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SUMMARY

From consideration of available information on boundary-layer
behaviour, a relation among profile thickness, maximum surface
velocity, Reynolds number, velocity diagram, and solidity is
established for a cascade of alrfoils immersed in a two-dimensional
incompressible fluid flow. Several cascades are computed to show
the effect of various cascade design parameters on minimm required
cascade solidity. Comparisons with experimentally determined blade
performance show that the derived blade loadings are equal or higher
for moderate flow deceleration and somewhat lower for large decel-
eration. Blades with completely laminar flow appear practical for
impulse or reaction blading.

INTRODUCTION

In the design of compressor and turbine blading, the choice of
blade sections and spacing is usually made on the basis of experi- .
mental results from several cascades. An enormous amount of data
is required to cover the entire range of inlet and outlet angles,
Reynolds numbers, blade sections, spacings, and maximum surface
velocities.

The relations among the blade circulation and its thickness,
Reynolds number, maximm surface velocity, and spacing were deter-
mined at the NACA Lewis laboratory in a qualitative fashion for
two-dimensional, incompressible flow. This problem has been studied
empirically (references 1 and 2) without any attempt to relate the .
_ problem to the basic determining factor - the boundary layer. The
analysis presented herein establishes such a relation on a more
rational basis.

As the gas flows through a cascade of airfoils, on the suction
surface of a blade the inlet velocity is raised to some maximum
local value and then decreased until, near the trailing edge, 1its
value is in the neighborhood of the exit velocity. A blade cascade
will operate in a compressible fluid with less likelihood of local
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shocks, resultant losses, and choking if the design is such that
the maximum surface velocity is maintained as low as possible. The
preassigned, low maximum surface velocity should extend over as
large a portion of the suction surface as possible before diffusion
in order to raise the circulation to a maximum. Because the-veloc-
ity must decrease near the trailing edge from its maximum value to
a value close to the exit velocity, the maximum possible rate of
diffusion will, in effect, determine the arc length on which the
suction-surface velocity is kept at its maximum. The blade cir-
culation attainable is then determined by the maximum diffusion
rate possible. .

In dealing with incompressible flow, the same general type of
velocity distribution is specified herein, and the diffusion rate
is determined by several conditions to avold separation of flow
from the blade surface. Once the possible velocity distribution
on the suction surface is determined, an approximate computation
is then used with a specified velocity diagram and blade thickness
to compute the pressure-surface-velocity distri‘bution, blade cir-
culation, and spa.cing.

" The results reported herein are not to be interpreted as giv-
ing an exact velocity distribution of airfoil sections for appli-
cation. In the first place, the assumption of no separation in
some cases reduces obtainable 1ift and increases the blade solidity
end the surface for friction, which increases skin friction loss,
If a small region of separated flow is permitted, the increase in
form drag may be insufficient to increase total drag in view of the
increase in blade 1lift and decrease in blade number and skin fric-
tion. Another limitation is possible in applicability of the
boundary-layer equations used in prescribing the suction-surface-
velocity distribution. The velocities deduced from these equations
are not conventional in that the form factor of the boundary layer
(ratio of displacement to momentum thickness) rapidly rises to the
maximum permissible value end then remains nearly constant; whereas
with conventional velocity distributions, it slowly increases and.
then very rapidly rises near the separation region. Thus the
empirical equations describing the development of the boundary-
"layer form factor may not be accurately applicable for such velocity
distributions. In order to demonstrate the several solutions that
might be applicable, the surface velocities were prescribed accord-
ing to three rules. Garner's equations (reference 3) were used
with the form factor first rising rapidly and then remaining nearly
constant with limiting values of either 1.85 or 2.14. Also a dif-
fusion rate was chosen equal to 0.885 of the value prescribed by
Kalikhman (reference 4) for separation.
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) A final consideration lies in the approximate nature of the
procedure for computing the lower surface-velocity distribution.

In this process, the effect of thickness is assumed to result in a
surface-velocity component, which varies as a second-degree para- -
bolic function of the surface arc length. Consequently, the
results apply to a special family of thickness distributioms, which
may not be the optimum for the prescribed suction-surface-velocity
distribution. Moreover, the estimate of the effect of thickmess

is inexact so that the estimate of the airfoil-thickness distri-
bution will differ somewhat ' from the actual thickness of an airfoil
with the prescribed surface velocities. '

Although the absolute values of blade circulations are inexact,
some very definite trends are nevertheless demonstrated, particu-
larly with respect to maximum surface velocity, Reynolds number,
and blade thickness.

SELECTION OF VELOCITY DISTRIBUTION
ON SUCTION SURFACE OF BLADE
General Considerations

As mentioned in the Introduction, the velocity distribution on
the suction surface to be investigated will consist of a velocity
that is supposed to rise to its maximm value in a negligibly short
distance from the leading-edge stagnation point and to maintain that
value as far back along the airfoil as possible. The velocity must
then decrease from the maximum value to the value near the trailing
edge that differs slightly from the downstream velocity. A decel-
eration with a maximm safe velocity gradient without flow separa-
tion between the maximum velocity and a final velocity is required.
In order to f£ind the suction-surface-velocity distribution, it is
necessary to investigate the development of the boundary layer,
which determines the allowable rate of diffusion. The general
shape of the velocity-distribution curves is shown in figure 1,
vhich also indicates some of the nomenclature. (All symbols used
are defined in appendix A.) ’

N

Laminar Boundary Layer

Region of constant velocity. - For the region of constant
velocity U(x) = Uy,,, the equation for the momentum thickness of

the laminar boundary layer is
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6 = 0.664 | (1)

vhere
e momentum thickness of boundary layer
v kinematic viscosiﬁy of gas
b 4 é.rc length on aﬁ-fo:ll suction surface
U suction-surface velocity Jjust outside boundary layer
The subscript max I1ndicates ma.ximnn value -of surface velocity.

The Reynolds number of the boundary layer based on momentum thick-
ness is defined as

R=EU8/v (2)
The form factor H 1s defined as '
H=8*/o . (3)

where &% is the displacement thickness of the boundary layer. In
the region of constant velocity, H = 2.614.

‘Region of diffusion, - For diffusion with a laminar boundary
layer, the approximate method of Loitsianskii (reference 5) was
used. According to that system of equations, separation will occur
if the proportional change in velocity dU/U ‘per unit of arc
length dx equal to the generalized momentum thickness L reaches
a value of -0.08884. That is

_Lau |
D= ¥ & (4)
where
L=6r=0%3 (5)

must be greater than -0.08884. A value of Dp = -0.06618 was
arbitrarily selected to give a high diffusion rate without intro-
ducing laminar separation. Loitsianskii'’s equation for boundary-
layer growth then becomes
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g_%.(%)

dx (dU) :

=1

dx

where F, a function of D, 1is a constant equal to 0.8517 for
b =- 0.06618.

This equation is integrated to give
‘ -F
ay oM
dx

By substituting for dU/dx from the definition of Dy, the con-
stant of integration K is evaluated to give '

Dy,

U L \ 2L+ 1\ -0.08425
ﬁ— = L_> = (— (66)

! 1 L s
where the subscript 1 1indicates the value at the beginning of the

laminar diffusion process. By differentiating equation (6a) and
eliminating dU/U by means of equation (4), there is obtained

which is integrated to

%‘l. =1 + (Dp+F) < ;:l> =1+ 0.7855 (x _ ‘xz> .' (6b)

L,

Equations (1) and (5) are used to relate the constants x;
and L

. 1 =osalx

From equation (5)
L_6RrR_(¥U
L 8 &0

‘
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or

¥ . .
u % 2(F+Dy) 0.5421
o . .r:__1_> (L - L) (6¢)
5, "\I; U ‘ L \L
also |
F+2Dyp, .
E /L 2(F+Dp) /1 0.4579 ()
o) (Lz I |

The velocity potential ¢, defined by

x .
cpEf Udx
0

is found from
F+2DL
PP 1 * 1 L\ L p,\0-9158
= Udx = o= (=~ = 1ll=1.390 | =~ -1
oy [y () ol
1
(6e)

The constent ®, /Uz L, is computed from the eguatioms for the non-
diffusing section giving

gL
G I

The form factor of the boundary layer H in the region DL = -0,06618
has a value of 3.214 (reference 5). ,

= 2.268 ' ' (6£)

.

In applications, it is convenient to know the pos:ltion( x in

percent of the total length of the suction surface X. From equa-
tion (6b), .



NACA TN 1941 h 7

z.=_z+.l‘;_<_&_1> )
L L TR \L
The subscript f applies to the finai value at the trailing edge
x
of the blade. In terms of velocities, with -1% = 'C-)_LT’
, F+Dp,
U\ L -
X £
q=zzsa<m><> -1 (7a)
Then
3 - 1 (8)
X F+Dp .
Dy,

L, Q441 | (Vg 1
F+Dy, )
In figure 2, the verigtion of U/U;, and R/R, with x-x;/I;
is shown for diffusion with the laminar boundary layer. In apply-

ing these curves for any airfoil, the scale of the diffusing region
must be adjusted for the value of L, that is equal to 0.441 X .

In figure 3, the curve for the entire suction-surface potential is
shown with X as the unit of length rather than I"l'

Transition

As the air flows over the blade surface, the thickness of the
laminar boundary layer will increase until a point 1s reached where
the character of the boundary-layer flow will change from laminar
to turbulent., The boundary layer will then develop according-to
different laws and will therefore also sustain a different pressure
gradient without separation.

Transition occurs at a certain value of Ry., which will depend
on the turbulence intensity and scale, the pressure gradient, the
roughness and the curvature of the surface, and on heat transfer
through the boundary layer. An Rtr value of 250 has been selected
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for this analysis in consideration of the high level of free-stream
turbulence in turbomachinery, which tends to reduce Ry, to a low

value. According to Gruschwitz (reference 6),observed boundary
layers were always laminar if R < 250 regardless of the intensity
of free-stream turbulence, and turbulent boundary layers have been
observed for R > 250. Gruschwitz neglects to mention the pressure
gradient at which these observations were made and as a consequence
the assumption Ry, = 250 might be somewhat low for flows with zero

pressure gradient. It should be noted that if for any reason transi-
tion is delayed so that the rapid diffusion rate prescribed for a
turbulent boundary layer is applied to a laminar layer, separation
results. On the other hand, the effect of pressure gradient is to
reduce markedly the value of Ry,., 80 that even should the transi-

tion be delayed in the zero pressure-gradient region it will prob-
- ably occur at the inception of the diffusion process.

Turbulent Boundary Layer
The momentum equation for the boundary layer is

L %g—x (24H) = L (9)

where
T surface shear stress
P gas density

" If the definitions for friction coefficient

p= Lz 1/6 (10)
generalized momentum thickness
7= ox'/® (11)
.and diffusion coefficient
_ T au
=5 (12)
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are substituted into the momentum equation as in reference 3, there

results
£-if-ae )

In order to complete the solutions of this equation for arbitrary
Dp, two more equations are required: one to determine values of f,

and one to determine the development of the form factor H.

‘Region of constant velocity. - In the region of constant veloc-
ity Dp = 0, so that the momentum equation reduces to

ar- 7
&%t (14)

Falkner's data (reference 7) for surface shear with constant veloc-
ity show that

£ = 0.006534 (15)
Equation (14) may therefore be integrated to give

T - Typ = % £(x - xq) (16)

where the subscript tr indicates the value at transition.

Conditions for diffusion without separation. - The system of
equations proposed by Garner (reference 3) was selected to describe
the development of the turbulent boundary layer because of its
simplicity., In selecting a law for friction, Garner examines data
for R > 1250 and shows that f 1s constant with a value of
0.006534 if wm1<%<0&%.(%nishmmﬂsmMe& £

for Dp = 0, reference 7). For Dp < -0.01 no correlation is

obtained. In consideration of the lack of correlated data for high
diffusion rates, Dp > -0.01 was selected for the range of dif-
fusion rate and therefore f = 0,006534 is used for the friction
coefficient.

The development of the form factor H required for solution
of the momentum equation is described by an empirical equation
developed by Garmer in reference 3., The relation is

.



0 " - NACA TN 1941

T %": _eS(E - 1.4) E)I. +A (H- 1.4)] . (17)

vhere A = 0.0135.

The problem is then to define a velocity distribution that
will avoid separation of the turbulent boundary layer. Experience
shows that when H reaches a value of about 2.0, with conventional
velocity distributions it subsequently rises rapidly and separation
occurs. Values of H for separation are therefore usually given
in the range 2.0 < H < 2.6. It is therefore proposed that one
possible criterion for prescribing the velocity is that H rise
to some value and thereafter remain constant and less than 2.6.

Equation (17) describing the development of H shows that if,
H<1.4 + (-Dp/A), then dH/dx >0 and H tends toward
1.4 + (- Dp/A). If H >1.4 + (-Dp/A), then equation (17) shows

that dH/dx <O and therefore H alvays tends toward the value
1.4 + (- Dp/A). .

If constant values of * Dp are considered as possible condi-
tions for determining the velocity distribution, then the momentum
equation shows that for a given velocity change Dp should be as
large a negative number as possible in order to reduce the surface
for skin friction. (The rapid diffusion results in airfoils with
relatively longer regions of constant maximum velocity and there-
fore larger airfoil circulations.) For reliability of the boundary-
layer equationms, it is desirable to maintain Dp > -0.01. Therefore

a possible condition is Dyp = -0.01, the largest rate of diffusion

with f = 0.006534. The limiting value of H for this case is
2.14, a value that is probably, but not certainly, safe. Two values
were therefore used in the velocity computations: Dp = -0.01, and

Dp = -0.006, which corresponds to a limiting value of H = 1.844.
A third condition for prescribing the diffusion rate was also
employed. According to reference 4, separation will result if

au _-0.247 - -0.247
= R =DRR (18)
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attains the value of -0,0013. The third type of velocity distri-
bution computed was for the maximum diffusion rate with both
Dp > -0.01 and ‘Dg > -0.00115, a value arbitrarily assigned with

the condition that it be greater than the separation value -0.0013.

Velocity distributions in the region of diffusion. - For the
cases where Dp is constant, equations’ (12) and (17) are used to

eliminate the differential of x, and to obtain

aw_ D -s(m-1.4) dE Q9

T~ & H - 1.4 + Dp/A

which integrates to

log "?—o = - PAT- $S0r/A @1(-53—5%/A +7) - Ei(-snr/A):]’ (20)
where _
"
Ei(y) = T &

is the exponential integral function (tabulated in reference 8) ’
- having the principal part of the integral for y> O (that is, for
H<1.4 - Dp/A). The constant of integration for U = U, was

chosen at H = Hy = 1.4. This value of H, Uy, and Ty will not
be included on any point of the airfoil if lamina.r diffusion pre-
cedes turbulent diffusion.

Equations (12) and (13) give

ar _ 7| g 13 Dr\lau 7 Dr\ au
F-—-6-[1—)1‘—-<—7-+1.4-T>]TI---§<H-1.4+T>—6? (21)

For the factor dU/U of the second term on the right side, a sub-
stitution is made from equation (19) to obtain an equation that
may be integrated to

\_ 7 1 Dy Dp -5(E - 1.4)|
108(%)--6'11% (73+14 A>]105I}L :’;IOA [-9 :l

(22)
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The arc length is then given by

w-[exfs

The curves for the boundary-layer parameters in the turbulent-
diffusion region are shown in figure ¢ for Dy = -0.010, Dp = -0.006,

and maximum diffusion rate with DIp = -0.01 and Dg > -0.00115.

'alﬁ‘
U';—l

In solving the boundary-layer equations (13) and (17) (with
f = 0.006534) with the condition Dg 2 -0.00115, the value of Dp

rises with R. The limitation Dp 2 -0.01 was added at the high
Reynolds numbers in order to keep DT in the range for which the

friction law f = 0.006534 is valid. The solution of the equations
-in the region of variable DI‘ was obtained by approximating each

portion of the curve with the solution for Dr = constant = mean
value of Dp 1in that step. '

Relations between Velocity Distribution
and Blade Reynolds Number

The relations between the velocity distribution and blade
Reynolds number fo/ V are developed. Some of the results are

given in graphical form, which permits the use of the generalized
velocity-distribution curves developed for the laminar and tur-
bulent boundary layers (figs. 2 and 4). These curves will give
the velocity distribution in the region of diffusion if the scale
constants I, Uy, and Ty are known; the remainder of the sur-

face is determined by the constant x; or =x;.

As assistance in finding the eppropriate constants, the quan-
tity x,/X (or x, /X for completely turbulent diffusion) is

plotted in figure S as a function of the Reynolds number UfX/ v
and the velocity ratio /anax (The method of computing fig. S

ie presented in appendix B.) The curves should be applied in the
following manner:

The Reynolds number UpX/v and velocity ratio Up/Up..
selected. ZExamination of figure S will indicate whether the
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diffusion is laminar, mixed, or turbulent. If the diffusion is
laminar, figure 5 gives the value of X1, and then I = 0.441 X5

vhich establishes the scale for the use of figure 2.

If the diffusion is altogether turbulent, figure 5 determines

xt and then
E " X )

where (X - xo)/To is given in figure 4 as a function of Up/U,
and Uy = Up.y.

The case of mixed diffusion is considered to be of no technical
significance in this application because of uncertainty in locating
the position of tramnsition. The effect of Reynolds number is there-
fore considered only in regions of purely laminar or purely turbu-
lent diffusion, although x;/X and ®/UpX were computed for

Ryr = 250 and Dp = -0.01 in the mixed-diffusion region,

Suction-surface potential. - A further step in computing air-
foil performance is the integration of the velocity curves to obtain

1l
¢ U :
] %0 ) | @)
0

a dimensionless form of the potential on the suction surface.
Results of the computations are shown in figure 6. The comparative
magnitudes of the potentials for various values of Dp (or DS),

Uf/Um, and the Reynolds number are significant because in the

systém used for estimating blade circulation, an increase in suction-
surface potential is generally accompanied by an increase in blade
circulation. ‘ '

The obtainable potential is highest with the greatest diffusion
rate (compare figs. 6(a) and 6(b)) because the maximum velocity is
maintained along the largest portion of the airfoil surface. The
most pronounced effect of Reynolds number is the increase in poten-
tial shown in the change from laminar diffusion to turbulent
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diffusion (fig. 6(a)). The increase in potential begins at a
Reynolds number in the vicinity of 80,000 to 90,000 and for
Uf/Uﬁax:> 0.6 1is fully realized at the blade Reynolds number

approximately 260,b00 for Dg 2 -0.00115 and Dp = -0.006 and
approximately 180,000 for Dp = -0.010. This change increases with
decreasing diffusion-velocity ratio Uf/umax' Although there is

no effect of Reynolds number on suction-surface potential for dif-
fusion with a completely laminar boundary layer, the effect of
increase in Reynolds number for turbulent diffusion is a decrease
of potential for constant values of Dp An insignificant effect is
shown, however, when the criterion of Kalikhman for separation is
applied (fig. 6(c)). Because at large Reynolds numbers the condi-
‘tions Dg = -0.00115 is replaced by Dp = -0.01, the curves so

constructed approach the curves for Dp = -0.010 in that region.

(The large Reynolds number condition is equivalent to the assumption
that the extent of the laminar boundary layer approaches zero.)

The case of infinite Reynolds number is of particular signi-
ficance because it is the most conservative design with turbulent
boundary layer for constant diffusion coefficient Dp. The poten-
tial at large Reynolds numbers was therefore computed and is shown
in figure 7 for velues of Dy = -0.010 and -0.006. .The curve for
Dp = -0.010 at high Reynolds numbers is practically the same as
that of Dg 2 -0.00115 for all Reynolds numbers because the poten-

tial for the Dg-condition shows so little variation with Reynolds
numbers.

The trend of curves shows that highest potential occurs at a
Uf/uhax of approximately 0.58 with very little variation between .

0.53 and 0.63. Therefore, if a design is considegedAwith a pre-
assigned value for the velocity diagrem and Up, there is negligible

gain in using higher peak velocities than U _ = 1.6 Up. For dif-

fusion with a laminar boundary layer, figure 3 shows negligible
increase in obtainable potential for peask velocities Umax higher
than 1.25 Ue. S '

Deviations from design conditions. - A knowledge of the range
of operation of any cascade of airfoils is essential in determining
its suitability for application. For the sets of blades considered
here, the effect of change of Reynolds number is nonexistent with'
purely laminar diffusion. A very slight and indeterminate effect
is shown for turbulent diffusion with Dg 2 -0.00115. If the 1limi-
" tations imposed by constant Dp are closer to the physical facts,

then less 1lift 1s obtainable at higher Reynolds numbers.
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Consequently, increase in Reynolds number of operation would
involve the danger of separation. A safe estimate of 1lift would
‘therefore be made on the basis of the potential for the maximum
Reynolds number of operation provided the minimum Reynolds number
of operation does not extend into the regions requiring laminar
‘diffusion rates. If the maximum Reynolds number of operation is

‘- taken to be three times the minimum, then a very slight effect of
design' Reynolds number on potential is indicated even for the dif-
fusion rates Dp = -0.010 and -0.006. The Reynolds numbers at

which some diffusion with laminar boundary layer occurs depend on
the value selected for Ry, (in this case 250), on the diffusion

rate, and on the velocity ratio U, ./U.. Estimates of 1ift made

~ on the basis of Dp = -0.010 and RN—>o would be in agreement
with estimates based on Dg = -0.00115. If a blade designed on
such a basis was used at low enough Reynolds numbers, then the
laminar boundary layer existing in the region of diffusion would
separate because of too steep a pressure gradient.

If a rough finish or a higher angle of attack than the design
value occur in application of the blade, an increase in the value
of Ty over the design value may be expected. Then the initial
value of DI. =T (I—]J' %—g) will increase in the same proportion at
the begimning of diffusion. Sample computations show, however,

that for velocity distributions based on constant DIy, this
‘initial increased value for Dp is not maintained but drops to

some value intermediate between the initial value and the value
for which the velocity distribution was prescribed. If the value
of the form factor for separation H i1s assumed to be 2.2, 1t
would correspond to the limit for a constant value of Dp given

by
Dy = - 0.0135 (H - 1.4) = - 0.0108

If the design velocity distribution corresponded to
Dy = -0.006 (limiting H = 1.85), and then in operation T were

increased by 80 percent to give an initial value of Dp = -0.0108,
the resultiﬁg limiting value of Dp would be greater than -0.0108

(less in absolute value) and the limiting value of H- would be
less than 2.2; thus, according to this criterion, separation would
be avoided. If the design velocity distribution corresponded to
Dp = -0.010, however, an increase of 80 percent of T would result

in separation according to this criterion.
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. ESTIMATE OF BLADE CIRCULATION AND SPACING
Effect of Thickness

An approximate calculation is made for the blade circulation
from the upper-surface velocity distribution by a modification of
the method for thin airfoils. The basic idea is that the airfoil-
surface velocity is the sum of two components, one of which results
from the basic thickness form uncambered, and the second of which
results from the curvature of the camber line. The suction-surface
velocity of the thin, slightly cambered, isolated airfoil is then

given by
-— | B L
v G
where

U' suction-surface velocity of airfoil

ik velocity component resulting from uncambered thiékﬁess dis-
tribution ’

AU' velocity increment resulting from curvature of camber line
V' free-stream velocity

The ratios U'/V' and AU'/N' are independent of the magnitude
of V'. A similar equation holds for the pressure surface,

Up' =U' - AU' = 20" - U

where Up' is the velocity on the pressure surface., If the

suction-surface velocity is known, and if the velocity component iL
resulting from the thickness can be determined, then the pressure=
surface velocity can be computed.

In applying these ideas to the cascade, the principal change
is the use of the distorted flow field in which the airfoil is
immersed; the quantity V' is now regarded as a variable quantity.
Near the leading edge, the velocity Vl is substituted for V'
giving

. Ei.
Ty =\7) (26)
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where_the subscript i indicates the value near the leading edge,
and Ui'/V ' 1is the velocity rise over the free-stream value for

the isolated airfoil. The value for U'/N' is a function of the
assumed thickness distribution. Similarly, near the trailing edge
the free-stream value used is V, giving

- Up!
Tp =7y <—§-> (27)

At the point of the airfoil where the air has been turmed
halfway so that the flow direction is given by the angle a, where

tanam=%(tana1+tana2) | ’ (28)

where

a angle between yelocity vector and normal to cascade axis
Subscripts: -

1 value for upstream of cascade

2 value for downstrea.:h of cascade

the same procedure might be used as for the leading and trailing
~sections of the airfoil with the substitution of V for V' in the

equdtion for U,. The value of Vp. 1is computed from the continuity
equation -

V) cos ay =7V, cos a, =V cos a, (29)

vhich does not include the effect of airfoil thickness in blocking
the flow area and increasing the flow velocity. If the spacing s
is not too small, the correction for the distorted flow that is
applied 1is '

\'J
- m

A
m,e 22 (X\2 [T '
¢ (X U
1- T <-§>A (V' - 1), cos 2oy,

This formula is derived in appendix C. Then,
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S O A
e f)a G— : }cos' 20, (30)

When the blade spacing is very small, however, it becomes more
accurate to regard the flow between the blades as flow in a channel.
From this standpoint, the flow velocity is increased over V, by

the ratio of the flow area without blade thickness to the flow area
with blade thickness. That is, the effect of thickness is given by '

Um"v(s-tssec “‘m) N : » (31)

where tm i1s the blade thickness at the point x:m ‘where the air
flow has been turned to the direction o. This equation is applied

only if the point of application of the 1ift force > is within a
range of values specified by

-§<xm<x->-g- . (32)

This condition was selected because it is believed that inside this
range the effect of variations of inflow and outflow direction on
the velocity is expected to be .small enough to be neglected for the
purpose of the calculation. Thus, the flow is expected to be
essentially that inside a long channel.

Relations have been developed for computing U at three points
on the airfoil. The family of airfoil cascades being considered
will be restricted by assuming a second-degree parabola connecting
the points (0, Uy), (xm, U,), and (X, Up). That is,

U Uf + (l) ; B(a) G) - (33)
{rhere . . .
g(1) =% - g(2) _ T,
_ - e $ (34)
a(2) - Uy /Up ) Uy/Up . Ug/Up
T /X T (xm /DA - /X)) T (T - x /%) )
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Estimate of Circulation and Spacing

N — - \ -—
By assuming that Uj, Uy,, and Up are known, the curve for
U can then be determined when the value of X, 1s found. Because
X, 1is the center of pressure, it may be found as the weighted mean

value of x; the weight assigned to each value is the local blade
loading. '

Because x 1s at the center of pressure,

r‘ .
[ x d(e - @p)

Xy = = = - (35)

where

o potential on upper surface measured from leading edge to a
point x ’ .

T airfoil circulation, (& - <Dp)'

® value of @ . at trailing edge

The quantity, .

o]
o= de=fo<'ﬁ§>
0

may be found from either figures 3, 6, or 7. The quantity,

| o x '
f xdcp:f dexEfozm
J0 0

may be found from figure 8. The curves for l)r = - 0,010 are
approximately correct for Dg = -0.00115.

For calculation of the potential ®,» the high camber of

airfoils in cascade must be considered because it results in a
substantially different length of the suction and pressure
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surfaces unlike isolated airfoils » which are nea.fly straight. The
effect of the difference in length is approximated by setting

x, = Bx (36)

where B is some constant nearly eqﬁal to unity. The circulation
is thus,

X X, X
I''= | Uadx - U, ax; = Ex-a(zu-_v)ax
0 0 0 '
x .
r=9 - zsf 'ﬁdx-a¢=¢-¢p (37)
. o :
where

x . »

tbp-zaf Uax - pod " (37a)
o N

Using equation (33) for U, there are obtained,

. o
U, U (2)
T dx = UX I;;—(U—fafﬁl)--@s—-] (38)
Up " Up - .
0 ' .
and
o, X X
xdcpp=Bf x U dx = x (20 - U) ax
0 0 0
with
r 5, 1) 2N\ |
= 1U; B2
dex:UfX2<'2‘U—f-+'—3—+—4—-)‘ (39)
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The factor P 1is estimated on the assumption that the airfoil

suction surface and pressure surface are circular arcs intersecting
at the leading and trailling edges. The angle of turning A of the
mean line is assumed equal to the air deflection: :

>\=u.1-a.2

The turning A of the suction surface is then computed from

sin A=A _t Acos A4
7 " X7 st OV

(40a)
Then the turning of the pressure surface )‘p is computed from

A .

P _gan D2 A

tan —% = tan 7 3 — (40pb)
: 231n.§

The ratio of lengths is

X A
_XB - _}\2 sin A/2 . (41)

sin )‘p 2‘

‘Substituting the values for the integrals (38) and (39) in
equation (35), there results

3 2 v - -ﬁ
R R e
c(;r,)'_ Ui + U1’ <1 + B>. ¢ . | W

2 Up

BE

where

C(Z)E<1+_§> ¢ +<1+@ m-zﬁz-'.s.'i y  (43)

2B ) UXx ' \ 2P 3T 670
U T T
-5 1,1 £ 1+, l.m
120, 40, " 2B 6 Up J
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" With the values for Ui, Um, and Uf equa.tion (42) may be solved
for X equation (34) for B(1) and B(2), and finally the curve

for U (equation (33)) determined. Furthermore, equations (37a)
and (38) determine the potential ¢, so that the dimensionless

circulation TI'/UeX is then

L = _(); - .?2. (44)
UpX - UpX ~ UpX
For potential flow,

r: 8 (Vl sina, - V, sin‘az) ' .

The velocity Vl - may be eliminated by the contimuity equation (24)~

resulting in

x Vo cos a, (tan ay - tan ay)
s =T T ' (45)

=

which determines the blade spacing.

HC.‘

Comparison with Exact Procedure

For the purpose of Judging the accuracy of the method of
. estimating the pressure-surface-velocity distribution, a comparison
was made with velocities computed for potential flow by an exact
procedure. The data were obtained from reference 9. The comparison
is shown in figures 9(a) and 9(b). In both cases, values of U'/V'
were selected to fit approximately the NACA 65-series isolated air-
foil data (reference 10),which gave

-ﬁl

vL 1.025 W

v ty :
vi‘-=-1+135—x- 5 (46)
I-Il

?

7 = 0.950 )
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By using these values and equations (26), (27), (29), and (30),
Ui/, Up/Vp, and Up/Vy were computed. Next B was obtained

by use of equations (40) and (41). Evaluation of the data for
suction-surface-velocity distribution yielded @/V;X and m(Up/vy).
It was now possible to substitute all these values into equa-

tions (43) and solve for xm/X by use of .equation (42). The solu-

tion was then continued in the manner indicated in the previous
section.

Pressure-surface velocity was then plotted using the equation
U+ U
2

. . U = 2

The shapes of the estimated and exact velocity distribution
on the pressure surface are quite similar. The solidity computed
from the estimated velocities is, however, 6-percent higher for
figure 9(a) and 4-percent lower for figure 9(b) than the exact
value. These values then give an indication of the order of _
inaccuracy of the method of estimating solidity. The error in
pressure-surface potential QI’ was 6 percent for the airfoil of

figure 9(a) and 2 percent for the airfoil of figure 9(b).

EFFECT OF SEVERAL PARAMETERS'ON REQUIRED CASCADE SOLIDITY

The relations developed in the previous section are applied
to study the effect of several design and operating parameters on
required cascade solidity.

Computations

The data given in the problems solved consisted of the fol-
lowing: (1) Reynolds mumber UpX/v (either very high or very

low); (2) diffusion coefficient Dp (either -0.010 or -0.006 for
a turbulent boundary layer); (3) trailing-edge loading (Uf-ﬁf)lvz

(assumed to be 0.1 because cascade data indicated this value as
attainable); (4) velocity ratio Uﬁax/v25 (5) velocity-diagram

components Vl, Vz, @, and o, _from whifh Vp end aE’ are
computed; and (6) velocity ratios Uy'/v', TU,'/v', and Tpe'A',

which are determined from the assumed basic thickness distribution.
In all cases the assumed values were Uy'/V' =1.025 and
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Up/V' =0.95, but Uy'/V' was varied to obtain various values for

the thickness. All the assumed quantities were varied in the
examples to show the effect on the required cascade solidity, the
velocity distribution, and the thickness. The sequence of com-
putation is:

(1) Compute
U, U,
i 1
‘Ti = F = 1.025
U, U,
f f
= == 0. 95 ‘
V2 v!
Up U Up - U
%-$+<% é 1.05
2 2 2
U \"2
max  Unax
\F
(2) From Up/U ags the assumption of either laminar or tur-

bulent diffusion, and the desired rate of diffusion, figures 2 to 8
are used to find the suction-surface-velocity distribution and the
values for O/UsX and m.

(3) Va.lues for the solidity X/s and the pressure center xm/x

are assumed. The thickness is then computed from equations (30)
and (46) if either x,/s< 0.5 or x,/s > X/s - 0.5, If

0.5< x /s < X/s - 0.5, then equation (31) is used. The factor B
is then obtained from equations (40) and (41).

(4) The quantities c(3), c(2), c¢(1) 5 = 5(1) g(2) 0/UX,
I'/UsX, and X/s are next computed from equations (43), (42), (34),
(38), (44), and (45).

(5) Steps (3) and (4) must be repeated if the solidity X/s
varies considerably from the assumed value or if, because of an
incorrect assumption fer xp;, an incorrect choice was made in the

equation for the computation of tm/X and 8.
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Results

The results of the computations are shown in the following
table and in figure 10. The table gives the assumed values for the
design parameters and the computed solidity, whereas figure .10 shows'
the details of the velocity distributions with sketches to indicate
the cascade solidity and the airfoil thickness. The circles drawn
on the camber lines indicate the location of xm and the airfoil
thickness tp.

Case | Boundary | Diffusion | & | a, | Upp |Up-Up |ty X
' layer coefficlent —_— - =
: (deg) | (deg)| 7V, | Vp | X 8
& | Turbulent | -0.010 45 38 | 1.615 | 0.10] 0.10 | 0.30
b | Turbulent | - .010 45 38 | 1.312 10| .10 | .64
¢ | Turbulent | - .010 45 38 | 1.312 10| .06 | .50
d | Turbulent | - .010 45 38 | 1.312 00| .06 | .65
e | Turbulent | - .010 - 45 -45 | 1.615 .10 .20 |1.6
£ | Turbulent | - .010 45 -45 | 1.615 .10 .15 |1.3
€ | Turbulent | - .010 45 | -45 | 1.312 .10 .11 (1.8
h | Turbulent { - .010 0 -45 | 1.312 101 .18 (1.0
"1 | Turbulent | - .006 45 38 | 1.615 .10 .10 | .42
J | Turbulent | - .006 45 38 | 1.312 10| .06 | .56
k | Lamipar - .06618 45 38 | 1.615 .10 .06 |1.6
1l | Laminar - .06618 45 -45 | 1.312 10| .08 |3.1
m | Laminar - 06618 0o -45 | 1.312 10| .09 1.7

The effect of variation of maximm surface velocity Upgy on

solidity X/s of a compressor-type blade is shown by comparison of
cases (a) and (b) where all design parameters are the same except

Um/vz. The blade with a lower value of Umx/VZ is obviously

better suited for operation with a compressible fluid with a high
Mach nmumber, but has the disadvantage of requiring a higher solidity
(twice as many blades).

If in case (b) the thickness is reduced from 0.10 to 0.06, the
~cascade corresponding to case {c) results, having only 78 percent of
the eolidity of case (b). This decrease results from the higher
aerodynamic loading of the thimmer blade because of the lower pressure-
surface velocities caused by the thickness.

In cases (a), (b), and (c), the trailing-edge loading corre-
sponds to an air flow that does not satisfy the Kutta condition.
The actual blade having the prescribed velocity distribution would
have an extension from the point x/X = 1.0 to larger values in
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which the loading would drop to zero. Similarly, the initial parts
of the velocity distributions do not include the leading edge.

That is, the velocity distributions shown do not extend over the .
entire airfoil, but do include practically all the aerodynamically
loaded region. A velocity distribution was computed for zero trailing-
edge loading (case (d)) in order to observe what sacrifice would be
involved in avoiding separation at the trailing edge and attempting
an airfoil design that would satisfy the Kutta condition. Compari-
son with case (c) shows that the solidity is about 1.3 times as
great. The effect would be less in the case of reaction blading
vhere the inlet velocity results in large loading in the initial

~ part of the airfoil and a relatively smaller effect of trailing-

edge loading. The effect of decrease in tralling-edge loading is
also less for blades of small diffusion ratio Umax/Uf, because in

such cases the suction-surface velocity is maintained at its maximum
value to a point very close to the trailing edge and, as a consequence,
the loading is also maintained over most of the airfoil.

For an impulse blade (Vp=Vy) of large turning (turbine type),

the velocity distribution is very much the same as for a compressor
blade with neariy the same velocity curves U and U, although the
thickness will radically vary because of the low value for V,,. For

‘example, compare cases (a) and (e).

If the turbine-blade thickness is reduced to the value closer
to thé compressor blade, the circulation is increased (case (f)), as
might be expected. The large diffusion ratio on the pressure surface,
vhich practically insures the existence of a separation bubble there,
should also be noted.

The effect of decreasing the maximm surface velocity Up is

shown in case (g), which has lower blade circulation even though the
thickness was decreased from 0.15 to 0.ll. Solidity increased
39 percent over the value for case (f). : .
For an inlet guide vane turning the air from an angle of 0° to
an angle of -45° (case (h)), the velocity distribution changes from
the impulse cascade (case (g)) because of the large decrease in the
inlet velocity. Even with the increased thickness, local velocities
on the pressure surface do not involve high diffusion rates because
of the over-all increase in velocity (Vy/Vz = 0.707).

The effect of reducing the rate of diffusion from that of
cases (a) and (c) (Dp = -0.010) to 'a lower rate (Dp = -0.0086),
vhile maintaining the same values of the other design parameters, was
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determined by computing the corresponding cases (i) and (J), respec-
tively. The positions at which the TU/V, values are equal for the
two cases are where the values of a are the same., There is some
chordwise shift in the location of a given value of o« when changing
from case (a) to case (i) because of the shift in the loading dis-
tribution. Consequently, the location of x, shifts and the thick-

ness distribution changes. The last half of the blade (case (1))
does very little turning so that the solidity increases from 0.3l to
0.42. The usefulness of this part of the blade could be greatly
increased if a larger turning of the air were involved, for the
U/V, curve would rise to higher values in the first half of the

airfoil and drop to lower values in the last half, thus shifting the
load backwards on the blade surface. The change in velocity and -
solidity from case (c) to case (j) is slight because the rate of
diffusion has very little effect on suction-surface potential when
the diffusion is small. (See fig. 7.)

An effect of blade Reynolds number fo/v is shown by éompari-

son of cases (a) and (k). In case (k), the expansion is entirely
laminar (low Reynolds number), whereas in case (a) the extent of the
laminar region is assumed zero (high Reynolds number). Even though
the leminar-layer blade is only 6-percent thick, the solidity (1.6)
required is five times as large as for the bladé with a turbulent
boundary layer. This loss in circulation results from the fact that
laminar diffusion must be begun so much earlier when the boundary
layer is thinner. On the pressure surface of the blade is to be
observed a region near the trailing edge where the rate of diffusion
increases to a value that will certainly induce separation. A better
aerodynamic design could be obtained with a thinner blade, which
would be necessary if the turning were greater. Some improvement
would also probably result with.a less simple mean velocity curve.
It appears safe to conclude that it is extremely difficult, if not
impossible, to obtain a compressor blade of reasonable thickness and
turning, 1f flow separation is to be avoided with a laminar boundary
layer.

The design of an impulse blade with laminar boundary layer
appears to be entirely feasible (case (1)) as a consequence of the
low value for U /Vz, which is a result of the low value for

Vh/Vé. A reaction blade with laminar boundary layer also is fea-

sible. (See case (m).) The percentage increase in solidity for
cases (1) and (m) over that for cases (g) and (h) is much less than
the percentage increase in solidity for case (k) over that for

case (a). As a general rule, cascade solidities for laminar and
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turbulent diffusion can be expected to be more nearly alike when
diffusion is small (Ugyy/Up—>1.0) than when diffusion is large

(Uhax/Uff€>2.0), because of the smaller difference in suction-
surface potential. (See fig. 6(a).)

- COMPARISON OF EXPERIMENTAL WITH INDICATED ATTAINABLE
SOLIDITY VALUES

In order to estimate the degree with which blades in use approach
the maximm attainable circulation as indicated by the present method
of analysis, cascade solidities were computed for conditions com-
parable to those for which performance data were available, It was
desired to compare the solidities of the tested blades and those
corresponding to the proposed velocity distributions on the basis of
operation at very low Mach numbers, very high Reynolds number, the
same values for &,, a5, maximm thickness t/X, Upye/Vp, and

Ug/V2. The data available did not give all this information, or did

8o with no indication as to the efficiency of the cascade. Data used
were obtalned from references 11 and 12. In none of the comparisons
shown is it possible to evaluate cascade efficiency, although for
every case the comparison was made on the basis of the optimum oper-
ating condition of the cascade as stated. The comparisons are shown in
the following table:

Refer-| Blade a | % Upax/V2 | Exper- Estimated X/s
ence desig- (deg) |(deg) . | imen- Dp = -0.010|Dp = -0.006
nation ~ tal
’ _ X/s
11 [65-(18)10| 45 | 15 | 1.699 [1.063 1.68%  |emememamaa-
11 65-(12)10| 45 23.8| 1.602 |1.034 1.17 1,60
11 65-(4)10 45 37.04 1.300 |1.013 .78 .88
11 65-(0)10 45 42.9] 1.186 [1.003 36 .38
12 64-(A)06 O | -45.8| 1.180 {1.538 1.12  |=eeneca- ——
12 64-(B)06 0 -52.0| 1.133 1.534 1.20 |==ecccaca--

8¢/X = 0.0664.

All of the cases are directly éomparable as previously described
except the 65-(18)10 blade, for which it was impossible to find a
solution with 10-percent thickness, indicating a strong probability
of separated flow on the blade. A solidity was computed with the
thickness reduced to 6.64 percent.
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The 65-(12)10 blade has a lower solidity and therefore a higher
circulation than either of the estimates for a maximum-circulation
blade. Possible causes for this discrepancy are: (1) slight flow
separation from the surface of the 65-(12)10 blade, and (2) the
assumption of a parabolic curve for U, which may involve some sac-
rifice in attainable circulation. For lower diffusion (65-(4)10 and
65-(0)10) and for reaction blades (64-(A)06 and 64-(B)06), the estimates
indicate that higher circulations are attainable. The 64-(A)06 and -
64-(B)06 blades have such high values for Uf/Umax that there is no

substantial difference when the lower diffusion rate DT = -« 0,006

ijs used in the solidity estimate. It seems reasonable to éxpect that
higher blade circulations are obtainable with blades other than the
65- and 64-series for low pressure rise and for pressure drop. The
65-(0)10 blade is particularly subject to improvement.

CONCLUSIONS

The analysis of the limitations on the circulation about blades
in cascade indicates that under the assumption of the several criterila
for separation and the avoidance of local separation of the flow, the
following conclusions can be drawn:

1. For a preassigned maximum velocity and suction-surface
trailing-edge velocity, the suction-surface potential and airfoil
circulation increases with the increase in permissible diffusion rate.

2. For a laminar boundary layer, Loitsianskii's equation deter-
mines blade circulations independent of the Reynolds number. For
a turbulent boundary layer, Kalikhman's criterion for safe diffusion
‘(Ds > - 0,00115) indicates very slight changes in blade circulation

with variation in Reynolds number. If a constant diffusion rate
(Dp = - 0.010 or - 0.006) is used, however, some slight decrease

in attainable potential with increase in Reynolds number is indicated.
There is a very marked increase in obtainable 1ifts when the design

is changed from that for a laminar boundary layer to that for a
turbulent boundary layer. This effect decreases with decrease in the -
diffusion ratio Uhax/uf or Uﬁavaz. With transition at momentum-

thickness Reynolds number R = 250, the change begins to occur at a
blade Reynolds number RN between 80,000 and 90,000. For completely
turbulent diffusion with Uf/Uhax > 0.6, the blade Reynolds numbers

are 260,000 (Kalikhman's criterion and DT = - 0.006) and
180,000 (Dp = - 0.010). ,

3. Suction-surface potential and consequently the airfoil cir-
culation increases with increasing maximum velocity ratio Umax/vz or
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Uﬁax/Uf; however, negligible gain in circulation is obtained with
Umax/Uf greater than 1.6 with turbulent diffusion and greater than
1.25 with laminar diffusion.

4, An airfoil designed for laminar boundary layer may be operated
at any Reynolds number. An airfoil designed for a turbulent boundary
layer has a lower Reynolds number limit for operation without sepa-
ration. This limit is a function of the velocity ratio Uy, /Ue,

the diffusion rate, and the condition for tramsition. For R = 250,
and diffusion velocity ratios Uhax/Uf <1.67, the lower limit of RN

is equal to or lesg than 260,000 for small diffusion rates
(Dp = -0.006, Dg = -0.00115) and equal to or less than 180,000

for larger diffusion rates (Dyp = -0.010).

5. Improvement in airfoil circulation always results from adding
‘loading at the tralling edge, but the improvement is less with
decrease in over-all diffusion (decrease in V;/Vp) and with decrease

in surface diffusion (decrease in Upax/Ug) -

6. Change in suction-surface-velocity distribution resulting
.from change in diffusion coefficient or character of the boundary
layer has a large effect on blade circulation except when the dif-
fusion is small. This small effect is to be expected in blades
designed for high-speed operation and for reaction blades.

7. For a fixed suction-surface-velocity distribution, obtainable ‘
blade circulation decreases with increasing blade thickness.

8. The large discrepancy between the circulation of the
65-(18)10 blade with the recommended velocity diagram and the esti-
mated attainable circulation implies a strong possibility of sepa-
ration of the flow from the 65-(18)10 blade. For the recommended
conditions of operation of the 65-(4)10, 65-(0)10, 64-(A)06, and
64-(B)06 blades, estimates indicate that higher blade circulations
are attainable, '

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, June 6, 1949.
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

A
(1) 5(2)

o(1) (@) 4 (3)

0.0135

coefficients of (x/X) and (zt/x)2 terms in
- equation for U

coefficients of (x /X), (xm/x)z, and (xm/X)3
terms in equation for X,

chord

diffusion coefficient with laminar boundary layer,
L au
U dx

(% g—g R"O'OB) (according to Kalikhman, separation

occurs when Dg = - 0.0013)

diffusion coefficient with turbulent boundary layer,

ke

y
k .
~ exponential lntegral, <f % >

-co

rarameter in approximate équations for laminar
boundary layer )

coefficient of friction, <—L R1/6>
. P
form factor, (5%/@)

generalized momentum thickness of laminar boundary
layer, (6R)

X
1

- XU dx

UpX
momentum-thickness Reynolds number, (U8/v)
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al

g .

m,c

b4

]

5%

> @

>

" NACA TN 1941

blade Reynolds number, (fo/v')

spacing of airfolls along cascade axls

generalized momentum thickness of turbulent boundary

layer, (GRI/S)
thickness of alrfoil
suction-surface velocity Just outside boundary layer

arithmetic average of suction- and pressure-surface
- velocities

stream velocity
m
total suction-surface length
arc length on airfoil suction surface

angle between velocity vector a.nd normal to cascade
axis

ratio of pressure-sm'face length to suction-surface
length, (x,/x)

circulation around one airfoil
displacement thickmess of bouhdary layer
momentum vthiclmsse of boundary layer
tufn:l.ng angle of upper surfa'ce

turning angle of camber line

kinematic viscosity of gas

gas density

suface shear stress

X
complete velocity potential, < f Ud.x>
: 0

x
velocity potential, < f de> measured from leading
0
edge

\'s corrected for thickness effect of airfoils in cascade
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Subscripts:

4

i

¢ K3

(o) g' '

2

Superscript:

final value near trailing edge
initial value near leading edge -
value at beginning of laminar diffusion process

value corresponding to mean of ui)stream and down-
stream velocity vectors :

maximum value
value on pressure surface
value at boginning of turbulent diffusion proceas

value at transition

value corresponding to H = 1.400 in turbulent
boundary layer ' 4

upstream value

downstream value

pertaining to isolated airfoil
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 APPENDIX B

METHOD OF COMPUTING FIGURE S ‘ .
For diffusion with a laminar boundary layer, equations (7a)
and (8) determine for any given velocity ratio Up /U the value
for x;. Then
Ly = 0.441 x,

For the case of diffusion with partly laminar and partly tur-
bulent boundary layer, a number of values were selected for

TRy
v

R

1

the Reynolds number at the begimning of laminar diffusion. The
units of velocity and length may be taken as U; and X,

respectively. Also
Ly = 0.441 x3

which establishes the scale of the laminar-diffusion region. At

etr Utr

the transition point, Ry, = =250, o0 that for Ly, there

is obtained from equation (64) ‘
2(F+Dy)

F + 2Dp,
_I*tr=Ll<R_1%> o

and

Because,
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then
_ Ler
T Rip

1/6

Tir = Oty (Rey)

The initial condition for H 1s

(reference 3), where

5/6

Dt = (T 82)yy = D6lFer)

For this value of ntr, figure 4 identifies Ue./Ug and Rtr/‘Ro,
thus establishing the scale for the velocity U and the basic
length To. By proceeding to the final velocity Ug, the length
X -xy, 1s established, and RN = UpX/v may be computed.

If the diffusion is entirely turbulent , then by assuming a value
for the Reynolds number at the beginning of turbulent diffusion Ry,

there are obtained (xy, and Uy are taken as the units of length
and velocity, respectively)

, ey - -
etr = 0,441 R‘t—r
0.441 x;,, '
(Rep)
DT,tr =0

Hep = 1.4
Up = Upax
T
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APPENDIX C

EFFECT OF AIRFOIL THICKNESS ON FLOW THROUGH CASCADES

By assuming that the effect of the airfoil circulation on the
velocity at the point x, (where the flow has turned to the direc-
tion um) is taken into account by the turning effect, the change
in velocity from V; to V, 1s given by

Vp = V3 cos aq sec ap .
The effect of thickness is now separately evaluated as the approxi-
mate effect of a cascade of uncambered airfoils of stagger ay
with no circulation. The thickness distribution is assumed similar
to that of a Joukowsky airfoil, which is discussed generally in
reference 13. The potential function W for a uniform stream of

velocity V flowing about a Joukowsky airfoil of amall thickness
can be shown to be

2 Nhe
W=V ; + §1+2€!c[16

CE€
C+7

' where

€ real constant determining airfoil thickmeas

2
¢ complex parameter defined by z = [+ 5]’31

and the condition that { be a continuous, single-valued function

with lim [-%-ﬂ] =1, where 2z is the complex position coordinate
Z=

in the airfoil plane., The airfoll profile is given by the additional

equation for a circle of radius (l+'€)% and center - ce¢/4

§+-c;—€=-§(1+e) ei®

When the centrai angle of the circle ® has a value of 2/3 1, the
airfoll has a maximm thickness and at this point the velocity is

U = v(1+2¢)
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If the potential function is expanded in powers of 1/{, the indi-
vidual terms may then in turn be expanded in powers of l/z, giving
the resultant approximation for large z

W=V z+€_c.§.&
z+c/8

+

This expansion neglects terms in 1/24 and higher powers., From
this expansion, the velocity at large distances from the alrfoil is

Ve clfs _ (T-v)c2 )16

dz ' (z + c/8)2 (z+c/8)2

At a half chord. a.bove the airfoil (z =1 2), the error in the

2
. d.isturba.nce velocity —(Hl)c——z is 26 percent; whereae the ‘error
' 16(z+c/8)

in the entire velocity is (for U = 1.2 V) 0.8 percent. At a
distance of 1 chord, the errors are 10 percent and 0.l percent,

respectively., At 1% chord, the values are S percent and 0.0Z2 percent.

'This approximate velocity distribution is seen from the form of -
the velocity equation to be that of a doublet of strength

.

2
M = 2n(T-V)iz
placed in a unifom stream of velocity V.
If a series of such doublets are placed on an axis with direc-
tion 1e”1°m and with locations |
2o% inse™ M (n=0,1,2, ... )
| a potential function W will result with the equation

[o2]
M 1 E : 1 1
enlz = 2o <z - Zo + inge 1%m g - zo - inse'i:'m>

n=1
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or

i .x z -z
W= Mo Tm cot'I:-(—-—-g)- eiam]
8 is .

If the potential due to the central doublet at zd is removed to

find the modification of the uniform flow in which the central blade
is located, there results

M n(z - z5) |. i.se'-m’.n
W= i cot -
21ge W 1ge~ 1% n(z - 20)

By erpanding in powers of (z - 2,) and by neglecting powers higher
than 2 there is obtained the approximation

M x? 21 .
We=oge—5 e (z - 2)
2n 352 o
with the complex veloclity
WM 2y
dz  2n 38 2

When added to the mean flow, the component normal to the mean flow
may be neglected, giving

2

M n
Vm,c=vm""é'§;§°°5 2°‘m

The doublet strength has been showm to be
2 2 -
ne” (T ~ X 5
M= 2 (U - vm,c) xS (U - vm,c)

If this equation is substituted in the equation for Vm c» and the
equation

T _T

A

m,c

used to eliminate U, there results
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or, if Vy . 1is elimimated, there is obtained -

1.

8.

- Tt ‘[-]’Ilvl
LRSS Rl '
1- % (E)(F - 1) cos 2ap
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Suction-surface potential, Q/fo

/ | |

{.00 .
1.0 .9 .8 T .6 .5
Velocity ratio, Ug/Up,y
Figure 3., - Relation between suction-

surface potential and velocity ratio
for laminar diffusion with D = -0.06618.
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Suction-surface potential, Q/fo.

1.3

/A

1.2

/ 1 by

// -0.010
VA

/

.0 9 .8 7 .6 5

Velocity ratio, Ue/Up,,

Figure 7. - Refation between suction-

surface potential and velocity ratio
for blade Reynolds number approaching
infinity.
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(a) - Laminar diffusfon}
.62
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.60 \V

.56 ' /01 — —J
/ .
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Velocity ratio, Us/Unax

{b) Blade Reynolds number approaching -
infinity.

Figure 8. - Variation of m with velocity
ratio. .
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Velocity ratio

.
N

\\
I~ m
\\\
—
]
T T T~ \\\
L \\\.
[~ ]
/ Up/Vm \\\
0
(a) NACA 65-{12)10 T/Vge = 0.735
c/s = 1.00 ~ay = 53.40
ay » 63.0° Estimated c/s = 1.06
— G’Vm \\"\
N T B
] - \\\
P il R ~
- ~
4’/ Up/Vm \\\\-J
.8 — \\
7L,/
Exact computation
— — — — Estimate
.4
1 1
0 20 40 60 80 100
: Percent chord
{b) NACA 65-(8)10 I‘/Vmc = 0.365
T elfs = 1.00 a, = -6.8°
a, = 3.7° Estimated ¢c/s = 0.96

Figure 9. - Comparison of estimated and computed
pressure-surface-velocity distribution,
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Figure 10, - Examples of
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Case (¢) Oy =-0.010 . RN—
. a; =450 a, =38°
ty/X = 0,08 X/s = 0.50
U/Vg
T
ﬁ/Vg
11" |
3N
Up/V2 ™~ //
: =4 =
0 2 4 6 .8 1.0
x/X /
Cage {d) Oy =-0.010 AN—o
ay = 48° az =38°
ty/X = 0.06 X/s = 0,65

velocity distributions.
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Velocity ratio

Vetocity ratio

1941
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1.6 \
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0 .2 A .6 é 1.0

x/X l

NN

Case (h) Dy =-0.010 AN— o
a = 0° a; = -45°
ta/%X= 0.8 X/s = 1.0

Figure 10. - Continued. Examples of velocity distributions.
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Velocity ratio

Velocity ratio
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x/X J/ x/X J/

L/

Case (i) Dy= -0.006 AN— oo
Q= 45° ap = 38°
ty/X= 0,10 X/s='0.42
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1.2 : - | N
[ T T 1 \U/Vg N
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~
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'60 2 4 .6 2] i.0
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Cagse (k) D) = -0.06618 RN = 70,000

@ = 45° ap = 38°
tp/X = 0.08 X/s= 1.6
N
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T
S~ l-)/Vz |1
|1
S e
|
UD/V2
|
0 ] 4 .6 .8 1.0
/ x/X

[l LS

Case (j) Dy =-0.006 AN—w
a; =45 ° qgp=238°
tp/X =0.06  X/s = 0.56

Figure 1. - Continued.

Case (1) O = -0.06618 RN < 70,000
a;= 450 ap = -48°
tn/X = 0.08 X/s = 3.4

Examples of velocity distributions. 'm
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e

Case (m) D, = -0.06618
' a, =0
' t,/X = 0.09

Figure 10. - Concluded.

RN < 70,000
- o

dz ~-45

X/s = 1.7

Examples of velocity

distributions.
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