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SUMMARY 

The present treatment investigates the transient behavior of an 
airfoil in supersonic' flow due to pitching, flapping, and vertical gusts 
by means of the Fourier integral method. It is an extension of the 
earlier work "The Transient Reaction of an Airfoil Due to Change in 
Angle of Attack at Supersonic Speed" by Chieh-Chien Chang, Journal 'of 
the Aeronautical Sciences, volume 15, number 11, November 19148, 
pages 635-655. If a control surface is attached to the airfoil and 
deflected according to a prescribed time schedule, the effect can be 
evaluated from the result found for the main wIng. An example is shown. 

By using a convolution integral as shown in the above-mentioned 
article, the aerodynamic effect of any arbitrary motion of the airfoil 
can be determined, if the aerodynamic response of the airfoil to a step-
function disturbance is known. As useful examples, the harmonically 
oscillating airfoil with different modes or degrees of freedom is 
analyzed for the complete time history, for the case in which the motion 
starts abruptly from rest. The results check exactly with those of 
Garrick and Rubinow in NACA TN 1158, after the transient effect of the 
abrupt beginning has died out, that is, for times later than (M M 

from the beginning of harmonic oscillation where M is the Mach number, 
U is the free-stream velocity, and C is the airfoil chord in con-
sistent units. 

In carrying out the investigation, a new integral or function 
C(13,M) has been introduced. This new function is sufficiently funda-
mental to the supersonic flutter problem that the behavior of all the 
different degrees of freedomcan be expressed in terms of C(13,M) and 
the usual transcendental function (here 13 is related to the frequency 
of oscillation). It is believed that this new function plays an equiva-
lent part in supersonic flutter to the Theodorsen function in the flutter 
problems of incompressible flow. Preliminary investigation of both the
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complete C-function C ( 13 , M ) and the incomplete C-function is made. 
The incomplete C-function together with the incomplete Bessel function, 
so designated by Garrick and Rubinow, are important to the transient 

region for times between (__M__	 and (__M__ • An extensive calcu-
\M+]JU,	 \M-l/U 

lat ion of this new function will be very useful in supersonic flutter 
analysis.

INTRODUCTION 

Recently, the transient problem of the nonstationary motion of an 
airfoil in supersonic flow has been treated by a number of investigators. 
With the Fourier integral method the present author first presented a 
paper on the transient reaction of an airfoil due to change in angle 
of attack at supersonic speed (reference 1) in January 19 )48. As a 
by-product of the investigation, the transient effect due to a vertically 
descending airfoil is also shown in reference 1. Concurrently, Biot 
(reference 2) investigated Schwarz's problem (reference 3) of vertical 
gust with a different approach. Later Heaslet and Lomax ( reference Ii.) 
considered the cases of the vertically descending airfoil and anair-
foil encountering a vertical gust with the frame of reference at rest 
with the undisturbed fluid. Miles treated the above gust and flapping 
case with Green's function (reference 5). 

The present paper is an extension of the author's earlier work 
(reference 1) to all possible modes of nonstationary motion, and it 
shows that the results can be applied to the transient effect of con-
trol surfaces. With the concept of the convolution integrals as 
developed in reference 1, the transient results can be applied to many 
types of nonstationary motion, particularly the harmonic oscillation. 

There are four types of problems to be treated in this paper. 

(a) Investigation of the case of a suddenly descending airfoil 
with a constant rate - so-called flapping degree of freedom of the wing 

(b) Investigation of the case of the airfoil encountering a vertical 
gust of constant strength 

(c) Application of the convolution integral to evaluate the wing 
loading due to different modes of nonstationary motion, such as harmonic 
oscillations, and so forth 

(d) Extension of the present results to other degrees of freedom, 
such as aileron deflection, and so forth
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The investigation of drag-characteristic behavior of the wing in 
steady flow is omitted. entirely from this paper, because it is not a 
difficult matter for a designer to calculate the drag characteristics 
with the information contained in this paper and available solutions 
of the steady case. 

The present investigation was conducted at the Johns Hopkins 
University under the sponsorship and with the financial assistance of 
the National Advisory Committee for Aeronautics. The author woula like 
to express his appreciation to Misses Vivian O'Brien and Patricia 
Clarken for their assistance in carrying out the project. 

TRANSIENT REACTION OF AN AIRFOIL DUE TO UNIT-STEP CHANGE 

0	 OF FLAPPING AND VERTICAL GUST 

As shown in references 1 and 6, the linearized partial differential 
equation of the irrotational flow of a compressible nonviscous fluid is 

(1) 

where 0 is the disturbance potential of the flow, the x-axis is 
positive in the opposite direction of the flight, and the y-axis is 
positive in the upward direction. The origin is attached to the air-
foil leading edge. The details of the notations are given in 
appendix A. In the supersonic case, the disturbance potential of such 
an airfoil is equivalent to that due to a source sheet at the y = 0 
plane with time-dependent strength and is

- T)

	

Ø(x,y,t) =	 1	 2

______________ dT d	 (2) (M2 - i)h/2 J0 JT1	 (T - Tl)(T2 - T) 

where v(,+O,t - T) is the vertical velocity component on the wing 
surface at the point (,+o) at an earlier time t - T • The term 

	

- T)	 S 

is just the source-sheet strength per unit area. In 
(M2 - 

addition,
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M(x-)	 r	 - 
T1=a(M2_l)_

(3) 

M(x-)	 r 
T2=a(M2_l)+• 

where

r = M2 - 1	
(x	 )2 - (.M2 - i)(y - )2 

	

- yM - 1	 .	 () 

(l°)' 

If the point of interest is on the lower side of the wing surface 
(x,-O,t) .equation (2) reduces to

Px PT 

	

i	 i	 I	 I	 v(,-O,t - T) 

	

Ø(x,-O,t) = -	 , I	 I	 _______________ dT d	 (7) 
/ 2	 lj2 i 

- )	 Jo jT	 \j(	 T1)(T2	 T) 

With the above equation the transient case due to. sudden change of 
angle of attack of the airfoil about any arbitrary point has been treated 
in reference 1. The important results of that paper are given in table 1 
for use in the present development. Two additional interesting cases 
will be treated as follows.

Vertical Flapping 

At time t0, the airfoil suddenly descends with constant velocity i. 
The unit-step downwash at any point on the wing can be expressed in terms 
of Dirichlet's integral as - 

v(x,-O,t) = (t) =	 P sin w (t - to)	 (6) w	 2
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wiere U) is the angular velocity per second or a frequency parameter. 
h(t) Figure 1(a) shows	 = a(t). Substituting equation (6) into equa-

tion (5), there results,.after manipulation, 

_______[x PT2 
= -	 _________________ 

1 r 
dJ	 dTj1(tTt0)&D+ 

- l) u/2 L o	 T1	 0	 - Tl)(T2 - T) 

rT2 

Hd JT1
dT 

T1)(T2 - T)j 

-	 'ix 
- _____ I	 &D. - sn w(t - t0 - MX)J0(wX) - - -

	
- )l/2 J	 Jo 

2(M2	 )1/2	
(7) 

or after integration the potential is expressed in three zones according 

to the value of.	
X	 = v as follows: u(t_t0) 

øh(x,_0,t) = --;-

1 
(M2 - 1)1/2 sin_i ( - M) -
	 - 

M(l - ) -	
(M - 1	 <M + i) 

Mv	 M 
<= 

M

(8) 

(M2 i)1/2	
(	

M - 1) 
M 

It	 fM^i 
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where

x	 -	 X'	 I 
u(t - t0)	 (tt - t0 ')	 = 

M2-1

	

	 tut' 
M	 C 

______	

toU 

a(M2_J)	
to' =__ 

and J0(wX) is the Bessel function of the first kind of the zero order. 

	

øh C h	 CLh Table 2 giyes the detailed characteristics of -, 	 f, =- = Fh, 
'h 

and	 =	 as functions of time. Figures 2 to show these charac-



teristics. The detailed methods of calculation are quite similar to 
those given in reference 1, and are omitted in this paper. 

In figures 2 to 14. a few important features may be explained. Within 
/	 tI	 tQ'	 M	 •Ch the zone III (0	 ) f = -i-- is inversely proportional x	 M^l, 

to Mach number and independent of time and the location of x'. But in 

time zone i (_M	
t' _o'	

=	 inversely proportional to \M_l	 x	 / 
- 1 which corresponds to the steady case of Ackeret's result. In 

zone	 (_M <	
-	 < M ,	

varies not with x' or t' - t0' \M+l	 x'	 M--l/	 h
t' - to' 

alone, but with the conical coordinate 	 . It is a complicated 
x, 

t t	 t( 
function of M and	 . Thus the present solution is similar to 

x

CLh 
Busemann' s conical flow. So is the behavior of Fh	 against t' - to'.
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As far as Gh =M is concerned, it varies both with 1/M and t' - t0' 

in zone I. In general, f, Fh, and Gh increase with decreasing Mach 
t t - to' 

number, if

	

	 or t' - t0' is kept constant. 
x,

Vertical Gust 

At time t, if the airfoil begins to encounter a 
gust of velocity , such unit-step downwash at a 
airfoil can also be expressed in terms of Dirichiet' s 

-	 - 
v(x,-0,t) = g(t) = gf

LUo

uniform vertical 
ay point on the 
integral

(9) 

	

Figure 1(b) shows 	 t) = a g(t) as a function of both t and x. 

Substituting equation (9) into equation (5), the disturbance 
potential Øg due to vertical gust can be written as 

pT2 	 pc	
w(t_ T -to 

øg(xO,t) = 
2 (M2 ' 1)h/2[ 'd.
	 dT J	

-	 - 
0	 o 

rT2 

I. dd ______ 

	

Jo	 JT1 (T - Ti) ( T2 	 T) 

	

= (M2	 1/2	
d	 w(t - to - - MX)JO ) - 

2(M2	
)l/2	 (10) -
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or, after integration, 0g has to be also expressed in three zones, 

[ 
+	

( -	 (	
M 

± 

1) 

•	 (0Mi	
(ll) g	

(M2l)h/2	 M) 

0	 (M±l<) 

It is interesting to note that Øh and Øg are similar in form. The 
Fourier integral method of Bessel functions used will take care of the 
three zones automatically without considering each zone indivIdually. 
This is one of the main advantages of the present method. 

øg Cpg

	

Table 3 shows the detailed characteristics of c—,	 = 
Lg 0g 

CL	 CM 
= Fg and	 = Gg as functions of time. Figures 5 to 7 show

fg, Fg, and Gg as functions of time. The detailed calculations are 
also omitted.

Pitching 

For convenience, the essential results,of reference 1 for the 
pitching case are given in table 1. Figures 8 to 10 show some charac-
teristics of this. case. 

In the case where x0 ' = 0 or the airfoil rotates about the leading 
C. 

edge at a constant rate (&l - &o) starting at t' - ta',	 &' =	 - x(cLl_aO) 
t t - to'	 • 

varies linearly with	 but inversely with - M in zone III 

I	 tt - t0t	 M 
to ^	 I if the angle of attack is small at any instant. 

-	 x'	 M±1J
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/	 - ty\	 t' - t I 
In zone I I 

M	 ________ I it also varies linearly with	 0 , but 
xl	 J

C. 
inversely with	 - 1. If M > 1.5,	 also varies approxi-

x'(al - °o) 
ti-to t	 . 

mately linearly with 	 and' is continuous in value with zones I 

and III although the exact expression as shown in table 1 is quite com-
plicated. Of course, as the Mach number is near to 1, this linear 
approximation becomes worse. It seems better to use the exact solution 

C. 
in the table. Similar statements can be math about F . = a 

CM& 
and G&=,

- 

	

If x0 '	 0 some additional contributions have to be considered as 

cpa 
-	 =	 -	 - Af'	 (12)

- o) 

CLtEL 
F& =

	

	 =F&t -&	 (13)
(al-aO) 

G = -. CM&	
= G&' -	 (l1.)

(a1-aJ) 

	

f•S	
t	 LG' a	 ____ where	 a =	 = Fh, and	 a = Gh are given in table 2 and 

X j	 x0 

figures 2 to )4•
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REACTION ON AN AIRFOIL DUE TO MOTION OF AN ARBITRAJy 

TIME -DEPENDENT FUNCT ION 

In reference 1 it 'has been pointed out that, if the Solution 'of a 
linear, ordinary or partial, differential equation with a simple boundary 
condition is known and if the given boundary condition can be obtained 
by superposition 'Of the simple boundary condition, the general solution 
o the same differential equation can then be obtained by superimposing 
the elementary solution corresponding to the simple boundary. In the 
case of the initial-value problem, the statement is also true. With the 
transient problem, the important relation of superposition is the con-
volution integral. This integral relation is associated with many names 
in modern mathematical physics. In the transient problem of heat transfer,, 
it is called Duhamel' s integral in honor of the French mathematician 
Duhamel (reference 7, pp. 4O3- )4O li-). In England it is commonly known as 
Borel's theorem (reference 8, pp . 321-328). In this country it is 
commonlyknown as Carson's integral, particularly in electrical trans-
mission. In Germany it is usually called the Faltung theorem (refer-
ence 9, pp . 159-167), and this was known to Tricomi. The concept of the 
convolution integral plays a very important part in applied mathematics. 

In aerodynamics, Jones applied this integral to the problem of air-
plane dynamics in incompressible flow (reference 10). The results may 
be considered natural in his problem of ordinary differential equations. 
Garrick (reference 11) applied this Integral to find, the relation of the 
Wagner Function to the Theodorsen function in the case of two-dimensional 
incompressible nonstationary flow. 

In reference 1, the present author constructed an integral relation 
entirely from the physical concept because in this problem of supersonic 
transient flow the kernel function is discontinuous in the first deriva-
tive at a certain instant of time. The ordinary concept of the convolu-
tion integral cannot be applied without detailed examination, although 
the result can be rewritten in quite a similar form to the ordinary 
convolution integral. For example, the pressure coefficient Cp(tt,xt), 

the lift coefficient CL(t'), and the moment coefficient CM( t ') for 

any arbitrary a(t) = ____ 	 ____ 
U 

convolution integral of the 
angle of attack as follows:

or g(t) can be obtained by means of the 
U 

kernel function. due to unit-step change in



NACA TN 2333
	

11 

Cp(tt,x)	 f(tt,xt)
	

f(t' - T' ,x' 

CL( t ')	 = F ( t ')	 [ai(+O)-(-O)] +	 • F(t - T') 

CM(t t )	 G(t')	 -	 G(t' -T') 

-	
(15) 

where F, G, and f are kernel functions discontinuous in first - 
derivatives as shown in the following table. 

Condition
M	

t'
M	 M

ot'	 M 
M-1 M+l	 M-1 M+l 

f(t t ,xt) f1(t',x') f2(t',x') f3(tt,xt) 

F(t') F1(tt) F2(tt) F3(t') 

G(t') G1(t') G2(t') G3(t')

The subscript I should'be equal to 1, 2, or 3 according to the 
above range of time in the term of the left-hand side. Owing to the 
discontinuity of these functions, the integral on . the right must be 
broken up into parts according to the range of time for each function. 
For example, in the flapping case, the lift is. 

(a) For	 .M 
-	 M-1

tt 

CL( t
')I = [h+o - h(_OFl(tt).+.Io
	

M-1 
h( T t )Fl(t t - Tt) dT' + 

nt_JL.	 rtt 
I	 M+1 

I h(T')F'2(t'	 T') di-' + J	
&(i-')F3(t'- T') di-' 

Jt'__L 
M-1	 M+1

(16) 
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(b)For	 M	 M 
M+l	 M-1	 I 

t , ------
M+1 

CL( t ')II = [h( +o - ah(-0F2(t')	 ah(T')F2(t' - T') dT' + 

rt' 

Ih(T')F3( t ' - • T') dT'	 (17) 

M+l 

(c) For o	 t'	 M 

CL( t ')III = [a(+O) - %(-o)]F3(t') + I	 ah(T')F3(t' - T') dT'
Jo

(18) 

Tables 2 and 3 give the expressions for f's, F's, and G's in the 
case of flapping and vertical gusts. In the case of pitching, the above 
relation is the same as equation ( 15), except that CL should be replaced 
by ci as given in reference 1 except for C which is replaced by 

in equation ( 15). Another complication in this pitching case is the 

location of the axis of rotation x 0 ', which is the ratio of the axis 
location from the leading edge divided by the chord. The contribution 
due to the nonzero value of x0 ' is denoted by if&, LF&, and 
and should be added respectively to	 F&, aiid G&. As expected, 
f .	 . 

=	 -. = Fh, and	 =	 as shown in figures 2, 3, and x0	 x0 
respectively. 

As an application of the above convolution integrals, the cases of 
the harmonically oscillating airfoil starting abruptly from rest at t = 0 
have been investigated as follows:
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Pitching oscillation about the leading edge (xrf = o)._ In the case 
of pitching oscillation about the leading edge, 

a,(t') =	 for t t <0

(19) 
cL(t') = aeiwt =	 for t' >0 

U) 
where - is the frequency of oscillation, 	 = -, and. t = -. (See 2it	 U	 C 
table it.) Actually, equation ( 19) is a complex quantity, and the real' 
part is

Real a.(t') =	 for t' <0

(so) 
Real a.(tt) =	 cos t'	 for t' > 0	

j 

The expression a.(t') = E for t' <0 is necessary in order that 
a( t t) be finite at t' = 0, because only finite a.(t') is allowed for 
pitching. (For details see reference i.) The imaginary part is 

Iaginary a(t') = 0	 for t t <0	 1 (21), 
Imaginary a.(tt) =	 sin t t	 for t' > 0	 J 

With the complex a(t'), the analysis is more convenient than with 
the real or the imaginary part alone. If the axis of rotation is not 
at the leading edge x0 '	 0, the additional effect can be obtained from 
the flapping case. 

Flapping oscillation. - In the case of flapping oscillation, 

a.(t) = 0	 for t <0	 1
(22) 

- iWt %(t) 
= U ahe	 for t > 0



]Jt	 NACA TN 2333 

The solution is given in table 5 for the three time zones. Some of the 
- integrals are given in appendix B. 

Harmonically oscillating gust.- In the case of a harmonically 
oscillating gust,

a.g(t)=o	 t<o

(23) 
a.g(t) = &geiYt	 - t > 0	 J 

The solution is given in table 6. Some of the integrals are given 
in appendix B. All three cases are essential to the supersonic flutter. 
The present analysis gives the aerodynamic behavior of the airfoil for 
the whole time history, if the harmonic oscillation In flapping and 

M pitching start abruptly at t = 0. If t > M
	

the present work 

should check with reference 6 exactly. Appendix C shows the comparison. 

To show the present analysis graphically;. CL and CM have been 
calculated with M = 1.5 and 3 = ,T/2 for the three oscillations. 
Figures 11 and 12 show the CL and CM of the pitching oscillation. 
Figures 13 and 14 show them for flapping and figures 15 and 16 show them 
for vertical gust. The corresponding values of a.(tt) are also shown 
for comparison of phase shifts. The maximum CL and CM are larger 
in the transient beginning than the steady case which is represented by. 

M dotted curves. The transient effect dies out completely when ' > M - 

It is interesting to note that the extremes (maximum or minimum) of CL 
or CM always lead the corresponding extremes of a. But in the case 

of flapping oscillation and oscillating gust, the extremes of CL or 
always lag behind the corresponding extremes of a.. As the supersonic 
Mach number nears 1, the transient effect becomes more pronounced and 
lasts longer. 

In the time zone iii (o	
M M ), 

the expressions for CL(t') 

and CM( t ') are very simple in all three cases of harmonic oscillation 

f or pitching, flapping, and vertical gust. (Refer to tables 4, 5, and 6.) 
In the time zone ] (_M	 t	 M , the expressions are rather 

M-l/ 
complicated and cannot be represented in a closed form. Three new 
functions or integrals have to be defined. Let
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=	 dO exp(	 cos	 (21i-) 

where m = M2 1,	 > 0, M > 1, 0 01 it, and	 is usu1ly a 

function of time t'. As designated by Garrick and Rubinow, 

may be called the incomplete Bessel function of the zero order. it is 
complex except when , 01 = 0. At 61 = 0, equation (2k. ) reduces to the 

ordinary Bessel function of the zero order 	 which is real. Simi-

larly, the incomplete Bessel function of the first order can be defined 
as

r

IT 

(	

cos e)	 (25)
-	 =-- I d6coseexp 

Ue1 

which is also complex, but reduces to 1(), the ordinary Bessel 

function of the first order when 6 = 0. The new integral is now 
defined as

c( ,M; 01) =	 dO exp(_	
)	

(26) 

When 61 = 0, it reduces to 

	

c(,M) =	 rd0 exp(_-iM ,)
	

(27) it110	 M-cos6 

For convenience, C(B,M) is called the C-function and C(6,M; ei) 

is called the incomplete C-function. The incomplete C-function occurs 
in time zone II for all three cases. In time zone III, it reduces to 
C(,M). This function, -to the author's knowledge, has never been 
explored before and is investigated in appendix D. In time zone III, 
CL( t ') and CM( t ') can be expressed with the known funãtions



k C - c (28) 

16
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except C(13,M) in all the three cases. It is expected that C(3,M) 
is as important to supersonic flutter as the Theodorsen function is to 
flutter in incompressible flow. 

TRANSIENT AERODYNAMIC BEHAVIOR OF THE CONTROL SURFACE 

Since the principle of superposition holds for the two-dimensional 
linear problem if the deflection angle 	 of the control surface is 
measured from the main wing, the control surface itself may beconsidered 
as an independent airfoil at the corresponding deflection angle ö and 
with its chord CS. Under- suèh a consideration, the lift and moment of 
the control surface itself in nonstationary motion can be obtained 
directly from the result of the airfoil in the early section, if the 
proper time scale is used. The time required to travel:-a length Cs 

is t = , and, if t* is used as the time unit, the nondimensional 

time t" = - =	 is connected with the true time and nondimensional 
t* CS 
t	 Ut	 .	 - 

time t' = - = - in the relation 
t	 C	 - 

-	 (t" - t0 )t* = t = t' 

and	 - 

where t"t is the difference in starting time of the control movement 
from that of the main wing. Thus for an individual increment in as 
the step function at time t j ", the lift and moment coefficients of the 
control surface at later times are 

CL( t") =	 j (t i tt)Fj (t tt - ti")	 I	 - 
(j = 1,2,3)	 (29) 

C.(t") =	 1(t1")G.(t" - t1") 	 J 
where F and G are the same as shown in table 1 except that t' is 
replaced by t'.
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The lift coefficient of the control surface alone is 

cL(t) = 0(o)F(t") 
+ I	 - t j" ) dt " + 

nt"- ^L 
M+l (t

j")F2 (t" - t i") at" + 
Jt"--&-

M-1 

rt"

-	
(t1")3(t" - t i") at"	 (30) 

M+l 

Then, the increnient of the total wing lift coefficient due to the control 
surface is

LCL = kcCL() 

kc [O(0)j() 
+ 
ficc (T' )F(tt -
	

d 
Tt] 

where

F(_) = F1( ._) 0 

-
M	 M 

J \kcl 2\kcj kc	 kc	 kc 

,,	 M t 
F(—\=F(--\

- i \k/ 3 \kc/ kc	 kc

(31) 
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Similarly, the increment of total moment coefficient due to the 
control surface can be found. 

As an example of the effect of the control surface on the total 
lift, the following calculation is made. 

(1) M = 1.5 a = 1000 ft/sec	 t1 = 0.02 sec (t1t	 = 
C6ft CS2ft(kcl/3)	 x0 0 x14ft 

(2) Operation schedule of the main wing: 

t'.<O 

Ott tit 

ti ? <tt 

(3) Operation schedule of the control surface: 

5(t') =	 (t) = 0 t' <0 

(t')=2 O^t' 

=
3 3 

= -2& t' t 
3 

5(tt) =	 (t') = 0 .t'

The distribution of &(tt) and (tt) against t t and the geometry 
of the airfoil and control surface are given in figure 17. The contri-
bution of the control surface to total lift, that is, LCL(t'), is shown 

in the lower curve; cL(t') of the main wing is shown in the dotted 
curve which has been given in reference 1. Since the ratio of (tt) 
and &(tt) is given, this curve can be used for any arbitrary &. In 

4ât1 
this curve CLO =	 is used instead of &. 

(M2 - 1)1/2 
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DISCUSSION 

For the airfoil in a flow of constant supersonic speed, the tran-
sierit effect due to pitching, flapping, or vertical gust will damp out 
in a time period	 C	 immediately after the change in angle of attack 

U-a 
ceases. Although the result is obtained from the linearized theory, it 
is expected to be approximately true for the nonlinear theory if the 
angle of attack is reasonably small. After that time period, the lift, 
wave drag, and moment become the same as given by Ackeret in steady two-
dimensiOnal linearized supersonic flow. The transient effect on C, 

CL, and CM becomes more pronounced and lasts longer as the supersonic 

Mach number approaches 1. The same is also true of the transient period 
of the harmonic oscillations in pitching, flapping, or vertical gust 
which start from rest at t = 0.

C. 
In the case of pitching with constant rate, 	 , 

Xt(&	 &cj )	 (& - 
CM 

and	 can be approximated satisfactorily with a straight line 
(al-O) 

in the time zone II, if M > 1 .3. When such an approximation is adopted, 
the case of pitching harmonic oscillation can be evaluated very quickly. 
It is also easy to evaluate any arbitrary motion in pitching. In the 
present analysis, the exact expressions in table 3 were used instead of 
the above approximation because no simple approximation can be obtained 
for either flapping or vertical gust. 

In solving the transient problems with the convolution integral, 
one new function c(3,M) is discovered. For the time from the abrupt 

start ( > M	 , cp, CL, and	 in the cases of harmonic oscil-

	

\	 M-1UJ 
lations have to be expressed in terms of C(r3 ,M ). It seems of comparable 
importance to supersonic flutter as the Theodorsen function is to flutter 
in incompressible flow. In the transient time zone II, where 
M	 ^ M	 , a new function C(c3,M; ei), called the incomplete 

	

M+1U	 M-1U 
C-function, occurs which assumes an importance equal to that ofthe 
incomplete Bessel functions. More complete calculation of C(13,M) seems 
useful for the analysis of supersonic flutter in order to cover wider 
ranges of Mach number and frequency than those given in reference 6. 
Appendix D gives some of the properties of C(3,M), C(3,M; 01), and 
the incomplete Bessel functions.
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C.	 Cli The pressure coefficients	 ,	 in pitching,	 in x(a.1_cL0) 

flapping, and - in vertical gust are functions of Mach number and 

t	 trtt a conical parameter	 '	
only. They are analogous to the behavior x'	 - 

of Busemann's conical flow. As pointed out in reference 1, these results 
can be applied to a yawing ininite wing, if the leading edge is ahead 
of the Mach line. 

The effects of additional degrees of freedom such as the cOntrol 
surface or servoflaps can be evaluated with the result of the pitching 
and flapping of tie main wing as shown under Transient Aerodynamic-
Behavior of the Control Surface. With the present basic approach, a 
good aeronautical engineer with ingenuity should be able to solve all 
two-dimensional problems of flutter and any other arbitrary motion. 
Of course in the case of complicated time-dependent functions of angle 
of attack some numerical or graphical integration of the convolution 
integral might be necessary as shown in references 1 and 10. 

For the case of the harmonic oscillation with constant maximum 
amplitude with abrupt start at t = 0 the absolute magnitudes of the 
extremes in CL and CM for pitching and flapping degrees of freedom 

are larger in the transient region 	 N Q <	 M	
than those 

M+lU	 M-lU 
•	 M	 C in the steady region M 1 - < 	 particularly as the supersonic Mach 

number nears 1. In addition, the maximum and minimum of the oscillating 
angle of attack are not in phase with the maximum and minimum of CL 
or CM. In the case of ' pitching, the load leads the angle of attack; 
in the case of flapping, the angle of attack leads the load. Also, the 
angle of attack leads the load in the case of vertical gust. 

As an interesting example of the harmonic oscillation building up 
to flutter or damping out, the case with complex w should be inves-
tigated. With the convolution integral, it seems within the reach of 
the present analysis. Of course, the imaginary part of w must be 
determined from the interaction of aerodynamic forces and the elastic 
behavior of the wing. 

The Johns Hopkins University 
Baltimore, Md., November 4, 1949
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APPENDIX A 

SYMBOLS 

a	 velocity of sound 

C	 wing chord 

CL	 transient lift coefficient 

CLO	 two-dimensional lift coefficient in steady case 

CM	 transient momeit coefficient about axis of rotation 

C	 pressure coefficient (2( - 

C3	 chord of control surface 

c( 3,M) =	 dO exp I	 1 N	 /	 -ii3M)
 - cos	 =	

dO exp 
tM - cos U ltJo	

M I 
rli( 

(a,M) =i I dO

	

	
/

)
exp 

it!	 M Uo	 '-cosO 

it 
C(3,M; °i) =	 I dO exp (M
	 e) - cos Jo1 

F( )	 kernel function concerning lift coefficient 

f( )	 kernel function concerning pressure coefficient 

G( )	 kernel function concerning moment coefficient 

velocity of vertical gust 

.maxinium velocity of uniform vertical gust

21
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descending velocity 

ii	 maximuxnvelocity of vertical flapping wing 

j0 ( )	 Bessel function of zero order
ri 

j1 ( )	 Bessel function of first order 

k ==
cC 

M	 Mach number 

m	 parameter of Mach number (M2M__i) 

t time 

t' nondimensional time	 (ti) 

t*=CS/U

nondimensional time (control surface) (t/t*) 

U free-stream velocity 

v y-component of velocity 

x axis along chord direction 

x' percent of chord	 (x/C) 

axis of rotation of entire airfoil 

y vertical axis 

a. angle of attack 

constant angle of attack 

a.g /U 

hhh/U
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frequency parameter for oscillating airfoils 

deflection angle of control surface 

source location along y-axis 

0	 running variable 

lower limit of 9 

= x/a(M2 - 

v	 - x/U(t - t0)= x'/(t' -, t0') 

source location along X-axis 

T	 time interval 

T t	 nondiniensional time interval (r/E) 

0	 velocity potential 

frequency parameter (angular velocity per second) 

Subscripts:	 - 

g	 vertical gust 

h	 flapping 

&	 pitching (changing angle of attack) 

control surface
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APPENDIX B 

SUMMARY OF INTEGRALS 

Important Integrals in the Case of Steady Harmonic Oscillation 

The following Integrals are used in evaluating CL and CM for the 

time zone	 '	
M	

(as shown in tables , 5, and 6) 

IljM1e1TI	 + 'sin-1 [(t' - T') -	 e') + 2e' 

12j	 elTt(t - T')	 +	 s1n1 [m(t' - r') - M]}	 e1(t'_	 + i) + 

e1(t')[	
+	 - 

I
 f - 	

- r )2 -	 - T - 1)2 dT' =	 Mi	 e1(t' - 
t'_	 1M2_1 

I r' -
	 eT'(t	 Tt) (t' -	 - M2(t' -	 - 1)2 dT =	 Mi	 e1(t'_	 0() + 

iM2 -1 
M-1 

( - 

15 rI_1 e1' cos' H	
ie_1(M0S9)]
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16j'	 M1 e 133T ' (t - T') cosl Mt - T -	 =	
- 

M	 t	 .1	 133	 M+1 
t , --M-1 

M	 -i33	 1fil + 

-	
e	 Jol.in)j	 133 

15

/ 

M 
17	 M+1 e33T'(t1 - r) 2 cos 1 Mt. - T - 1 di- =	 - 

Jt	 M	 t -T	 i33 L\M+hi 
M-1 

id43	
TO(rn) + (M2 - i)3/2	 -	 (M2 - 1)3/2 e
	 1()] + 

18 I	 et33T'(tI - T') 3 cos 1 M	 - T 1 - 1 dT' = 
tJ t ,• ._!L	 t' - T'	 113	 L\M i- i/	 - 

M-1 

(2/2	
+ 1)J()	 (2M1 +	 +	 '7 

M 

191' - 	 e1'(t' - T )2 (t' - T )2 -	 (t - Tt - 1)2 di- =	 M3	 e133(t' - 

tT_T	 S	 (M2 - 

1 1 (M2 +1) + (M2 -	 + 6(-)2	 -	 (2M + 113
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Important Integrals in the Case of Transient 

Harmonic Oscillation 

The folloving integrals are used in calculating CL and CM for 

the time zone	 M <, < M	
(as shown In tables 4-, 7, and 6). M+l	 M-1 

Ii 

f	
eP'	 +	 sin 1 [m(t' - T') - M]} dT' = -+	 cos1 (mt - M) + 

	

2 e1(t' - ) r	 etBm ãØ i	
Jco1 (mt'-M) 

Ct? M+1
1	

cos1 (mt' - M) -2 
I	 eT'(t - T')	 +	 sin	 (t? - T') - M] dT' = - + ()2J

	 I + 0 

2e(t'	

1 (nt M)	
+	

+ m 
m j	 m 

13 ' Lt? -	 eT' (t' - T' )2 - M2(t' -	 - 1)2 dT' = 1M

	
4i - (mt' - M)2 

	

±(t'_) re	 oDsØ 
Me	 m	

cos 0 e 
\M2 - 1 1 J06-1 (mt'-M)
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e'(t' - T')(t' - T') 2 - M2(t' -T' - 1)2	 M	 Er- - ( j)2]1 - (mt' - M) 2 -

M	 e(t'_	

L:s 1 nt' M) '

	 M cos 0 2 cos	 cosØ 

	

____	 +	
)e dO 

	

M2_1	 i	 -	 m 

(e 1 ') cos	 M	 - T t - 1 dT' =	 et -	 -	 eMos 0 e - 

5. -Jo	
t' -	 1	 i	

&Icos_l M(t::1) 

M(t' - 1) 
t'

I 

16' I	 M+1 etT'(t - T') cos1 Mt - 
T' -1 dT' = !_	 e1t _) -	 cos1 M(t' - 1) - 
- T'	 ]. M + 1	 i3	 t' 

M	 e1(t' _) r	
cosø	

1 

	

____	 I	 e	 m dØ+—I' 

	

- 1	 llcos_1(nitt_M) 

17'	
MM
+l eT'(t? - T') 2 cos 1 M ' - T - 1 dT' =	 (2ei(tt_	 ) -	 cos1 M(t' - I) - 

J

.	 t -	 j\M +1) 

0

	

M2	 e(t'_) r5 

3/2	 i	 J	
(M + cos Ø)e	 m dØ +	 16' 

(M2 - i)	 cos1 (mt'-M)
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18' r	
M+1 eT'(t - r') 3 cos' Mt__- 

T' - 1	 ,	 n / M	 113(t'_	 )	 M(t' -1) 
- - cos 

-	 tt -T'	 113	 t'	 - 
Jo

M3	 e113(t' _)	
It

cosø m 

	

113	
0)e113ãø + + - cos 

(M2 - )5/2	 113	
(M2 + 1 + 2M cos 0 

(mt' -M) 

--	 1 - (mt' - M) 2 +	 17' 
113 (M2 -. 1)3/2 

19' Ml ei13T'(t1 - T t ) 2 (t - T1)2_(t - Tt _1) 2 a7 , = -	 M3	 1 - (mt' - 

-	 Jo	
(M2 - )5/?	 113 

IC 

(M + t') + 6(\21 -
	 M3	

e113(t_m) ios' (mt'-M)	 +	

+	 0 [2 M + 1+—+ 
1(3 113 113	 \'1 '	 (M2 - )/2	 113 

6(]I
cosØ 

-	 dØ
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APPENDIX C 

CHECK WITH NACA TN 1158 - 

To check the present results through convolution integrals with 
Garrick and Rubinow's work, a case of the steady harmonic oscillation 
of the angle of attack about the leading ed€e is investigated. With 
their notation, CL due to the harmonic oscillation of the angle of 

attack alone (a = a0e t) may be verified from their equation (26) as 

2 iwt 
= k e	 cx.0 (L3 + iL) 

At	 = 0,

L3 = L3 t	 L3 = L3 t - 2x0L1 

	

-	 L4 = 4'	 4 = 4' - 2x0L2 

At M = 2, for	 = 1.667, from their table II, 

L3 ' = 1.50219	 4' = 0.69968 

Hence,

= a0(2.16315 + i.0075#i)e1°

(Cl)
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NGTATION 

NACA TN 1158 Present paper 

t t'=LL 
C 

CD 

b C=2b 

v U=aN=v 

V

=2k 

exp (it') = exp (iwt)

	

In the present case	 a exp (it'). From table l. for t'	 M
M-l' 

_____	 M2 )]

	

[2	 + 2 (2 - i) i 1 CL(t') = i exp [(tt M - 1
	 - [M2 -	 - 1	 + 

	

( r	 2	 1(1 
+	

+	 exp (it')	 +	 + 
_____	 1 1 

m	 •	 iii 2 
LTMITM -1] 

2 lIj c( 
M3(i)2jL 

whence, at M = 2 and. 	 = 1.2, CL = exp (itt )(2.l6315 + 1.007531). 
The expressions are identical, within computational limits. 
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APPENDIX D 

INVESTIGATION OF TEE FEW IMPORTANT INTEGRALS RELATED TO 

SUPERSONIC FLUTTER AND TRANSIENT PROBLEMS 

C-Function

The problem is investigation of the C-function or the integral 

______	 ( >0) 
c(,M) =	 dO e (M -iM
	

(M > 1) It , I - cos 
Jo 

If the above integral is differentiated with respect to J3 and M, 

(Dl) - 13 r deEexp (-i
	 cos 6 

-	
M - cos	 - cos 0)2 

C -i	 _________ _________ 
=	

dO	
(_- i3M )1	 M	 (D2) 

- cos 0_JM - cos e 

= -. 1' dO[exP (
	

M	
(D3) 

J0	 L	
M - cos eij (M - cos e)2 

With the above three relations, it is found that C (13 ,M ) = CR + iC1 

satisfies the differential equation

(D14)
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If the real and. imaginary parts of C(3,M) are taken separately, 

CR	 CIMCR 
2	 f34

(D5) 

CICRMCI 
2	 3M 

which are two simultaneous differential equations. The required six 
boundary conditions can be obtained from C(,M) as follows. 

For	 =O,

CR(O,M) = 1	 C1(o,M) = 0 

-M 

For M--*oo,

CRCOS	 C1=-sin 

flit 
ii	 1 The integral -
	

d exp	 - M \ can be written as 
(M - cos 

(JO

(a,M) =	 1'	 exp ( ltd	 M-cose 

where a = 3M. Under the new definition, the function C(a,M) can be 
shown to satisfy the differential equation

(D8)

(D6) 

(D7)
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or

a 
CR - 
2	 M	 $ 

(D9)

	

a	 = 

It is easy to show that the real and imaginary parts of C(a,M) 
must satisfy the equations 

	

2 / 2'-\	 2-
a—k	 1=	 O^a^oo 

	

a2 \ 2kr2 /	 M2 

and
	

(Dio)	 - 

2 / 2\ 

	

___	
I	 l^M^o 

	

a2\ a2/	 M2 

The corresponding boundary conditions are: 

- - r	 'I - 

	

rur U%J	 Ni, 

CR =l	 -I=o

-1 
a 

	

2CR 	 M	 ___ 

____ - (M2 - i)31"2	 a2 - 

For M—oo,

CR=l

—=0 

CR —=0	 —.=o

(Dli) 

(D12)
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The preceding function is so important to the supersonic flutter 
problem that thorough investigation of the function and the other 
solutions of the corresponding differential equation seems advisable. 
To show the general behavior of this new function, a case with M = 1.3 
and 0 J3 3 has been calculated numerically. See table 7 and 
figure 18.

Incomplete C-function
LI 

The incomplete C-function is 

flTC 

c(3,M; 01) -

tJ01

exp
 (M

dO 
- cos (D13) 

It can be shown that this incomplete C-function also satisfies the 
differential equations (D5) except the boundary conditions are obtained 
from equation (D13). 

For J3 = 0,

	

C1=O	 -

(D114.) 

= 0	 = -M	 - a tan- AI M + 1 tan 

	

3	 4M2-1L 
IC	 \IM-1 

For M—)co, 

CR (	
ei\ =	 - -J cos	 C1 = _(i -
	

sin	 (Dl7) 

To show the nature of the incomplete C-function, a case with M = 1.7, 
=	 and. 0 Oi it has been calculated by means-of numerical inte-

gration. See table 8 and figure 19. The above data are used in the tran-
sient behavior as shown in figures 11 to 16.
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Incomplete Bessel Functions 

The incomplete Bessel functions are 

nit 

J0 (z,Oi) =	 I exp (+iz cos 6) d6	 (D16) 

J e' 

J1(z,01) =

	

cos 6 exp (+iz cos 6) de 	 (D17) 

These two functions beconie J 0(z) and J1(z), respectively, when 

= 0. They have been called the incomplete Bessel functions by 

Garrick and Rubinow. The case M = 1 .5, 13 =	 and 0 61 < it has 

been calculated by numerical methods. It is interesting that each has 
a real and an imaginary part. At 61 = 0, both become real and Ordinary 
Bessel functions. Both play as important rOles as the incomplete 
C-function in harmonic oscillations at the transient time zone II. See 
table 8 and figures 20 and 21.
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TABLE 1 
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___________ 
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Ma	 [	 02	 - 0 
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TABLE

CEAJOGING ANILE OP ATTACK 

rm .Ae12t	 t >0 
I	 10 the C000	 0. See P1gm. 11 emS 12. 
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TABLE 7 

VALUES OF C-FUNCTION c(,M) FOR M = 1.3 

Real	 . Imaginary 

0 1.0. 0 

.3 .84153 -. 41796i 

.5 .62101 -.567971 

.8	 / .32000 -.569621 

1.0 .21844 -.498441 

1.2 .19147 -. 

1.5 .17883 -.477121 

1.7 .12058 -.534231 

:2.0 .	 -.4808i .	 -.562791 

2.2 .i6005 -.511541 

2.4 -.22697 -.42491i 

2.5 -.23982 -.38123i 

2.93 .	 -.22265 -.293551

w 
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TABLE 8 

VALUES OF INCOMPLETE C-FUNCTION AND INCOMPLETE BESSEL FUNCTIONS 

[3 =/2, M = 1.5]

c(,M; °i) 

O -0.07339 .O.14.71)481 0.29057 0 0.581148 o 

.2 -.04952 -.534931 .30946 .06078± .52110 .018801 

4 -.02526 -.79317i .32378 .122781 .46198 .O3249i 

.6 .02500 -.630791 '.32891 .i86i4± .4o647 .037071 

.8 .08770 -.634931 .32078 .249101 .37837 .030881 

1.0 .14434 -.607201 .29582 .307701 .32204 .017731 

1.2 .1811.35 -.75819± .2514.17 .357361 .30020 -.00289± 

.20575 -.4981481 .19871 .385801 .29172 -.015721 

1.6 .21084 -.435171 .13598 .3942Oi .29074 -.021901 

1.8 .20310 -.372061 .074511. .379001 .288i1 -.O14O9i 

2.0 .18769 -.310871 .02257 .3112811 .27614.3 .0021181 

2.2 .161211- -.252121 -.01429 .291251 .25027 .020821 

2.4 .13173 -.195731 - . 0 3 407 .230961 .21010 .033771 

2.6 .09867 -.lIi-1331 -.03808 .167561 .15938 .036831 

2.8 .06326 -.o8844± -.02980 .10450± .102148. .029291 

3.0 .02644 -.036501 -.01367 .042951 .04279 .O1379i 

3.1 .00778 -.010711 -.00-io8 .012591 .01259 .004111 

0 0 0 0. 0 0

F' 
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(a)	 - ah().
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0	 - 

NACA TN 2333	 15 

(b)	 = ag(t). 

Figure 1.- Angle of attack as a function of time t for two cases: (a) Flapping 
wing and (b) wing meeting a vertical gust.
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0	 2	 4	 6	 8 

Figure 17.- Distribution of a (t') and (t') against tt and geometry of 
airfoil and control surface. Contribution of control surface to total lift 
shown by curve at bottom of figure. CL(t') shown by dotted curve 
(from reference 1). t 1 ' = 5.
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