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From consideration of available information on boundary-layer 
behaviour, a relation among profile thickneas, TiT1nIum surface 
velocity, Reynolds number, velocity diagram, and solidity is 
established for a cascade of airfoils immersed in a two-dimensional 
incompressible fluid f;Low. Several cascades are computed to show 
the effect of various cascade design parameters on mird,mim required. 
cascade solidity. Comparisons with experimentally determined blade 
performance show that the derived blade loadings are equal or higher 
for moderate flow deceleration and somewhat lower for large decel-
eration. Blades with completely laminar flow appear practical for 
impulse or reaction blad.ing. 

IN2RODUCTION 

In the design of compressor and turbine blading, the choice of 
blade sections and spacing is usually made on the basis of experi-
mental results from several cascades. An enormous amount of data 
is required to cover the entire range of inlet and outlet angles, 
Reynolds numbers, blade sections, spacings, and maximum surface 
velocities. 

The relations among the blade circulation and its thickness, 
Reynolds number, maximum surface velocity, and spacing were deter-
mined at the NACA Lewis laboratory In a qualitative fashion for 
two-dimensional, incompressible flow. This problem has been studied 
empirically (references 1 and 2) without any attempt to relate the 
problem to the basic determining factor - the boundary layer. The 
analyéls presented herein establishes such a relation on a more 
rational basis. 

As the gas flows through a cascade of airfoils, on the suction 
surface of a blade the inlet velocity Is raised to some maximum 
local value and then decreased until, near the trailing edge, its 
value is In the neighborhood of the exit velocity. A blade cascade 
will operate in a compressible fluid with less likelihood of local
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shocks, resultant, losses, and choking if the design is such that 
the maximum surface velocity is maintained as low as possible. The 
preassigned, low maximum surface velocity should extend over as 
large a portion of the suction surface as possible before diffusion 
in order to raise the circulation to a maximum. Because the-veloc-
ity must decrease near the trailing edge from its maximum value to 
a value close to the exit velocity, the maximum possible rate of 
diffusion will, in effect, determine the arc length on which the 
suction-surface velocity is kept at its maximum. The blade cir-
culation attainable is then determined by the maximum diffusion 
rate possible. 

In dealing with incompressible flow, the same general type of 
velocity distribution is specified herein, and the diffusion rate 
Is determined by several conditions to avoid separation of flow 
from the blade surface. Once the possible velocity distribution 
on the suction surface is determined, an appro1 te computation 
is then used with a specified velocity diagram and blade thickness 
to compute the pressure-surface-velocity distribution, blade cir-. 
culation, and spacing. 

The results reported herein are not to be interpreted as giv-
ing an exact velocity distribution of airfoil sections for appli-
cation. In the first place, the assumption of no separation in 
some cases reduces obtainable lift and increases the blade solidity 
and the surface for friction, which. Increases skin friction loss. 
If a small region of separated flow is permitted, the increase In 
form drag may be insufficient to Increase total drag in view of the 
increase in blade lift and decrease In blade number and skin fric-
tion. Another limitation Is possible In applicability of the 
boundary-layer equations used In prescribing the suction-surface-
velocity distribution. The velocities deduced from these equations 
are not' conventional in that the form factor of the boundary layer 
(ratio of displacement to momentum thickness) rapidly rises' to the 
maximum permissible value and then remains nearly constant; whereas 
with conventional velocity distributions, It slowly increases and. 
then very rapidly rises near the separation region. Thus the 
empirical equations describing the development of the boundary-
layer form factor may not be accurately applicable for such velocity 
distributions. In order to demonstrate the several solutions that 
might be applicable, the surface velocities were prescribed accord-
ing to three rules. Garner's equations (reference 3) were used 
with the form factor first rising rapidly and then remaining nearly 
constant with limiting values of either 1.85 or 2.14. Also a dif-
fusion rate was chosen equal to 0.885 of the value prescribed by 
KallkhlnRn (reference 4) for separation.
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A final consideration lies in the approximate nature of the 
procedure for computing the lover surface-velocity distribution. 
In this process, the effect of thickness is assumed to result in a 
surface-velocity component, which varies as a second-degree para-
bolic function of the surface arc length. Consequently, the 
results apply to a special family of thickness distributions, which 
may not be the optimum for the prescribed suction-surface-velocity 
distribution. Moreover, the estimate of the effect of thickness 
is inexact so that the estimate of the airfoil-thickness distri-
bution will differ somewhat from the actual thickness of an airfoil 
with the prescribed surface velocities. 

Although the absolute values of blade circulations are inexact, 
some very definite trends are nevertheless demonstrated, particu-
larly with respect to maximum surface velocity, Reynolds number, 
and blade thickness. 

SELECTION OF VELOCITY DISThIBTYJION 

ON SUCTION SUI'ACE OF BLADE 

General Considerations 

As mentioned in the Introduction, the velocity distribution on 
the suction surface to be investigated will consist of a velocity 
that is supposed to rise to its maximum value in a negligibly short 
distance from the leading-edge stagnation point and. to maintain that 
value as far back along the airfoil as possible. The velocity must 
then decrease from the maximum value to the value near the trailing 
edge that differs slightly from the downstream velocity. A decel-
eration with a maximum safe velocity gradient without flow separa-
tion between the maximum velocity and a final, velocity is required. 
In order to find the suction-surface-velocity distribution, It is 
necessary to investigate the development of the boundary layer, 
which determines the allowable-rate of diffusion. The general 
shape of the velocity-distribution curves is shown in figure 1, 
which also indicates some of the nomenclature. (All symbols used 
are defined in appendix A.) 

Laminar Boundary Layer 

Region of constant velocity. - For the region of constant 
velocity U(x) = U, the equation for the momentum thickness of 

the laminar boundary layer is
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-	 e = 0.664 p Ju	 (1) 

where 

9	 momentum thickness of boundary layer 

U	 kinematic viscosity of gas 

x	 arc length on airfoil suction surface 

U	 suction-surface velocity just outside boundary layer 

The subscript max indicates maximum value of surface velocity. 
The Reynolds nuither of the boundary layer based on momentum thick-
ness is defined as

R	 TJO/i
	

(2)

The form factor K Is defined as

(P3) 

where ö* Is the displacement thickness of the boundary layer. In 
the region of constant velocity, II =2.614. 

Region of diffusion. - For diffusion with a laminar boundary 
layer, the approtmte method of Loitsianskil (reference 5) was 
used. According to that system of equations, separation will occur 
if the proportional change In velocity d.U/U per unit of arc 
length dx equal to the generalized momentum thickness L reaches 
a value of -0.08884. That Is

- L dU 
DLUdX 

where

LOB=92	 (5) 

must be greater than -0.08884. A value of ])r = -0.06618 was 
arbitrarily selected to give a high diffusion rate without intro-
ducing laminar separation. Loitsianakil's equation for boundary-
layer growth then becomes

(4)
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DL (a2 u 
1dU_\dx2 
Udx	 ,'dU 

\dx 

where F, a function of D, is a constant equal to 0.8517. for 
DL = - 0.06618. 

This equation is integrated to give 

-F/DL 

By substituting for dU/dx from the definition of DL, the con-
stant of integration K is evaluated to give 

DL 

DL+F 
U fL - fL\0'025 

-)
(6a) 

where the subscript 1 indicates the value at the begirin{ri of the 
laminar diffusion process. By differentiating equation (6a) and 
eliminating dU/U by means of equation (4), there is obtained 

TL	
dU DLdL 

L L - U -	 L 

which is integrated to

(x_x2\	 ____ 
)=1+o.7855	

)	
() 

Equatiom(1) and (5) are used to relate the constants 
andL1

L1 = 0.441 xl 

From equation (5)

L 0 B f0' U
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or

F 

e (L U1\2 /L 
2(F+D) L 0.5421 

c \L if,)	
ç)	 =. () 

also

	

F+2DL	 - 

	

2(F+rjJ	 0.4579
(6d) 

The velocity potential cp, defined by 

	

q	 Udx 

is found from

0.9158 TI 

[
- 11= 

1.390 

[(k)	

1j U /	 = F+2	
) Ux2

(6e)

 The constant Cp2 /U L1 is computed from the equations for the non 
diffusing section giving

P2.
= 2.268	 (6r) U2L1 

The form factor of the boundary layer K in the region DL -0.06618 
has a value of 3.214 (reference 5). 

In applications, it is convenient to know the position x 2 in 
percent of the total length of the suction surface X. From equa-
tion (Gb),
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•	 The subscript f applies to the final value at the trailing edge 

1 of the blade. In terms of velocities, with 	
= 0.441' 

r F+DL 

/1 \	 f = 2.268	 -1 
1

F+DL 

DL 

	

0.441 (Uf
	

1 
+ F+DL \U2 

In figure 2, the vari4tion of U/Ui and B/B1 with x-x1/L1 
is shown for diffusion with the lRmfnkv boundary layer. In apply-
ing these curves for any airfoil, the scale of the diffusing region 
must be adjusted for the value of L1 that is equal to 0.441 x2. 
In figure 3, the curve for the entire suction-surface potential Is 
shown with X as the unit of length rather than L1. 

Transition 

As the air flows over the blade surface, the thickness of the 
laniinar boundary layer will increase until a point is reached where 
the character of the boundary-layer flow will chAnge from 1ainar 
to turbulent • The boundary layer will then develop according to 
different laws and will therefore also sustain a different pressure 
gradient without separation. 

Transition occurs at a certain value of Rtr, which will depend 
on the turbulence intensity and scale, the pressure gradient, the 
roughness and the curvature of the surface, and on heat transfer 
through the boundary layer. An Btr value of 250 has been selected 

Then

xl

(7a) 

(8)



8	 NACA ¶L! 1941 

for this analysis in consideration of the high level of free-stream 
turbulence in tu.rboinachinery, which tends to reduce tr to a low 

value. According to Gruschwitz (reference 6),observed. boundary 
layers were always laminar if B < 250 regardless of the Intensity 
of free-stream turbulence, and turbulent boundary layers have been 
observed for B> 250. Gruschwitz neglects to mention the pressure 
gradient at which these observations were made and as a consequence 
the assumption tr = 250 mIght be somewhat low for flows with zero 

pressure gradient. It should be noted that If for any reason transi-
tion Is delayed so that the rapid diffusion rate prescribed for a 
turbulent boundary layer is applied to a laminar layer, separation 
results. On the other hand, the effect of pressure gradient Is to 
reduce markedly the value of tr' so that even should the transi-
tion be delayed in the zero pressure-gradient region it will prob-
ably occur at the inception of the diffusion process. 

Turbulent Boundary Layer 

The momentum equation for the boundary layer is 

dO OdU
u2
	 (9) 

where 

T	 surface shear stress 

p	 gas density 

If the definitions for friction coefficient 

f	 .L.. B1I'6	 (10) 

generalized momentum thickness 

T	
1/6	 (ii) 

and. diffusion coefficient

	

T dU	 (12)



NACA Th 1941	 9 

are substituted into the momentum equation as in reference 3, there 
results

dT7r
	

(13) 

In order to complete the solutions of this equation for arbitrary 
two more equations are required: one to determine values of f, 

and one to determine the development of the form factor K. 

Region of constant velocity. - In the region of constant veloc-
ity ] = 0, so that the momentum equation reduces to

(14) 

Falkner's data (reference 7) for surface shear with constant veloc-
ity show that

f = 0.006534	 (15) 

Equatioli (14) may therefore be integrated to give 

T_Ttrf(x_xtr)	 (16) 

where the subscript tr indicates the value at transition. 

Conditions for diffusion without separation. - The system of 
equations proposed by Garner (reference 3) was selected to describe 
the development of the turbulent boundary layer because of its 
simplicity. In selecting a law for friction, Garner examines data 
for B> 1250 and shows that f is constant with a value of 
0.006534 if -0.01 	 <0.004. (This is Falkner' s value of f 
for	 = 0, reference 7). For Dr < -0.01 no correlation Is 
obtained. In consideration of the lack of correlated data for high 
diffusion rates, r> -0.01 was selected for the range of dif-
fusion rate and therefore f = 0.006534 is used for the friction 
coefficient. 

The development of the form factor H required for solution 
of the momentum equation is described by an empirical equation 
developed by Garner in reference 3 • The relation is
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T=e5_1P4) j+A(Hl.4)] 
dx 

where A = 0.0135. 

The problem is then to define a velocity distribution that 
will avoid separation of the turbulent boundary layer. Experience 
shows that when H reaches a value of about 2.0, with conventional 
velocity distributions it subsequently rises rapidly and separation 
occurs. Values of H for separation are theiefore usually given 
in the range 2.0 <H <2.6. It is therefore proposed that one 
possible criterion for prescribing the velocity is that H rise 
to some value and thereafter remain constant and less than 2.6. 

Equation (17) describing the development of H shows that if, 
H <1.4 + (-D2/A), then dfl/dx > 0 and H tends toward 

1.4 + (-Dp/A). If H > 1.4 + (-Dr/A), then equation (17) shows 

that dB/dx <0 and therefore H always tends toward the value 
1.4 + (-Dr/A). 

If constant values of Dr are considered as possible condi-
tions for determining the velocity distribution, then the momentum 
equation shows that for a given velocity change Dr should be as 
large a negative number aè possible in order to reduce the surface 
for skin friction. (The rapid diffusion results in airfoils with 
relatively longer regions of constant maximum velocity and there-
fore larger airfoil circulations.) For reliability of the boundary-
layer equations, it is desirable to maintain 1)p> -0.01. Therefore 

a possible condition is Dr = -0.01, the largest rate of diffusion 
with f = 0.006534. The limiting value of H for this case is 
2.14, a value that is probably, but not certainly, safe. Two values 
were therefore used in the velocity computations: D = -0.01, and 

Dr = -0.006, which corresponds to a limiting value of H = 1.844. 

A third condition for prescribing the diffusion rate was also 
employed. According to reference 4, separatIon will result if

(17) 

- 9 dU -0.08 T d.0 -0.247	 -0.247 
DrR	 (18)
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attains the value of -0.0013. The third type of velocity distri-
bution computed was for the maximum diffusion rate with both 
])p> -0.01 and DS -0.00115, a value arbitrarily assigned with 
the condition that It be greater than the separation value -0.0013. 

-	 Velocity distributions in the region . f diffusion. - For the 
cases where	 Is constant, equations (12) and (17) are used to 

eliminate the differential of x, and to obtain 

- -	 - 1.4)	 d.H	
(19) 

	

U	 A	 H-1.4+D1fA 

which integrates to 

log	 = -	 e)j'A [Ei(_5H_5rjA + 7) - E i (_5Dr/A)]	 (20) 

where

rk 
Ei(y) 

is the exponential Integral function (tabulated in reference 8), 
having the principal part of the Integral for y> 0 (that is, for 
H < 1.4 - D/A). The constant of Integration for U = U0 was 
chosen at H = H0 = 1.4. This value of H, U0, and T0 will not 
be included on any point of the airfoil if laminar diffusion pré-
cedes turbulent diffusion. 

Equations (12) and (13) give 

7rf DT'ldU i (13

For the factor cIU/U of the second term on the right side, a sub-
stitution is made from equatIon (19) to obtain an equation that 
may be integrated to 

log (f=	 -	 + 1.4-	 iogL+j	 Ii - e_5(H_ 1.41 

(22) 
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The arc length is then given by 

px	 PU 
XX0	 I	 dx 1 I	 TdU 

= J	 T = DT j	 T0 U	 (23) 
XO	 0 

The curves for the boundary-layer parameters in the turbulent-
diffusion region are shown in figure 4 for Dj = -0.010, Dr = -0.006, 
and maximum diffusion rate with i ? -0.01 and D 5 ^ -0.00115. 

In solving the boundary-layer equations (13) and (17) (with 
f = 0.006534) with the condition D5 ^ -0.00115, the value of Dr 
rises with R. The limitation ])p ^ -0.01 was added at the high 
Reynolds numbers in order to keep D in the range for which the 
friction law f = 0.006534 is valid. The solution of the equations 
In the region of variable	 was obtained by approximating each 
portion of the curve with the solution for Dp = constant = mean 
value of Dr in that step. 

Relations between Velocity Distribution 

and Blade Reynolds Nuniber 

The relations between the velocity distribution and blade 
Reynolds number UfX/P are developed. Some of the results are 
given in graphical form, which permits the use of the generalized 
velocity-distribution curves developed for the laminar and tur-
bulent boundary layers (figs. 2 and 4). These curves will give 
the velocity distribution in the region of diffusion if the scale 
constants L1 , U0, and T0 are known; the remainder of the sur-
faôe is determined by the constant x1 or xt. 

As assistance in finding the appropriate constants, the quan-
tity x1/X (or x/X for completely turbulent diffusion) is 
plotted In figure 5 as a function of the Reynolds number UfX/V 

and. the velocity ratio Uf/tJmaX• (The method of computing fig. 5 
is presented in appendix B.) The curves should be applied in the 
following manner: 

The Reynolds number TJ.X/U and. velocity ratio Ur/TL are 
selected. 1tnination of figure 5 will indicate whether the
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diffusion is laminar, mixed, or turbulent. If the diffusion is 
laminar, figure 5 gives the value of x1, and. then 	 = 0.441 
which establishes the scale for the use of figure 2. 

If the diffusion is altogether turbulent, figure 5 determines 
Xt and then

T =X'	 (24) 0	 fx—x0\ 

where (x - x0 )/T0 is given in figure 4 as a function of Uf/UØ 
and UØ=U. 

The case of mixed diffusion is considered to be of no technical 
significance In this application because of uncertainty in locating 
the position of transition. The effect of Reynolds number is there-
fore considered only in regions of purely laminar or purely turbu-
lent diffusion, although x1 /X and cI'/ux were computed for 

Rtr = 250 and.	 = -0.01 in the mixed-diffusion region. 

Suction-surface potential. - A further step in computing air-
foil performance Is the Integration of the velocity curves to obtain 

P1 
= 1 	 U d"	 (25) 

cJ0c) 

a dimensionless form of the potential on the suction surface. 
Results of the computations are shown In figure 6. The comparative 
magnitudes of the potentials for various values of ]) (or D), 

and. the Reynolds number are significant because in the 

system used for estimating blade circulation, an increase in suction-
surface potential Is generally accompanied by an increase in blade 
circulation. 

The obtainable potential is highest with the greatest diffusion 
rate (compare figs. 6(a) and 6(b)) because the maximum velocity is 
maintained along the largest portion of the airfoil surface. The 
most pronounced effect of Reynolds number Is the increase In poten-
tial shown in the chAnge from laminar diffusion to turbulent



14
	

NACA Th 1941 

diffusion (fig. 6(a)). The increase in potential begins at a 
Reynolds number in the vicinity of 80,000 to 90,000 and for 
Uf/U> 0.6 is fully realized at the blade Reynolds number 
approximately 260,000 for Ds? -0.00115 and D = -0.006 and 
approximately 180,000 for	 = -0.010. This change increases with 
decreasing diffusion-velocity ratio 	 Although there is 

no effect of Reynolds number on suction-surface potential for dif-
fusion with a completely laminar boundary layer, the effect of 
Increase in Reynolds number for turbulent diffusion is a decrease 
of potential for constant values of D2. An insignificant effect is 
shown, however, when the crIterion of KalikhmRn for separation is 
-applied (fig. 6(c)). Because at large Reynolds numbers the condi-
tions D8 = -0.00115 is replaced by Dr = -0.01, the curves so 
constructed approach the curves for	 = -0.010, in that region. 
(The large Reynolds number condition is equivalent to the assumption 
that the extent of the laminar boundary layer approaches zero.) 

The case of infinite Reynolds number is of particular signi-
ficance because it is the most conservative design with turbulent 
boundary layer for constant diffusion coefficient Dr . The poten-
tial at large Reynolds numbers was therefore computed- and is shown 
in figure 7 for values of Dr = -0.010 and -0.006. .The curve for 
Dr = -0.010 at high Reynolds numbers I practically the same as 
that of Ds? -0.00115 for all Reynolds numbers because the poten-

tial for the D8-condition shows so little variation with Reynolds 
numbers. 

The trend of curves shows that highest potential occurs at- a 
Uf/U	 of approximately 0.58 with very little variation between. 
0.53 and 0.63. Therefore, if a design Is considered with a pre-
assigned value for the velocity diagram and Uf, there is negligible 
gain in using higher peak velocities than 	 1.6 Uf . For dif-
fusion with a laminar boundary layer, figure 3 shows negligible 
Increase in obtainable potential for peak velocities U 	 higher 
than 1.25 U.	 -	 - 

Deviations from design conditions. - A knowledge of the range 
of operation of any cascade of airfoils Is essential in determining 
its suitability for application. For the sets of blades considered 
here, the effect of chge of Reynolds number is nonexistent with' 
purely lpinhltRv diffusion. A very slight and indeterminate effect 
is shown for turbulent diffusion with I)s? -0.00115. If the limi-
tations imposed by constant 	 are closer to the physical facts, 
then less lift is obtainable at higher Reynolds numbers.
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Consequently, increase in Reynolds number of operation would 
involve the danger of separation. A safe estimate of lift would 
therefore be made on the basis of the potential for the maximum 
Reynolds number of operation provided the minimum Reynolds number 
of operation does not extend into the regions requiring laminar 
diffusion rates. If the maximum Reynolds number of operation is 
taken to be three times the minimum, then a very slight effect of 
design Reynolds number on potential is Indicated even for the dif-
fusion rates D = -0.010 and -0.006. The Reynolds numbers at 

which some diffusion with laminar boundary layer occurs depend on 
the value selected for tr (in this case 250), on the diffusion 

rate, and on the velocity ratio U/U. Estimates of lift made 

on the basis of D = -0.010 and. RN -	 would be in agreement
with estimates based on D5? -0.00115. If a blade designed on 
such a basis was used at low enough Reynolds numbers, then the 
laminar boundary layer existing in the region of diffusion would 
separate because of too steep a pressure gradient. 

If a rough finish or a higher angle of attack than the design 
value occur in application of the blade, an increase in the value 
of Tt over the design value may be expected. Then the initial 

value of	 = T (
	

) will Increase In the same proportion at 

the beginning of diffusion. Sample computations show, however, 
that for velocity distributions based on constant ], this 

initial increased value for Dr is not maintained but drops to 
some value intermediate between the initial value and the value 
for which the velocity distribution was prescribed. If the value 
of the form factor for separation H is assumed to be 2.2, it 
would correspond to the limit for a constant value of Dr given 
by

= - 0.0135 (H - 1.4) = - 0.0108 

If the design velocity distribution corresponded to 
= -0.006 (limiting B = 1.85), and then in operation T were 

increased by 80 percent to give an initial value of Dr = -0.0108, 
the resulting limiting value of Dr would be greater than -0.0108 

(less in absolute value) and the limiting value of H would be 
less than 2.2; thus, according to this criterion, separation would 
be avoided. If the design velocity distribution corresponded to 

Dr = -0.010, however, an increase of 80 percent of T would result 
in separation according to this criterion.
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ESTIMATE OF BLADE CIRCULATION AND SPACING

Effect of Thickness 

An approximate calculation is made for the blade circulation 
from the upper-surface velocity distribution by a modification of 
the method for thin airfoils. The basic idea is that the airfoil-
surface velocity is the sum of two components, one of which results 
from the basic thickness form uncanibered, and the second of which 
results from the curvature of the camber line. The suction-surface 
velocity of the thin, slightly cambered, isolated airfoil is then 
given by

t =u	 =v 
where

U' suction-surface velocity of airfoil 

IY' velocity component resulting from uncambered thickness dis-
tribution 

AU' velocity increment resulting from curvature of camber line 

V' free-stream velocity 

The ratios U' /v' and AU' tv' are independ.ent of the magnitude 
of V'. A similar equatim holds for the pressure surface, 

= U' - AU' = 2U' - U' 

where U' is the velocity on the pressure surface. If the 

suction-surface velocity is known, and if the velocity component U' 
resulting from the thickness can be determined, then the pressure .-
surface velocity can be computed. 

In applying these ideas to the cascade, the principal change 
is the use of the distorted flow field in which the airfoil is 
immersed; the quantity V t Is now regarded as a variable quantity. 
Near the leading edge, the velocity V 1 is substituted for V' 
giving

=	 (26)



NACA TN 1941	 17 

where_the subscript I indicates the value near the leading ed,gé, 
and U1 '/V' is the velocity rise over the free-stream value for 

the Isolated airfoil. The value for iJ'/v' is a function of the 
assumed thickness distribution. Similarly, near the trailing edge 
the free-stream value used. Is V2 giving

(27) 

At the point of the airfoil where the air has been turned 
halfway so that the flow direction is given by the angle a where 

-	 tana,=(tana1+tana2)	 (28) 

where 

a. angle between velocity vector and noznal to cascade axis 

Subscripts: 

-	 1	 value for upstream of cascade 

2 value for downstream of cascade 

the same procedure might be used as for the leading and trailing 
sections of the airfoil with the substitution of Vm for V' in the 
equation for Urn. The value of Vm is computed from the continuity 
equation

Vicosa.i=V2cosa=Vcoscx.m	 (29) 

which does not include the effect of airfoil thickness in blocking 
the flow area and. Increasing the flow velocity, If the spacing a 
Is not too small, the correction for the distorted. flow that is 
applied Is

Vin 
Vm,c=

,2 fx\2 f	 \ 
r-1)cos2cx 

This formula is derived in appendix C. Then,
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-	 ____________________	 (30)rn,c() =vm[ 

When the blade spacing is. very small, however, it becomes more 
accurate to regard the flow between the blades as flow in a channel. 
From this standpoint, the flow velocity is increased over Vm by 
the ratio of the flow area without blade thickness to the flow area 
with blade thickness. That is, the effect of thickness is given by 

U =v(	 (31) 
rn	 ms_tmsecc) 

where tm is the blade thickness at the point x, where the air 
flow has been turned to the direction a. This euat1on is applied 

only if the point of application of the lift force 	 is within a
range of values specified by

<xm<X1
	

(32) 

This condition was selected because it Is believed that inside this 
range the effect of variations of inflow and outflow direction on 
the velocity Is expected to be small enough to be neglected for the 
purpose of the calculation. Thus, the flow is expected to be 
essentially that Inside a long chsmnel. 

Relations have been developed for computing U at three points 
on the airfoil. The family of airfoil cascades being considered 
will be restricted by assuming a second-degree parabola connec1ing 
the points (0, U1), (xm, Urn), and (x, 'Ui ). That is, 

•	 (1) x	 (2) fx\2 
.-=U-+B	 +B	

) 

where

B)=._B(2) ..! 
Uf

(33) 

(34) 

B(2) - 
i/ f	 U/U	 _________ 

- xm/X - (x,/X) (1 - x,fX) + (1 - x,/X)
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Estimate of Circulation and Spacing 

By assuming that Uj, Urn, and. Uf are known, the curve for 
U can then be determined when the value of Xm is found. Because 
Xm is the center of pressure, it may be found as the weighted mean 
value of x; the weight aBsigned. to each value is the local blade 
loading. 

Because	 is at the center of pressure, 

I	 (35) 

where 

cp potential on upper surface measured from leading edge to a 
point x 

r	 airfoil circulation, (c1 - 

value of . at trailing edge 

The quantity, rx 
= I 

Li0

U dx = UfX () 

may be found from either figures 3, 6, or 7. The quantity, 

fxd 
= f zU dx U 

may be found from figure 8 • The curves for 	 = - 0.010 are 

approximately correct for 	 ^ . 0 • 00115. 

For calculation of the potential q, the high camber of 
airfoils In cascade must be considered because it results in a 
substantially different length of the suction and pressure
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surfaces unlike isolated airfoils, which are nearly straight. The 
effect of the difference in length is approximated by setting

(36) 

	

where	 is some constant nearly equal to unity. The circulation
is thus, 

r	
dx -f	 [u -(2-u)] dx 
r=- [fx.]	

(37) 

where 

	

-	 pX 

= 2 j	 dx -	 (37a)

(Jo 

Using equation (33) for U, there are obtained, 

rx	 - 
I	 dx=UX(f 

1i1\ B(2u1 

Jo	
- -+-,)- 6]	 (38) 

and

[c	 pX-	 rx 
J

xdq=J xUdx=J x(2U-U)dx 

0	 0	 0 

with

rX 

IUX&=UfX211 
B+B(2))	

(39) 

Jo
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The factor	 is estimated on the assumption that the airfoil 
suction surface and. pressure surface are circular arcs intersecting 
at the leading and. trailing edges. The angle of turning 	 of the
mean line is assumed equal to the air deflection: 

X-a1-cL2 

The turning X of the suction surface is then computed from 

sin _____	 COB V4	 (40a)
X 4 sin (f4) 

Then the turning of the pressure surface k. is computed from 

t	 ,\ tan- 2 =tanj-2	 (4ob) 

The ratio of lengths is

x	
sin2	 (41)E - = - sin 

Substituting the values for the integrals (38) and (39) in 
equation (35), there results 

()

3	 (2) /\2	 (1.) 
/\\ 

Urn - 
— +c	 +C	 f// l2Uf	 (42)

where

	

1i1 +U	
(i + P'\ ..i 

	

- 2TJf	 \2)UX 

___	 ___	
2tJf 5 t11 I 

- 2,1UX \2 1	 3U6U	
(43) 

12U 4Uf	 2	 6Uf
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With the values for Uj, Urn, and Uf equation (42) may be solved 
for x., equation (34) for B(1) and B(2), and finally the curve 

for ii (equation (33)) determined. Furthermore, equations (37a) 
and (38) determine the potential	 so that the dimensionless 

circulation I'/U.X is then

(44)
 UfX UfX UfX 

For potential flow,

r = s (V1 sin a1 - V2 sin CL2 )	 - 

The velocity V1 may be eliminated. ' by the continuity equation (24) 

resulting in

x v2 cos a2 (tan a1 - tan a.2)
(45) 

UX 

which determines the blade spacing. 

Comparison with Exact Procedure 

For the purpose of judging the accuracy of the method of 
estimating the pressure-surface-velocity distribution, a comparison 
was made with velocities computed for potential flow, by an exact 
procedure. The data were obtained from reference 9. The comparison 
is shown in figures 9(a) and 9(b). In both cases, values of U'/V' 
were selected to fit approilmately the NACA 65-series isolated air-
foil data (reference 1O),vhich gave 

Ui, 
—=l.O25 

U ,	 t
(46) 

Uf'
= 0.950
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By using_these values_and equations (26), (27), (29), and (30), 
Ui/Vm, Uf/Vm, and U1JVm were computed. Next	 was obtained 

by use of equations (to) and (41). Evaluation of the data for 
suction-surface-velocity distribution yielded MmX and m(Uf/Vm). 
It was now possible to substitute all these values into equa-
tions (43) and solve for x,JX by use of equation (42). The solu-
tion was then continued in the manner indicated in the previous 
section. 

Pressure-surface velocity was then plotted using the equation 

U+ U
p 

The shapes of the estimated and exact velocity distribution 
on the pressure surface are quite similar. The solidity computed 
from the estimated velocities is, however, 6-percent higher for 
figure 9(a) and 4-percent lover for figure 9(b) than the exact 
value. These values then give an indication of the order of 
inaccuracy of the method of estimating solidity. The error in 
pressure-surface potential 	 was 6 percent for the airfoil of 

figure 9(a) and 2 percent for the airfoil of figure 9(b). 

a'nJY OF SEVAL PARPJTERS ON BEQUJ.kuw CASCMTh SOLIDITY 

The relations developed in the previous section are applied 
to study the effect of several design and operating parameters on 
required óascade solidity.

Computations 

The data given in the problems solved consisted of the fol-
lowing: (1) Reynolds number UfX/L (either very high or very 

low); (2) diffusion coefficient Dr (either -0.010 or -0.006 for 

a turbulent boundary layer); (3) trailing-edge loading (U-ii)/V2 

(assumed to be 0.1 because cascade data Indicated this value as 
attainable); (4) velocity ratio Um/V2; (5) velocity-diagram 

components V1, V2, a1, and a2 from which Vm and a are 

computed; and (6) velocity ratios iij '/V', Um'/V', and Uf'/V', 
which are determined from the assumed basic thickness distribution. 
In all cases the assumed values were U1 '/V' = 1.025 and
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f /V t = 0.95, but tL'/v' was varied to obtain various values for 
the thickness. All the assumed quantities were varied in the 
examples to show the effect on the required cascade solidity, the 
velocity distribution, and the thickness. The sequence of com-
putation is: 

(i) Compute

UI UI' 

	

=	 = 1.025 
'1 

	

- =	 = 0.95 

Uf hf (Uf - Uf\ 
V2 )=l.05 

(Uf 

Uf\V2 

Umax - Umax 
V2 

(2)From Uf/U, the assumption of either laminar or tur-

bulent diffusion, and the desired rate of diffusion, figures 2 to 8 
are used. to find the suction-sur:face-velocity distribution and the 
values for 1)/UX and m. 

(3)Values for the solidity X/s and the pressure center zJX 
are assumed. The thickness Is then computed from equations (30) 
and (46) If either x,js < 0.5 or x./s> X/s - 0.5. If 
0.5 < x/s < X/S - 0.5, then equation (31) is used. The factor 
is then obtained from equations (40) and (41). 

(4)The quantities	 c(2), c(1), 1iu' B( 1 ), B(2), /Uf.X,' 
r/ufx, and X/S are next computed from equations (43), (42), (34), 

(38), (44), and (45). 

(5)Steps (3) and (4) must be repeated if the solidity X/s 
varies considerably from the assumed value or if, because of an 
incorrect assumption for Xm, an incorrect choice was made in the 
equation for the computation of tm/X and 3.
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Results 

The results of the computations are shown in the following 
table and in figure 10. The table gives the assumed values f or the 
design parameters and the computed solidity, whereas figure.10 shows 
the details of the velocity distributions with sketches to indicate 
the cascade solidity and the airfoil thickness. The circles drawn 
on the camber lines indicate the location of 	 and the airfoil 
thickness tm. 

Case Boundary 
layer

DiffAsion 
coefficient

a1 

(deg)

a2 

(deg).

U

V2

U-U

X
x 

V2 

a Turbulent -0.010 45 38 1.615 0.10 0.10 0.30 
b Turbulent - .010 45 38 1.312 .10 .10 .64 
c Turbulent - .010 45 38 1.312 .10 .06 .50 
d Turbulent - .010 45 38 1.312 .00 .06 .65 
e Turbulent - .010 45 -45 1.615 .10 .20 1.6 
f Turbulent - .010 45 -45 1.615 .10 .15 1.3 
g Turbulent - .010 45 -45 1.312 .10 .11 1.8 
h Turbulent - .010 0 -45 1.312 .10 .18 1.0 
i Turbulent - .006 45 38 1.615 .10 .10 .42 
j Turbulent - .006 45 38 1.312 .10 .06 .56 
k Laminar - .06618 45 38 1.615 .10 .06 1.6 
1 T.,m(nar - .06618 45 -45 1.312 .10 .08 3.1 
rn Laminar - .06618 0 -45 1.312 .10 .09 1.7

The effect of variation of maximum surface velocity U,	 on 
solidity X/s of a compressor-type blade is shown by comparison of 
cases (a) and (b) where all design parameters are the same except 
u/v2 . The blade with a lower value of Umax/V2 is obviously 

better suited for operation with a compressible fluid with a high 
ch number, but has the disadvantage of requiring a higher solidity 

(twice as many blades).. 

If in case (b) the thickness is reduced from 0.10 to 0.06, the 
cascade corresponding to case .(c) results, having only 78 percent of 
the solidity of case (b). This decrease results from the higher 
aerodynamic loading of the thfmner blade because of the lower pressure-
Surface velocities caused by the thickness. 

In cases (a), (b), and (c), the trailing-edge loading corre-
sponds to an air flow that does not satisfy the Kutta condition. 
The actual bla'de having the prescribed velocity distribution would 
have an extension from the point x/X 1.0 to larger values in 
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which the loading would drop to zero. Similarly, the initial parts 
of the velocity distributions do not include the leading edge. 
That is, the velocity distributions shown do not extend over the 
entire airfoil, but do include practically all the aerodynamically 
loaded region. A velocity distribution was computed for zero trailing—
edge loading (case (d)) In order to observe what sacrifice would be 
Involved In avoiding separation at the trailing edge and attempting 
an airfoil design that would satisfy the Kutta condition. Compari-
son with 'case (c) shows that the solidity is about 1.3 times as 
great. The effect would be less In the case of reaction biading 
where the inlet velocity results In large loading in the initial 
part of the airfoil and a relatively smaller effect of trailing-
edge loading. The effect of decrease In trailing-edge loading is 
also less for blades of small diffusion ratio U,/Uf, because in 
such cases the suction-surface velocity Is maintaIned, at its maximum 
value to a point very close to the trailing edge and, as a consequence, 
the loading Is also maintained over most of the airfoil. 

For an Impulse blade (V2 = v1) of large turning (turbine type), 

the velocity distribution is very much the same as for a compressor 
blade with nearly the same velocity curves U and. U, although the 
thickness will radically vary because of the low value for Vm. For 
example, compare cases (a) and (a). 

If the turbine-blade thickness is reduced. to the value closer 
to the compressor blade, the circulation Is increased (case (f)), as 
might be expected. The large diffusion ratio on the pressure surface, 
which practically Insures the existence ofa separation bubble there, 
should also be noted.. 

The effect of decreasing the maximum surface velocity Urn 

shown in case (g), which has lower blade circulation even though the 
thickness was decreased from 0.15 to 0.11. Solidity increased 
39 percent over the value for case (f). 	 - 

For an Inlet guide vane turning the air from an angle of 00 to 
an angle of -45° (case (h)), the velocity distribution changes from 
the Impulse cascade (case (g)) because of the large decrease in the 
inlet velocity. Even with the increased thickness, local velocities 
on the pressure surface do not involve high diffusion rates because 
of the over-all Increase In velocity (v1/v2 = 0.707). 

The effect of reducing the rate of diffusion from that of 
cases (a) , and (c) (fl, = -0.010) toa lower rate (-r = -0.006), 
while maintaining the same values of the other design parameters, was
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determined by computing the corresponding cases (i) and. (j), respec-
tively. The positions at which the u/v2 values are equal for the 
two cases are where the values of a. are the same. There is some 
chordwise shift in the location of a given value of a. when changing 
from case (a) to case (i) because of the shift in the loading dis-
tribution. Consequently, the location of x, shifts and the thick-

ness distribution changes. The last half of the blade (case (i)) 
does very little turning so that the solidity increases from 0.31 to 
0.42. The usefulness of this part of the blade could be greatly 
Increased if a larger turning of the air were involved, for the 
U/V2 curve would rise to higher values in the first half of the 

airfoil and drop to lower values in the last half, thus shifting the 
load backwards on the blade surface. The change in velocity and 
solidity from case (c) to case Ci) is slight because the rate of 
diffusion has very little effect on auction-surface potential when 
the diffusion Is small. (See fig. 7.) 

An effect of blade Reynolds nuniber UX/u is shown by compari-

son of cases (a) and (k). In case (k), the expansion is entirely 
laminar (low Reynolds number), whereas in case (a) the extent of the 
laminar region Is assumed zero (high Reynolds number). Even though 
the laminar-layer blade is only 6-percent thick, the solidity (1.6) 
required is five times as large as for the blade with a turbulent 
boundary layer. This loss In circulation results from the fact that 
laminar diffusion must be begun so much earlier when the boundary 
layer is thinner. On the pressure surface of the blade is to be 
observed a region near the trailing edge where the rate of diffusion 
increases to a value that will certainly induce separation. A better 
aerodynamic design could be obtained with a thinner blade, which 
would be necessary if the turning were greater. Some improvement 
would also probably result with.a less simple mean velocity curve. 
It appears sa1e to conclude that it is extremely difficult, if not 
impossible, to obtain a compressor blade of reasonable thickness and 
turning, if flow separation is to be avoided with a laminar boundary 
layer. 

The design of an impulse blade with laminar boundary layer 
appears to be entirely feasible (case (1)) as a consequence of the 
low value for U/V2, which Is a result of the low value for 

Vm/V2 . A reaction blade with laminar boundary layer also is fea-

sible. (See case (m).) The percentage Increase In solidity for 
cases (z) and (in) over that for cases (g) and (h) Is much less than 
the percentage Increase in solidity for case (k) over that for 
case (a). As a general rule, cascade solldities for laminar and
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turbulent diffusion can be expected to be more nearly alike when 
diffusion is small (U,x/Uf — 'l.0) than when diffusion is large 

(U/Uf--2.0), because of the smaller difference in suction-

surface potential. (See fig. 6(a).) 

COMPARISON OF EXPERDTAL WITh INDICATED ATTAINABLE 

SOLIDITY VALUES 

In order to estimate the degree with which blades in use approach 
the maximum attainable circulation as indicated by the present method 
of analysis, cascade so].idities Were computed for condjtions com-
parable to those for which performance data were available. It was 
desired to compare the solidities of the tested blades and those 
corresponding to the proposed velocity distributions on the basis of 
operation at very low Mach numbers, very high Reynolds number, the 
same values for a1, 2' maximum thickness t/X, U/V2, and 
UfIV2. The data available did not give all this information, or did. 

so with no itulication as to the efficiency of the cascade. Data used 
were obtained from references 11 and 12. In none of the comparisons 
shown is it possible to evaluate cascade efficiency, although for 
every case the comparison was made on the basis of the optimum oper-
ating condition of the cascade as stated. The comparisons are shown in 
the following table: 

Refer- 
ence

Blade 
desig- (deg)

a. 

(deg)

U,/V2 Exper- 
imen-

Estimated	 X/S 

= -0.010 m	 = -0.006 
nation tal 

X/s ____________ _____________ ______ 

11

__________ 

65-(l8)lo

_____ 

45

______ 

15

________ 

1.699 1.063
1•68a 

11 65-(l2)lo 45 23.8 1.602 1.034 1.17 1.60 
11 65-(4)lo 45 37.0 1.300 1.013 .78 .88 
11 65-(o)lo 45 42.9 1.186 1.003 .36 .38 
12 64-(A)06 0 -45.8 1.180 1.538 1.12 
12 64-(B)o6 0 -52.0 1.133 1.534 1.20

at/s = 0.0664. 

All of the cases are directly eomparable as previously described 
except the 65-(l8)lO blade, for which it was impossible to find a 
solution with 10-percent thickness, indicating a strong probability 
of separated flow on the blade. A so.idity was computed with the 
thickness reduced to 6.64 percent. 
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The 65-(12)l0 blade has a lover solidity and therefore a higher 
circulation than either of the estimates for a maximum-circulation 
blade. Possible causes for this discrepancy are: (1) slight flow 
separation from the surface of the 65-(l2)l0 blade, and (2) the 
assumption of a parabolic curve for U, which may involve some sac-
rifice in attainable circulation. For lover diffusion (65-(4)lO and 
65-(0)10) and for reaction blades (64-(A)06 and 64-(B)06), the estimates 
indicate that higher circulations are attainable. The 64-(A)06 and 
64-(B)06 blades have such high values for U/U 	 that there is no 

substantial difference when the lower diffusion rate 	 = - 0.006 

is used 1n the solidity estimate. It seems reasonable to expect that 
higher blade circulations are obtainable with blades other than the 
65- and 64-series for low pressure rise and for pressure drop. The 
65-(0)lO blade is particularly subject to improvement. 

CONCLUSIONS 

The analysis of the limitations on the circulation about blades 
in cascade indicates that under the assumption of the several criteria 
for separation and the avoidance of local separation of the flow, the 
following conclusions can be drawn: 

1. For a preassigned maximum velocity and suction-surface 
trailing-edge velocity, the suction-surface potential and airfoil 
circulation increases with the increase in permissible diffusion rate. 

2 • For a. laminar boundary layer, Loitsianakil' a equation deter-
mines blade circulations independent of the Reynolds number. For 
a turbulent boundary layer, Kalilthman's criterion for safe diffusion 
(Ds - 0.00115) indicates very slight changes in blade circulation 

with variation in Reynolds number. If a constant diffusion rate 
= - 0.010 or- 0.006) is used, however, some slight decrease 

in attainable potential with increase in Reynolds number is indicated. 
There is a very marked increase in obtainable lifts when the design 
is changed from that for a laminar boundary layer to that for a 
turbulent boundary layer. This effect decreases with decrease in the 
diffusion ratio	 or U/V2. With transition at momentum-

thickness Reynolds number B = 250, the change begins to occur at a 
blade Reynolds number RN between 80,000 and 90,000. For completely 
turbulent diffusion with U/Ux> 0.6, the blade Reynolds numbers 

are 260,000 (KalikhmRn's criterion and. DT = - 0.006) and 
180,000 (r = - 0 • 010). 

3. Suction-surface potential and consequently the airfoil cir-



culation increases with increasing maximum velocity ratio u/v 2 or
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u/,u; however, negligible gain in circulation is obtained with 

Umax/Ut greater than 1.6 with turbulent diffusion and greater than 

1.25 with laminar diffusion. 

4. An airfoil designed for laminar boundary layer may be operated 
at any Reynolds number. An airfoil designed for a turbulent boundary 
layer has a lover Reynolds number limit for operation without sepa-
ration. This limit is a function of the velocity ratio Um/Ut, 

the diffusion rate, and the condition for transition. For R = 250, 
and diffusion velocity ratios Umax/Ut <1.67, the lover limit of RN 

is equal to or 1es than 260,000 for small diffusion rates 
(D = 0.006, Ds = -0.00115) and equal to or less than 180,000 

for larger diffusion rates (i = -0.010). 

5. Improvement In airfoil circulation always results from adding 
loading at the trailing edge, but the improvement Is less with 
decrease in over-all diffusion (decrease in v 1/v2 ) and with decrease 
In surface diffusion (decrease In Umax/Ut). 

6. Change in suction-surface-velocity distribution resulting 
from change in diffusion coefficient or character of the boundary 
layer has a large effect on blade circulation except when the dif-
fusion is small. This small effect is to be expected in blades 
designed for high-speed operation and for reaction blades. 

7. For a fixed suction-surface-velocity distribution, obtainable 
blade circulation decreases with increasing blade thickness. 

8. The large discrepancy between the circulation of the 
65-(18)lO blade with the recommended velocity diagram and the esti-
mated attainable circulation Implies a strong possibility of sepa-
ration of the flow from the 65-(l8)lO blade. For the recommended 
conditions of operation of the 65-(4)l0, 65-(0)lO, 64-(A)06, and 
64-(B)06 blades, estimates indicate that higher blade circulations 
are attainable. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, June 6, 1949.
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S4B0LS 

The following symbols are used. in this report: 

A	 0.0135 

BW,B(2)	 coe1f1cients of _(x/X) and. (x/I) 2 terms in 
equation for U 

c(1),c2),c(3)	 coefficients of (xm/X), (x,/x) 2 , and (x/X)3 

terms in equation for Xm 

c chord. 

DL diffusion coefficient with laminar boundary layer, 
(Ldu 
\¼Udx 

Ds
(	

R°•)	 (according to Kalikhiin, separation 

occurs when	 D6 = - 0.0013) 

diffusion coefficient with turbulent boundary layer, 
(Tdu) 

Ei(y) exponential integral, 

(fy 
F parameter in approximate equations for laminar 

boundary layer 

f coefficient of friction, 
(_	

R1/6) 

U form factor,	 (o*/O) 

L	 . generalized. momentum thickness of laminar boundary 
layer,	 (OR) 

pX 
m 1	 xUdx 

UfX2JQ 

B momentum-thickness Reynolds number,	 (Ue/v)
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RN	 blade Reynolds number, (UX/v) 

a	 spacing of airfoils along cascade axle 

T	 generalized momentum thickness of turbulent boumi'ry 

layer (6.R1/6) 

t	 thickness of airfoil 

U	 suction-surface velocity just outside boundary layer 

U	 arithmetic average of suction- and. pressure-surface 
velocities 

V	 stream velocity 

V	 V corrected for thickness effect of airfoils In cascade in 

X	 total suction-surface length 

x	 arc length on airfoil suction surface 

a.	 angle between velocity vector and. normal to cascade 
axis 

ratio of pressure-surface length to suction-surface 
length, (x/x) 

F	 circulation around one airfoil 

6*	 dIsplacement thickness of bouMAry layer 

9	 momentum thickness of boundary layer 

turning angle of upper surface 

turning angle of camber line 

V	 kIntio viscosity of gas 
p	 gas density 

T	 surface shear stress 

complete velocity potential, ( J udx \o 
/x \ 

cp	 velocity potential, (J Udx) measured from leading 
edge	

\O	 /
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Subscripts: 

f final value near trailing edge 

I initial value near leading ed€e 

1 value at beginnl-ng of laminar diffusion process 

m value corresponding to mean of upstream and. down-
stream velocity vectors 

max maximum value 

p value on pressure surface 

t value at beginning of turbulent diffusion process 

tr value at transition 

0 value correspomHng to H = 1.400 in turbulent 
boundary layer 

1 upstream value 

2 downstream value

Superscript:

pertaining to isolated airfoil 
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METHOD OF COI'IPtYTflIG FIGURE 5 

For d.iffusioñ with a laminar boundary layer, equations (7a) 
ànz3.. (8) determine for any given velocity ratio U/1J the value 
for x1 . Then

Li=O.44lx 

For, the case of diffusion with partly laminar and. partly tur-
bulent boundary layer, a number of values were selected for 

B	 i
V 

the Beynold.e number at the beginni ng of laminar diffusion.. The 
units of velocity and. length may be taken as U 1 and xl, 
respectively. Also

L1 = 0.441 x2 

which establishes the scale of the laminar-diffusion region. At

Otr Ut 
the transition point, Rtr =	 r =250, so that for

	 there 

is obtained, from equation (6&)
2(F+DL) 

(Rtr\ 
Ltr =L )	 . 

and.	
2DL 

.P+'2DL 
Utr Utr _(\ 

Because,

L=GR.

34
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then
Ltr 

0tr = 

and
1/6 

Ttr = 0tr (1tr) 

The Initial condition for B 18 

- 1 4 DTt Utr_ •	 0.0135 

(reference 3), ,here

TdU	 5/6 
DT,tr E (
	

= Di(Rtr) 

For this value of Etr, figure 4 identifies Utr/TJO and. Btr/RO, 
thus establishing the scale for the velocity U and. the basic 
length T0. By proceeding to the final velocity U, the length 
X -	 Is established., and. RN = U.1X/v may be computed. 

If the diffusion is entirely turbulent, then by assuming a value 
for the Reynolds number at the beginning of turbulent diffusion Rt, 
there are obtained. ('tr °fl Utr are taken as the unit s of length 
and. velocity, respectively) 

8tr = 0.441 

0.441 Xtr 
Ttr =

5/6 
(tr) 

DT,tr = 0 

-	 tr4 

T0 = Ttr
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EFFECT OP AIRFOIL ThICKNESS ON P1.0W TBROtX CASCADES 

By assuming that the effect of the airfoil circulation on the 
velocity at the point im (where the flow has turned to the direc-
tion am) is taken into account by the turning effect, the change 
in velocity from V1 to Vm is given by 

VmVlcosa,secam 

The effect of thickness is now separately evaluated, as the approxi-
mate effect of a cascade of uncainbered airfoils of stagger am 
with no circulation. The thickness distribution is assumed similar 
to that of a Joukowsky airfoil, which is discussed. generally in 
reference 13. The potential function W for a unffoxn stream of 
velocity V flowing about a Joukowsky airfoil of small thickness 
can be shown to be

-	 (l+2c)c2/l6] 
-	 +	 cc	 I 

+ T j 

where 

€	 real constant deteriniiing airfoil thicicness 

C2 complex parameter defined by z = + 

and. the condition that 	 be a continuous, single-valued function 

with lito { ( z)] = 1, where z is the complex position coordinate 

in the airfoil plane. The airfoil profile is given by the ad.dJ,tional 
equation for a circle of radius (1*c) and center - oc/4: 

*	 cc	 C 

+	 =	 (1+ c) e 

When the central angle of the circle Co has a value of 2/3 it, the 
airfoil has a maxinniin thicIeae and. at this point the velocity is 

= v(l+2e)
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if the potential function Is expanded. in powers of i/, the mdi-
vidual terms may then in turn be expanded. in powers of l/z, giving 
the reBu].tant approximation for large z 

€c2/8\ 

W = v (z + z+c, ) 

This expansion neglects term In l/z 4 and. higher powers • From 
this expansion, the velocity at large distances from the airfoil Is 

d.W	 v 02/8	 .. (Th.V)c2/16 
dz = V - (z + c/o) 2 - - (z+c/8)2 

At a half chord above the airfoil (z = I ), the error in the 

d.isturbanoe velocity 	 2 is 26 percent; whereas the error 
16(z+c/8) 

in the entire velocity is (for 	 = 1.2 V) 0.8 percent. At a 
distance of 1 chord, the errors are 10 percent and. 0.1 percent, 
respectively. At l chord., the values are .5 percent and. 0.02 percent. 

This approximate velocity distribution is seen from the form of 
the velocity equation to be that of a doublet of strength 

M = 23(ii-V) 

placed in a uniform stream of velocity V. 

if a series of such doublets are placed. on an axis with d.irec 

tion ie	 and. with locations 

z 0 ± In8e 1	 (n = 0, 1, 2, . . . ) 

a potential function W will result with the equation 

___ 

V = [ 1 0 +
i \ zo + inse	 + z - zo -
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or

Me1alD cot•1	
- z0) 

eThl 
21s	 Lie.	 J 

If the potential due to the central doublet at z 0 Is removed to 

fiM the modification of the uniform flow in which the central blade 
•	 is located., there results 

M	 I	 [it ( z - zo)1. 1se1 
<coti	 I-

•	 2ise	 j	 Lise 1	 .i	 (z-z0) 

By expanding in powers of (z - z 0) and by neglecting powers higher 

than 2, there is obtained the approxi.ination 

W =	 e21n ( z - z0) 

with the complex velocity

L 2iam 
dz - 2it 32 

When added to the mean flow, the component normal to the mean flow 
may be neglected, giving

Mt2 
Vm, c = Vm + - 008 

38 

The doublet strength has been shown to be 

M = i_. ( - V) _- (U - Vm,c) 

If this equation Is substituted in the equation for Vm c and the 
equation	 '. 

U	 U' 

Vm,c - 

used. to eliminate U, there results



NASA TN 1941
	

39 

Vm 
Vm,c =
	 ,2 x2 13'	 1) coB 2a, 

Or, if V	 is eliminated, there is obtained. 

=	 =	

[	

2 (X) (13' - i) co 2] 
\V' 
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Velocity ratio, UI/Umax 

FIgure 7. -Relation between suction-

surface potential and velocity ratio 

for blade Reynolds number approaching 

infinity. 
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(a)	 Laminar diffusion. 
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