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SUMMARY

The present treatment investigates the transient behavior of an
airfoil in supersonic flow due to pitching, flapping, and vertical gusts
by means of the Fourier integral method. It is an extension of the
earlier work "The Transient Reaction of an Airfoil Due to Change in
Angle of Attack at Supersonic Speed" by Chieh-Chien Chang, Journal of
the Aeronautical Sciences, volume 15, number 11, November 1948,
pages 635-655. If a control surface is attached to the airfoil and
- deflected according to a prescribed time schedule, the effect can be
-evaluated from the result found for the main wing. An example is shown.

By using a convolution integral as shown in the above-mentioned
article, the aerodynamic effect of any arbitrary motion of the airfoil
can be determined, if the aerodynamic response of the airfoil to a step-
function disturbance is known. As useful examples, the harmonically -
oscillating airfoil with different modes or degrees of freedom is
analyzed for the complete time history, for the case in which the motion
- starts abruptly from rest. The results check exactly with those of '
Garrick and Rubinow in NACA TN 1158, after the transient effect of the
M \C

M- U
from the beginning of harmonic oscillation where M is the Mach number,
U 1is the free-stream velocity, and C is the airfoil chord in con-

‘'sistent units.

abrupt beginning has died out, that is, for times later than

In carrying out the investigation, a new integral or function
C(B,M) has been introduced. This new function is sufficiently funda-
mental to the supersonic flutter problem that the behavior of all the
different degrees of freedom can be expressed in terms of C(B,M) and
the usual transcendental function (here B 1is related to the frequency
of oscillation). It is believed that this new function plays an equiva-
lent part in supersonic flutter to the Theodorsen function in the flutter
problems of incompressible flow, Preliminary investigation of both the
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complete C-function C(B,M) and the incomplete’ C-function is made.

The incomplete C-function together with the incomplete Bessel function,
so designated by Garrick and Rubinow, are important to the transient

M 1)9 and ( M 9; An extensive calcu-
+ U, M-1/U0

lation of this new function will be very useful in supersonic flutter
analysis. '

region for times between (M

INTRODUCTION

Recently, the transient problem of the nonstationary motion of an
airfoil in supersonic flow has been treated by a number of investigators.
With the Fourier integral method the present author first presented a
paper on the transient reaction of an airfoil due to change in angle
of attack at supersonic speed (reference 1) in January 1948. As a
byproduct of the investigation, the transient effect due to a vertically
descending airfoil is also shown in reference 1. Concurrently, Biot
(reference 2) investigated Schwarz's problem (reference 3) of vertical
gust with a different approach. Later Heaslet and Lomax (reference k)
considered the cases of the vertically descending airfoil and an air-
foil encountering a vertical gust with the frame of reference at rest
with the undisturbed fluid. Miles treated the above gust and flapping
case with Green's function (reference 5). :

The present paper is an extension of the author's earlier work
(reference 1) to all possible modes of nonstationary motion, and it
shows that the results can be applied to the transient effect of con-
trol surfaces. With the concept of the convolution integrals as
developed in reference 1, the transient results can be applied to many
types of nonstationary motion, particularly the harmonic oscillation.

There are four types of problems to be treated in this paper.

(a).Investigation of the case of a suddenly descending airfoil
‘with a constant rate - so-called flapping degree of freedom of the wing

() Investigation of the case of the airfoil encountering a vertical
gust of constant strength

(c) Application of the convolution integral to evaluate the wing
loading due to different modes of nonstationary motion, such as harmonic
oscillations, and so forth '

(d) Extension of the present results to other degrees of freedom,
such as aileron deflection, and so forth
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The investigation of drag-characteristic behavior of the wing in
steady flow is omitted entirely from this paper, because it is not a
difficult matter for a designer to calculate the drag characteristics
with the information contained in this paper and available solutions
of the steady case. : .

The present investigation was conducted at the Johns Hopkins
University under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics. The author would like
to express his appreciation to Misses Vivian O'Brien and Patr1c1a
Clarken for their assistance in carrying out the project.

" TRANSIENT REACTION OF AN AIRFOIL DUE-TO UNIT-STEP CHANGE

° OF FLAPPING AND VERTICAL GUST

IS

-As shown in references 1 and 6, the linearized partial differential
equation of the irrotational flow of a compressible nonviscous fluid is

I\2 i
Prx + ¢yy = 35(51 * v é%) g (1)

where @ is the disturbance potential of the flow, the x-axis is
positive in the opposite direction of the flight, and the y-axis is
positive in the upward direction. The origin is attached to the air-
foil leading edge. The details of the notations are given in
appendix A. In the supersonic case, the disturbance potential of such
an airfoil is equlvalent to that due to a source sheet at the y = 0
plane with time-dependent strength and is

¢(x o) = X €1 2 v(E,+0,t - T)

dr de (2)
i (M2 )1/2 1 V T-m)(2 - T)

where v(t,+0,t - ) 1is the vertical velocity component on the wing
surface at the point (E +0) at an earlier time t - 7. The term

v(§,+0,t - )
(M2 __1)1/2

addition,

is just'the source-sheet stréngth per unit area. In
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_M(x - &) r . ]
a2 -1) e
S (3)
T - M(x - &) r |
a(M2 - l) a J

where
r = . T \l(x - 51)2 (@ Dy -2
_-§1’=Ax-y\]ME“-l I )
}(51'>0)' - - J

If the point of interest is on the lower side of the wing surface
(x,-0,t) .equation (2) reduces to

-+ V(E,-O t - T)
¢(X)'O)t) T x ( )l/zf f \,(T - Tl 'r2 - T) dr dg (5)

With the above equation the'transient case due to sudden change of
angle of attack of the airfoil about any arbitrary point has been treated |
in reference 1. The important results of that paper are given in table 1
for use in the present development. Two additional interesting cases’
will be treated as follows. '

[

Vertical Flapping

At time ty, the airfoil suddenly descends with constant, velocity ﬁ

The unit-step downwash at any point on the wing can be expressed in terms
of Dirichlet's 1ntegral as .

v(x,-0,t) = ﬁ(fc) = h?l{j; L’%in a) (:) -,to) o + % (6)
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where w 1s the angular velocity per second or a frequency parameter.

Figure 1(a) shows

" tion (5), there results,.after manipulation,

- X T2 4] . ‘
¢(x,-0,t)=- h f dﬁf d%f smwit—*r-to)dmi’
’ T N G EE)
X To ‘
f dgf o
o Ty \J(-r - Tl)(TZ - 'r)

_ X 13 '
- . h dg’fd-‘—”sinwt-t - MA)Jn(ah) -
n(Mz-l)l/zA[o 0 w ( 0 )O

fix " (1)
o(m2 - 1)1/2

%Q = a;h(t). Substituting equation (6) into equa-

R

or after integration the potential is expressed in three zones according

to the value of. — - v as follows:
U(t - to)
P.
- 2_1-7— Sln—l (Q" - M) -
(v - 1)1/2 v

_ Mv M
Pn(x,-0,t) = -% , S (8)
-7 o< <M-1
(M2 - l)172 VT oM
Tt M+ 1
[W ( m §v)
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where

N X _ x! < = X
Ut - t) (t' - to') C
2
m = M - l t' = :t—U
M C
taU
k = X 'to' = _8

and Jo(wx) is the Bessel function of the first kind of the zero order.

- - fn Cpn CLh
Table 2 gives the detailed characteristics of =y == fh, —_— = Fh’

o Tp an
CMh . . . ,
and —— = Gh as functions of time. Figures 2 to 4 show these charac-
%n

teristics. The detailed methods of calculation are quite similar to
those given in reference 1, and are omitted in this paper.

In figures 2 to_h, a few important features may be explained. Within

t' -ty c
the zone III [0S 0 < M y fp = _ph is inversely proportional
x! M+ 1 Eh e

to Mach number and independent o6f time and the location of x', But in

’ LA A
time zone I (M M 1 < - 0 ), fh = SEE is inversely proportional to
- b'd

{ﬁz - 1 which corresponds to the steady case of Ackeret's result, In

. M tl - tol M Cph .
zone II i S = < varies not with x' or t' - tg'

+17°  x M-1) Gy
R l_tov
alone, but with the conical coordinate ———- It is a complicated
£ - gt .
function of M and ———9, Thus the present solution is similar to
be :
Cth
Busemann's conical flow., So is the behavior of Fy = = against t' - to' -

Oh
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-G
As far as Gy = 2B is concerned, it varies both with 1/M and t' - t,
% :
h :
in zone I. In general, fh, Fn, and Gy increase with decreasing Mach
: t! - to' : .
number, if - or t' - t5' 1is kept constant.
X ' _

Vertical Gust

At time +t, if the airfoil begins to encounter a uniform vertical
gust of velocity g, such unit-step downwash g at any p01nt on the
airfoil can also be expressed in terms of Dirichlet's integral

©0 . X
sin w(t - to -'ﬁ) 1
dw + 5 (9)

. e
V(X,-S),t) = G(t) =8 T m

Figure 1(b) shows g[(Jt) = a.g(t) as a function of both t and x.

Substituting equation (9) into equation (5), the disturbance
potential ¢ due to vertical gust can be written as

: .
sin w(t --r-to__)
¢ (x,-O,t) =- f f f U dw -
& ‘ ﬂ(M 1)1/2 0 m\l'r-'rl)(g-'r)

ol =
o JN1 \J(T-’rl)('re —,'r)

X oc

dE“)'sin u)(t -t - % - MX)JO(‘D?‘F)_ -

(10)

-
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or, after integration, ¢g has to be also expressed in three zones,

~ ‘ ' .
1 . =1 [m - M-1 M+ 1
Z;é_tf15i7§[§ + sin (V - Mi] ("M § v S " )
eoy o B <, cM-1 :
Bo(x,-0,t) = - = <(M2 RYE (0- VS ) (11)
0 | ' (M;lé-v)
- |

It is interesting to note that @ and ¢g are similar in form. The
Fourier integral method of Bessel functions used will take care of the
three zones automatically without considering each zone .individually.
This is one of the main advantages of the present method.

C
Table 3 shows the detailed characteristics' of 95, P& _ ¢ |
, ‘ 4 a g

. g g

CLg Cmg .
- = Fg, and —— = Gg as functions of time. Figures 5 to 7 show
a T, - :

g g :

fg, Fg, and Gg as functions of time. The detailed calculations are
also omitted.

Pitching
" For convenience, the essential results.of reference 1 fdr the
pitching case are given in table 1. Figures 8 to 10 show some charac-
teristics of this. case. :

In the case where Xo' = 0 or the airfoil rotates about the leading

C .
edge at a constant rate (dl - do) starting at t' - to', fg' = —7—7—22-}—
: ‘ X (“1 - ao)
t' - to!

varies linearly with' but inversely with M in zone III .

x!'

M
x! "M+ 1

o
IN
t+
I
o
o-.
N

> if the angle of attack is small at any instant.
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M t' -ty th -ty
In zone I < it also varies linearly with , but
M-1 x' . x'
C.

inversely with M2 - 1. If M> 1.5, — P a1s0 varies approxi-

R '0 »

x'(& - &)

LA T

mately linearly with ————— and'is continuous in value with zones I
x' '

and IIT élthough the exact expression as shown in table 1 is quite com-
plicated. Of course, as the Mach number is near to 1, this linear
-approximation becomes worse. It seems better to use the exact solution

' . . Crr .
- in the table. Similar statements can be made about Fd = —;——E%;—
, (“1 - 0‘0)
C »
and G&‘ = —-.?——lilg';.-—-.
(0‘1 - 0‘0)

If x4 £ 0 some additional contributions have to be considered as

Co.
fd - PCL = fd' - Af.q,' (12)
[ -
X (al - “CO
C -
= La — ] o !
Fa-—(al-_&o)—F - OFg, (13)
Cma,
GC'L = m = ,G&' - AGEL" . (l)-l-)
Afet AF: ! NG ! :
vhere —% = o x = Fy, and = Gy, are given in table 2 and
Xo! d xol xoi .

’

figures 2 to L,
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REACTION ON AN AIRFOIL DUE TO MOTION OF AN ARBITRARY

TIME-DEPENDENT FUNCTION

In reference 1 it has been pointed out that, if the solution of a
linear, ordinary or partial, differential equation with a simple boundary
condition is known and if the given boundary condition can be obtained
by superposition of the simple boundary condition, the general solution
of the same differential equation can then be obtained by superimposing
- the elementary solution corresponding to the simple boundary. In the
case of the initial-value problem, the statement is also true. With the
transient problem, the important relation of superposition is the con-
volution integral. This integral relation is associated with many names
in modern mathematical Physics. 1In the transient problem of heat transfer,
it is called Duhamel's integral in honor of the French mathematician
Duhamel (reference 7, pp. 403-404). 1In England it is commonly known as
Borel's theorem (reference 8, pp. 321-328). In this country it is
commonly -known as Carson's integral, particularly in electrical trans-
mission. In Germany it is usually called the Faltung theorem (refer-
ence 9, pp. 159-167), and this was known to Tricomi. The concept of the
convolution integral plays a very important part in applied mathematics,

]

In aerodynamics, Jones applied this integral to the problem of air-
plane dynamics in incompressible flow (reference 10). The results may
be considered natural in his problem of ordinary differential equations.
Garrick (reference 11) .applied this integral to find the relation of the
Wagner Function to the Theodorsen function in the case of two-dimensional
incompressible nonstationary flow.

In reference 1, the present author constructed an integral relation
entirely from the physical concept because in this problem of supersonic
transient flow the kernel function is discontinuous in the first deriva-
tive at a certain instant of time. The ordinary concept of the convolu-
tion integral cannot be applied without detailed examination, although
the result can be rewritten in quite a similar form to the ordinary
convolution integral. For example, the pressure coefficient Cp(t',x'),

the 1ift coefficient C(t'), and the moment coefficient Cy(t') for
h(t) &(t)
—— or

U

convolution integral of the kernel function due to unit-step change in
angle of attack as follows:

can be obtained by means of the

any arbitrary a(t) =
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r‘Cp(t':x'; ’\f]‘_(t"':;’(')‘1 ' ' ‘ rf(t' -T',x")
Ieg(e) b= drge) La(+0) ~ag(-0)] + ft ar'alr) JF(t - 1)
. . o
Cm(t") G3(t") J . | | G(t' - 7')
L » L _ L
: N | (15)

where F, G, and f are kernel functions discontinuous in first
derivatives as shown in the following table.

Condition '

Function™~ | M ? 1% | & T TEV Sy ? 1|05 =g T 1
f(t',x'j | Talet,x') £,(t,x") fa(t',x')
F(t') Fy(t') Fo(t') F3(t')
a(t") G(t') Go(t') ) G3(t')

The subscript 1 should be equal to 1, 2, or 3 according to the
above range of time in the term of the left-hand side. Owing to the
discontinuity of these functions, the integral .on the right must be
broken up into parts according to the range of time for each function.
- For example, in the flapping case, the 1ift is:.

(a) For =M _ <+t

M-1
M
| \ [MwT |
c(t)1 = [on(+0) - ap(-0)| Py(81) + o (TF (8 = T1) art
0 ) .
. M tl
Y . .
. o (T )Fo(t' - 7') ar' + ah(T')F3(t'— T') art
M v. M -
Ll vy , R vre)

(16)
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M- 1 ‘
\_ M
| Yowr -
Cp(t')11 = [on(+0) - ap(-0)] Fp(tr) + ap(T )Fp(t' - 1) art +
0
t' ’ ) . .
dh(T')F3(t‘ -T') dr' | (17)
- M
M+1
(c) For 0 S t'.§,M f 1
. . t'. .
cr(t 17 = E,,h(+o) - @h(-o)] F3(t') + ap(r')F3(t' - 7') ar’

(18)

Tables 2 and 3 give the expressions for f's, F's, and G's 1in the

case of flapping and vertical gusts. In the case of pitching, the above
relation is the same as equation (15), except that a should be replaced
by & as given in reference 1 except for Cp which is replaced by

C

—? in equation (15). Another complication iIn this pitching case is the
X . .
location of the axis of rotation Xo', which is the ratio of the axis

location from the leading edge divided by the chord. The contribution
due to the nonzero value of Xo' 1is denoted by Afg, AFg, and AGy,

and should be added respectively to fo» Fy, and Gy. As expected,
Ay AFg, AGe, . o i
;57 = Ty, — =Fy, and: ;67 = Gp as shown in figures 2, 3, and 4,
respectively.

As an application of the above convolution integrals, the cases of
the harmonically oscillating airfoil starting abruptly from rest at t = 0O
have been investigated as follows:
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Pitching oscillation about the leading edge (xo' = 0).- In the case

of pitching oscillation about the leading edge,

a(t') =& for t' <0
(19)
a(t') = gelot - GeiBt! for t' >0
where gi is the frequency of oscillation, B = %?v'and t' = %g. (See
7

table 4.) Actually, equation (19) is a complex quantity, and the real
part is . 4

I
al

Real a(t') for t' <O
(20)

cos Bt! for t' >0

1]
el

Real af(t')

The expression a(t') =& for t' <O is necessary in order that
&(t') be finite at t' = O, because only finite &(t') is allowed for
pitching. (For details see reference 1. ) The imaginary part is

| .
e

Imaginary o(t') = for t' <O
(21)

Imaginary ot') = & sin Bt' for t' >0

With the complex a(t'), the analysis is more convenient than with
the real or the imaginary part alone. If the axis of rotation is not
at the leading. edge xof # 0, the additional effect can be obtained from

the flapping case.

Flapping oscillation.- In the case of flapping oscillation,

£
ot
<
[

o

for t <O
(22)
for t >0

.
t
1}
-l
1}
)
=
[¢]
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The solution is given in table 5 for the three time zones. Some of the
" integrals are given in appendix B.

Harmonically oséillating gust.- In the case of a harmonically .
oscillating gust,

ag(t) =0 | t <0
| - (23)

1
o

[ N

&
ct
\Y
(@]

- ag(t) = g

The 'solution is given in table 6. Some of the integrals are given
‘in appendix B. All three cases are essential to the supersonic flutter,
The present analysis gives the aerodynamic behavior of the airfoil for
"the whole time history, if the harmonic oscillation in flapping and

pitching start abruptly at t = 0. If t' > v M

T’ the presént work

should check with reference 6 exactly. Appendix C shows the comparison.

To show the present analysis graphically;, C;, and Cyq have been

calculated with M =1.5 and B = n/2 for the three oscillations.
Figures 11 and 12 show the CL and Cy of the pitching oscillation.

Figures 13 and 14 show them for flapping and figures 15 and 16 show them
for vertical gust. The corresponding values of a(t') are also shown
for comparison of phase shifts. The maximum C;, and Cq are larger

in the transient beginning than the steady case which is represented by. .
M
M-1
It is 1nteresting to note that the extremes (maximum or minlmum) of Cg,
or Cy always lead the correspondlng extremes of a. But in the case
of flapping oscillation and oscillating gust, the extremes of CL or QM

always lag behind the corresponding extremes of a. As the supersonic
Mach number nears 1, the transient effect becomes more pronounced and
lasts longer.

~

dotted curves. The transient effect dies out completely when t' >

M
M +
and Cy(t') are very simple in all three cases of harmonic oscillation

In the time zone III (9 St § l)’ the expressions for Cp(t')

for pitching, flapping, and vertical gust. (Refer to tables L, 5, and 6.)
In the time zone IT ( M <4 &

M+17 TM-1
complicated and cannot be represented in a closed form. Three new
functions or integrals have to be defined. Let

), the expressions are rather
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i
1 i :
Jo(g,el) == ae exp(;? cos 9) (2k)
6, _
o .
where m = M—D;—i, B >0, M>1, O 5‘61 =<rr, and - 6] 1is usually a

function of time +t'. As designated by Garrick and Rubinow, Jo(g,el)

may be called the incomplete Bessel function of the zero order. ‘It is
complex except when 6; = 0. At 6; = 0, equation (24) reduces to the

ordinary Bessel function of the zero order Jo(g) which is real. Simi-

larly, the incomplete Bessel function of the first order can be defined
as’

7C

. i -
'Jl(fg"el) = --% dé cos 6 exp(i-llé cos 9) - (25)
: 01 ‘ :

.

, m
function of the first order when 67 = O. The new integral is now
defined as ‘ '

which is also complex, but reduces to Jl(B), the ordinary Bessel:

s

' | [ -ipM
c(B,M; 67) = & ae exp(—B—) (26)
T “\M - cos 6/ -
6;
When 67 = 0, 1t reduces to
ﬂ S -
. -igM .
c(p,M) = % "dé exp -—L—) , (27)
n o M - cos @ ‘

For convenience, C(B,M) is called the C-function and C(B,M; 67)

is called the incomplete C-function. The incomplete C-function occurs
in time zone II for all three cases. In time zone III, it reduces to
Cc(B,M). This function, -to the author's knowledge, has never been
explored before and is investigated in appendix D. In time zone III,
Cr(t') and Cy(t') can be expressed with the known funétions
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except C(B,M) 1in all the three cases. It is expected'that c(B,M)
is as important to supersonic flutter as the Theodorsen function is to
‘flutter in incompressible flow.

i

TRANS IENT AERODYNAMIC BEHAVIOR OF THE CONTROL SURFACE

Since the principle of superposition holds for the two-dimensional
linear problem if the deflection angle & of the control surface is
measured from the main wing, the control surface itself may be.considered
as an independent airfoil at the corresponding deflection angle & and
with its chord Cg. Under-such a consideration, the 1lift and moment of

the control surface itself in nonstationary motion can be obtained
directly from the result of the airfoil in the early section, if the .
proper time scale is used. The time required to travel:a length Cg

C -
is t* = i%’ and, if +t* is used as the time unit, the nondimensional

Ay

time t" = f& = o is connected with the true time and nondimensional
S .
tiﬁe t! E = HE in the relation
: t C i
o (" - ")t =t = t'E
and
Cc
%=§=% (28)

where to"t* is the difference in starting time of the control movement

from that of the main wing. Thus for an individual increment in & as’
the step function at time t;", the 1lift and moment coefficients of the

control surface at later times are- , '

CL(t") - Abl(tl")FJ( "o ti") ‘
, . . (3 = 1,2,3) (29)
CMxi(t") — Asi(ti")Gj(t" - tin
where F and G; are the same as shown in table 1 except that +t' is

replaced by t".
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The 1ift coefficient of the control surface alone is

£ - M-
c,(t") = a5 (0)F,(t") + M-l B(t."\F (t" -t ")'dt "
L 0 J (1) 1 i i
0 _
M
141
i M+l ‘; " : " " "
B(61")Fo(t" - t4") aty" +
" - M
M-1
.t"
M S(ti")F3(t" - ti") d‘ti" : (30)
£ - ’ ‘ ‘
: M+1

Then, the increment of the total wing 1ift coefficient due to the control
surface is

t!

-tl
. . t' E-C-" tl - T! T
= K. [ABA(O)F:—]) + o(T')F. - d —
. o(>J(C) ( >J( kc> -
where .
ﬂ
t! t! t!
Flz)=F (= 0S—<St"
J(kc) .1(kc) ke
M M
tl' - t" -
' t' M - l 't' g ] M + l
c ke c ke : c
M
- " -
' ' M+T1_t
Fi[—) = Faf = <X
J(k ) 3(kc) k, ko
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Similarly, the increment of total moment coefficient due to the
control surface can be found.

As an example of the effect of the control surface on the total
lift, the following calculation is made.

(1) M = 1.5 a = 1000 ft/sec t, = 0.02 sec (tl" = 5) \
| C=6ft Cg=2ft(k =1/3) go=o xp = b £
(2) Operation schedule of the main wing:
a=a=0 A t'_<-0
@=a 05t <t
a=0 tl' < t!

(3) Operation schedule of the control surface:

8(t') = 8(¢') =0 - t' <0

. - t 1

5(¢t') = 2& 0gt €

5(t') = 0 - — St X
(t') 3 3

. - 2t

8(t') = -2& s Sy
' 3

o 8(t') =8(¢') =0 >ty

The distribution of &(t') and 8(t') against t' and the geometry
of the airfoil and control surface are given in figure 17. The contri- -
bution of the control surface to total 1lift, that is, ACp(t'), is shown

in the lower curve; Ei(t') of the main wing is shown in the dotted
curve which has been given in reference 1. Since the ratio of §(t')
and &(t') 1is given, this curve can be used for any arbitrary &. In
hat
1

————— 1is used instead of E.
(M2 _ 1)1/2

this curve CLO =
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DISCUSSION

For the airfoil in a flow .of constant supersonic speed,'the tran-
sient effect due to pitching, flapping, or vertical gust will damp out

in a time period immediately after the change in angle of attack

- a
ceases. Although the result is obtained from the linearized theory, it
is expected to be approximately true for the nonlinear theory if the
angle of attack is reasonably small. After that time period, the lift,

. wave drag, and moment become the same as given by Ackeret in steady two--

dimensional linearized supersonic flow. The transient effect on Cps
CL, and Cy becomes more pronounced and 1asts longer as the supersonic

Mach number approaches 1. The same is also true of the transient period
of the harmonic oscillations in pitching, flapping, or vertical gust
which start from rest at t = O.

Cps, Cry
In the case of pitching with constant rate, ' 5 3
' . e . o
x'(& - &) (&1 - &)
Cume . .
and (T——MEL—S- can be approximated satisfactorily with a straight line
G - .
1~ %

in the time zone II, if M > 1.5. When such an approximation is adopted,
the case of pitching harmonic oscillation can be evaluated very quickly.
It is also easy to evaluate any arbitrary motion in pitching. In the
present analysis, the exact expressions in table 3 were used instead of
the above approximation because no simple approximation can be obtained
for either flapping or vertical gust.

In solv1ng the transient problems with the convolution 1ntegral,
one new function C(B M) 1is discovered. For the time from the abrupt
M C
start (t >M 13T -
lations have to be expressed in terms of C(B,M). It seems of comparable
importance to supersonic flutter as the Theodorsen function is to flutter
in incompressible flow. In the transient time zone II, where
ﬁ—b_f—i-% £t £ ﬁ %, a new function C(Q,M, 91), called the incomplet‘e‘
C-function, occurs which assumes an importance equal to that of ‘the
incomplete Bessel functions. More complete calculation of C(B M) seems
useful for the analysis of supersonic flutter in order to cover wider
ranges of Mach number and frequency than those  given in reference 6.
Appendix D gives some of the properties of C(B,M), (B M; Gl), and
the incomplete Bessel functions. . : :

), Cp, Cp, and Gy in the cases of harmonic oscil-
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l

: Coa Cph
The pressure coefficients — - -in pitching, —=— in -
: o x'(& - ap) | ay |
flapping, and :E§ in vertical gust are functions of Mach number and
B - S
a conical parameter

- tA! .
- 0 only. They are analogous to the behavior
b'4 .

of Busemann's conical flow. As pointed out in reference 1, these results
can be ‘applied to a yawing infinite wing, if the leading edge is ahead
of the Mach line, '

The effects of additional degrees of freedom such as the control
surface or servoflaps can be evaluated with the result of the pitching
and flapping of the main wing as shown under Transient Aerodynamic-
Behavior of the Control Surface. With the present basic approach, a
good aeronautical engineer with ingenuity should be able to solve all
two-dimensional problems of flutter and any other arbitrary motion.

Of course in the case of complicated time-dependent functions of angle
of attack some numerical or graphical integration of the convolution
.integral might be necessary as shown in references 1 and 10,

For the case of the harmonic oscillation with constant maximum
amplitude with abrupt start at t = 0 the absolute magnitudes of the
extremes in C;, and- CM for pitching and flapping degrees of freedom

are larger in the transient region M Q_g t S _M_C than those
< M+1U M-1U

in the steady region ¢ <t, particularly as the supersonic Mach -

M-1U
number nears 1. In addition, the maximum and minimum of the oscillating
angle of attack are not in phase with the maximum and minimum of CL
or Cy. In the case Of'pitching, the load leads the angle of attack;

in the case of flapping, the angle of attack leads the load. Also, the
angle of attack leads the load in the case of vertical gust.

As an interesting example of the harmonic oscillation building up
to flutter or damping out, the case with complex ® should be inves-
tigated. With the convolution integral, it seems within the reach of
the present analysis., Of course, the imaginary part of ®w must be
determined from the interaction of aerodynamic forces and the elastic
behavior of the wing. '

The Johns Hopkins University ‘
Baltimore, Md., November 4, 1949
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APPENDIX A

SYMBOLS
a velocity of sound
Cc wing chord i
o transient 1ift coefficient
Cro two-dimensional 1ift coefficient in steady case
Cm transient moment coefficient about axis of rotation
Cp pressure coefficignt (2(p - Iﬁ)/plulea
Cg chord of control surface
1 : -iB Uk -ipM
c(B,M) = = ae exp [———m——\ = = a6 exp { —————
¢ cos 6 e M- cos 6
0 1l- 0 A
M
n Y
- 1 ~-ig
C{o,M) = = de e —
(o,M) nL[; _XP<M‘-cos 9>

M - cos

N
c(B,M; 67) = % \ 48 exp (-—-ZEEE—E)
. 1

F( ) kernel function concerning 1ift coefficient
£( ) ‘kernel function concerning pressure coefficient
() kernel function concerning'moment coefficient

g velocity of vertical gust

é - -maximum velocity of uniform vertical gust

\
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h descending velocity

B : maximum velocity of vertical flapping wing
JO( ) Bessel fuﬁction of zero ordgr

J0) Bessel function of first order

M " Mach nuﬁber

m } parameter of Mach number (Esif_&)

t time

t = ¢c/u

t! nondimensional time (t/E)

t* = cgfu

t" nondimenéional time (control surface) (t/t*)
U free-stream velocity

v | y—componentAof velocity

X ‘ axis along chord direction

x! percent of chord (x/C)

Xq o axis of rotatioﬁ of entire airfoil

y Qertical‘éxis

a aﬁgle of attack

a constant angle of attack

= g/u ‘
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B frequency parameter for oscillating airfoils
& - : deflection angle of control surface

1 : sourée location along y-axis

e - 'running variable‘

61 lower limit of 6

A = x/a(M2 - 1)

v - x/U(t - to)= x' /(% - to')

¢ source location along x-axis

o = M

T time interval’

- nondimensional time interval (T/%)

,¢ | velocity po£entiai

w frequency parameter {angular velocity per secénd)
Subscripts: ' - ; \_ : o

g vertical gust
h flapping

pitching (changing angle of attack)

Q-

s} control surface
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APPENDIX B

SUMMARY OF INTEGRALS

/

Important Integrals in the Case of Steady Harmonic Oscillation

The following integrals are' used in evaluating Cp, and Cy for the

time zone t' > —M (as shown in tables 4, 5, and 6).

M-~-1
M .
£ M
M+1 . M 1[3(1:'- =
iBT’ =1 1 1 1 - =2 lB(‘tl T M- ) 2
Ilf . e {l + < sin [m(t -T') - M]} dr' = ise + 3 Jo(m)
KTy

I_L 7
M+1 [ -ip M ( )
I BT ogml g H =T =1 elPt e 1 M1 e \WM-cos8/ 4
5 N £t - Tt ip
o M o
© M-1
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M to-rt ip M+ 1
M-I ,
o3 -ied (g) , P -igg (E) L2
e O A e )| R
M .
t 3 ..M
Ml ' . ipt! _
Ig el1BT (t* - T')3 cos~1 M -7t -1 128 B W( M > IBM-Tl )
UM tho- T ip M3+ 1
t! - —
M-1
=if=
M3e~15E [(M2 + 1)JO(E) - (2Mi + E)JI(E)] el
(MZ 1)5/2 m m ig
Ig efPri(gr - 71)2 \I(t' -T2 (e e 1P e M elﬁ(t'_ ﬁ)
tl_L ’ , . (M2 _1)5/2
M-1

[% (M + 1) + ﬂ% + 5(1111_8)2 Jl(’%) - i"_ﬁ(em + :;’—IE)JO(I%)}
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Important Integrals in the Case of Transient

Harmonic Oscillation
: !

The following integrals are used in calculating C;, and Cy for

the time zone M <y M (as shown in tables L4, 5, and 6).
M+ 1 M-1 _

| AR L ‘ .
M+1 . .
I, eIBT' 41 + 2 5in ) (e - +7) < M @' o= -2l 2 el t' - M
1f A+ 2o [ater -7t -] 5 g cosT (at )
o] R

AN
2 eiﬁ(t -m) e-ig_c%g o
ki ip . .
cos-1 ( mt?-M)

’

oo M
M+1 . 1
Ié'f elBT (g T'){l + % sin~1 En(t' -7') - M]} ar' = ’_—1—6 + ( l)Q]E cos™ (mt' - M)—Z:] +
. . . ip
o . . )

ip(t'- Y4 : : _acos
2e ( )f <1~£+ 1, cos )e 1 — af
xip - o ip o
’ cos~1 (mt'-M)

g - M : :
M+1 T <
13'f 187 \[(t' )2 oMt - - 1) gy = M %\‘l - (mt' - M)2 -
1
(o]

M2 -
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M+1 eiBT '

Ill» (t' _Tf)\l(t- -'r')2

)

_t' 2
B (1p)

_ M2(‘§' ST 1)2 gt =

M :| — (mt" el
W2 -1 2

(3 nes o d) mit
! i : z i : ‘
M2 -1 p Cgs-l fmt ' -M) m . B .
M ) ) .,
M1 . i (t, _ M) .
I (eiBT") costly Yo T -1 o 8 M1/ _ elBt! e M-cos 8 gp -
. I R ig iB 1 M(t'-1
0 cos™t -
1 ol M - 1)
ip t!
M
Y ' M .
M+ . VoLt M iB(-tl - __) -
Ig' . e (g - 17) cosTl M i z 1 arr = X e Mel/ _E cos™L M(t 1) -
LA iBM+ 1 i £
" .
i (t' __) . ,CO8
M & g -ip— p 1 '
- ag + — 15
1 i
M-2 -1 g cos™1 (mt?-M) B
. . .
M ) , M
fr e — v 2 iB(t - —-) 2 -
I7' Bl o187 (g1 _ 71)2 cogmly BT : g =M ¥, SISV N | M(t' - 1)
: tho-T 1p\M +.1 ig T
o]
. : B -
2 eiB(t' -%) 18 cos @ . ‘
A (M + cos fle — B df + = Igf

cos™l (mt' M)



; :
2 (M + 3mt') + 6(2 ] -
TR ' (iﬁ) (M2 - 1)5/2 18

) st

ag

[

{2M + n
os™l (mt'-m)
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e (e~ o)
t! - — . 1 _ igit! - o— '3 v _
I8' f Ml e1PT (¢ T')3 cos'l M t T 1 ar' = ﬂ, M )3313 M1/ t_ cos~1 Mt 1) -
t' - 7! is\M + 1 i N t!
‘0
{ M) n
igit' - % ¢
3 \ m _jplos
" 2 M2+1+2Mcos¢+1cos¢)eiﬁm ag +
o 5/2 ip ' iB .
(M - 1) os~t (mt' M)
. 1 - M2 > 3
R \!1 - (mt' - M =1
iB (M2 _ 1)372 (m e 1g 1
’ - Mii_l — 3 V- (mt - )2 '
Iy' eiBT (¢ - 71)2 \!(t' TPt -t - 1)2 Gt = - - i Ezt'Q +
: (v - l)5/.2 1p
0 .
u) [ .
3 iB(t'-
M z ) 3m+cos¢M2+ll+hMm

—_—+
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APPENDIX C
CHECK WITH NACA TN 1158

To check the present results through convolution integrals with
Garrick and Rubinow's work, a case of the steady harmonic oscillation
of the angle of attack about the leading edge is investigated. With
their notation, Cj due to the harmonic oscillation of the angle of

attack alone (cx. = a.oei“’t) may be verified from their equation (26) as

Clo = hk2e1w¢ao(L3 +.;Lh) | (01f
Ly = L3’ Ly = L3' - 2%l
Ly =y Ly = Iy - 2xglp

e

At M =2, for & =1.667, from their table II,

Ly' = 1.50219 Ly’ = 0.69968

Hence,

ag(2.16315 + 1.0075k1)el®t

5‘C)
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NOTATION
NACA TN 1158 . Present paper

t | 1 o=

. : C
w B = %%
b C=2b
v U=aM=v
k=90 B = 2k

v
elot exp (ipt') = exp (iwt)

M

In the present case a = a exp (ipt'). From table 4 for t' €

Cr(t') 2 ' 2
L(% - ip exp |ipftr - __2M_) JO(!%) 2, 2(om2 - 1) i,
a ME -1 2 . B

Jl(%)i _._3__‘(1 + liﬁ) + iB exp (ist') [§+ ﬁﬁ +
@ 1 . . |
oo

whence, at M =2 and B =1.2, Cp =& exp (ift')(2.16315 + 1.00753i).
The expressions are identical, within computational limits.
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APPENDIX D

INVESTIGATION OF THE FEW IMPORTANT INTEGRALS REIATED TO
SUPERSONIC FLUTTER AND TRANSIENT PROBLEMS

C~-Function

The problem is investigation of the C-function or the integral

. -ipM (B >0)
ce,M) =?E;l: 16 exp (M-cos e) (M >1)

If the above integral is differentiated with respect to B and M,

[

éq - 1B ao |exp ( -ipM ) cos 6 ' (D1)
M * Jo 3 M - cos G_J(M _ cos 9)2

) _ —. . T
éq =i dé jexp ( 1EM \ M (D2)
op n 0 L " \M - cos eldM - cos 6

A2 7 . o) '
o%c _ 1 deExp ( 16M ):I M _ (D3)
32 n 0 M - cos § (M - cos 6)2

With the above three relations, it is found that C(B,M) = Cp + iCp
satisfies the differential equation

'

3C _ 4 3¢

= —Z (DL)

+

I
Iy
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 If the real and imaginary parts of C(B,M) are taken separately,

aCR _ BZCI N M BCR B
‘ OB 352 B M
y (D5)
dcy ey L, MO0
d 2 B M
- ]

which are two simultaneous differential equations. The required six
boundary conditions can be obtained from C(B M) as follows.

For B =
~ -
Cr(O,M) =1 cr(o,M) = 0 '
\ - . (D6)
BCR -0 aCI M v
0B B 21
. , J
For M —> o,
Cr = cos B . Ct = -sin B (D7)
1 - :
The integral i a8 exp ——~:EE———) can be written as
b¢ M - cos B
O .
. L[ .
= -ig
Clo,M) = = de e —_—
(a:M) rrf xP(M-—cosG)
o ' =
where = BM. Under the new definition, the function C(o M) can be

shown to satlsfy the differential equation

¥C T

l ——

32 M 0
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. or
362 oM
. 8261 - - aCB
32 M -

It is easy to show that the real and imaginary parts of c(o,M)

must satisfy the equations

2 [ 32F 2F. _
9 éra CR) = S ‘R - 0£0f o

ag
d02 \ o2 M2
and _ .
> [ 3¢ d°C
, 0'82(0' 2I)V= 21 ' 1SME€w
' oo o M :

The corresponding boundary conditions are:

For ¢ =0, M>1,

Cg=1 C; =0
B_CB =0 €y = =1
ao’ BO' M2 _' 1
2— —
Cg M 3°C o
2
o (M2 - 1)3/2 30°
For M —) w, '
CrR=1 Ci =0
-a—C—R- =0 é_C_I =0
oM oM
ACp, X
_R =0 __l =0

d0 - S0

Y

33

(D9)

(D10)

(p11)

(D12)
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The preceding function is so important to the supersonic flutter
problem that thorough investigation of the function and the other
solutions of the corresponding differential equation seems advisable.

To show the general behavior of this new function, a case with M = 1.3
and O S B < 3 has been calculated numerically. See table 7 and

~figure 18.

- Incomplete C-function

The incomplete C-function is

1

. P
. =4 -1
c(p,M; 61) = ;J; exp (M—_lg%é) a8 (D13)

It can be shown that this incomplete C-function also satisfies the
differential equations (D5) except the boundary conditions are obtained
from equation (D13).

For B =
2
Cg = ( - —;l-) Cp = 0
> (D14)
| oC oC 6
R _ I___-M -2 -1 M+ 1 21
aB 0 aB ﬁlle_—_l[g tan <M_ltan 2)
J
For M =) «,
01 01 ‘
Cg = (1 - -“—) cos B Ct = -(1 -—)sinp (D15)

~

To show the nature of the incomplete C-function, a case with M = 1. 5,

B = §, and 0 S 61 € n has been calculated by means-of numerical inte-
gration. See table 8 and figure 19. The above data are used in the tran-
sient behavior as shown in figures 11 to 16.
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Incomplete Bessel Functions

The incomplete Bessel functions are

\

.
Io(z,61) = % exp (+iz cos 6) @6 (D16)
61
. N ﬂ t .
31(2,61) = = | cos 6 exp (+1z cos 6) a8 (D17)

These two functions become Jp(z) and Jl(z), respectively, when
61 = 0. They have been called the incomplete Bessel functions by

Garrick and Rubinow. The case M = 1.5, B = %, and .O < 61 < % has

been calculated by numerical methods. It is interesting that each has

a real and an imaginary part. At 67 = 0, both become real and ordinary
Bessel functions. Both play as important roles as the incomplete
C-function in harmonic oscillations at the transient time zone II. See
table 8 and figures 20 and 21,



36

11.

NACA TN 2333

REFERENCES

Chang, Chieh-Chien: The Transient Reaction of an Airfoil Due to

Change in Angle of Attack at Supersonic Speed. Jour. Aero. Sci.,
vol. 15, no. 11, Nov. l9h8,.pp. 635-655.

Biot, M. A. Loads on a Supersonic Wing Striking a Sharp-Edged
Gust. Rep No. SA-247-8-7, Cornell Aero. Lab., Cornell Res.
Foundation, Inc., 1948,

Schwarz, L.: Plane Nonstationary Theory of the Wing at Supersonic
Speed; an Abstract of a Report with the Samé Title. Translation
No. F-TS-934-RE (ATI 2256k4), Air Materiel Command, Army Air Forces,
March 1947. '

Heaslet, Max. A., and Lomax, Harvard: Two-Dimensional Unsteady Lift
Problems in Supersonic Flight. NACA Rep. 945, 1949. (Formerly
NACA TN 1621.)

Miles, John W. Transient Loading of Airfoils at Supersonic Speeds.
Jour. Aero. Sc1 , vol. 15, no. 10, Oct.- 19#8 pp. 592-598.

Garrick, I. E., and Rubinow, S. I.: 'Flutter and Oscillating Air-
Force Calculations for an Alrf01l in .a Two—Dlmen51onal Supersonic
Flow. NACA TN 1158, 1946,

V. Kﬁrmén, Theodore, and Biot, Maurice A.: Mathematical Methods in
Engineering. McGraw-Hill Book Co., Inc., 1940.

McLachlan, N. W.: Complex Variable and Operational Calculus with
Technical Applications. The MacMillan Co., 1946, .

Doetsch, G.: Laplace Transformation. Doverqublications, 1943,

Jones, Robert T.: Calculation of the Motion of an Airplane under
the Influence of Irregular Disturbances. Jour. Aero. Sci.,
vol. 3, no. 12, Oct. 1936, pp. 419-425; A Simplified Application
of the Method of Operators to the Calculation of Disturbed Motions
of an Airplane. NACA Rep. 560, 1936.

Garrick, I. E. On Some Reciprocal Relations in the Theory of Non-
stationary Flows NACA Rep. 629, 1938,



NACA TN 2333

CHARACTERISTICS OF AN AIRFOIL WITH CHANGING AMGIE OF ATTACK &

E‘o' = 0; see figs. 8, 9, and 10.

TABLE 1
1

For xy' # 0 refer to table 2 and figs. 2, 3, and h]
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TABLE &

CHANGIKG ANGLE OF ATTACK

t‘ZO

in the case ' = 0. See figs. 11 and 12.
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i

‘d xtpusdde s9s fsuorjoumg Tossog mpwﬂnsoouﬂr
*q xrpusdde ass {(Tg {Wg)n uoradung-H 93a1dmodur,,

R ‘ , | " memss:

_ -
P
T A e
) | o o m\H? - A
@: Tt 372
W-,3T _S0D T - v&:z B . mm b _pvuﬂ '
—.wa: m@ W Ly T N\ﬂﬁ ¢ : "
+ === . —
T =1z + ¢gp . aﬁlm @ sod T + 1 % . m.nmm
+ 8 ¥ W (t - )
+ (B OhAnﬂNz + A ° o
(B @-a)or | T o
. W=,3W -_S0D T -H)* UREVAS *
2 (97 )W H ! iz N\HA i
o s ] V) L S _w o ° T g -
L mmoo g A.ﬂ . .pvg 0 M NEJNZ W
+ - E) = - —_—— = I|—
. _ % 8 w%u Wor- Tt T e
. b TR R . L(ST)aR W ¥
§ 509 iy T T IR
. z - 1 - -
- v = . ) -
. =30 1-5090) 50 (T M) AmVH - Amvo B N\H? )
PR 8) e ™ g =
"KW X AZ ...«v. 4 - Aﬂl _‘.«vaﬁ Up
AT Y i
A k! , (%o
Ajvz Labaat L% W o L
+ 6 5 s0o- :uﬁno -1 .lemﬂ * 18P gsoo- zﬁnm 77T a1
- W pre * n *
T+H_ : I-W=s ,=T+H sl X
S e . > STy - W
III suoz 11 suoz | ’ T oo

NACA TN 2333

_Hﬁ pue €1 'sBIF 805 qqr9D = z.m_

ONIM ONIddvid

¢ TIEVL




Lo

*q xypuadde ses fsuorpjoung rosseg wvoam&oonﬁr
*q@ xtpuadde sss {(Tg ‘Wd)0  uotrzoung-p a3 sdmoouy,

UOTHOUNI-D,

NACA TN 2333

3 ) Aﬁ gTeN
T H e (T )5
W-,3U _S0d - : -
gx . ] T mn? M)gTIee N . N\H? M)ITH
L g o (W - ¢ s03) A VHB - A vo§. g
ki g1~ ’ o _ mﬁmv: g d o o
¢ sod ” R 1) 9T Am |.pvnﬂ 3
(130
. gTESW N
L3919 or 000 hy | T P erren
*
3 '
- . T..i_p.vz T-59° ¥ 2(4T)R )
s =gy~ T TN
** - ' -
) XYTH
AHI.HVz 1-59° 7, .
gTH 0 X JIN mm
T~ 9ty 3 6P g soo- ° T I PN
A 3T A||T_ uza-moo ) . ) = - T g Ton ()T
- |ep - 3 = - I
%02 =ty T e
I
T+H= H - z = - H + z l\
W > .3 ™ > %> W 11+ 5 L W =
IIT euoz ) II suoz I suoz

B . . 8. _
ﬁw.ﬂ puB G *s8TJ 9988 .paﬁw D =

ISNO TVOIIMHEA

9 TIAVL

™)




NACA TN 2333

VALUES OF C-FUNCTION C(B,M) FOR M = 1.3

TABLE 7

B Real Imaginary
0 1.0 o

.3 ©.8l153 -. 417961

.5 -.62101 -.567971

.8 . 32000 -.569621
1.0 .21844 _-.h98uhi
1.2 19147 - b85Sk
1.5 .17883 - h772d
1.7 | .12058 -.53k231
2.0 - 48081 -.562791
2.2 -.16005 -.511541
2.4 -.22697 - boho14
2.5 -.23982 -.381231
2.93 -.22265 -.293551

. “!ﬂ!’!”
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TABLE 8

NACA TN 2333

VALUES OF INCOMPLETE C-FUNCTION AND INCOMPLETE BESSEL FUNCTIONS

B = w2, m= 15

or | oo o) o) n(8:0)
0 -0.05339 |.-0.47148i | 0.29055 | 0O 0.58148 | o
.2 -.04952 -.53&93i .309&6 ;060781 ;5é110 .018801
Ao| -.02526 | -.59317i | .32378 | 122781 | .46198 | .032k9i
.6 .02500 | -.630791 .30891 | .1861ki | .kO64T | .0370Ti
.8 .08770 | -.634931 .32058 249101 . 35837 .030881i
1.0 L1hh3h -;60720i .29582 | 307504 . 3220k A .015731
1.2 . .18435 | -.558191 25417 355361 .30020 | -.00289i
1.k .20575 -;u98481’ .19871 . 385801 .29172 -.015%21
1.6 .2108l -. 435171 .13598 | .39420i 2907k | -.021901
1.8 | L2030 | -.370061 | .omhsk | .379001 | .288M | -.o1k091
2.0 :18569 -.310871 .02257 .342811 .27643 .002481
2.2 .16124 -.252121 -.01u29’ .291251 | .25027 .020821
2.4 .13173 -.195731 | -.03407 .230961 .21610 .033771
2.6 .09867 -.1k41331i | -.03808 167561 | .15938 .036831
2.8 .06326 -.0884hki | -.,02980" .10&501 .10248 . _.029291
3.ov :.026uu -.03650i | -.01367 .ok2951' .0L279 .013591
3.1 .00778 -,01071i | -.00408 .012591 .01259 .00k114
1 0 0 0o 0 0 0

-~ NQS&,;
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(b) g%l = ag(t).

Figure 1.- Angle of attack as a function of time’ t for two cases: (a) Flapping
wing and (b) wing meeting a vertical gust.
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Figure 17.- Distribution of & (t') and é(t‘) against t' and geometry of
airfoil and control surface. Contribution of control surface to total lift
shown by curve at bottom of figure. Cy(t') shown by dotted curve
(from reference 1). t;' = 5.
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