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SUI1MARY 

A theoretical analysis of absorbers whose rad.ioactivity is 
time-dependent is presented. ItrIx methods are employed. as a tool 
in the analytical determination of the intenstiy of radioactivity 
and. the amount of heat generated in any portion of a thick absorber. 
The method. Is applied to the following three cases: (1) plane 
source of monochromatic radiation of a single type at normal md-
d.ence to a plane absorber, (2) plane source of polychromatIc rad.Ia-
tion of a single type at normal Incidence to a plane absorber, and. 
(3) plane source of polychromatic radiation of several types at 
normal incidence to a plane absorber. Illustrative examples are 
included. 

Experimental data ontbe absorption of gamma rays and. neutrons 
and. on the rates of conversion of these radiatIons to thermal energy 
are required for utilization of this method. 

INTRODIJCTION 

A mathematical analysis of the interaction of nuclear radia-
tions with matter requires simultaneous consideration of a large 
number of factors. Fortunately, many of these factors obey the 
same mathematical laws. The compact notation Inherent In matrix 
methods makes them ideal for problems of this nature. 

The matrix method was first used to calculate the transmission 
and. reflection of thermal radiations from the surfaces of a number 
of thin foils (reference 1). A similar method has been applied to 
nuclear radiations and. developed for solutions of cases of poly-
chromatic incident radiation, neutron and. gamma-ray combinations, 
radiation not normal to the face of the absorber, and. time-
independent radioactivity in the shield Itself (reference 2).
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Inasmuch as a great many artificially produced radioactive 
substances have very short half-lives, that is, the radioactivity 
of the substances decays rapidly, the extension of the method to 
include time-dependent cases was considered useful in widening its 
applicabi-lity. Thus, an extension of the method was developed at 
the NACA Lewis laboratory to include the following time-dependent 
cases:

(1) The incident radiation is monochromatic. The radiation is 
normal to the absorber. Part of the radiation absorbed at each 
station of the plane absorber is transformed to heat and part to 
radioactivity in the absorber. The absorber emits radiation of the 
same type and waveengtb as the incident radiation. The radio-
activity produced. in each station of the absorber is entirely 
emitted.

(2) An extension of case (1) to include polychromatic radiation 

(3) An extension of case (2) to include mixtures of gamma and 
neutron radiation 

As used. herein, the expression "type of radiation" refers to 
the fundamental particles emitted by radioactive elenient8. Gaixma 
radiation is one type of radiation; neutron radiation is anorfler 
type.

Case (1), which assimes no degradation of energy, is presented 
for the sole purpose of illustrating the use of the method with a 
minimum of cumbersome notations and. computations. 

Experimentally verifiable data on all the constants used must 
be supplied for proper utilization of the method. Such constants 
include absorption coefficients, reflection coefficients, trans-
mission coefficients, rates of conversion of energy of nuclear 
radiations to thermal energy, and radioactive decay constants. For 
gamma rays, most of the required. absorption data are already avail-
able or can be computed; but for neutrons, the amount of available 
data, although large, is still much smaller than is to be desired. 

ANALYSIS 

This analysis may be conveniently' divided. into three separate 
cases. Each of these cases, together with illustrative examples, 
are subsequently described. All symbols are defined in appendix A.
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Case I 

The assumptions used. in case I are: 

(1) Stations of absorber are parallel plane surfaces. 

(2) incident radiation is monochromatic. 

(3) Radiation is normal to absorbers. 

(4) No degradation of energy occurs. 

(5) Part of energy of radiation absorbed is transformed to 
energy of radioactivity and. part to thermal energy. 

(6) Absorber emits radiation of same type and. energy as' 
incident radiation. 

(7) RadioactivIty produced in each station of absorber is 
entirely emitted. 

Method. - Diagram (a) is included to clarify the discussion 
in the following paragraph. 

The absorber may be 
considered as consisting 
of n atations normal to 
the path of the radiation. 

The 1th station of the 
absorber is denoted by 
S1 . Radiation I from 
the preceding station 

is incident upon 

one surface of S1, 
while radiation R^1 
fom the subsequent sta-
tion S 1 impinges 
upon the opposite sur-
face of S. From S1 
emerges radiation 11+1, 

which is incident upon S 1 1, aiid radiation Rj, which is incident 
upon S_1.



4
	

NACA TN 1919 

In the treatment presented. herein, the following quantities 
are assumed to be known time-independent constants: 

I	 radiation power incident upon absorber from source 

radiation power incident upon absorber from surround-
ings outside absorber 

(P1) - 
T	

one-haLf of initial power of radioactivity in each 

	

T - 0	 station of absorber 

(i T -	 initial thermal power being emitted from each eta-

	

- 0	 tion of'absorber 

t1	 power-transmission coefficient 

r1	 power back-scattering coefficient 

rate of conversion of energy of radiation absorbed 
to energy of radioactivity 

radioactive decay constant 

hi	 rate of conversion of energy of nuclear radiation 
absorbed to thermal energy for each station of 
absorber 

The problem is to find I and. Rj in terms of known quan-
tities. The following procedure is used to solve the problem: 

All I and. Rj are expressed in terms of I,	 t1, 
r1 , and. P1. These expressions are then substituted in the dif. 
ferential equations for Pj and. the resulting set of n simulta-
neous linear differential equations of the first order are solved 
for Pj . This procedure vill yield Pj in terms of known quan-
tities; whenthese values of P1 are substituted in the expres-
sions for I and R1 , the original problem will be solved. 
If these expressions for Ij and Bj are substituted into the 
equation expressing the conversion of radioactive energy to thermal 
energy, U1 can be found.. 

For the 1th station of the absorber S 1 (diagram (a)), the 
following relations hold.:
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1 1+1 = t 111 + r R11 + P1 	 (1) 

B1 = r111 + t 1 R1 + P1 	 (2) 

= h (i + B1 1)	 (3) 

dP. 

-r 
= Lj (i +	 -	 ( 4) 

The derivation of equation (4) is given in appendix B. 

Equation (4) is the basic feature of the treatment of time-
dependency in this paper. The absence of additional terms in this 
equation (and also In equation (3)) is due to the simplifying 
assumption made that the radioactivity produced in each station of 
the absorber is entirely emitted. In practice this assumption is 
effectively true in most shielding problems. 

The use of equations (1) and (2) in expressing Ij and Bj 
in terms of P1 and. known quantItIes is extlained: 

Equations (1) and (2) may be revritten in the following 
manner:

r 

= j 11+1 -
	

(5) 

=	 11+1 + 
(1 r21) 

Ri+1 +	
-	

P1	 (6) 

In matrix notation, equations (5) and (6) may be expressed as 

liii [*
	 r '1+i r * 1

(7) 
=

r.	
tj_IIRj+i I 	 Il-I 

I	 r41 I	 1 
[RI] [•;
	 ij[	 j [	

tjj 

If the square matrix of constants is denoted by [Ti] 'and the 

column matrix of constants by [Q1], equation (7) may be simplified 
to
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Ii 	 11+1 

	

= [T1]	
+ [] P

1	 (8) 
B1	 R11

[Ii 

Beginnln€ with the expression for

	

	 , continued aubstitu-



LR1 
Ii 

tion of expressions for subsequent	 matrices will resulG In 
R1 

['1 /n	 [In+i]	 n (i-i 

[Ri]

I = (	
[Ti]). Bfl+l +

	 Ei 
Pi 

'j=l	 i=1\k=o 

where [T0] is defined as the identity matrix [E]. 

Similarly, equation (7) can be written as 

1 [	 r2j rj1[ 1 r	 r1 
[ '1+1	 Iti	 - 

=	 H	 I 
[R1+l	

rj	 1 I B I	 i 
i L1	 i[ui LT 

The square matrix of constants is actually [T1], whereas 
the colwnn matrix of constants is _[T1] [] so that equa-
tion (7a) may be obtained directly from equation (7) by matrix 
algebra. 

If the analogy is extended, 

[mn+l1 (1	 ]l) ['ii
	

[Q] Pj 
j1 (k=n 

j -

	 11[Tk] 
JR	 I	 \=n	 B 
L1i	 "	 _l

(9) 

(7a)
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Although in the following discussion equations of the form of 
(9a) will be arbitrarily employed to obtain the Ij. and R1 in the 
desired forms, the use of equation (9) leads to the same results. 

If matrix notation is temporarily &bandoned, equation (9a) is 
written as two separate equations of the form 

'n+l = a 111 + a2R1 +	 bjPj	 (10) 
,j=1 

= a'I + a'2R1 ^
	

b'P	 (ii) 

Inasmuch as Ii and R+i are constants, equations (10) and. 
(ii) may be seen to be in the forms desired. Similar expressions 
for other Ij. and .Rj. may be found as follows: 

The following equation can be written from equation (7a): 

12	 Ii 

= [Ti] -1	 - [T1] -1 [Qi] P1 	 (12) 
R2 

Writing out the two equations represented by equation (12) and 
substituting equation (ii) for B1 results in expressions f or 12 
and B2 in terms of known quantities and. P1 . These expressions 
may then be used to find 1 3 and R3, which in turn enables the 
determination of 14 and B4 and so forth until all Ij.'s and 
are in the desired forms. 

After the expressions for Ij. and Ri, which are linear 
combinations of Pj. have been obtained, the next step is to sub-
stitute these expressions into forms of equation (4). The result-
ing set of n differential equations is of the form
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n 
= c1I +dR	 + i: e1,P 

a_P	 n 
= c2I + d2R^1 + E e2,jPj 

j=1

(13) 

= cI + d1R^1 + E ej,jPj 

CnIi + dflR	
+ 

where all c's, d's, and. e's are arithmetic combinations of t, 
r1, Xj, aM t1, so that all quantities on the right-hand. side 
of equations (13) are constants except the P's. 

Equations (13) may be written as the single matrix equation 

=	 + [A][P.	 (14) 

where [] is the n-rowed column matrix P1 

P1
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[A] is an n-rowed square matrix, all of whose elements are con-
stants, and [B] is an n-rowed column matrix all of whose elements 
are linear combinations of Ii and. Rn+i and. therefore constants. 

The solution to equation (14) is obtained in the same maimer 
as if all its terms were sci1ars. 

Thus, if P = P° at T =	 as long as [A] is non-
singular, the solution to equation (14) is 

[A]	 e[A](TTO) ([ A][P0 ] + [B}) - [B])	 (15) 

(See append.ix C for explanation of e[A](T_T0).) 

where [P0] is the n-rowed. column matrix 

After P1 e have been found in terms ol' known quantities, 
these P1 t s may then be substituted. into expressions of the form 
of equations (10) and. (ii) to find I or R 1 . If these expres-
sions are substituted. into equation (3),, Hj may be found.	 - 

Example. - Assume that 

(1) The absorber is three stations in thickness. 

(2) The incident radiation is monochromatic. 

(3) The radiation emitted by the absorber is of the same type 
and. energy as the incident radiation.

0P1 

0
2 

:i. 

n
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(4) i = 0.1 roentgen per hour 

= 0.01 roentgen per hour 

t1 = 0.8 

t2 = 0.5 

t3 = 0.8 

r1=O.1 

r2 = 0.4 

r3 = 0.1 

= li	 = h3 = 5 x io2

= =	 = 5 x io- secoths 

= io eecon.s' 

= 2 x b -5 secon.s1 

= 5 x io seoond.e 

• lo 

(5)At T =0, P°=I0 an H1=H2=113=0.O0. 

• L° 

The problem is to determine 1 4, B1, an H2 at T = l0 

second-s. 

Solution. - if the given data are substituted into equa-
tion (12) there results 
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0.10	 1.25	 -0.125	 2.00 -0.800	 1.25	 -0.125	 14 

R1	 .125	 .788	 .800	 .180	 .125	 .788	 0.01 

	

-1.25	 1.25	 -0.125	 -2.00 

+	 P1+	 P2. 

	

.675	 .125	 .788	 .200 

	

1.25	 -0.125	 2.00 -0.800	 -1.25 

+	 P3	 (16) 

	

.125	 .788	 .800	 .180	 .875 

Simp1ffyin equation (16) and. solving for I, and. 	 will result 
in

14 = 0.0387 + 0.436 P1 + 0.880 P2 + 1.356 P3 (17) 

R1 = 0.0420 + 1.356 P1 + 0.880 P2 + 0.435 P3 (18) 

Similarly,

12 = 0.0840 + 1.0445 P1 + 0.110 P2 + 0.0544 P3 (19) 

= 0.040 + 0.445 P1 + 1.10 P2 + 0.544 P3 (20) 

13 = 0.047 + 0.544 P1 + 1.099 P2 + 0.445 P3 (21) 

B3 = 0.0127 + 0.0544 P1 + 0.1099 P2 + 1.0445 P3 (22) 

From equation (4), the rates of change of	 P1 ,	 P2 ,	 an1	 P3 are 

given by
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= 5 x io (0.10 + R2 ) - io p1 
d.r

'-'	 7 -=5x10 (12 +R3)-2x10-5p2	 (23) 

d.P3 
-=5x107(13+0.01)-5xlcr5p3 

where 12, R2, 13, and. B3 are given by equations (19), (20), 
(21), and. (22), respectively. 

Substituting these expressions into equation (23) and. con-
verting to matrix notation results in 

-9.776 

dE] = 1O 6 	 549 

.272 

Applying equation 
P1 results in 

P1 = - 7.42x103 

P2=-4.06x104e1 

P3 = - 5.62x105 e 1T -

	

0.549	 0.272	 0.070 

	

-19.890	 .549 [pJ + icr6	 .048 , (24) 

	

.549 -49.778	 .0285

(22) and. writing out the equations for each 

- l.22x10 e	 + 3.48xl0 e	 + 7.29x10 

-3	 6	 3 • -2.24x10 e	 + 9.87x10	 e	 + 2.63x10 

5 • 400x10 e 2 - 5.46x10 4 e	 + 6,42x10 

(25) 

where 

= - 9.746 X 1O 

= - 19.910 x io6 

= - 49.790 x icr6
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Substituting equation (25) into equations (17) and. (18) will 

give 14 and B1. Thus at T = i0 seconds, 

14 = 0.0434 roentgen per hour 	 (26) 

R1 0.0527 roentgen per hour 	 (27), 

By the use of eqi.ation (25), first 12 and. R3 and. then H2 
may be found. If the given data and the newly found expressions 
for 12 and R3 are substituted into equation (3), 

= h2 ( 12 + R3) 

= 5 x io2 (0.0850 + 0.0138) 

= 4.94 x i0 roentgen per hour 

uast .L.L 

The assumptions used in case II are: 

(1) Stations of absorber are parallel plane surfaces. 

(2) Radiation is polychromatic and normal to absorber. 

(3) Energy iS degraded. 

(4) Part of energy absorbed is transformed to energy of radio-
activity and part to thermal energy. 

(5)Absorber emits radiation of same type as incident radiation. 

(6)Radioactivity produced in each station of absorber is 
entirely emitted.. 

Method. - In order to make the method of case I amenable to an 
analysis of polychromatic radiation, the terms are defined. as 
follows: 

The energy spectrum of the radiation, which includes the 
spectrum of the radioactivity in the absorber, is divided. into a 
finite number in of energy bands. Each band Is assigned a single 
energy, which represents all energies within the band; for example,
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if the 1:Iinits of a band. are 0.50 million electron volt (Mev) and 
1.49 Mev, and if 1.00 Mev represents all energies in the bansl, then 
energies such as 0.51, 0.70, and l.20'Mev would all be treated as 
energies of exactly 1.00 Mev. By varying the number of bands, any 
desired degree of accuracy may be attained. 

Prom the preceding paragraph, I =	 where ij,j is 

the p6wer of radiation within the jth energy band incident upon 
the 1th station of the absorber. Each I may also be expressed 
in the form of' an in-rowed column matrix 

11,1 

[Ii] =
	 1;, 

ii,in 

Similarly, Pj and Pj may be expressed as the rn-rowed. 

column matrices	 p 1 , 1 and.	 P1 , 1 , respectively. 

Pjj	 p4 

,m 

With these considerations, relations analogous to equations (1) 
through (4) may be defined as follows: 

[I±+il = {t 1J[ 11] + [r1][R11] + [P1]	 (28) 

[R j ] = [riJ[I] + [ t1J[R11] + [P1]	 (29)
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d.[P1] - 
dT - [j][Ii + Rj1] - [ X13[p1 ]	 (30) 

[ ni] = [hi][Ij +Rj1]
	

(31) 

where Ct1], Crj], [)lj], [?], and Ch 1] are- mt order square 

matrices, whose elements t J,k, rik,	 j,k'	 k,k' and hj,j, 

respectively, denote (1) the fraction of Incident radiation In 
energy band. k transmitted to energy band. j; (2) the fraction of 
incident radiation in energy band. k back-reflected to energy 
band j; (3) the rate of abeorption of radiation power from energy 
band k to become power of radioactivity in energy band j; 

(4) the decay constants of radioactivity in the kth energy band; 
and (5) the rate at which nuclear radiation in the energy band. j 
is transformed to thermal energy. 

Before continuing the analysis, the forms of the aforementioned 
matrices may be simplified. For this purpose, the convention will 
be adopted of dividing the energy spectrum into bands of increasing 
radiation energy so that the band of lowest radiation cncrgy will 
be the first bandwhile the mth band will be the highest rad.ia-
tion energy in the spectrum. By so doing, Ct 1 3 and. [ri J can be 
reduced to triangular matrices. Inasmuch as transfer of radiation 
from any energy band to a higher one can occur only after a nuclear 
raction, and because the results of all nuclear reactions will 
appear as p1 or H1 , there will be no elements of Ct 1 ] or 
Cr1 ] denoting an up'ading of energy. 

This observation is general and applies to any type of nuclear 
radiation. However, further reduction of Ct 1 ] or Erj] to 
d.iaonal matrices is prevented if allowances are to be made for 
loss of energy due to either elastic or Coznpton back-scattering. 

No 'eat simplification can be made for C it13. However, at 

present, there appears to be no experimental evidence of any radia-
tion that excites a radioactivity of both the same type and energy 
as itself. This fact would serve to put zeros in the diagonal ele-
ments of 

By definition, C?\ i ] and. [h1] are diagonal matrices. 

In order to continue the analysis, equations (28) and. (29) are 
solved for , I and. R1 in terms of I+i:
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[ii] = [t 1]	 [11+1] - t t1JT [r1][Rj^1] - [t ] 1 [ p1]	 (33) 

ER1] = [rj][t1]	 [11+1] + ([t 1J - [rj][t1][r1])[R1^1] 

+ ([E] - [r1][t1])[P1]	 (33)

vhere [E] Is defined, as the Identity matrix of order in. 

Inasmuch as all terms In eq.uations (32) and (33) are matrices, 
the order of multiplication must be carefully preserved. The 
assumptions made here Imply the existence of the inverses of var-
ious matrices. Whenever a solution to the physical problem is 
possible, all matrix inverses as used. in this paper viii exist. 

In matrix notation, equations (32) and. (33) may be written 

Ii [t1] - [ti][ rj] 11+1 

B1 ' = Er1] [t1] -1 - [rj] [t1J	 1 [r1 ] R11

1 

+ [ 
[ E ]' [rj][tjFlJ P

1	 (34) 

if the notation is simplified., 

Ii	 11+1 

= [T1]	 + [1][P1]	 (35) 
B1	 Rj1 

where [T1] is a 3m-roved. square matrix and. [Q1J Is a 3m-by-in 
rectangular matrix.

Ei 1 
Beginning with the expression for	 , continued. substi-

[Ri] 

tutlon of subsequent I , and. B1 yieid.s	 - 
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[Ill	 [In+11
li_i	 '\ 

	

= (fl[T j 	 I	 +	 fl[Tk]) [][]	 (36 

L
B1] \j=i	 .[+ij j=i \k=o I 

Both J and k must be taken in the order indicated. 

There are 2m equations In 2m unknowns so that the 
and the p, may be found in terms of the p.	 and known quan-i,j 
tities. 

From this point on, the method. Is the same as the procedure 
in case I be6innin with equation (12). 

1xrnnp1e. - Assume that: 

(1) The absorber is three stations in thickness. 

(2) The incident radiation Is composed of two monochromatic 
radiations of equal Intensity. 

(3) There is no back-scattering to the absorber. 

(4) The radiation emitted by the absorber is of the same type, 
but of a different energy, than the incident radiation. 

(5) Ii 
= 1 .L

10 
R4=I0 

[0

= [] 

[0.50 0.00 0.00 
[t1] = I .01	 .60	 .00 

	

L .01	 .01	 .50 

10.60 0.00 0.00 

[t2] =	 .01	 .50	 .00 

	

[.01	 .01	 .50	
V
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[0.50 0.00 o.00i 
[t3] = .01 .50 .001 

L .01 .01 .60] 

10.40 0.00 o.00l 
1r1] = .01 .30 .001 

[ .01 .01, .30] 

10.30 0.00 0.001 
Er2 ] = I	

.01 .40 .001 
[ .01 .01 .40] 

10.40 0.00 o.00l 
[r3] = .01 .40 .001 

L .01 .01 .30] 

•
= io 2

10 0 
o	 0

o1 
O second1 

Li	 1 1] 

•	 = i0 2 to 
10	 0 

0
ol 
01 eeconä) 

Li	 0 1] 

[i.t3] = i0 2
lo	 o 
to	 0

ol 
01 eecond.1 

L°	 1 1] 

= [] = [?] = 10_ i
1°	 0 
0	 0

ci
second.1 Oj 

lo	 0 ii 
[ni] = [ 112] = [113 ] = io 2 to	 1 0 

[i	 0 oJ

The problem Is to d.etermine 14 anã. 	 at • T = 1000 seoon3.s. 

if the above data are substItuted into equatlon (36), 

[ii] = [T1J[T2][T3]{4] + [ 1][P1 + [T1][2J[P2] 

+ [T1][T2][Q3][P3]	 (37) 
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where

2.000	 0.000	 0.000 -0.800	 0.000 0.000 

-.033	 1.67	 .000	 -.00335 -.500. .000 

-.039	 -.033	 2.000 -.00395 -.010 -.600 

.800	 .000	 .000	 .180	 .000	 .000 

.01	 .500	 .000	 .001	 .450	 .000 

.00788	 .00668	 .600	 .00078	 .002	 .320 

-2.000	 0.000.	 0.000 

.033	 -1.67	 .000 

.039	 .033	 -2.000 
[Q1]=

.200	 .000	 .000 

-.010	 .500	 .000 

-.00788	 -.00668	 .400 

-1.67	 0.000 0.000 -0.500 0.000 0.000 

-.033 2.000 .000. -.010 -.800 .000 

-.033 .040 2.000 -.010 -.036 -.800 
[T2=

.500 .000 .000 .450 .000 .000 

.00335 .800 .000 .Obl .180 .000 

.00326 .004 .800 .001 -.012 .180
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-1.67 

.033 

.033 
[Q2]=

.500 

- .00335 

- .00326 

2.000 

- .040 

-.0333 
[T3 ] -

.800 

.004 

.00979 

-2.000 

.040 

.033 
[Q3J=

.200 

- .004 

- .00979

0.000 0.000 

-2.000 .000 

-.040 -2.000 

.000 .000 

.200 .000 

-.004 .200 

0.000 0.000 -0.800 I0.000 0.000 

2.000 .000 -.004 -.800 .000 

-0.0333 1.667 -.00326 -.00335 -.500 

.000 .000 .180 .000 .000 

.800 .000 .0004 .180 .000 

.010 .500 .001 .001 .450

0.000 0.000 

	

-2.000	 .000 

.033 -1.67 

	

.000	 .000 

	

.200	 .000 

	

-.010	 .500 

If the irlLlicated. operatlon8 are performed, 
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4.79	 0	 0 -2.60 0 0 

.353	 4.73	 0 .079 -2.60 0 

Iii -.390	 -.430	 4.668 .0929 .114 -2.60 14 

Ri] 2.590	 0	 0 -1.20 0 0 

-.0589	 2.46	 0 -.009 -1.15 0 

-.0755	 .0806	 2.23 -.0022 .0002 -1.03 

-2	 0	 0 -3.73 0 0 

.033	 -1.67	 0 .111 -3.43 0 

.039	 .033	 -2 .128 .145 -4.00 
+ [P1] + [P2] 

.2	 0	 0 -1.24 0 0 

-.01	 .5	 0
J

-.001 -.91 0 

-.00788	 -.00688	 .4j [ .0071 -.011 -1.24 

[_6.14	 0	 0 

.351	 -6.15	 0 

.388	 .449	 -6.67 
+ [PJ (38) 

-2.91	 0	 0 

.049	 -2.78	 0 

.067	 .073	 -2.83 

Substituting the values for	 Ii and.	 R4 into equation (38) 
an1 solving for	 14	 and.	 R1 yields:
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The solution to equation (15) is thus: 

p11 = p12 .= p21 = p22 = p31 = p32 = 0 

p13 =
	 - O.O363Se_9OT 

- O . 1779e_ )68l8T + 0.3257 

:o.l000T + 0.05914e 0 p23 = O.0000468e 

- 0.2187 
-0.06818T 

	

e	 + 0.1595 

p33 = 0 . 1113e_OOT - O.O3626eJ09OT 

-0 • 06818T 

	

- 0.1779e	 + 0.1030 

If these expressions are substituted. into equatlon (39), at 
T = 1000 seconds	 -, 

141 = 0.209 roentgen per hour 

142 = 0.227 roentgen per hour 

143 = 0.329 roentgen per hour 	 - 

Mter R2 has been found in a slmilai' manner, the resulting 
expressions may be substituted. into equation (31) from which 
Is found to be H 1 = 0.0326 roentgen per hour. 

Case III 

The asspt1ons used. in case III are: 

(1)Radiation consists of polychromatic neutron and. gamma 
radiation. 

(2)RadiatIon is normal to absorber. 

(3) Part of energy absorbed is transformed to energy of radio-
activity and part to thermal energy.

p

(40)



R7. 
:1. 

n
Ii 

Tfl

TV. - 
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n
i+1 
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(4) Absorber emits radiations of same types as incident 
radiation. 

(5)Radioactivity produced in each station of absorber is 
entirely emitted. 

Method. - The method differs little from that suggested. in 
case II. Each type of radiation is dealt with separately, whenever 
possible. The energy spectrum of the gamma radiation is divided 
into m energy bands and that of the neutron radiation into q 
energy bands. These energy bands have the same denotations as in 
case II. In the analysis that follows, symbols for gamma-radiation 
power will be signified by the superscript y and. those for 
neutron-radiation power by the superscript n. As may be readily 
seen from the I ollowin description, the method is immediately 
applicable to any number ofdifferent types of radiation. 

Si 

4. 

The following relations hold for this case: 

[ I ^i] = [t7 J[ I71] + [r71][R711] + [P71 J	 (41) 

[R7 1 J = [r71J[171 ] + [t71][R711] + [P]	 (42) 

d[P7i]	 + R71^1] + [n71J[1n1 
+ 1+1] -[7[P7iJ 

(43)
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= [t[I 1] +[r'J[R'111] +[P]'	 (44) 

[R'11 ] = [r][ Ir ] + [t'11] [R' j1] + [P']	 (45) 

_____ 

= [i][1'i + R' 11] + [i71] [I7 + RY11] _ [ xfl1][pfl1]	 / 

d.T

(46) 

[ Hi ] = [ h71][ I7 + R7 1^1 ] +[ h1][I111 +	 .+i]	 (47) 

where tt71], [r71], [.t7j], [?'], and [h71J have the same mean-

lEgs and. are in fact identical with [t 1], [ ri], [i-i1], [h], and. 

[hi], respectively, in case II; the corresponding constants for 

neutron radiation have analogous meanings: [p." 71 ] is an m-by-.q 

rectangular matrix whose elements 	 denote the rate at which 

neutron radiation of energy j is converted to radioactive power 

of gamma radiation of energy k, and correspondingly, [i.'"J is 

a q-by-m rectangularjnatrix whose elements	 '	 denote the rate 
Yunv 

at which gamma radiation of energy u is converted to radioactive 
power of neutron radiation of energy v. 

The set of e(uations (41) and (42) is solved to obtain all 

[i7 ] and [R7 ] in terms of known quantities and [ p7 ] by the 

same procedure as of case II. Then equations (44) and (45) are 

treated similarly so that ,1fl1j and [R] are obtained as expres-

sions consisting of linear combinations of known quantities and [Pfl1]• 

The resulting expressions are substituted into the set' of equa-
tions (43) and (46), which is combined to form the single matrix 
equation

[A][P] + [B] 

where now [p] is the n(m^q)-rowed. colimm matrix
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DY 

Pq• 

and [A] and [B] are n(m^q)-rowed square and. column matrices 
of constants, respectively. 

After this point Is reached, the methods of case I may be
applied to complete the solution. Although physical problems might 
occur where the method of case I will not yield unique results, 
these cases are very rare. 

The preceding method is immediately applicable to an analysis 
of radiation consisting of any number of dIfferent types of radia-
tion for which the required experimental data are available. 

DISCUSSION

Advantages of the Method. 

The advantages of the foregoing method are twofold. First, 
the inclusion of time-dependent factors greatly increases the num-
ber of problems to which the method. may be applied. Almost all 
chemical elements have some radioactive Isotopes. Inasmuch as many 
radioactive substances have short half-lives, this method is a 
closer approximation to the physical problem than a method that 
considers the radioactivity to be a time-independent constant. 

Another advantage is that all the P 1 t s may be obtained with 
approximately the same amount of calculations required to obtain a 
single P1 without the use of matrices. If matrix methods are 

not used, the usual procedure Is to obtain an nth order equation 
in one P by substitution, solve it by differential operators, 
and then substitute this solution into the expressions for each of 
the other P1 t s in terms of the one juet obtained.
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If computing machines are available, the calculations of [A] 

and eCA]T do not take long and. the matrix method may be readily 
employed to the fullest advantage. 

An exaiiiple of a possible application of this method is: 

Assume that two prospective absorbing materials are available 
for diminishing the intensity of. a certain radiation. One material 
is an excellent absorber but rapidly becomes radioactive when sub-
jected. to the given radiation. The other material, although 
inferior to the first in its ability to absorb the radiation, lacks 
the undesirable property of becoming radioactive. Which absorber 
should be chosen? 

Obviously, there are situations In which the second material 
would be preferable and other situations in which the first mate-
rial would be preferable. The use of this method could shorten the 
time spent in making choices of this nature. 

Limitations of Method 

The main limitation of the method. is the aiount of available 
experimental data on the absorption of ganima rays and neutrons and 
on the rates of conversion of these radiations to secondary radia-
tion and to thermal energy.

CONCLUSION 

A matrix method for determining the effectiveness of radio-
active absorbers has been set up; theoretically the method is 
immediately applicable for solution of absorber problems. Ade-
quate experimental data on the absorption of radiation and. rates 
of conversion to secondary radiation and thermal energy are, how-
ever, required for utilization of this method. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, OhIo, February 4, 1949.
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APPENDIX A 

SYMBOL 

The following symbols are used. in this report: 

[ A], [B]	 matrix coefficients 

a,a',b,b',c,cl,e	 scalar coefficients 

[E]	 identity matrix 

Hi	 thermal power generated in ith station of 
absorber 

[E:]	 matrix of thermal power generated in 1th sta-
tion of absorber 

h rate of conversion of energy of nuclear radiation 
absorbed. to thermal energy 

[hj ] matrix of rate of conversion of energy of nuclear 
radiation absorbed. to thermal energy 

power of radiation from 	 (1_1)th	 station 

incident on	 1th	 station 

[I.] matrix of power of radiation from	 (1_1)th	 sta-
tion incident on 	 1th	 station 

11+1 power of radiation from 	 1th	 station incident on 

station 

[ I +i] matrix of power of radiation from	 1th	 station 

incident on	 (i+l)th	 stationS 

power of radiation in	 th	 energy band incident 

on	 1th	 station from	 (i^l)th	 station 

n number of stations in absorber 

[P] matrix of power of radiation from radioactivity
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Li'0 ]	 matrix of initial power of rad.iation from radio-
activity 

P1	 one-half of power of radiation from radioactivity 

1th station 

matrix element of power of radiation from radio-
]	 -I 	 .1-.	 I 

activity in the 1	 station 

[1] rectangular matrix coefficient 

R1 power of radiation from	 1th	 station incident on 
(i_l) tk	 station 

[R1 ] matrix of power of radiation from 	 1th	 station 

incident on	 (ji)th	 station 

R11 power of radiation from	 (j1)th	 station mci-

dent on	 1th	 station 

[Ri+i]. matrix of' power of radiation from 	 (i+l)t	 sta-. 

tion incident on	 1th	 station 

r power back-scattering coefficient 

Er1 ]	 / matrix of power back-scattering coefficient 

1th	
station of absorber 

[T0 ] identity matrix	 [E] 

[T1 ]	 ' square matrix coefficient 

t power-transmission coefficient 

[t1 ] matrix of power-transmission coefficient 

decay constant for radioactivity, seconds 

[] matrix of' decay constant for radioactivity, 

secomis1

'rate of conversion of' energy absorbed in S j to 
energy of radioactivity in S1 
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[	 matrix of rate of conversion of energy of rad.ia-
tion absorbed in S1 to energy of radioactivity 

in S1 

iT	 symbol denoting that product of terms following it 
are to be taken as indicated, by indices 

power of radiation in th energy band. emerging 

fr	 I	 station 

T	 time 

T 0	 initial time 

Subscripts: 

T	 time 

-	 initial time 

Superscripts: 

n	 neutron radiation 

y	 gamma radiation 

,
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APPENDIX B 

DIVATION OF EQUATION FOR POWT2 OF RADIOACTIVITY

IN 1th STATION 

A station of an absorber S 1 Is assumed to consist of a very 
large number of stable atoms and some radioactive atoms and all 
radioactivity produced in this station is assumed to be emitted. 
The rate of change of the number of radioactive atoms N 1 in the 
absorber is given by 

	

d.N	 a. (I. + R.	 ) 
=	

(E)5	 -	 (Bl) 

where a 1 equals the fraction of the radiation energy incident 
upon the 1th station that is absorbed in forming radioactive atoms 
and (E1)5 

R 
equals the energy required to change a stable atom to 

a radioactive one. 

Now

2P1 = (Ej)R,s	 N1	 (B2) 

where (E1)R,s is the energy emitted when a radioactive atom 

changes to a stable one. If equation (B2) is differentiated with 
- respect to time,

-d.P.	 dN1 
2	 = (E1)R,s	 (B3) 

Then if equations (B2) and (33) are substituted into equa-

	

. (E.)	 a. 
tion (Bi) and.	

2"E	
is set equal to 

i's,R 

dP.
= it1 (i + R 1 1) -	 (B4)
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APPENDIX C 

D'INITION OF "e" TO A MAIX POWER 

Inasmuch as [A] is a matrix, 0[AJT must be defined. The 

symbol e[A]T is defined as	 which may be evaluated 

	

j=O	 - 
more readily with the aid of the confluent form of Sylvester's 
Theorem (reference 3). 

Let [ .u] be any square matrix of rank q with r distinct 
characteristic roots 1 

• • •	 of multiplicity i 
• • • 

respectively. Then if P([u]) is a polynominal in- [u] or a con-
verent infinite series in [u], the theorem states that 

I_____ ___ [P()11([u] k[EJ)1	 1 P([u]) 
= 

ij(i	 l) ::
	 Li - Xk)1 

where [E] Is the identity matrix of order q. 

If all the roots are distinct then equation (ci) reduces to 

	

rP(? 1 )	 ([u] - 

P([u])=t	
k#i	

_J	 - i=l	 'Ik) [ k^i

10 0 

Example 1. - Calculate e[u] when [u] = 2 2 O • Thenthe 

3
	

3 
characteristic roots are l = 1, 2 = 2, \3 = 3, aM

(ci)
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el[(2[E] - [u])(3[E] - [u])1 + e2'[(	 - [u])(3[E] - Eu]) 

L	 (2-l)(3-l)	 J	 L	 (l-2)(3-2) 

+ e [([EJ - [uJ)(2J - [uJ) 

[	 (1-3)(2-3) 

frcmi. which

1	 00	 000	 0	 00 

e=e -2	 0 0 +e -2 -1 0 +e3 0	 0 0 

2.5 0 0	 8 4 0	 5.5 4 1 

2 -2 3 

	

Example 2. - Calculate e.[u] where [u]	 10 -4 5 

5 -4 6 

Here	 = 2 = 1 and. ? 3 = 2 ao that 

e[u] =

	 ]	

+ euj - 2f 

( - 

	

5 4 -8	 5 2 -5	 -4 -4 8 

	

= e 15 16 -30 + e 25. 10 -25 	 + e2 -15 -15 30 

	

10 10 -19	 15 6 -15	 -10 -10 20 

10	 6 -13	 -4• -4	 8 

= e 40 26 -55 + e 2 -15 -15 30 

	

25 16 -34	 -10 -10 20 

I
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