compressibility, and
section lift—curve slope as arbitrary quantities. Thus the loading for
an arbitrary antisymmetric angle—of-—attack distribution can be simply
found once the angle—of—attack distribution is chosen.

For the important cases of antisymmetric loading, roll, and aileron
deflection, the angle—of-attack distribution is given and the simultaneous
equations are formed. ILoading for these cases can be found by simply
obtaining from charts the coefficients corresponding to the wing geometry,
Mach number, and lift—curve slope, inserting in the appropriate equations
and solving.

Integration formulas for the loading distributions are given which
enable the aerodynamic coefficients Czp and Czs to be found. The

rolling moment due to sideslip of a wing with dihedral is shown to be

equivalent to that of aileron deflection and a procedure for determlning
its value is given.

For the special case of straight—tapered wings, the loading distri-
butions and values of Clp and Cl& are given in the chart form for a

range of wing plan forms.
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Experimental and theoretical verification of the theory is shown to
be good. The theory is applicable for large aerodynamic angles, provided
the flow remains unseparated. The compressibility considerations are
reliable to the speed of sound subject to the limitations of the linear—
ized compressible—flow equation.

Ames Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Dec. 22, 1949.

APPENDIX A
EQUATIONS FOR THE DETERMINATION OF ANTISYMMETRIC LOADING

Unsymmetric Loading

From NACA TN 1476 (reference 2), the aerodynamic loading is obtained
by solution of the linear simultaneous equations

<> = b%, G, Z b¥* . Gn, v'=1,2,..v.m _(a1)

n=1

(The prime indicates the value for n=V 1is not summed)

where -
-
by '
b*, = Sbyy +{ L ) g - ‘
v w*le, ) Bw . (A2)
/b ' :
b, =2b, ~(ev ) om ) (A3)

byy and by, are coefficiehts independent of plan form.

M

-1 [L(V,O) fro + L(v,M+1) fn,M+l+

Sy = S - Ly oh )2y ] (ak)

H=1
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The above equations involve computations over the entire wing.
However, if the loading is assumed to be symmetric or antisymmetric, the
computations can be reduced to less than half the work.

The case of
symmetric loading is developed in reference 2 and the antisymmetric case
is developed in the following section.

Antisymmetric Loading

For antisymmetric loading, the loading on each side of the wing has
the same magnitude and distribution but with opposite sign, or

Gy = Appi—y’ :
o (a6)
Gy = Gpyy—ys OF Gy = Gpyy o ‘

Equation (Al) can then be written as

m—l
2 4
%y = (b*v D*pya— v)Gv ‘Z <b*vn_b*V, m+1—n> Gp

(A7)
n=1
. Wwhere the summation is only to m;, since Gm+1 = 0 for antisymmetric
. 2 ’
loading. '
With equations (A2) and (A3), equation (A7) becomes
NG (2)( ) by -
Ay = W Pypnov)+ cy EywBy,mna-v/) [Gv
m-l A
' b
[ 2 <an"bV,m+1—n ) _('07)' <gVn ~ &, m+1n ) ]Gn (48)
n=1 ' '
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Now, from equation (Ak)

-1 [L(V:O) (fnofmiz—n,0)

€ = +
Svo 8V, mh1n = 5000y 2
L(v,M+1) (fp My1 ~Fmern, Mer)
2
M .
z L( v,u) (fn““"fm-u—n, p.)] ’ (a9)
u=1 _
where
m
2 z '
P = — sin u3®p cos u;® Al0
TR M1 Hi¥n Hi¥u ( )
H1=1
and
o =2 p o= B
071’ T Mel
From equation (A9), fru—fmern,u can be defined as .
* = — .
f ny fnu fm'*'l—ﬂ; )
then, using equation (A10)
m
2 e
oy = = H1 cos u®Py (sin pi®p — sin uiPpyy—n)
M=l
m
= 2 , { .
=== w1 cos P, sin wa@y (1+ cos pyn)
H1=1l '

and, since the terms of the summation for odd u; vanish,

) m

£, = = w1 sin pa@p cos waP, (A11)

u1=2,)+,6c s €Ven
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From equation (All),
(A12)

f*np. = f')"n,M+J..--11
Combining equation (A9) with (Al2) and defining

= &n 8 ,m+1n
then M+l
2

v = 2 ) [ty + Lyt | on, (a13)
2(M+1) )
u=0
M+1

where for u =0 and < f*nv is equal to half the values given by

equatlon (A1l) in order that the products can be fitted into the summa—
tion. With equation (Al3), equation (A8) can be written as

-l
. 2 .
oy = (2¢y + %; g*w)G, — Z (2Cyp —1';—\)- g*,n)Cn (A1k)
o » n=1
v =1,2,3,... nﬁe‘i

where

Cy = bPyy — by, mi1—y
Cvn.= Pyn = by, m+1-n

From reference 2,

sin @ [ 1-(—1)’1“"]

(cos @, — cos o) 2 2(m+1)

which gives zero values for by, for even (n—V) values. Then, since
m is odd,

and
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A It should be noted that L(v,n) simplifies somewhat for the anti—
symmetrically loaded wing since 17 now is only positive in equation
(A5). If only positive values of T are used, then equation (A5) can
be written as :

L*( V,u) L* v = L(ﬂ:ﬁ) + L(Tl);‘T)

L(V,u) + L{v,M+1—y)

In summary, the foregoing analysis for the antisymmetrically loaded
wing gives A

oy = Z Pyn Gn : B - (A15)
n=

| -v = 1,2,3,000 m—"é—_l‘

where
- ob. 4D Cmy
Py = 2y o g*,, for n=v (A16)
=2C, + 2 g*  for nfv’
v CV g vn
, . Cyn = Pyn = Py,m+1n
m+1
b = —
YV ) sin Py _
. sinq, [.1—(—1)’1"’ ]
b =
Yo (cos @, - cos 9,)2 2(m+1)
g*¥yy = 8%y for n=v
M+l
2
2(M+1) = o

\ f*nu = = i M1 Sin p3®p cos pa @

KLy=even
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f*
X 2
™ M+1
% = _ M+
, n ML T forw =S
2
For M-m, £*,, simplifies to
o |:2(—]_)n+“ sin 2q>n ] (sin thn )
m | N\ o 1o
cos 2<pnf cos 29 4 4 l—c§s ’+‘Pn n=p .
ex = Dnu o
no or U=
N %
£* = = D+l
n mi.l 5 for H = 5
¥y = W—— {«/[l+(—)(nv—ﬂ“)tan AT (B ) (n,,
Ty
(b - 2 b \2 = 2
{/[l+(cx).(nv—'nu)tan AP+ (B)2(n o)
b_ ) b_ '
( )(T]V+'r]u 1 +,2 (cv) Ty tan A
b ' b
2 tan A ﬂl+(ﬁ)nv tan A)® + (g9)%n,°
b
1+2(— t
(Cv)ﬂv an A
v ’
= COS where = —
My _QV Py m+1
n =cos @ where @ = ol
nu H H M+l
- nn
= CcOoS where @ = —=—
M = % a m+1l

33

For a discussion of the relative accuracies obtained for a choice

of values.of M and m, see reference 9.

~tion is with M=m.

The most. favorable applica—
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APPENDIX B
DERIVATION dF RELATIONS USED IN THE METHOD
Application of Appendix A

With Appendix A, the antisymmetrical loading on a plan form for any
antisymmetrical distribution of oy can be found. The principal work
in the computations is to obtain the coefficients of the simultaneous
equations (A15). These coefficients can be presented in charts for the
complete range of geometric plan—form parameters into which are intro—
duced the effects of compressibility and section lift—curve slope. With
the loading due to rolling known, the coefficients and derivatives are
obtained by integration formulas.

Section lift—curve—slope effect.— For a two—dimensional wing with
the loaded line at the quarter—chord position, the position x aft of
the loaded line where the induced downwash equals the angle of attack of
the wing can be obtained by the Biot Savart Law as

PC CZCV
W = —— where [¢ = :
_ onx . C 2
or w_ac_
V‘ hix
or
dey _ bnx
da c
then '
: Cox ()
ke’ da

where dcl/da is the section lift-curve slope. Two-dimensional section
compressibility effects that do not follow the Prandtl-Glauert rule can be
given consideration by taking the ratio of (dcl/d“)compressible at a given
Mach number to 2n/B. Let k be the ratio of the section lift—curve slope
at a given Mach number to 2n/B or (dcl/d“)compressible = 2k /B, then

x = g(c/2)

Then the induced angle, (0/2) aft of the loaded line, is equal to the
angle of attack of the wing. For k = 1, this is at the three—quarter—
chord line. For section lift—curve slope less than 2n, k 1is less than
one and the downwash is equal to the angle of attack at some point between
the one—quarter— and three—quarter—chord line.

]
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To take into account the section lift—curve-—slope variation in the
pres~nt theory, the downwash must be found at a distance u(c/2) af't of
the togded line. From the formulas of the summation in Appendix A,
b/cv ‘should be taken as b/nvcv, where ky 1is the ratio of section
lift—curve—slope for a given Mach number at span station v, to Qﬂ/B.

Derivation of parameters for py,.— The p,, coefficients, as

defined by equation (Al6) in Appendix A, depend on plan—form geometry in

the (b/CV)L*Vn functions only, or p is a function of b/c, and
sweep angle. As previously shown, b/c,, 1is also a function of the span—

wise variation of section lift—curve slope and is effectively equivalent

' to b/kycy, where K, is the ratio of section lift—curve slope for a
given Mach number at span station v to 2n/B. The py, coefficients
can be plotted against b/nvcv with sweep angle as a parameter; however,
b/KVcV will vary from zero to very large values for a range of plan—
form geometry, and the plots become unwieldy. For a range of aspect

- ratio, the values of b/KVCV ‘are a maximum for the zero tapered wings
when 17, 2 0.5 (provided plan—form edges are not concave) and a maximum
for the inversed-tapered wings for ny < 0.5. The ratio of b/Kkycy
for ny 2 0.5 for any plan form to those of the zero tapered wing or
the ratio of b/kyey for ny<0.5 for any plan form to those of the
inversed-tapered wing gives a geometric parameter for any plan form that
has maximum values that depend only on aspect ratio. '

The chord distribution for straight—tapered wings is given by

b A(1+7)

v 2 - ] (B1)
Then, for A = 0,
b _ 1 (B2)
Acy  2(1- [n_J) -
and for A= 1.5 |
=2 2 - (B3)

Acy  2(2+ |1 y|)

4

~ The ratio-of b/chv to equations (B2) and (B3) gives, respectively,
a geometric parameter as : '

b/K C
Y . 2(1—«1\,)(:’ )for 0.5 <y <1
(b/Acy) ng v/ : .
(B4)
bkyey _2(2+y) /b

= )£ 0L 0.
(b/Acv))\=1,5 5 \ chv> °or 0s my, <05
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Let Hy Dbe defined as two—-fifths times-the values of equation: (Bk4)
(the fraction two—fifths is introduced to give Hy the approximate

values of p to simplify plotting procedures) » then adding effects of
compressibil&ly (see Discussion section)

Hy = dy <"i:v> (B5)

where

h(1-
v = —(—5—1]-!)- for 0.5§nv <1
B 4(24n,)

5 for 0 <q,< 0.5

For tapered wings, Hy simplifies to

(1—% (1)) (BA> <. <
Hy = 5y (10) ] for 0.5574 <1

(B6)

_ 2(2+ny)(10) ( >for 0 <n,<0.5
25[1-ny(1-1)] |

Plots of Pyn &gainst Hy in the range of Hv =0 to k4 will give
PVn coefficlents for wings of any chord distribution for aspect ratios
up to 10 or 12. :

Linear asymptotes of Dyn-— For large values of Hv’ the Pyn
functions become linearly proportional to Hy. Since this linear char—
acteristic appears at relatively low values of Hy, the simply linear
relation between an and Hv is quite usable. ‘ '
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The L¥*y, function of Appendix A is multiplied by b/cy and the
product is linearized.

<b—->L*v = —E <‘-’-—>-.§“2+< 1 +l>sinA—3'—tan§—‘
Cy B cos A \gy -1 |"I‘ﬂ| yl 2 2
l—/l+< ta._nA>

'ta.nA

.e. for ﬁ< 1

—-2n < 1 1> . 1 A
= — + + - )sin A — — tan - —
n2-n2 Inl . 2 2

1- /1+ <—- tan A> :
1 =

37

P(BY)

«o for 7>
on tan A =
= < 1 +ta.nA><E—>—-l—+£ sinA— X tan &
cos A Cy 2n 7 2n 2
.o"for ﬁ.'—"'n
= < > y2sin A oo for. q =
cos A \cvy . ‘

With the values of equation (B7) substituted into equa.tlon (AL6)
the values of pyy for arbitrary sweep angle are obtained. Thus ,
for m=7, the following equation (B8) gives values for Pyn @s
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<3 928+1026 ta.nA>H1 +7968-1!+9l+ s1nA+OOlLL tan‘% +

0.0 (1—/1 + 0.0016 tan? A> 0.068 (1=a/ 1+ 0.0177 ten®A >+
tan A , tan A -

0.03k (1-] 1+ 0.1717 ta.n2A>
) tan A _

<°'851 ~ 2.901 tan A> H, — 3.138 + 1.080 sinA — 0.034 tan & —

cos A 2

0.034 < — /T4 0.0016 tan® A > — 0.096 ( =1+ 0.177 tan2A>'

tan A tan A

-0.176
cos A

+ 1.026 tan A> Hy + 0.129 — 0.869 sinA + 0.082 tan = +

>

0.0k <l—'»/ 1 + 0.0016 tan2A> 0.068 1- V1 + 0.0177 ta.n2A>
) tan A ) tan A

2
0.03k <1— J 1+ 0.1717 ten A>
- tan A

<° 221 + 0.534 tan 19112 - 2,088 - 0.383 sin A~ 0.918 tan% -

cos A

- ) 2 ' 2
6.088 < 1~/ 1 + 0.0177 tan A>_ o.om (1 V1 +0.0204 ta.nlA>_
tan A tan A

0.037 < 1- 4 1 + 0.0886 tan2A )

tan A
0.972 g, + 4.596 — 0.146 sin A—0.0kk tan 2 4+ ) .
cos A 2 .

0.105 (=1 +0.0177 tan2A>_ 0.0kl (1= V1 + 0.029% tenA ) -
ten A tan A

1- 4/ 1 + 0.0886 tan?A\

0.125 ton A y;

-
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0.221 _
= - 0. l" t — ° - A_
P2 (cos A 234 tan A> Hz = 1.912 + 0.221 sin A + 0.107 tan 2

o ol <1—,/1 + 0.0177 tan®A >+ 0.0'18<1_ /1 + 0.0294 ten? A) .

o.0kh <1—f+00886 tan® A> .

tan A

-0.028

A
= - 0, + .)..l. + . ).I. . ).].t —_ -
Pg; ° os Ol6l+1.'.anA>H:3 0.149 + 0.32 sinA+OO3’ ea.n,2

0.682<_«/ 1+ 0.1717 ta.n2A>_O 163<1—J1 + 0.0886 tan2 A) .

0.197

1-+ 1 + 0.1993 ta.n2A>
tan A

o = (2136, (el tan.A> Hy — 1.570 — 0.389 sin A —0.082 tan & '+
82 cos A : i

2 _ > )
0.231 <l—'/ 1 + 0.1717 tan®A >-o.082 1- /1 + 0.1993 tan A)

p =<0'628 - 0.164 tanA> Hg + 3.417 + 0.083 sin A+ 0.197 tan 4 —
83 \cos A . °

0.082 <l-~/ 1 + 0,1717 tan2A > +0.163 1- /1 + 0.0886 tan2 A ) .

0.03k (= 1 +to.1i93 tan® A> B (58)
an

Linear spanwise distribution of (kc)y, /( KC)gy.— With the condition
that the product of section lift—curve slope and wing chord varies
linearly spanwise, then

| 2b
ke = {l-ﬂv[l—(KT/KR)k ] }

A [].""(KT/KR)X ]
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and equation (3) becomes
1+( KT/ K.R) A

2 { 10, [1-(nT/r.R)x]} o

where Ak 1is the aspect ratio based on the wing chord equal to kc.

In equation (B9), Hy 1is reduced to terms of two parameters. Expressions
of Ax 1in terms of aspect ratio for straight—tapered wings and the dis—
tribution of section lift—curve slope can be found.

H, = d, (BA,) (B9)_

For straight—tapered wings

2b
A = —m—
cg( 1)
and since kc 1is linear
2b
AK = - -
o (1 kp/kg)M]
then
A

i .= (ki) /1+h

and equation (B9) becomes

_ BA 1 1+( kp/ kRN
Hy = dy : (B10)
(rg+rph) /140 ] .
T2 3 1, [l—(KT/KR))\.]
The distribution of x for straight—tapered wings is given by
1 1-{kp/kp)A]
Ky = _(_‘E_Zy_ = kR Ny [ "'( T/ R) ] (Bll)
Cy - 1-ny (1)
Equation (B10) is in terms of two parameters given by [‘ BA }
L (kg+eph) /2140 ] .

apd (KT/&R)X. Solutions for spanwise loading in terms of these two
parameters and Ag are valid for the distributions of section lift-—

curve slope given by equation (B1l). Equation (Bll) indicates that at
A =1, ky 1is a linear function and at A = 0, ky 1s a constant.
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For values of A Dbetween O and 1, ky  is a curve in the region
between the linear function and a constant. .

Equation (B1O) is given by figure 2 for m=7, but with the ordi-—
- )
nate given by the parameter Y and the abscissa by -
: BA/[(KR+KTX)/(1+X)] '

(KT/K M.

For the case of linear distribution of (kc)y and straight—
tapered wings for which the chord aud section lift—curve slope can be
specified in three parameters, the loading and associated aerodynamic
characteristics can be presented for a range of the parameters Aﬁ,

BA/[(kg+epr)/(140)] , and (kp/kg)A.

Integration of Antisymmetric Loading

Rolling—moment coefficient and derivatives.— Rolling-moment coef-—
~ficient is given by

By = g‘iflc(midﬁ | (312)

where : N

n =cos @
which, by an integration formula,
1 - - T -
f 2 = 2 z £(7n) sin 9p (B13)
=1 ' n=1 » :

becomes

= cos sin
L o(m1) R

n=1

m

nBA .
= G sin 29
b(m+1) gz; o n
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Since the loading is antisymmetric, Gp,,= 0, and

z
N ol
’ 2
. nBA .
BC, = Z G, sin 29 (B14)
L 2(m+1) n n
n=1 '

For spanwise loading due to rolling, the loading is found as a
function of pb/2V, then equation (B1l4) divided by pb/2V gives

m—l

E: Gn sin 2¢n (B15)

n=1

BCip = 2(m+l)

where i
G = G/(pb/2v)

The rolling moment due to ailerons will be found in Appendix C.

Induced drag.— The induced drag coefficient is, with equation (B13),

given by
rL o ' BA < ,
BCDi_= BA\/P a3Gdn = o 5? Gvdiv sin o,

v=

) .whére aj, 1s one—half the induced angle of the wing wake given by
"equation (AlL) for cy = o, then for antisymmetric loading

m-l :
2 L
| BCD4 ij]B_A Z < byyG v = Gy, z Cyn Gn> sin Qy _ ' (B16)
o n=1 : '

where the prime indicates'the value of n = Vv 1is not summed.

Spanwise center of pressure.-— The center of pressure on the wing
half panel is given by 1

f oA
| o
'Tlc.po - l
‘JF GaT
(o]
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The numerator is equal to BCZ/BA. If the Fourier series for loading is
assumed, .

G(g) = z 8y, sin p1 @, the denominator becomes
uy=even
- o n M1 "
- . _ 1Y 2 1 ‘>
. Z 8y, f sin @ sin pydQ = Z —eul( 1) <u12—l
M1 =even o ui=even
then
, By ,
Ne.p. (B17)
b)) ( )
up®-1
Hy=even

Wwhere ‘8, are the Fourier coefficients.

Loading-due-~to—rolling function and interpolation table.— The
Fourier series that approximates the antlsymmetrlc loading with only a
few terms is given by

m

G(9) = z py S0 W10 (B18)

Hy=even

The loading G, 1is determined at span positions of ﬁ = COs 'q)n where
nn .

P = o 8,, are given by
b1d
8y, = 2 f G(p) sin wiodp (B19:
0. ' .

With the quadrature formula 6f equation (B13), equa.tlon (B19) becomes,
for antisymmetric loading,

1

m—l
MRS , ' .
S B z G, sin ma®, _ (B2
-1

B
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For m= T, the 8y, coefficients are equal to (for even u3)

az

O~ D= o=

<¢EG1 + G2 + -‘/—2_G3>
2 2
(Gy — Ga)
N2 o2
Gy — G2 + G
< > 1. 2 5 3)
Equation (B18) with (B21) can be arranged to give

G(cp)=%<£§si'n2q>+sinhtv+—“/—_2-

84 =

5.6=

% (sin 2 @ — sin 69 )Gz +

;<:/_;g

2

V2

sin2cp—sinl+¢+?

\
sin6‘P>G1+

P (B21) .

} (B22)

sin 6 cp)Ga ]

 With equation (B22) the loading due to rolling can be determined at any

ko

span position. Letting @ =@y = 3 and tabulating the factors of Gp
as enpk, an interpolation table may be obtained to determine loading‘ at

span station k.

TABIE Bl, ey

[m=7]
ne | 0.981 0.831 | 0.556 [0.195
S 12 3/2 | 5/2 7/2
1 0.8155 0.5449 {-0.1622 | 0.1084
2 —.2706 .6533 | .6533 | —.2706
3 | .108: | —1622| .5hk9 | .8155

where
3

Gy = Z enkGn

(B23)
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Equation (B23) may be used for intérpolation of any form of loading coef-—
ficient, thus

3

< c1c ) _ Z enk( cic > (B2k)
C1Cayv e n=1 C1cay o :
APPENDIX C

DETERMINATION OF ANTISYMMETRIC WING TWIST FOR FINDING
- SPANWISE LOADING DUE TO AILERON DEFLECTION

Wing Twist for a Given Aileron Span

The determination of loading for an angle—of-attack distribution

that contains a discontinuity by a method which satisfies the boundary

- conditions at a finite number of points can be made by increasing the
number of points until the solutions become sufficiently accurate. . For
the method as given in Appendix A, the number of points that satisfy the
boundary conditions is given by m. For the large value of m required
for accurate results, the computations become exceedingly laborious; how—
ever, a procedure using a moderate value of m can be determined by use
of a low-aspect—ratio theory with which a wing twist can be found that
duplicates the results of the discontinuous angle~of—attack distribution.

A theoretical but relatively simple method of finding spanwise load—
ing due to inboard and outboard ailerons for wings of low aspect ratio is
given by reference 6. In the present theory, as aspect ratio approaches
zero, g¥y, values of Appendix A become zero and the Pvh coefficients
given by equation (Al6) become constant or independent of plan—~form shape
and equal to

= —2C

an vn

(c1):

Pyy = 2byy

These coefficients are given by the relations under equation (Al15) and
Pyn can be tabulated. '
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a TABIE Clo“ p‘\)n.

[For m=7 and A=0]

n -1 2 -3
1 10. 452k ~2.0000 0
2 - 3.6954 5.6568 | -1.5308
3 ' 0 —£.0000 L.3296

With equation (Al5), antisymmetric loading can be found for zero—aspect—
ratio wings. As a comment on the accuracy of the present theory for .

m=7, the solution of equation (Al5), with the A=0 Pyp values for load—
ing due to rolling gave the same values at the three semispan stations as

: b/2V} sin 20
does reference 6, namely, G(9) = - (wb/ i .

The zero-aspect-ratio theory of reference 6 shows that all span
loading characteristics are independent of plan—form shape for zero
aspect ratio. This independence makes that theory ideal for obtaining
the boundary conditions of the present theory for zero aspect ratio,which
should apply with the present theory for higher aspect ratios for which
plan—form shape has an effect on spanwise loading. The boundary condi-—
tions of the present theory are given by the antisymmetric values of Ay
in equation (Al15). The problem is to find what antisymmetrical distribu-—
tion of a4 1is required for the present theory to duplicate the exact
loading distribution given by reference 6 for a given aileron span.

The aileron spans are arbitrarily chosen for the present theory as
the mean value of the spanwise trigonometric coordinate of the downwash
point at a section angle of attack equal to zero. For m=7, three

"aileron spans can be defined for both outboard and inboard ailerons.

Let mng Dbe the aileron span, and 6 the spanwise point of the end of
the aileron, then :

1 — cos 6 for outboard ailerons

=3
o
1l

cos 6 for inboard ailerons

=
[\
Il
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For the present theory, the aileron spans defined are tabulated as fol—
lows: ‘

TABLE C2
Outboard Inboard
Case I II III v v VI
6 3 2 | I 21 3
16 16 16 16 16 0
Ng | 0-1685 | 0.4kkk 10.80k9 |0.5556 | 0.8315 |1.0000

For the aileron spans listed in table C2, the exact span loading
‘distribution can be found from reference 6. With the Pyn Vvalues listed
in table Cl and the exact values of G;, Gz, and Ga from reférence 6,
equation (A15) gives the twist required for the present theory to give
the loading distribution for each case listed in table C2 or

22 - 1052k <gi>— 3,695 (5;5) )

é“?_ = 2 2_1>+ 5.6568 %2->- 2 (g-ﬁ) | » (c2)
%3 _ _ Gz \ | Ga

=2 = -1.5308 <8 >+.u.3296<8 > )

The spanwise loading distribution from reference 6 for outboard ailerons
is given by

sin 94-_(9
[gg =% (cos @ —cos 8) 1In GECP -
outboard ’ sin 0
_ cos %ﬂ
(cos @+ cos ) 1In . (c3)
- cos 9'2'—"’
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For the full-wing-span aileron, 6 = g
[ 9&21]' = % cos @ ln l+sing (ck)
5‘ Ng= 1 :
For inboard ailerons, with the same value of 6

PR

. (c5)
outboard

With equations (C3), (C4), and (C5), the spanwise loading Gi, Gao,
and Gy at span stations ¢ = x/8, n/k, and 37/8, or n = 0.9239,

0.7071, and 0.3827 can be tabulated for each of the cases given in table
cz.

TABLE C3

& | case I II I v v VI
%L 0.1136 | 0.1919 | 0.2316 | 0.0454 | 0.1237 | 0.2373
%3 .0500 | .2800 | .3851 | .1164 | .346h | 396k
gg .0190 | .1022 | .3620 2922 | .375h | 394k

The twist distribution required for each case is obtained with'
equation (C2) and table C3, tabulating

TABIE Ck
% Case I 11 IIT |. IV v v;
= | 1.0029 | 0.9713 | 0.9979 | 0.Okkk | 0.0128 | 1.0157
g?. o1tk | 9957 | 9913 —.0160 | .961k | .9788
%ﬁ 0056 | .0139 | .9777 | 1.0868 | 1.0951 | 1.1007

With the twist distribution given by table Ch; equation (A1l5) can be used
to solve for spanwise loading due to ailerons for any of the six cases.
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Rolling Moment Due to Aileron Deflection

The rolling moment is given by

n .
Cy =% f G(?) sin 2 dp (c6)
) o

For span loading due to ailerons, the loading distribution is distorted
sufficiently such that the quadrature formula given by equation (Bl3) is
not sufficiently accurate for m = 7 to integrate equation (C6). With
equation (B18)

Cy ='§A o) (cT)

Expanding equation (B18) for - ¢ = x/8, x/4, and 3n/8, or obtaining
Gi1, G2, and Gg in series of a's, the sum of the G's gives

ap = %(o».m?ml + G2 + 0.707T1G,) + @14 — 815 + 8g0 — 8aq (¢8).

The higher harmonic coefficients can be put as factors of the Gn. The
rolling—-moment coefficient becomes

‘ - + ag, —
C; =A 0.£%Zlﬂ [ 1+ (814 — 819 80— 8as) 1 Gy + -
1.2071G, |

a - a + a — a
o1+ ( 14 18 30 a4) 1 Gao +
16 1.2071Gz ]

0.7071n [l . (a14— 818 + 850 — aa4) }Gs } (c9)

16 1.2071G 4

‘When hy is defined as the coefficients of Gp
Cy = A (hiG1 + hoGo + hgGs) (c10)

The ratio of (a;4 — @15 + 830 — 834) to Gp can be evaluated by
the zero-aspect-ratio theory. It is expected this ratio will not vary
appreciably with aspect ratio. From reference 6, the loading in series
expansion gives for equation (B18)
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E&i = -—-117;-- (cos 6 sin p3 6 — uy sin 6 cos u3 9?
5 My (n12-1) .
outboard e
H1
2
(%), -2 e
Ng= 1 Hi
(3*_1. - <i*‘_£ _<iu_1
5 inboard 5 a=1 ® outboard J

These high harmonic coefficients are small, but are not negligible for

loading due to ailerons. The hp are tabulated for each of the cases.
TABIE C5
hn Case I II III v v VI
hy 0;1398» 0.1388 | 0.1379 | 0.1462 | 0.1407 | 0.1ko2.
hp 1994 .1963 1955 | .eooh 1973 1975
hg JAMk6 | .1388 | L1382 | .1hoo | .139% | .1397

Spanwise Loading Distribution

The spanwise loading distributions due to the twist distributions
of table Ch are found at three span staticas, and, since these loadings
are not completely defined by a few terms of the assumed loading series,
the values of loading at other span stations cannot be found accurately
by direct use of equation (823) and table Bl. For zero-aspect-ratio
wings, the spanwise loading distribution due to aileron deflection is
given at all span stations by equation (C3). The loading distribution
for other than zero—aspect-ratio wings will fluctuate about the value
given by equation (C3) in a manner similar to the manner that loeding
due to rolling varies about the function sin 29 of zero—aspect-ratio
theory. Since the interpolation table of equation (B23) applies only to
loadings that vary about the function sin 2¢ the loading due to
aileron deflection can be divided by the ratio of equation (C3) to sin 2 ¢
and the resulting loading will be approximately given by sin 29.
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The- zero-aspect-ratio values of equation (C3) can be tabulated as

ratios of

The ,zero—aspect-ratio values of Rn

(/5 -

sin 29

Define

Rn"

span case considered.

sin

G(Pn) /5

2%y

TABLE C6.— Rn

(c12)

can be tabulated for each aileron-—

Outboard Inboard
Case I II III v v VI
NJ8| 0.1685 | o.ukkk | 0.8049 | 0.5556 | 0.8315 | 1.0000
1 0.1607 | 0.271k | 0.3275 | 0.0642 | 0.1749 | 0.3358
2 .0500 | .2800 | .3851 | .1164 | 3464 | .396L
3 0269 | L1455 | 5119 | .h132 | .5309 | .5578

The interpolation series of equation (B23) becomes

@3 ()

where G = 5

G

values of loading at span stations

Nk = COS

d

are obtained.

(c13)

and epy are given by table Bl. With R, tabulated,

Nk | I II IIT s v VI

0.981 | 1/2.]0.1738 [ 0.2663 [0.3162 |0.0559 | 0.1484 |0.30200
831 | 3/2 .1056°| .2787 | .3499 | .0802 | .2533 | .3589
556 | 5/2 | L0341 | .2250 | (4365 | .ohok | Luoos | k566
195 | 7/2 | 0233 | .1212 | .5304 | .6363 | .7343 | .7575
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Figure 4.- Variation of loading due-to-rolling coefficient o with com-
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pressible sweep parameter A, degrees, for straight-tapered wings.
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A,
Figure 6.- Aileron rolling-moment parameter —K;‘,per radian, and rolling
‘ Gy,

moment due fo sideslip with dihedral ‘-—;-,per radian squared, for
av

extent of unit antisymmetric angle of attack from the wing root
outboard.
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Figure S.- Variation of the damping-in-roll parameter — af with aspect

ratio paramefer "’; A for various sweep angles and faper ratios.
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